Merge tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / fs / btrfs / async-thread.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2014 Fujitsu.  All rights reserved.
5  */
6
7 #include <linux/kthread.h>
8 #include <linux/slab.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/freezer.h>
12 #include <trace/events/btrfs.h>
13 #include "async-thread.h"
14
15 enum {
16         WORK_DONE_BIT,
17         WORK_ORDER_DONE_BIT,
18 };
19
20 #define NO_THRESHOLD (-1)
21 #define DFT_THRESHOLD (32)
22
23 struct btrfs_workqueue {
24         struct workqueue_struct *normal_wq;
25
26         /* File system this workqueue services */
27         struct btrfs_fs_info *fs_info;
28
29         /* List head pointing to ordered work list */
30         struct list_head ordered_list;
31
32         /* Spinlock for ordered_list */
33         spinlock_t list_lock;
34
35         /* Thresholding related variants */
36         atomic_t pending;
37
38         /* Up limit of concurrency workers */
39         int limit_active;
40
41         /* Current number of concurrency workers */
42         int current_active;
43
44         /* Threshold to change current_active */
45         int thresh;
46         unsigned int count;
47         spinlock_t thres_lock;
48 };
49
50 struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct btrfs_workqueue *wq)
51 {
52         return wq->fs_info;
53 }
54
55 struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
56 {
57         return work->wq->fs_info;
58 }
59
60 bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
61 {
62         /*
63          * We could compare wq->pending with num_online_cpus()
64          * to support "thresh == NO_THRESHOLD" case, but it requires
65          * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
66          * postpone it until someone needs the support of that case.
67          */
68         if (wq->thresh == NO_THRESHOLD)
69                 return false;
70
71         return atomic_read(&wq->pending) > wq->thresh * 2;
72 }
73
74 static void btrfs_init_workqueue(struct btrfs_workqueue *wq,
75                                  struct btrfs_fs_info *fs_info)
76 {
77         wq->fs_info = fs_info;
78         atomic_set(&wq->pending, 0);
79         INIT_LIST_HEAD(&wq->ordered_list);
80         spin_lock_init(&wq->list_lock);
81         spin_lock_init(&wq->thres_lock);
82 }
83
84 struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
85                                               const char *name, unsigned int flags,
86                                               int limit_active, int thresh)
87 {
88         struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
89
90         if (!ret)
91                 return NULL;
92
93         btrfs_init_workqueue(ret, fs_info);
94
95         ret->limit_active = limit_active;
96         if (thresh == 0)
97                 thresh = DFT_THRESHOLD;
98         /* For low threshold, disabling threshold is a better choice */
99         if (thresh < DFT_THRESHOLD) {
100                 ret->current_active = limit_active;
101                 ret->thresh = NO_THRESHOLD;
102         } else {
103                 /*
104                  * For threshold-able wq, let its concurrency grow on demand.
105                  * Use minimal max_active at alloc time to reduce resource
106                  * usage.
107                  */
108                 ret->current_active = 1;
109                 ret->thresh = thresh;
110         }
111
112         ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active,
113                                          name);
114         if (!ret->normal_wq) {
115                 kfree(ret);
116                 return NULL;
117         }
118
119         trace_btrfs_workqueue_alloc(ret, name);
120         return ret;
121 }
122
123 struct btrfs_workqueue *btrfs_alloc_ordered_workqueue(
124                                 struct btrfs_fs_info *fs_info, const char *name,
125                                 unsigned int flags)
126 {
127         struct btrfs_workqueue *ret;
128
129         ret = kzalloc(sizeof(*ret), GFP_KERNEL);
130         if (!ret)
131                 return NULL;
132
133         btrfs_init_workqueue(ret, fs_info);
134
135         /* Ordered workqueues don't allow @max_active adjustments. */
136         ret->limit_active = 1;
137         ret->current_active = 1;
138         ret->thresh = NO_THRESHOLD;
139
140         ret->normal_wq = alloc_ordered_workqueue("btrfs-%s", flags, name);
141         if (!ret->normal_wq) {
142                 kfree(ret);
143                 return NULL;
144         }
145
146         trace_btrfs_workqueue_alloc(ret, name);
147         return ret;
148 }
149
150 /*
151  * Hook for threshold which will be called in btrfs_queue_work.
152  * This hook WILL be called in IRQ handler context,
153  * so workqueue_set_max_active MUST NOT be called in this hook
154  */
155 static inline void thresh_queue_hook(struct btrfs_workqueue *wq)
156 {
157         if (wq->thresh == NO_THRESHOLD)
158                 return;
159         atomic_inc(&wq->pending);
160 }
161
162 /*
163  * Hook for threshold which will be called before executing the work,
164  * This hook is called in kthread content.
165  * So workqueue_set_max_active is called here.
166  */
167 static inline void thresh_exec_hook(struct btrfs_workqueue *wq)
168 {
169         int new_current_active;
170         long pending;
171         int need_change = 0;
172
173         if (wq->thresh == NO_THRESHOLD)
174                 return;
175
176         atomic_dec(&wq->pending);
177         spin_lock(&wq->thres_lock);
178         /*
179          * Use wq->count to limit the calling frequency of
180          * workqueue_set_max_active.
181          */
182         wq->count++;
183         wq->count %= (wq->thresh / 4);
184         if (!wq->count)
185                 goto  out;
186         new_current_active = wq->current_active;
187
188         /*
189          * pending may be changed later, but it's OK since we really
190          * don't need it so accurate to calculate new_max_active.
191          */
192         pending = atomic_read(&wq->pending);
193         if (pending > wq->thresh)
194                 new_current_active++;
195         if (pending < wq->thresh / 2)
196                 new_current_active--;
197         new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
198         if (new_current_active != wq->current_active)  {
199                 need_change = 1;
200                 wq->current_active = new_current_active;
201         }
202 out:
203         spin_unlock(&wq->thres_lock);
204
205         if (need_change) {
206                 workqueue_set_max_active(wq->normal_wq, wq->current_active);
207         }
208 }
209
210 static void run_ordered_work(struct btrfs_workqueue *wq,
211                              struct btrfs_work *self)
212 {
213         struct list_head *list = &wq->ordered_list;
214         struct btrfs_work *work;
215         spinlock_t *lock = &wq->list_lock;
216         unsigned long flags;
217         bool free_self = false;
218
219         while (1) {
220                 spin_lock_irqsave(lock, flags);
221                 if (list_empty(list))
222                         break;
223                 work = list_entry(list->next, struct btrfs_work,
224                                   ordered_list);
225                 if (!test_bit(WORK_DONE_BIT, &work->flags))
226                         break;
227                 /*
228                  * Orders all subsequent loads after reading WORK_DONE_BIT,
229                  * paired with the smp_mb__before_atomic in btrfs_work_helper
230                  * this guarantees that the ordered function will see all
231                  * updates from ordinary work function.
232                  */
233                 smp_rmb();
234
235                 /*
236                  * we are going to call the ordered done function, but
237                  * we leave the work item on the list as a barrier so
238                  * that later work items that are done don't have their
239                  * functions called before this one returns
240                  */
241                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
242                         break;
243                 trace_btrfs_ordered_sched(work);
244                 spin_unlock_irqrestore(lock, flags);
245                 work->ordered_func(work, false);
246
247                 /* now take the lock again and drop our item from the list */
248                 spin_lock_irqsave(lock, flags);
249                 list_del(&work->ordered_list);
250                 spin_unlock_irqrestore(lock, flags);
251
252                 if (work == self) {
253                         /*
254                          * This is the work item that the worker is currently
255                          * executing.
256                          *
257                          * The kernel workqueue code guarantees non-reentrancy
258                          * of work items. I.e., if a work item with the same
259                          * address and work function is queued twice, the second
260                          * execution is blocked until the first one finishes. A
261                          * work item may be freed and recycled with the same
262                          * work function; the workqueue code assumes that the
263                          * original work item cannot depend on the recycled work
264                          * item in that case (see find_worker_executing_work()).
265                          *
266                          * Note that different types of Btrfs work can depend on
267                          * each other, and one type of work on one Btrfs
268                          * filesystem may even depend on the same type of work
269                          * on another Btrfs filesystem via, e.g., a loop device.
270                          * Therefore, we must not allow the current work item to
271                          * be recycled until we are really done, otherwise we
272                          * break the above assumption and can deadlock.
273                          */
274                         free_self = true;
275                 } else {
276                         /*
277                          * We don't want to call the ordered free functions with
278                          * the lock held.
279                          */
280                         work->ordered_func(work, true);
281                         /* NB: work must not be dereferenced past this point. */
282                         trace_btrfs_all_work_done(wq->fs_info, work);
283                 }
284         }
285         spin_unlock_irqrestore(lock, flags);
286
287         if (free_self) {
288                 self->ordered_func(self, true);
289                 /* NB: self must not be dereferenced past this point. */
290                 trace_btrfs_all_work_done(wq->fs_info, self);
291         }
292 }
293
294 static void btrfs_work_helper(struct work_struct *normal_work)
295 {
296         struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
297                                                normal_work);
298         struct btrfs_workqueue *wq = work->wq;
299         int need_order = 0;
300
301         /*
302          * We should not touch things inside work in the following cases:
303          * 1) after work->func() if it has no ordered_func(..., true) to free
304          *    Since the struct is freed in work->func().
305          * 2) after setting WORK_DONE_BIT
306          *    The work may be freed in other threads almost instantly.
307          * So we save the needed things here.
308          */
309         if (work->ordered_func)
310                 need_order = 1;
311
312         trace_btrfs_work_sched(work);
313         thresh_exec_hook(wq);
314         work->func(work);
315         if (need_order) {
316                 /*
317                  * Ensures all memory accesses done in the work function are
318                  * ordered before setting the WORK_DONE_BIT. Ensuring the thread
319                  * which is going to executed the ordered work sees them.
320                  * Pairs with the smp_rmb in run_ordered_work.
321                  */
322                 smp_mb__before_atomic();
323                 set_bit(WORK_DONE_BIT, &work->flags);
324                 run_ordered_work(wq, work);
325         } else {
326                 /* NB: work must not be dereferenced past this point. */
327                 trace_btrfs_all_work_done(wq->fs_info, work);
328         }
329 }
330
331 void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
332                      btrfs_ordered_func_t ordered_func)
333 {
334         work->func = func;
335         work->ordered_func = ordered_func;
336         INIT_WORK(&work->normal_work, btrfs_work_helper);
337         INIT_LIST_HEAD(&work->ordered_list);
338         work->flags = 0;
339 }
340
341 void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work)
342 {
343         unsigned long flags;
344
345         work->wq = wq;
346         thresh_queue_hook(wq);
347         if (work->ordered_func) {
348                 spin_lock_irqsave(&wq->list_lock, flags);
349                 list_add_tail(&work->ordered_list, &wq->ordered_list);
350                 spin_unlock_irqrestore(&wq->list_lock, flags);
351         }
352         trace_btrfs_work_queued(work);
353         queue_work(wq->normal_wq, &work->normal_work);
354 }
355
356 void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
357 {
358         if (!wq)
359                 return;
360         destroy_workqueue(wq->normal_wq);
361         trace_btrfs_workqueue_destroy(wq);
362         kfree(wq);
363 }
364
365 void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
366 {
367         if (wq)
368                 wq->limit_active = limit_active;
369 }
370
371 void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
372 {
373         flush_workqueue(wq->normal_wq);
374 }