Merge branch 'for-6.9/amd-sfh' into for-linus
[sfrench/cifs-2.6.git] / drivers / video / backlight / pwm_bl.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple PWM based backlight control, board code has to setup
4  * 1) pin configuration so PWM waveforms can output
5  * 2) platform_data being correctly configured
6  */
7
8 #include <linux/delay.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/fb.h>
15 #include <linux/backlight.h>
16 #include <linux/err.h>
17 #include <linux/pwm.h>
18 #include <linux/pwm_backlight.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21
22 struct pwm_bl_data {
23         struct pwm_device       *pwm;
24         struct device           *dev;
25         unsigned int            lth_brightness;
26         unsigned int            *levels;
27         bool                    enabled;
28         struct regulator        *power_supply;
29         struct gpio_desc        *enable_gpio;
30         unsigned int            scale;
31         unsigned int            post_pwm_on_delay;
32         unsigned int            pwm_off_delay;
33         int                     (*notify)(struct device *,
34                                           int brightness);
35         void                    (*notify_after)(struct device *,
36                                         int brightness);
37         int                     (*check_fb)(struct device *, struct fb_info *);
38         void                    (*exit)(struct device *);
39 };
40
41 static void pwm_backlight_power_on(struct pwm_bl_data *pb)
42 {
43         int err;
44
45         if (pb->enabled)
46                 return;
47
48         if (pb->power_supply) {
49                 err = regulator_enable(pb->power_supply);
50                 if (err < 0)
51                         dev_err(pb->dev, "failed to enable power supply\n");
52         }
53
54         if (pb->post_pwm_on_delay)
55                 msleep(pb->post_pwm_on_delay);
56
57         gpiod_set_value_cansleep(pb->enable_gpio, 1);
58
59         pb->enabled = true;
60 }
61
62 static void pwm_backlight_power_off(struct pwm_bl_data *pb)
63 {
64         if (!pb->enabled)
65                 return;
66
67         gpiod_set_value_cansleep(pb->enable_gpio, 0);
68
69         if (pb->pwm_off_delay)
70                 msleep(pb->pwm_off_delay);
71
72         if (pb->power_supply)
73                 regulator_disable(pb->power_supply);
74         pb->enabled = false;
75 }
76
77 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness, struct pwm_state *state)
78 {
79         unsigned int lth = pb->lth_brightness;
80         u64 duty_cycle;
81
82         if (pb->levels)
83                 duty_cycle = pb->levels[brightness];
84         else
85                 duty_cycle = brightness;
86
87         duty_cycle *= state->period - lth;
88         do_div(duty_cycle, pb->scale);
89
90         return duty_cycle + lth;
91 }
92
93 static int pwm_backlight_update_status(struct backlight_device *bl)
94 {
95         struct pwm_bl_data *pb = bl_get_data(bl);
96         int brightness = backlight_get_brightness(bl);
97         struct pwm_state state;
98
99         if (pb->notify)
100                 brightness = pb->notify(pb->dev, brightness);
101
102         if (brightness > 0) {
103                 pwm_get_state(pb->pwm, &state);
104                 state.duty_cycle = compute_duty_cycle(pb, brightness, &state);
105                 state.enabled = true;
106                 pwm_apply_might_sleep(pb->pwm, &state);
107
108                 pwm_backlight_power_on(pb);
109         } else {
110                 pwm_backlight_power_off(pb);
111
112                 pwm_get_state(pb->pwm, &state);
113                 state.duty_cycle = 0;
114                 /*
115                  * We cannot assume a disabled PWM to drive its output to the
116                  * inactive state. If we have an enable GPIO and/or a regulator
117                  * we assume that this isn't relevant and we can disable the PWM
118                  * to save power. If however there is neither an enable GPIO nor
119                  * a regulator keep the PWM on be sure to get a constant
120                  * inactive output.
121                  */
122                 state.enabled = !pb->power_supply && !pb->enable_gpio;
123                 pwm_apply_might_sleep(pb->pwm, &state);
124         }
125
126         if (pb->notify_after)
127                 pb->notify_after(pb->dev, brightness);
128
129         return 0;
130 }
131
132 static int pwm_backlight_check_fb(struct backlight_device *bl,
133                                   struct fb_info *info)
134 {
135         struct pwm_bl_data *pb = bl_get_data(bl);
136
137         return !pb->check_fb || pb->check_fb(pb->dev, info);
138 }
139
140 static const struct backlight_ops pwm_backlight_ops = {
141         .update_status  = pwm_backlight_update_status,
142         .check_fb       = pwm_backlight_check_fb,
143 };
144
145 #ifdef CONFIG_OF
146 #define PWM_LUMINANCE_SHIFT     16
147 #define PWM_LUMINANCE_SCALE     (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */
148
149 /*
150  * CIE lightness to PWM conversion.
151  *
152  * The CIE 1931 lightness formula is what actually describes how we perceive
153  * light:
154  *          Y = (L* / 903.3)           if L* ≤ 8
155  *          Y = ((L* + 16) / 116)^3    if L* > 8
156  *
157  * Where Y is the luminance, the amount of light coming out of the screen, and
158  * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
159  * perceives the screen to be, and is a number between 0 and 100.
160  *
161  * The following function does the fixed point maths needed to implement the
162  * above formula.
163  */
164 static u64 cie1931(unsigned int lightness)
165 {
166         u64 retval;
167
168         /*
169          * @lightness is given as a number between 0 and 1, expressed
170          * as a fixed-point number in scale
171          * PWM_LUMINANCE_SCALE. Convert to a percentage, still
172          * expressed as a fixed-point number, so the above formulas
173          * can be applied.
174          */
175         lightness *= 100;
176         if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
177                 retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
178         } else {
179                 retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
180                 retval *= retval * retval;
181                 retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
182                 retval >>= 2*PWM_LUMINANCE_SHIFT;
183         }
184
185         return retval;
186 }
187
188 /*
189  * Create a default correction table for PWM values to create linear brightness
190  * for LED based backlights using the CIE1931 algorithm.
191  */
192 static
193 int pwm_backlight_brightness_default(struct device *dev,
194                                      struct platform_pwm_backlight_data *data,
195                                      unsigned int period)
196 {
197         unsigned int i;
198         u64 retval;
199
200         /*
201          * Once we have 4096 levels there's little point going much higher...
202          * neither interactive sliders nor animation benefits from having
203          * more values in the table.
204          */
205         data->max_brightness =
206                 min((int)DIV_ROUND_UP(period, fls(period)), 4096);
207
208         data->levels = devm_kcalloc(dev, data->max_brightness,
209                                     sizeof(*data->levels), GFP_KERNEL);
210         if (!data->levels)
211                 return -ENOMEM;
212
213         /* Fill the table using the cie1931 algorithm */
214         for (i = 0; i < data->max_brightness; i++) {
215                 retval = cie1931((i * PWM_LUMINANCE_SCALE) /
216                                  data->max_brightness) * period;
217                 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
218                 if (retval > UINT_MAX)
219                         return -EINVAL;
220                 data->levels[i] = (unsigned int)retval;
221         }
222
223         data->dft_brightness = data->max_brightness / 2;
224         data->max_brightness--;
225
226         return 0;
227 }
228
229 static int pwm_backlight_parse_dt(struct device *dev,
230                                   struct platform_pwm_backlight_data *data)
231 {
232         struct device_node *node = dev->of_node;
233         unsigned int num_levels;
234         unsigned int num_steps = 0;
235         struct property *prop;
236         unsigned int *table;
237         int length;
238         u32 value;
239         int ret;
240
241         if (!node)
242                 return -ENODEV;
243
244         memset(data, 0, sizeof(*data));
245
246         /*
247          * These values are optional and set as 0 by default, the out values
248          * are modified only if a valid u32 value can be decoded.
249          */
250         of_property_read_u32(node, "post-pwm-on-delay-ms",
251                              &data->post_pwm_on_delay);
252         of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
253
254         /*
255          * Determine the number of brightness levels, if this property is not
256          * set a default table of brightness levels will be used.
257          */
258         prop = of_find_property(node, "brightness-levels", &length);
259         if (!prop)
260                 return 0;
261
262         num_levels = length / sizeof(u32);
263
264         /* read brightness levels from DT property */
265         if (num_levels > 0) {
266                 data->levels = devm_kcalloc(dev, num_levels,
267                                             sizeof(*data->levels), GFP_KERNEL);
268                 if (!data->levels)
269                         return -ENOMEM;
270
271                 ret = of_property_read_u32_array(node, "brightness-levels",
272                                                  data->levels,
273                                                  num_levels);
274                 if (ret < 0)
275                         return ret;
276
277                 ret = of_property_read_u32(node, "default-brightness-level",
278                                            &value);
279                 if (ret < 0)
280                         return ret;
281
282                 data->dft_brightness = value;
283
284                 /*
285                  * This property is optional, if is set enables linear
286                  * interpolation between each of the values of brightness levels
287                  * and creates a new pre-computed table.
288                  */
289                 of_property_read_u32(node, "num-interpolated-steps",
290                                      &num_steps);
291
292                 /*
293                  * Make sure that there is at least two entries in the
294                  * brightness-levels table, otherwise we can't interpolate
295                  * between two points.
296                  */
297                 if (num_steps) {
298                         unsigned int num_input_levels = num_levels;
299                         unsigned int i;
300                         u32 x1, x2, x, dx;
301                         u32 y1, y2;
302                         s64 dy;
303
304                         if (num_input_levels < 2) {
305                                 dev_err(dev, "can't interpolate\n");
306                                 return -EINVAL;
307                         }
308
309                         /*
310                          * Recalculate the number of brightness levels, now
311                          * taking in consideration the number of interpolated
312                          * steps between two levels.
313                          */
314                         num_levels = (num_input_levels - 1) * num_steps + 1;
315                         dev_dbg(dev, "new number of brightness levels: %d\n",
316                                 num_levels);
317
318                         /*
319                          * Create a new table of brightness levels with all the
320                          * interpolated steps.
321                          */
322                         table = devm_kcalloc(dev, num_levels, sizeof(*table),
323                                              GFP_KERNEL);
324                         if (!table)
325                                 return -ENOMEM;
326                         /*
327                          * Fill the interpolated table[x] = y
328                          * by draw lines between each (x1, y1) to (x2, y2).
329                          */
330                         dx = num_steps;
331                         for (i = 0; i < num_input_levels - 1; i++) {
332                                 x1 = i * dx;
333                                 x2 = x1 + dx;
334                                 y1 = data->levels[i];
335                                 y2 = data->levels[i + 1];
336                                 dy = (s64)y2 - y1;
337
338                                 for (x = x1; x < x2; x++) {
339                                         table[x] = y1 +
340                                                 div_s64(dy * (x - x1), dx);
341                                 }
342                         }
343                         /* Fill in the last point, since no line starts here. */
344                         table[x2] = y2;
345
346                         /*
347                          * As we use interpolation lets remove current
348                          * brightness levels table and replace for the
349                          * new interpolated table.
350                          */
351                         devm_kfree(dev, data->levels);
352                         data->levels = table;
353                 }
354
355                 data->max_brightness = num_levels - 1;
356         }
357
358         return 0;
359 }
360
361 static const struct of_device_id pwm_backlight_of_match[] = {
362         { .compatible = "pwm-backlight" },
363         { }
364 };
365
366 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
367 #else
368 static int pwm_backlight_parse_dt(struct device *dev,
369                                   struct platform_pwm_backlight_data *data)
370 {
371         return -ENODEV;
372 }
373
374 static
375 int pwm_backlight_brightness_default(struct device *dev,
376                                      struct platform_pwm_backlight_data *data,
377                                      unsigned int period)
378 {
379         return -ENODEV;
380 }
381 #endif
382
383 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
384 {
385         unsigned int nlevels = data->max_brightness + 1;
386         unsigned int min_val = data->levels[0];
387         unsigned int max_val = data->levels[nlevels - 1];
388         /*
389          * Multiplying by 128 means that even in pathological cases such
390          * as (max_val - min_val) == nlevels the error at max_val is less
391          * than 1%.
392          */
393         unsigned int slope = (128 * (max_val - min_val)) / nlevels;
394         unsigned int margin = (max_val - min_val) / 20; /* 5% */
395         int i;
396
397         for (i = 1; i < nlevels; i++) {
398                 unsigned int linear_value = min_val + ((i * slope) / 128);
399                 unsigned int delta = abs(linear_value - data->levels[i]);
400
401                 if (delta > margin)
402                         return false;
403         }
404
405         return true;
406 }
407
408 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
409 {
410         struct device_node *node = pb->dev->of_node;
411         bool active = true;
412
413         /*
414          * If the enable GPIO is present, observable (either as input
415          * or output) and off then the backlight is not currently active.
416          * */
417         if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
418                 active = false;
419
420         if (pb->power_supply && !regulator_is_enabled(pb->power_supply))
421                 active = false;
422
423         if (!pwm_is_enabled(pb->pwm))
424                 active = false;
425
426         /*
427          * Synchronize the enable_gpio with the observed state of the
428          * hardware.
429          */
430         gpiod_direction_output(pb->enable_gpio, active);
431
432         /*
433          * Do not change pb->enabled here! pb->enabled essentially
434          * tells us if we own one of the regulator's use counts and
435          * right now we do not.
436          */
437
438         /* Not booted with device tree or no phandle link to the node */
439         if (!node || !node->phandle)
440                 return FB_BLANK_UNBLANK;
441
442         /*
443          * If the driver is probed from the device tree and there is a
444          * phandle link pointing to the backlight node, it is safe to
445          * assume that another driver will enable the backlight at the
446          * appropriate time. Therefore, if it is disabled, keep it so.
447          */
448         return active ? FB_BLANK_UNBLANK: FB_BLANK_POWERDOWN;
449 }
450
451 static int pwm_backlight_probe(struct platform_device *pdev)
452 {
453         struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
454         struct platform_pwm_backlight_data defdata;
455         struct backlight_properties props;
456         struct backlight_device *bl;
457         struct pwm_bl_data *pb;
458         struct pwm_state state;
459         unsigned int i;
460         int ret;
461
462         if (!data) {
463                 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
464                 if (ret < 0)
465                         return dev_err_probe(&pdev->dev, ret,
466                                              "failed to find platform data\n");
467
468                 data = &defdata;
469         }
470
471         if (data->init) {
472                 ret = data->init(&pdev->dev);
473                 if (ret < 0)
474                         return ret;
475         }
476
477         pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
478         if (!pb) {
479                 ret = -ENOMEM;
480                 goto err_alloc;
481         }
482
483         pb->notify = data->notify;
484         pb->notify_after = data->notify_after;
485         pb->check_fb = data->check_fb;
486         pb->exit = data->exit;
487         pb->dev = &pdev->dev;
488         pb->enabled = false;
489         pb->post_pwm_on_delay = data->post_pwm_on_delay;
490         pb->pwm_off_delay = data->pwm_off_delay;
491
492         pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
493                                                   GPIOD_ASIS);
494         if (IS_ERR(pb->enable_gpio)) {
495                 ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->enable_gpio),
496                                     "failed to acquire enable GPIO\n");
497                 goto err_alloc;
498         }
499
500         pb->power_supply = devm_regulator_get_optional(&pdev->dev, "power");
501         if (IS_ERR(pb->power_supply)) {
502                 ret = PTR_ERR(pb->power_supply);
503                 if (ret == -ENODEV) {
504                         pb->power_supply = NULL;
505                 } else {
506                         dev_err_probe(&pdev->dev, ret,
507                                       "failed to acquire power regulator\n");
508                         goto err_alloc;
509                 }
510         }
511
512         pb->pwm = devm_pwm_get(&pdev->dev, NULL);
513         if (IS_ERR(pb->pwm)) {
514                 ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->pwm),
515                                     "unable to request PWM\n");
516                 goto err_alloc;
517         }
518
519         dev_dbg(&pdev->dev, "got pwm for backlight\n");
520
521         /* Sync up PWM state. */
522         pwm_init_state(pb->pwm, &state);
523
524         /*
525          * The DT case will set the pwm_period_ns field to 0 and store the
526          * period, parsed from the DT, in the PWM device. For the non-DT case,
527          * set the period from platform data if it has not already been set
528          * via the PWM lookup table.
529          */
530         if (!state.period && (data->pwm_period_ns > 0))
531                 state.period = data->pwm_period_ns;
532
533         ret = pwm_apply_might_sleep(pb->pwm, &state);
534         if (ret) {
535                 dev_err_probe(&pdev->dev, ret,
536                               "failed to apply initial PWM state");
537                 goto err_alloc;
538         }
539
540         memset(&props, 0, sizeof(struct backlight_properties));
541
542         if (data->levels) {
543                 pb->levels = data->levels;
544
545                 /*
546                  * For the DT case, only when brightness levels is defined
547                  * data->levels is filled. For the non-DT case, data->levels
548                  * can come from platform data, however is not usual.
549                  */
550                 for (i = 0; i <= data->max_brightness; i++)
551                         if (data->levels[i] > pb->scale)
552                                 pb->scale = data->levels[i];
553
554                 if (pwm_backlight_is_linear(data))
555                         props.scale = BACKLIGHT_SCALE_LINEAR;
556                 else
557                         props.scale = BACKLIGHT_SCALE_NON_LINEAR;
558         } else if (!data->max_brightness) {
559                 /*
560                  * If no brightness levels are provided and max_brightness is
561                  * not set, use the default brightness table. For the DT case,
562                  * max_brightness is set to 0 when brightness levels is not
563                  * specified. For the non-DT case, max_brightness is usually
564                  * set to some value.
565                  */
566
567                 /* Get the PWM period (in nanoseconds) */
568                 pwm_get_state(pb->pwm, &state);
569
570                 ret = pwm_backlight_brightness_default(&pdev->dev, data,
571                                                        state.period);
572                 if (ret < 0) {
573                         dev_err_probe(&pdev->dev, ret,
574                                       "failed to setup default brightness table\n");
575                         goto err_alloc;
576                 }
577
578                 for (i = 0; i <= data->max_brightness; i++) {
579                         if (data->levels[i] > pb->scale)
580                                 pb->scale = data->levels[i];
581
582                         pb->levels = data->levels;
583                 }
584
585                 props.scale = BACKLIGHT_SCALE_NON_LINEAR;
586         } else {
587                 /*
588                  * That only happens for the non-DT case, where platform data
589                  * sets the max_brightness value.
590                  */
591                 pb->scale = data->max_brightness;
592         }
593
594         pb->lth_brightness = data->lth_brightness * (div_u64(state.period,
595                                 pb->scale));
596
597         props.type = BACKLIGHT_RAW;
598         props.max_brightness = data->max_brightness;
599         bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
600                                        &pwm_backlight_ops, &props);
601         if (IS_ERR(bl)) {
602                 ret = dev_err_probe(&pdev->dev, PTR_ERR(bl),
603                                     "failed to register backlight\n");
604                 goto err_alloc;
605         }
606
607         if (data->dft_brightness > data->max_brightness) {
608                 dev_warn(&pdev->dev,
609                          "invalid default brightness level: %u, using %u\n",
610                          data->dft_brightness, data->max_brightness);
611                 data->dft_brightness = data->max_brightness;
612         }
613
614         bl->props.brightness = data->dft_brightness;
615         bl->props.power = pwm_backlight_initial_power_state(pb);
616         backlight_update_status(bl);
617
618         platform_set_drvdata(pdev, bl);
619         return 0;
620
621 err_alloc:
622         if (data->exit)
623                 data->exit(&pdev->dev);
624         return ret;
625 }
626
627 static void pwm_backlight_remove(struct platform_device *pdev)
628 {
629         struct backlight_device *bl = platform_get_drvdata(pdev);
630         struct pwm_bl_data *pb = bl_get_data(bl);
631         struct pwm_state state;
632
633         backlight_device_unregister(bl);
634         pwm_backlight_power_off(pb);
635         pwm_get_state(pb->pwm, &state);
636         state.duty_cycle = 0;
637         state.enabled = false;
638         pwm_apply_might_sleep(pb->pwm, &state);
639
640         if (pb->exit)
641                 pb->exit(&pdev->dev);
642 }
643
644 static void pwm_backlight_shutdown(struct platform_device *pdev)
645 {
646         struct backlight_device *bl = platform_get_drvdata(pdev);
647         struct pwm_bl_data *pb = bl_get_data(bl);
648         struct pwm_state state;
649
650         pwm_backlight_power_off(pb);
651         pwm_get_state(pb->pwm, &state);
652         state.duty_cycle = 0;
653         state.enabled = false;
654         pwm_apply_might_sleep(pb->pwm, &state);
655 }
656
657 #ifdef CONFIG_PM_SLEEP
658 static int pwm_backlight_suspend(struct device *dev)
659 {
660         struct backlight_device *bl = dev_get_drvdata(dev);
661         struct pwm_bl_data *pb = bl_get_data(bl);
662         struct pwm_state state;
663
664         if (pb->notify)
665                 pb->notify(pb->dev, 0);
666
667         pwm_backlight_power_off(pb);
668
669         /*
670          * Note that disabling the PWM doesn't guarantee that the output stays
671          * at its inactive state. However without the PWM disabled, the PWM
672          * driver refuses to suspend. So disable here even though this might
673          * enable the backlight on poorly designed boards.
674          */
675         pwm_get_state(pb->pwm, &state);
676         state.duty_cycle = 0;
677         state.enabled = false;
678         pwm_apply_might_sleep(pb->pwm, &state);
679
680         if (pb->notify_after)
681                 pb->notify_after(pb->dev, 0);
682
683         return 0;
684 }
685
686 static int pwm_backlight_resume(struct device *dev)
687 {
688         struct backlight_device *bl = dev_get_drvdata(dev);
689
690         backlight_update_status(bl);
691
692         return 0;
693 }
694 #endif
695
696 static const struct dev_pm_ops pwm_backlight_pm_ops = {
697 #ifdef CONFIG_PM_SLEEP
698         .suspend = pwm_backlight_suspend,
699         .resume = pwm_backlight_resume,
700         .poweroff = pwm_backlight_suspend,
701         .restore = pwm_backlight_resume,
702 #endif
703 };
704
705 static struct platform_driver pwm_backlight_driver = {
706         .driver         = {
707                 .name           = "pwm-backlight",
708                 .pm             = &pwm_backlight_pm_ops,
709                 .of_match_table = of_match_ptr(pwm_backlight_of_match),
710         },
711         .probe          = pwm_backlight_probe,
712         .remove_new     = pwm_backlight_remove,
713         .shutdown       = pwm_backlight_shutdown,
714 };
715
716 module_platform_driver(pwm_backlight_driver);
717
718 MODULE_DESCRIPTION("PWM based Backlight Driver");
719 MODULE_LICENSE("GPL v2");
720 MODULE_ALIAS("platform:pwm-backlight");