Merge remote-tracking branch 'arm64/for-next/fixes' into for-next/core
[sfrench/cifs-2.6.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2, portsc;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 portsc = t1;
901                 t1 = xhci_port_state_to_neutral(t1);
902                 t2 = t1 & ~PORT_WAKE_BITS;
903                 if (t1 != t2) {
904                         writel(t2, ports[port_index]->addr);
905                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906                                  xhci->usb3_rhub.hcd->self.busnum,
907                                  port_index + 1, portsc, t2);
908                 }
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 portsc = t1;
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2) {
920                         writel(t2, ports[port_index]->addr);
921                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922                                  xhci->usb2_rhub.hcd->self.busnum,
923                                  port_index + 1, portsc, t2);
924                 }
925         }
926         spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931         struct xhci_port        **ports;
932         int                     port_index;
933         u32                     status;
934         u32                     portsc;
935
936         status = readl(&xhci->op_regs->status);
937         if (status & STS_EINT)
938                 return true;
939         /*
940          * Checking STS_EINT is not enough as there is a lag between a change
941          * bit being set and the Port Status Change Event that it generated
942          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943          */
944
945         port_index = xhci->usb2_rhub.num_ports;
946         ports = xhci->usb2_rhub.ports;
947         while (port_index--) {
948                 portsc = readl(ports[port_index]->addr);
949                 if (portsc & PORT_CHANGE_MASK ||
950                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951                         return true;
952         }
953         port_index = xhci->usb3_rhub.num_ports;
954         ports = xhci->usb3_rhub.ports;
955         while (port_index--) {
956                 portsc = readl(ports[port_index]->addr);
957                 if (portsc & PORT_CHANGE_MASK ||
958                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959                         return true;
960         }
961         return false;
962 }
963
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972         int                     rc = 0;
973         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
974         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
975         u32                     command;
976         u32                     res;
977
978         if (!hcd->state)
979                 return 0;
980
981         if (hcd->state != HC_STATE_SUSPENDED ||
982                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983                 return -EINVAL;
984
985         /* Clear root port wake on bits if wakeup not allowed. */
986         if (!do_wakeup)
987                 xhci_disable_port_wake_on_bits(xhci);
988
989         if (!HCD_HW_ACCESSIBLE(hcd))
990                 return 0;
991
992         xhci_dbc_suspend(xhci);
993
994         /* Don't poll the roothubs on bus suspend. */
995         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997         del_timer_sync(&hcd->rh_timer);
998         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999         del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002                 usleep_range(1000, 1500);
1003
1004         spin_lock_irq(&xhci->lock);
1005         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007         /* step 1: stop endpoint */
1008         /* skipped assuming that port suspend has done */
1009
1010         /* step 2: clear Run/Stop bit */
1011         command = readl(&xhci->op_regs->command);
1012         command &= ~CMD_RUN;
1013         writel(command, &xhci->op_regs->command);
1014
1015         /* Some chips from Fresco Logic need an extraordinary delay */
1016         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018         if (xhci_handshake(&xhci->op_regs->status,
1019                       STS_HALT, STS_HALT, delay)) {
1020                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021                 spin_unlock_irq(&xhci->lock);
1022                 return -ETIMEDOUT;
1023         }
1024         xhci_clear_command_ring(xhci);
1025
1026         /* step 3: save registers */
1027         xhci_save_registers(xhci);
1028
1029         /* step 4: set CSS flag */
1030         command = readl(&xhci->op_regs->command);
1031         command |= CMD_CSS;
1032         writel(command, &xhci->op_regs->command);
1033         xhci->broken_suspend = 0;
1034         if (xhci_handshake(&xhci->op_regs->status,
1035                                 STS_SAVE, 0, 20 * 1000)) {
1036         /*
1037          * AMD SNPS xHC 3.0 occasionally does not clear the
1038          * SSS bit of USBSTS and when driver tries to poll
1039          * to see if the xHC clears BIT(8) which never happens
1040          * and driver assumes that controller is not responding
1041          * and times out. To workaround this, its good to check
1042          * if SRE and HCE bits are not set (as per xhci
1043          * Section 5.4.2) and bypass the timeout.
1044          */
1045                 res = readl(&xhci->op_regs->status);
1046                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047                     (((res & STS_SRE) == 0) &&
1048                                 ((res & STS_HCE) == 0))) {
1049                         xhci->broken_suspend = 1;
1050                 } else {
1051                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052                         spin_unlock_irq(&xhci->lock);
1053                         return -ETIMEDOUT;
1054                 }
1055         }
1056         spin_unlock_irq(&xhci->lock);
1057
1058         /*
1059          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060          * is about to be suspended.
1061          */
1062         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063                         (!(xhci_all_ports_seen_u0(xhci)))) {
1064                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066                                 "%s: compliance mode recovery timer deleted",
1067                                 __func__);
1068         }
1069
1070         /* step 5: remove core well power */
1071         /* synchronize irq when using MSI-X */
1072         xhci_msix_sync_irqs(xhci);
1073
1074         return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086         u32                     command, temp = 0;
1087         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1088         struct usb_hcd          *secondary_hcd;
1089         int                     retval = 0;
1090         bool                    comp_timer_running = false;
1091
1092         if (!hcd->state)
1093                 return 0;
1094
1095         /* Wait a bit if either of the roothubs need to settle from the
1096          * transition into bus suspend.
1097          */
1098
1099         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101                 msleep(100);
1102
1103         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106         spin_lock_irq(&xhci->lock);
1107         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108                 hibernated = true;
1109
1110         if (!hibernated) {
1111                 /*
1112                  * Some controllers might lose power during suspend, so wait
1113                  * for controller not ready bit to clear, just as in xHC init.
1114                  */
1115                 retval = xhci_handshake(&xhci->op_regs->status,
1116                                         STS_CNR, 0, 10 * 1000 * 1000);
1117                 if (retval) {
1118                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1119                                   retval);
1120                         spin_unlock_irq(&xhci->lock);
1121                         return retval;
1122                 }
1123                 /* step 1: restore register */
1124                 xhci_restore_registers(xhci);
1125                 /* step 2: initialize command ring buffer */
1126                 xhci_set_cmd_ring_deq(xhci);
1127                 /* step 3: restore state and start state*/
1128                 /* step 3: set CRS flag */
1129                 command = readl(&xhci->op_regs->command);
1130                 command |= CMD_CRS;
1131                 writel(command, &xhci->op_regs->command);
1132                 /*
1133                  * Some controllers take up to 55+ ms to complete the controller
1134                  * restore so setting the timeout to 100ms. Xhci specification
1135                  * doesn't mention any timeout value.
1136                  */
1137                 if (xhci_handshake(&xhci->op_regs->status,
1138                               STS_RESTORE, 0, 100 * 1000)) {
1139                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140                         spin_unlock_irq(&xhci->lock);
1141                         return -ETIMEDOUT;
1142                 }
1143                 temp = readl(&xhci->op_regs->status);
1144         }
1145
1146         /* If restore operation fails, re-initialize the HC during resume */
1147         if ((temp & STS_SRE) || hibernated) {
1148
1149                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150                                 !(xhci_all_ports_seen_u0(xhci))) {
1151                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1152                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153                                 "Compliance Mode Recovery Timer deleted!");
1154                 }
1155
1156                 /* Let the USB core know _both_ roothubs lost power. */
1157                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160                 xhci_dbg(xhci, "Stop HCD\n");
1161                 xhci_halt(xhci);
1162                 xhci_zero_64b_regs(xhci);
1163                 retval = xhci_reset(xhci);
1164                 spin_unlock_irq(&xhci->lock);
1165                 if (retval)
1166                         return retval;
1167                 xhci_cleanup_msix(xhci);
1168
1169                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170                 temp = readl(&xhci->op_regs->status);
1171                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172                 temp = readl(&xhci->ir_set->irq_pending);
1173                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174
1175                 xhci_dbg(xhci, "cleaning up memory\n");
1176                 xhci_mem_cleanup(xhci);
1177                 xhci_debugfs_exit(xhci);
1178                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179                             readl(&xhci->op_regs->status));
1180
1181                 /* USB core calls the PCI reinit and start functions twice:
1182                  * first with the primary HCD, and then with the secondary HCD.
1183                  * If we don't do the same, the host will never be started.
1184                  */
1185                 if (!usb_hcd_is_primary_hcd(hcd))
1186                         secondary_hcd = hcd;
1187                 else
1188                         secondary_hcd = xhci->shared_hcd;
1189
1190                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191                 retval = xhci_init(hcd->primary_hcd);
1192                 if (retval)
1193                         return retval;
1194                 comp_timer_running = true;
1195
1196                 xhci_dbg(xhci, "Start the primary HCD\n");
1197                 retval = xhci_run(hcd->primary_hcd);
1198                 if (!retval) {
1199                         xhci_dbg(xhci, "Start the secondary HCD\n");
1200                         retval = xhci_run(secondary_hcd);
1201                 }
1202                 hcd->state = HC_STATE_SUSPENDED;
1203                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204                 goto done;
1205         }
1206
1207         /* step 4: set Run/Stop bit */
1208         command = readl(&xhci->op_regs->command);
1209         command |= CMD_RUN;
1210         writel(command, &xhci->op_regs->command);
1211         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212                   0, 250 * 1000);
1213
1214         /* step 5: walk topology and initialize portsc,
1215          * portpmsc and portli
1216          */
1217         /* this is done in bus_resume */
1218
1219         /* step 6: restart each of the previously
1220          * Running endpoints by ringing their doorbells
1221          */
1222
1223         spin_unlock_irq(&xhci->lock);
1224
1225         xhci_dbc_resume(xhci);
1226
1227  done:
1228         if (retval == 0) {
1229                 /* Resume root hubs only when have pending events. */
1230                 if (xhci_pending_portevent(xhci)) {
1231                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1232                         usb_hcd_resume_root_hub(hcd);
1233                 }
1234         }
1235
1236         /*
1237          * If system is subject to the Quirk, Compliance Mode Timer needs to
1238          * be re-initialized Always after a system resume. Ports are subject
1239          * to suffer the Compliance Mode issue again. It doesn't matter if
1240          * ports have entered previously to U0 before system's suspension.
1241          */
1242         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243                 compliance_mode_recovery_timer_init(xhci);
1244
1245         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247
1248         /* Re-enable port polling. */
1249         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251         usb_hcd_poll_rh_status(xhci->shared_hcd);
1252         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253         usb_hcd_poll_rh_status(hcd);
1254
1255         return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif  /* CONFIG_PM */
1259
1260 /*-------------------------------------------------------------------------*/
1261
1262 /*
1263  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1264  * we'll copy the actual data into the TRB address register. This is limited to
1265  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1266  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1267  */
1268 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1269                                 gfp_t mem_flags)
1270 {
1271         if (xhci_urb_suitable_for_idt(urb))
1272                 return 0;
1273
1274         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1275 }
1276
1277 /*
1278  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1279  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1280  * value to right shift 1 for the bitmask.
1281  *
1282  * Index  = (epnum * 2) + direction - 1,
1283  * where direction = 0 for OUT, 1 for IN.
1284  * For control endpoints, the IN index is used (OUT index is unused), so
1285  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1286  */
1287 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1288 {
1289         unsigned int index;
1290         if (usb_endpoint_xfer_control(desc))
1291                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1292         else
1293                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1294                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1295         return index;
1296 }
1297
1298 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1299  * address from the XHCI endpoint index.
1300  */
1301 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1302 {
1303         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1304         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1305         return direction | number;
1306 }
1307
1308 /* Find the flag for this endpoint (for use in the control context).  Use the
1309  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1310  * bit 1, etc.
1311  */
1312 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1313 {
1314         return 1 << (xhci_get_endpoint_index(desc) + 1);
1315 }
1316
1317 /* Find the flag for this endpoint (for use in the control context).  Use the
1318  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1319  * bit 1, etc.
1320  */
1321 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1322 {
1323         return 1 << (ep_index + 1);
1324 }
1325
1326 /* Compute the last valid endpoint context index.  Basically, this is the
1327  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1328  * we find the most significant bit set in the added contexts flags.
1329  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1330  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1331  */
1332 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1333 {
1334         return fls(added_ctxs) - 1;
1335 }
1336
1337 /* Returns 1 if the arguments are OK;
1338  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1339  */
1340 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1341                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1342                 const char *func) {
1343         struct xhci_hcd *xhci;
1344         struct xhci_virt_device *virt_dev;
1345
1346         if (!hcd || (check_ep && !ep) || !udev) {
1347                 pr_debug("xHCI %s called with invalid args\n", func);
1348                 return -EINVAL;
1349         }
1350         if (!udev->parent) {
1351                 pr_debug("xHCI %s called for root hub\n", func);
1352                 return 0;
1353         }
1354
1355         xhci = hcd_to_xhci(hcd);
1356         if (check_virt_dev) {
1357                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1358                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1359                                         func);
1360                         return -EINVAL;
1361                 }
1362
1363                 virt_dev = xhci->devs[udev->slot_id];
1364                 if (virt_dev->udev != udev) {
1365                         xhci_dbg(xhci, "xHCI %s called with udev and "
1366                                           "virt_dev does not match\n", func);
1367                         return -EINVAL;
1368                 }
1369         }
1370
1371         if (xhci->xhc_state & XHCI_STATE_HALTED)
1372                 return -ENODEV;
1373
1374         return 1;
1375 }
1376
1377 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1378                 struct usb_device *udev, struct xhci_command *command,
1379                 bool ctx_change, bool must_succeed);
1380
1381 /*
1382  * Full speed devices may have a max packet size greater than 8 bytes, but the
1383  * USB core doesn't know that until it reads the first 8 bytes of the
1384  * descriptor.  If the usb_device's max packet size changes after that point,
1385  * we need to issue an evaluate context command and wait on it.
1386  */
1387 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1388                 unsigned int ep_index, struct urb *urb)
1389 {
1390         struct xhci_container_ctx *out_ctx;
1391         struct xhci_input_control_ctx *ctrl_ctx;
1392         struct xhci_ep_ctx *ep_ctx;
1393         struct xhci_command *command;
1394         int max_packet_size;
1395         int hw_max_packet_size;
1396         int ret = 0;
1397
1398         out_ctx = xhci->devs[slot_id]->out_ctx;
1399         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1400         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1401         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1402         if (hw_max_packet_size != max_packet_size) {
1403                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1404                                 "Max Packet Size for ep 0 changed.");
1405                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1406                                 "Max packet size in usb_device = %d",
1407                                 max_packet_size);
1408                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1409                                 "Max packet size in xHCI HW = %d",
1410                                 hw_max_packet_size);
1411                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1412                                 "Issuing evaluate context command.");
1413
1414                 /* Set up the input context flags for the command */
1415                 /* FIXME: This won't work if a non-default control endpoint
1416                  * changes max packet sizes.
1417                  */
1418
1419                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1420                 if (!command)
1421                         return -ENOMEM;
1422
1423                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1424                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1425                 if (!ctrl_ctx) {
1426                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1427                                         __func__);
1428                         ret = -ENOMEM;
1429                         goto command_cleanup;
1430                 }
1431                 /* Set up the modified control endpoint 0 */
1432                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1433                                 xhci->devs[slot_id]->out_ctx, ep_index);
1434
1435                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1436                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1437                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1438                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1439
1440                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1441                 ctrl_ctx->drop_flags = 0;
1442
1443                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1444                                 true, false);
1445
1446                 /* Clean up the input context for later use by bandwidth
1447                  * functions.
1448                  */
1449                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1450 command_cleanup:
1451                 kfree(command->completion);
1452                 kfree(command);
1453         }
1454         return ret;
1455 }
1456
1457 /*
1458  * non-error returns are a promise to giveback() the urb later
1459  * we drop ownership so next owner (or urb unlink) can get it
1460  */
1461 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1462 {
1463         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1464         unsigned long flags;
1465         int ret = 0;
1466         unsigned int slot_id, ep_index;
1467         unsigned int *ep_state;
1468         struct urb_priv *urb_priv;
1469         int num_tds;
1470
1471         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1472                                         true, true, __func__) <= 0)
1473                 return -EINVAL;
1474
1475         slot_id = urb->dev->slot_id;
1476         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1477         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1478
1479         if (!HCD_HW_ACCESSIBLE(hcd)) {
1480                 if (!in_interrupt())
1481                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1482                 return -ESHUTDOWN;
1483         }
1484         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1485                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1486                 return -ENODEV;
1487         }
1488
1489         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1490                 num_tds = urb->number_of_packets;
1491         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1492             urb->transfer_buffer_length > 0 &&
1493             urb->transfer_flags & URB_ZERO_PACKET &&
1494             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1495                 num_tds = 2;
1496         else
1497                 num_tds = 1;
1498
1499         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1500         if (!urb_priv)
1501                 return -ENOMEM;
1502
1503         urb_priv->num_tds = num_tds;
1504         urb_priv->num_tds_done = 0;
1505         urb->hcpriv = urb_priv;
1506
1507         trace_xhci_urb_enqueue(urb);
1508
1509         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1510                 /* Check to see if the max packet size for the default control
1511                  * endpoint changed during FS device enumeration
1512                  */
1513                 if (urb->dev->speed == USB_SPEED_FULL) {
1514                         ret = xhci_check_maxpacket(xhci, slot_id,
1515                                         ep_index, urb);
1516                         if (ret < 0) {
1517                                 xhci_urb_free_priv(urb_priv);
1518                                 urb->hcpriv = NULL;
1519                                 return ret;
1520                         }
1521                 }
1522         }
1523
1524         spin_lock_irqsave(&xhci->lock, flags);
1525
1526         if (xhci->xhc_state & XHCI_STATE_DYING) {
1527                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1528                          urb->ep->desc.bEndpointAddress, urb);
1529                 ret = -ESHUTDOWN;
1530                 goto free_priv;
1531         }
1532         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1533                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1534                           *ep_state);
1535                 ret = -EINVAL;
1536                 goto free_priv;
1537         }
1538         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1539                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1540                 ret = -EINVAL;
1541                 goto free_priv;
1542         }
1543
1544         switch (usb_endpoint_type(&urb->ep->desc)) {
1545
1546         case USB_ENDPOINT_XFER_CONTROL:
1547                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1548                                          slot_id, ep_index);
1549                 break;
1550         case USB_ENDPOINT_XFER_BULK:
1551                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1552                                          slot_id, ep_index);
1553                 break;
1554         case USB_ENDPOINT_XFER_INT:
1555                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1556                                 slot_id, ep_index);
1557                 break;
1558         case USB_ENDPOINT_XFER_ISOC:
1559                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1560                                 slot_id, ep_index);
1561         }
1562
1563         if (ret) {
1564 free_priv:
1565                 xhci_urb_free_priv(urb_priv);
1566                 urb->hcpriv = NULL;
1567         }
1568         spin_unlock_irqrestore(&xhci->lock, flags);
1569         return ret;
1570 }
1571
1572 /*
1573  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1574  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1575  * should pick up where it left off in the TD, unless a Set Transfer Ring
1576  * Dequeue Pointer is issued.
1577  *
1578  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1579  * the ring.  Since the ring is a contiguous structure, they can't be physically
1580  * removed.  Instead, there are two options:
1581  *
1582  *  1) If the HC is in the middle of processing the URB to be canceled, we
1583  *     simply move the ring's dequeue pointer past those TRBs using the Set
1584  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1585  *     when drivers timeout on the last submitted URB and attempt to cancel.
1586  *
1587  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1588  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1589  *     HC will need to invalidate the any TRBs it has cached after the stop
1590  *     endpoint command, as noted in the xHCI 0.95 errata.
1591  *
1592  *  3) The TD may have completed by the time the Stop Endpoint Command
1593  *     completes, so software needs to handle that case too.
1594  *
1595  * This function should protect against the TD enqueueing code ringing the
1596  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1597  * It also needs to account for multiple cancellations on happening at the same
1598  * time for the same endpoint.
1599  *
1600  * Note that this function can be called in any context, or so says
1601  * usb_hcd_unlink_urb()
1602  */
1603 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1604 {
1605         unsigned long flags;
1606         int ret, i;
1607         u32 temp;
1608         struct xhci_hcd *xhci;
1609         struct urb_priv *urb_priv;
1610         struct xhci_td *td;
1611         unsigned int ep_index;
1612         struct xhci_ring *ep_ring;
1613         struct xhci_virt_ep *ep;
1614         struct xhci_command *command;
1615         struct xhci_virt_device *vdev;
1616
1617         xhci = hcd_to_xhci(hcd);
1618         spin_lock_irqsave(&xhci->lock, flags);
1619
1620         trace_xhci_urb_dequeue(urb);
1621
1622         /* Make sure the URB hasn't completed or been unlinked already */
1623         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1624         if (ret)
1625                 goto done;
1626
1627         /* give back URB now if we can't queue it for cancel */
1628         vdev = xhci->devs[urb->dev->slot_id];
1629         urb_priv = urb->hcpriv;
1630         if (!vdev || !urb_priv)
1631                 goto err_giveback;
1632
1633         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1634         ep = &vdev->eps[ep_index];
1635         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1636         if (!ep || !ep_ring)
1637                 goto err_giveback;
1638
1639         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1640         temp = readl(&xhci->op_regs->status);
1641         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1642                 xhci_hc_died(xhci);
1643                 goto done;
1644         }
1645
1646         /*
1647          * check ring is not re-allocated since URB was enqueued. If it is, then
1648          * make sure none of the ring related pointers in this URB private data
1649          * are touched, such as td_list, otherwise we overwrite freed data
1650          */
1651         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1652                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1653                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1654                         td = &urb_priv->td[i];
1655                         if (!list_empty(&td->cancelled_td_list))
1656                                 list_del_init(&td->cancelled_td_list);
1657                 }
1658                 goto err_giveback;
1659         }
1660
1661         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1662                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1663                                 "HC halted, freeing TD manually.");
1664                 for (i = urb_priv->num_tds_done;
1665                      i < urb_priv->num_tds;
1666                      i++) {
1667                         td = &urb_priv->td[i];
1668                         if (!list_empty(&td->td_list))
1669                                 list_del_init(&td->td_list);
1670                         if (!list_empty(&td->cancelled_td_list))
1671                                 list_del_init(&td->cancelled_td_list);
1672                 }
1673                 goto err_giveback;
1674         }
1675
1676         i = urb_priv->num_tds_done;
1677         if (i < urb_priv->num_tds)
1678                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1679                                 "Cancel URB %p, dev %s, ep 0x%x, "
1680                                 "starting at offset 0x%llx",
1681                                 urb, urb->dev->devpath,
1682                                 urb->ep->desc.bEndpointAddress,
1683                                 (unsigned long long) xhci_trb_virt_to_dma(
1684                                         urb_priv->td[i].start_seg,
1685                                         urb_priv->td[i].first_trb));
1686
1687         for (; i < urb_priv->num_tds; i++) {
1688                 td = &urb_priv->td[i];
1689                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1690         }
1691
1692         /* Queue a stop endpoint command, but only if this is
1693          * the first cancellation to be handled.
1694          */
1695         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1696                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1697                 if (!command) {
1698                         ret = -ENOMEM;
1699                         goto done;
1700                 }
1701                 ep->ep_state |= EP_STOP_CMD_PENDING;
1702                 ep->stop_cmd_timer.expires = jiffies +
1703                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1704                 add_timer(&ep->stop_cmd_timer);
1705                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1706                                          ep_index, 0);
1707                 xhci_ring_cmd_db(xhci);
1708         }
1709 done:
1710         spin_unlock_irqrestore(&xhci->lock, flags);
1711         return ret;
1712
1713 err_giveback:
1714         if (urb_priv)
1715                 xhci_urb_free_priv(urb_priv);
1716         usb_hcd_unlink_urb_from_ep(hcd, urb);
1717         spin_unlock_irqrestore(&xhci->lock, flags);
1718         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1719         return ret;
1720 }
1721
1722 /* Drop an endpoint from a new bandwidth configuration for this device.
1723  * Only one call to this function is allowed per endpoint before
1724  * check_bandwidth() or reset_bandwidth() must be called.
1725  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1726  * add the endpoint to the schedule with possibly new parameters denoted by a
1727  * different endpoint descriptor in usb_host_endpoint.
1728  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1729  * not allowed.
1730  *
1731  * The USB core will not allow URBs to be queued to an endpoint that is being
1732  * disabled, so there's no need for mutual exclusion to protect
1733  * the xhci->devs[slot_id] structure.
1734  */
1735 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1736                 struct usb_host_endpoint *ep)
1737 {
1738         struct xhci_hcd *xhci;
1739         struct xhci_container_ctx *in_ctx, *out_ctx;
1740         struct xhci_input_control_ctx *ctrl_ctx;
1741         unsigned int ep_index;
1742         struct xhci_ep_ctx *ep_ctx;
1743         u32 drop_flag;
1744         u32 new_add_flags, new_drop_flags;
1745         int ret;
1746
1747         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1748         if (ret <= 0)
1749                 return ret;
1750         xhci = hcd_to_xhci(hcd);
1751         if (xhci->xhc_state & XHCI_STATE_DYING)
1752                 return -ENODEV;
1753
1754         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1755         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1756         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1757                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1758                                 __func__, drop_flag);
1759                 return 0;
1760         }
1761
1762         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1763         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1764         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1765         if (!ctrl_ctx) {
1766                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1767                                 __func__);
1768                 return 0;
1769         }
1770
1771         ep_index = xhci_get_endpoint_index(&ep->desc);
1772         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1773         /* If the HC already knows the endpoint is disabled,
1774          * or the HCD has noted it is disabled, ignore this request
1775          */
1776         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1777             le32_to_cpu(ctrl_ctx->drop_flags) &
1778             xhci_get_endpoint_flag(&ep->desc)) {
1779                 /* Do not warn when called after a usb_device_reset */
1780                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1781                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1782                                   __func__, ep);
1783                 return 0;
1784         }
1785
1786         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1787         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1788
1789         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1790         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1791
1792         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1793
1794         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1795
1796         if (xhci->quirks & XHCI_MTK_HOST)
1797                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1798
1799         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1800                         (unsigned int) ep->desc.bEndpointAddress,
1801                         udev->slot_id,
1802                         (unsigned int) new_drop_flags,
1803                         (unsigned int) new_add_flags);
1804         return 0;
1805 }
1806
1807 /* Add an endpoint to a new possible bandwidth configuration for this device.
1808  * Only one call to this function is allowed per endpoint before
1809  * check_bandwidth() or reset_bandwidth() must be called.
1810  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1811  * add the endpoint to the schedule with possibly new parameters denoted by a
1812  * different endpoint descriptor in usb_host_endpoint.
1813  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1814  * not allowed.
1815  *
1816  * The USB core will not allow URBs to be queued to an endpoint until the
1817  * configuration or alt setting is installed in the device, so there's no need
1818  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1819  */
1820 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1821                 struct usb_host_endpoint *ep)
1822 {
1823         struct xhci_hcd *xhci;
1824         struct xhci_container_ctx *in_ctx;
1825         unsigned int ep_index;
1826         struct xhci_input_control_ctx *ctrl_ctx;
1827         struct xhci_ep_ctx *ep_ctx;
1828         u32 added_ctxs;
1829         u32 new_add_flags, new_drop_flags;
1830         struct xhci_virt_device *virt_dev;
1831         int ret = 0;
1832
1833         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1834         if (ret <= 0) {
1835                 /* So we won't queue a reset ep command for a root hub */
1836                 ep->hcpriv = NULL;
1837                 return ret;
1838         }
1839         xhci = hcd_to_xhci(hcd);
1840         if (xhci->xhc_state & XHCI_STATE_DYING)
1841                 return -ENODEV;
1842
1843         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1844         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1845                 /* FIXME when we have to issue an evaluate endpoint command to
1846                  * deal with ep0 max packet size changing once we get the
1847                  * descriptors
1848                  */
1849                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1850                                 __func__, added_ctxs);
1851                 return 0;
1852         }
1853
1854         virt_dev = xhci->devs[udev->slot_id];
1855         in_ctx = virt_dev->in_ctx;
1856         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1857         if (!ctrl_ctx) {
1858                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1859                                 __func__);
1860                 return 0;
1861         }
1862
1863         ep_index = xhci_get_endpoint_index(&ep->desc);
1864         /* If this endpoint is already in use, and the upper layers are trying
1865          * to add it again without dropping it, reject the addition.
1866          */
1867         if (virt_dev->eps[ep_index].ring &&
1868                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1869                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1870                                 "without dropping it.\n",
1871                                 (unsigned int) ep->desc.bEndpointAddress);
1872                 return -EINVAL;
1873         }
1874
1875         /* If the HCD has already noted the endpoint is enabled,
1876          * ignore this request.
1877          */
1878         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1879                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1880                                 __func__, ep);
1881                 return 0;
1882         }
1883
1884         /*
1885          * Configuration and alternate setting changes must be done in
1886          * process context, not interrupt context (or so documenation
1887          * for usb_set_interface() and usb_set_configuration() claim).
1888          */
1889         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1890                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1891                                 __func__, ep->desc.bEndpointAddress);
1892                 return -ENOMEM;
1893         }
1894
1895         if (xhci->quirks & XHCI_MTK_HOST) {
1896                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1897                 if (ret < 0) {
1898                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1899                         virt_dev->eps[ep_index].new_ring = NULL;
1900                         return ret;
1901                 }
1902         }
1903
1904         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1905         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1906
1907         /* If xhci_endpoint_disable() was called for this endpoint, but the
1908          * xHC hasn't been notified yet through the check_bandwidth() call,
1909          * this re-adds a new state for the endpoint from the new endpoint
1910          * descriptors.  We must drop and re-add this endpoint, so we leave the
1911          * drop flags alone.
1912          */
1913         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1914
1915         /* Store the usb_device pointer for later use */
1916         ep->hcpriv = udev;
1917
1918         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1919         trace_xhci_add_endpoint(ep_ctx);
1920
1921         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1922                         (unsigned int) ep->desc.bEndpointAddress,
1923                         udev->slot_id,
1924                         (unsigned int) new_drop_flags,
1925                         (unsigned int) new_add_flags);
1926         return 0;
1927 }
1928
1929 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1930 {
1931         struct xhci_input_control_ctx *ctrl_ctx;
1932         struct xhci_ep_ctx *ep_ctx;
1933         struct xhci_slot_ctx *slot_ctx;
1934         int i;
1935
1936         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1937         if (!ctrl_ctx) {
1938                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1939                                 __func__);
1940                 return;
1941         }
1942
1943         /* When a device's add flag and drop flag are zero, any subsequent
1944          * configure endpoint command will leave that endpoint's state
1945          * untouched.  Make sure we don't leave any old state in the input
1946          * endpoint contexts.
1947          */
1948         ctrl_ctx->drop_flags = 0;
1949         ctrl_ctx->add_flags = 0;
1950         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1951         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1952         /* Endpoint 0 is always valid */
1953         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1954         for (i = 1; i < 31; i++) {
1955                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1956                 ep_ctx->ep_info = 0;
1957                 ep_ctx->ep_info2 = 0;
1958                 ep_ctx->deq = 0;
1959                 ep_ctx->tx_info = 0;
1960         }
1961 }
1962
1963 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1964                 struct usb_device *udev, u32 *cmd_status)
1965 {
1966         int ret;
1967
1968         switch (*cmd_status) {
1969         case COMP_COMMAND_ABORTED:
1970         case COMP_COMMAND_RING_STOPPED:
1971                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1972                 ret = -ETIME;
1973                 break;
1974         case COMP_RESOURCE_ERROR:
1975                 dev_warn(&udev->dev,
1976                          "Not enough host controller resources for new device state.\n");
1977                 ret = -ENOMEM;
1978                 /* FIXME: can we allocate more resources for the HC? */
1979                 break;
1980         case COMP_BANDWIDTH_ERROR:
1981         case COMP_SECONDARY_BANDWIDTH_ERROR:
1982                 dev_warn(&udev->dev,
1983                          "Not enough bandwidth for new device state.\n");
1984                 ret = -ENOSPC;
1985                 /* FIXME: can we go back to the old state? */
1986                 break;
1987         case COMP_TRB_ERROR:
1988                 /* the HCD set up something wrong */
1989                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1990                                 "add flag = 1, "
1991                                 "and endpoint is not disabled.\n");
1992                 ret = -EINVAL;
1993                 break;
1994         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1995                 dev_warn(&udev->dev,
1996                          "ERROR: Incompatible device for endpoint configure command.\n");
1997                 ret = -ENODEV;
1998                 break;
1999         case COMP_SUCCESS:
2000                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2001                                 "Successful Endpoint Configure command");
2002                 ret = 0;
2003                 break;
2004         default:
2005                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2006                                 *cmd_status);
2007                 ret = -EINVAL;
2008                 break;
2009         }
2010         return ret;
2011 }
2012
2013 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2014                 struct usb_device *udev, u32 *cmd_status)
2015 {
2016         int ret;
2017
2018         switch (*cmd_status) {
2019         case COMP_COMMAND_ABORTED:
2020         case COMP_COMMAND_RING_STOPPED:
2021                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2022                 ret = -ETIME;
2023                 break;
2024         case COMP_PARAMETER_ERROR:
2025                 dev_warn(&udev->dev,
2026                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2027                 ret = -EINVAL;
2028                 break;
2029         case COMP_SLOT_NOT_ENABLED_ERROR:
2030                 dev_warn(&udev->dev,
2031                         "WARN: slot not enabled for evaluate context command.\n");
2032                 ret = -EINVAL;
2033                 break;
2034         case COMP_CONTEXT_STATE_ERROR:
2035                 dev_warn(&udev->dev,
2036                         "WARN: invalid context state for evaluate context command.\n");
2037                 ret = -EINVAL;
2038                 break;
2039         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2040                 dev_warn(&udev->dev,
2041                         "ERROR: Incompatible device for evaluate context command.\n");
2042                 ret = -ENODEV;
2043                 break;
2044         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2045                 /* Max Exit Latency too large error */
2046                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2047                 ret = -EINVAL;
2048                 break;
2049         case COMP_SUCCESS:
2050                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2051                                 "Successful evaluate context command");
2052                 ret = 0;
2053                 break;
2054         default:
2055                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2056                         *cmd_status);
2057                 ret = -EINVAL;
2058                 break;
2059         }
2060         return ret;
2061 }
2062
2063 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2064                 struct xhci_input_control_ctx *ctrl_ctx)
2065 {
2066         u32 valid_add_flags;
2067         u32 valid_drop_flags;
2068
2069         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2070          * (bit 1).  The default control endpoint is added during the Address
2071          * Device command and is never removed until the slot is disabled.
2072          */
2073         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2074         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2075
2076         /* Use hweight32 to count the number of ones in the add flags, or
2077          * number of endpoints added.  Don't count endpoints that are changed
2078          * (both added and dropped).
2079          */
2080         return hweight32(valid_add_flags) -
2081                 hweight32(valid_add_flags & valid_drop_flags);
2082 }
2083
2084 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2085                 struct xhci_input_control_ctx *ctrl_ctx)
2086 {
2087         u32 valid_add_flags;
2088         u32 valid_drop_flags;
2089
2090         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2091         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2092
2093         return hweight32(valid_drop_flags) -
2094                 hweight32(valid_add_flags & valid_drop_flags);
2095 }
2096
2097 /*
2098  * We need to reserve the new number of endpoints before the configure endpoint
2099  * command completes.  We can't subtract the dropped endpoints from the number
2100  * of active endpoints until the command completes because we can oversubscribe
2101  * the host in this case:
2102  *
2103  *  - the first configure endpoint command drops more endpoints than it adds
2104  *  - a second configure endpoint command that adds more endpoints is queued
2105  *  - the first configure endpoint command fails, so the config is unchanged
2106  *  - the second command may succeed, even though there isn't enough resources
2107  *
2108  * Must be called with xhci->lock held.
2109  */
2110 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2111                 struct xhci_input_control_ctx *ctrl_ctx)
2112 {
2113         u32 added_eps;
2114
2115         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2116         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2117                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2118                                 "Not enough ep ctxs: "
2119                                 "%u active, need to add %u, limit is %u.",
2120                                 xhci->num_active_eps, added_eps,
2121                                 xhci->limit_active_eps);
2122                 return -ENOMEM;
2123         }
2124         xhci->num_active_eps += added_eps;
2125         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2126                         "Adding %u ep ctxs, %u now active.", added_eps,
2127                         xhci->num_active_eps);
2128         return 0;
2129 }
2130
2131 /*
2132  * The configure endpoint was failed by the xHC for some other reason, so we
2133  * need to revert the resources that failed configuration would have used.
2134  *
2135  * Must be called with xhci->lock held.
2136  */
2137 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2138                 struct xhci_input_control_ctx *ctrl_ctx)
2139 {
2140         u32 num_failed_eps;
2141
2142         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2143         xhci->num_active_eps -= num_failed_eps;
2144         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145                         "Removing %u failed ep ctxs, %u now active.",
2146                         num_failed_eps,
2147                         xhci->num_active_eps);
2148 }
2149
2150 /*
2151  * Now that the command has completed, clean up the active endpoint count by
2152  * subtracting out the endpoints that were dropped (but not changed).
2153  *
2154  * Must be called with xhci->lock held.
2155  */
2156 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2157                 struct xhci_input_control_ctx *ctrl_ctx)
2158 {
2159         u32 num_dropped_eps;
2160
2161         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2162         xhci->num_active_eps -= num_dropped_eps;
2163         if (num_dropped_eps)
2164                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165                                 "Removing %u dropped ep ctxs, %u now active.",
2166                                 num_dropped_eps,
2167                                 xhci->num_active_eps);
2168 }
2169
2170 static unsigned int xhci_get_block_size(struct usb_device *udev)
2171 {
2172         switch (udev->speed) {
2173         case USB_SPEED_LOW:
2174         case USB_SPEED_FULL:
2175                 return FS_BLOCK;
2176         case USB_SPEED_HIGH:
2177                 return HS_BLOCK;
2178         case USB_SPEED_SUPER:
2179         case USB_SPEED_SUPER_PLUS:
2180                 return SS_BLOCK;
2181         case USB_SPEED_UNKNOWN:
2182         case USB_SPEED_WIRELESS:
2183         default:
2184                 /* Should never happen */
2185                 return 1;
2186         }
2187 }
2188
2189 static unsigned int
2190 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2191 {
2192         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2193                 return LS_OVERHEAD;
2194         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2195                 return FS_OVERHEAD;
2196         return HS_OVERHEAD;
2197 }
2198
2199 /* If we are changing a LS/FS device under a HS hub,
2200  * make sure (if we are activating a new TT) that the HS bus has enough
2201  * bandwidth for this new TT.
2202  */
2203 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2204                 struct xhci_virt_device *virt_dev,
2205                 int old_active_eps)
2206 {
2207         struct xhci_interval_bw_table *bw_table;
2208         struct xhci_tt_bw_info *tt_info;
2209
2210         /* Find the bandwidth table for the root port this TT is attached to. */
2211         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2212         tt_info = virt_dev->tt_info;
2213         /* If this TT already had active endpoints, the bandwidth for this TT
2214          * has already been added.  Removing all periodic endpoints (and thus
2215          * making the TT enactive) will only decrease the bandwidth used.
2216          */
2217         if (old_active_eps)
2218                 return 0;
2219         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2220                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2221                         return -ENOMEM;
2222                 return 0;
2223         }
2224         /* Not sure why we would have no new active endpoints...
2225          *
2226          * Maybe because of an Evaluate Context change for a hub update or a
2227          * control endpoint 0 max packet size change?
2228          * FIXME: skip the bandwidth calculation in that case.
2229          */
2230         return 0;
2231 }
2232
2233 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2234                 struct xhci_virt_device *virt_dev)
2235 {
2236         unsigned int bw_reserved;
2237
2238         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2239         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2240                 return -ENOMEM;
2241
2242         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2243         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2244                 return -ENOMEM;
2245
2246         return 0;
2247 }
2248
2249 /*
2250  * This algorithm is a very conservative estimate of the worst-case scheduling
2251  * scenario for any one interval.  The hardware dynamically schedules the
2252  * packets, so we can't tell which microframe could be the limiting factor in
2253  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2254  *
2255  * Obviously, we can't solve an NP complete problem to find the minimum worst
2256  * case scenario.  Instead, we come up with an estimate that is no less than
2257  * the worst case bandwidth used for any one microframe, but may be an
2258  * over-estimate.
2259  *
2260  * We walk the requirements for each endpoint by interval, starting with the
2261  * smallest interval, and place packets in the schedule where there is only one
2262  * possible way to schedule packets for that interval.  In order to simplify
2263  * this algorithm, we record the largest max packet size for each interval, and
2264  * assume all packets will be that size.
2265  *
2266  * For interval 0, we obviously must schedule all packets for each interval.
2267  * The bandwidth for interval 0 is just the amount of data to be transmitted
2268  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2269  * the number of packets).
2270  *
2271  * For interval 1, we have two possible microframes to schedule those packets
2272  * in.  For this algorithm, if we can schedule the same number of packets for
2273  * each possible scheduling opportunity (each microframe), we will do so.  The
2274  * remaining number of packets will be saved to be transmitted in the gaps in
2275  * the next interval's scheduling sequence.
2276  *
2277  * As we move those remaining packets to be scheduled with interval 2 packets,
2278  * we have to double the number of remaining packets to transmit.  This is
2279  * because the intervals are actually powers of 2, and we would be transmitting
2280  * the previous interval's packets twice in this interval.  We also have to be
2281  * sure that when we look at the largest max packet size for this interval, we
2282  * also look at the largest max packet size for the remaining packets and take
2283  * the greater of the two.
2284  *
2285  * The algorithm continues to evenly distribute packets in each scheduling
2286  * opportunity, and push the remaining packets out, until we get to the last
2287  * interval.  Then those packets and their associated overhead are just added
2288  * to the bandwidth used.
2289  */
2290 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2291                 struct xhci_virt_device *virt_dev,
2292                 int old_active_eps)
2293 {
2294         unsigned int bw_reserved;
2295         unsigned int max_bandwidth;
2296         unsigned int bw_used;
2297         unsigned int block_size;
2298         struct xhci_interval_bw_table *bw_table;
2299         unsigned int packet_size = 0;
2300         unsigned int overhead = 0;
2301         unsigned int packets_transmitted = 0;
2302         unsigned int packets_remaining = 0;
2303         unsigned int i;
2304
2305         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2306                 return xhci_check_ss_bw(xhci, virt_dev);
2307
2308         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2309                 max_bandwidth = HS_BW_LIMIT;
2310                 /* Convert percent of bus BW reserved to blocks reserved */
2311                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2312         } else {
2313                 max_bandwidth = FS_BW_LIMIT;
2314                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2315         }
2316
2317         bw_table = virt_dev->bw_table;
2318         /* We need to translate the max packet size and max ESIT payloads into
2319          * the units the hardware uses.
2320          */
2321         block_size = xhci_get_block_size(virt_dev->udev);
2322
2323         /* If we are manipulating a LS/FS device under a HS hub, double check
2324          * that the HS bus has enough bandwidth if we are activing a new TT.
2325          */
2326         if (virt_dev->tt_info) {
2327                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2328                                 "Recalculating BW for rootport %u",
2329                                 virt_dev->real_port);
2330                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2331                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2332                                         "newly activated TT.\n");
2333                         return -ENOMEM;
2334                 }
2335                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2336                                 "Recalculating BW for TT slot %u port %u",
2337                                 virt_dev->tt_info->slot_id,
2338                                 virt_dev->tt_info->ttport);
2339         } else {
2340                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2341                                 "Recalculating BW for rootport %u",
2342                                 virt_dev->real_port);
2343         }
2344
2345         /* Add in how much bandwidth will be used for interval zero, or the
2346          * rounded max ESIT payload + number of packets * largest overhead.
2347          */
2348         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2349                 bw_table->interval_bw[0].num_packets *
2350                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2351
2352         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2353                 unsigned int bw_added;
2354                 unsigned int largest_mps;
2355                 unsigned int interval_overhead;
2356
2357                 /*
2358                  * How many packets could we transmit in this interval?
2359                  * If packets didn't fit in the previous interval, we will need
2360                  * to transmit that many packets twice within this interval.
2361                  */
2362                 packets_remaining = 2 * packets_remaining +
2363                         bw_table->interval_bw[i].num_packets;
2364
2365                 /* Find the largest max packet size of this or the previous
2366                  * interval.
2367                  */
2368                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2369                         largest_mps = 0;
2370                 else {
2371                         struct xhci_virt_ep *virt_ep;
2372                         struct list_head *ep_entry;
2373
2374                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2375                         virt_ep = list_entry(ep_entry,
2376                                         struct xhci_virt_ep, bw_endpoint_list);
2377                         /* Convert to blocks, rounding up */
2378                         largest_mps = DIV_ROUND_UP(
2379                                         virt_ep->bw_info.max_packet_size,
2380                                         block_size);
2381                 }
2382                 if (largest_mps > packet_size)
2383                         packet_size = largest_mps;
2384
2385                 /* Use the larger overhead of this or the previous interval. */
2386                 interval_overhead = xhci_get_largest_overhead(
2387                                 &bw_table->interval_bw[i]);
2388                 if (interval_overhead > overhead)
2389                         overhead = interval_overhead;
2390
2391                 /* How many packets can we evenly distribute across
2392                  * (1 << (i + 1)) possible scheduling opportunities?
2393                  */
2394                 packets_transmitted = packets_remaining >> (i + 1);
2395
2396                 /* Add in the bandwidth used for those scheduled packets */
2397                 bw_added = packets_transmitted * (overhead + packet_size);
2398
2399                 /* How many packets do we have remaining to transmit? */
2400                 packets_remaining = packets_remaining % (1 << (i + 1));
2401
2402                 /* What largest max packet size should those packets have? */
2403                 /* If we've transmitted all packets, don't carry over the
2404                  * largest packet size.
2405                  */
2406                 if (packets_remaining == 0) {
2407                         packet_size = 0;
2408                         overhead = 0;
2409                 } else if (packets_transmitted > 0) {
2410                         /* Otherwise if we do have remaining packets, and we've
2411                          * scheduled some packets in this interval, take the
2412                          * largest max packet size from endpoints with this
2413                          * interval.
2414                          */
2415                         packet_size = largest_mps;
2416                         overhead = interval_overhead;
2417                 }
2418                 /* Otherwise carry over packet_size and overhead from the last
2419                  * time we had a remainder.
2420                  */
2421                 bw_used += bw_added;
2422                 if (bw_used > max_bandwidth) {
2423                         xhci_warn(xhci, "Not enough bandwidth. "
2424                                         "Proposed: %u, Max: %u\n",
2425                                 bw_used, max_bandwidth);
2426                         return -ENOMEM;
2427                 }
2428         }
2429         /*
2430          * Ok, we know we have some packets left over after even-handedly
2431          * scheduling interval 15.  We don't know which microframes they will
2432          * fit into, so we over-schedule and say they will be scheduled every
2433          * microframe.
2434          */
2435         if (packets_remaining > 0)
2436                 bw_used += overhead + packet_size;
2437
2438         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2439                 unsigned int port_index = virt_dev->real_port - 1;
2440
2441                 /* OK, we're manipulating a HS device attached to a
2442                  * root port bandwidth domain.  Include the number of active TTs
2443                  * in the bandwidth used.
2444                  */
2445                 bw_used += TT_HS_OVERHEAD *
2446                         xhci->rh_bw[port_index].num_active_tts;
2447         }
2448
2449         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2450                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2451                 "Available: %u " "percent",
2452                 bw_used, max_bandwidth, bw_reserved,
2453                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2454                 max_bandwidth);
2455
2456         bw_used += bw_reserved;
2457         if (bw_used > max_bandwidth) {
2458                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2459                                 bw_used, max_bandwidth);
2460                 return -ENOMEM;
2461         }
2462
2463         bw_table->bw_used = bw_used;
2464         return 0;
2465 }
2466
2467 static bool xhci_is_async_ep(unsigned int ep_type)
2468 {
2469         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2470                                         ep_type != ISOC_IN_EP &&
2471                                         ep_type != INT_IN_EP);
2472 }
2473
2474 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2475 {
2476         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2477 }
2478
2479 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2480 {
2481         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2482
2483         if (ep_bw->ep_interval == 0)
2484                 return SS_OVERHEAD_BURST +
2485                         (ep_bw->mult * ep_bw->num_packets *
2486                                         (SS_OVERHEAD + mps));
2487         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2488                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2489                                 1 << ep_bw->ep_interval);
2490
2491 }
2492
2493 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2494                 struct xhci_bw_info *ep_bw,
2495                 struct xhci_interval_bw_table *bw_table,
2496                 struct usb_device *udev,
2497                 struct xhci_virt_ep *virt_ep,
2498                 struct xhci_tt_bw_info *tt_info)
2499 {
2500         struct xhci_interval_bw *interval_bw;
2501         int normalized_interval;
2502
2503         if (xhci_is_async_ep(ep_bw->type))
2504                 return;
2505
2506         if (udev->speed >= USB_SPEED_SUPER) {
2507                 if (xhci_is_sync_in_ep(ep_bw->type))
2508                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2509                                 xhci_get_ss_bw_consumed(ep_bw);
2510                 else
2511                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2512                                 xhci_get_ss_bw_consumed(ep_bw);
2513                 return;
2514         }
2515
2516         /* SuperSpeed endpoints never get added to intervals in the table, so
2517          * this check is only valid for HS/FS/LS devices.
2518          */
2519         if (list_empty(&virt_ep->bw_endpoint_list))
2520                 return;
2521         /* For LS/FS devices, we need to translate the interval expressed in
2522          * microframes to frames.
2523          */
2524         if (udev->speed == USB_SPEED_HIGH)
2525                 normalized_interval = ep_bw->ep_interval;
2526         else
2527                 normalized_interval = ep_bw->ep_interval - 3;
2528
2529         if (normalized_interval == 0)
2530                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2531         interval_bw = &bw_table->interval_bw[normalized_interval];
2532         interval_bw->num_packets -= ep_bw->num_packets;
2533         switch (udev->speed) {
2534         case USB_SPEED_LOW:
2535                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2536                 break;
2537         case USB_SPEED_FULL:
2538                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2539                 break;
2540         case USB_SPEED_HIGH:
2541                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2542                 break;
2543         case USB_SPEED_SUPER:
2544         case USB_SPEED_SUPER_PLUS:
2545         case USB_SPEED_UNKNOWN:
2546         case USB_SPEED_WIRELESS:
2547                 /* Should never happen because only LS/FS/HS endpoints will get
2548                  * added to the endpoint list.
2549                  */
2550                 return;
2551         }
2552         if (tt_info)
2553                 tt_info->active_eps -= 1;
2554         list_del_init(&virt_ep->bw_endpoint_list);
2555 }
2556
2557 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2558                 struct xhci_bw_info *ep_bw,
2559                 struct xhci_interval_bw_table *bw_table,
2560                 struct usb_device *udev,
2561                 struct xhci_virt_ep *virt_ep,
2562                 struct xhci_tt_bw_info *tt_info)
2563 {
2564         struct xhci_interval_bw *interval_bw;
2565         struct xhci_virt_ep *smaller_ep;
2566         int normalized_interval;
2567
2568         if (xhci_is_async_ep(ep_bw->type))
2569                 return;
2570
2571         if (udev->speed == USB_SPEED_SUPER) {
2572                 if (xhci_is_sync_in_ep(ep_bw->type))
2573                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2574                                 xhci_get_ss_bw_consumed(ep_bw);
2575                 else
2576                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2577                                 xhci_get_ss_bw_consumed(ep_bw);
2578                 return;
2579         }
2580
2581         /* For LS/FS devices, we need to translate the interval expressed in
2582          * microframes to frames.
2583          */
2584         if (udev->speed == USB_SPEED_HIGH)
2585                 normalized_interval = ep_bw->ep_interval;
2586         else
2587                 normalized_interval = ep_bw->ep_interval - 3;
2588
2589         if (normalized_interval == 0)
2590                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2591         interval_bw = &bw_table->interval_bw[normalized_interval];
2592         interval_bw->num_packets += ep_bw->num_packets;
2593         switch (udev->speed) {
2594         case USB_SPEED_LOW:
2595                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2596                 break;
2597         case USB_SPEED_FULL:
2598                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2599                 break;
2600         case USB_SPEED_HIGH:
2601                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2602                 break;
2603         case USB_SPEED_SUPER:
2604         case USB_SPEED_SUPER_PLUS:
2605         case USB_SPEED_UNKNOWN:
2606         case USB_SPEED_WIRELESS:
2607                 /* Should never happen because only LS/FS/HS endpoints will get
2608                  * added to the endpoint list.
2609                  */
2610                 return;
2611         }
2612
2613         if (tt_info)
2614                 tt_info->active_eps += 1;
2615         /* Insert the endpoint into the list, largest max packet size first. */
2616         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2617                         bw_endpoint_list) {
2618                 if (ep_bw->max_packet_size >=
2619                                 smaller_ep->bw_info.max_packet_size) {
2620                         /* Add the new ep before the smaller endpoint */
2621                         list_add_tail(&virt_ep->bw_endpoint_list,
2622                                         &smaller_ep->bw_endpoint_list);
2623                         return;
2624                 }
2625         }
2626         /* Add the new endpoint at the end of the list. */
2627         list_add_tail(&virt_ep->bw_endpoint_list,
2628                         &interval_bw->endpoints);
2629 }
2630
2631 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2632                 struct xhci_virt_device *virt_dev,
2633                 int old_active_eps)
2634 {
2635         struct xhci_root_port_bw_info *rh_bw_info;
2636         if (!virt_dev->tt_info)
2637                 return;
2638
2639         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2640         if (old_active_eps == 0 &&
2641                                 virt_dev->tt_info->active_eps != 0) {
2642                 rh_bw_info->num_active_tts += 1;
2643                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2644         } else if (old_active_eps != 0 &&
2645                                 virt_dev->tt_info->active_eps == 0) {
2646                 rh_bw_info->num_active_tts -= 1;
2647                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2648         }
2649 }
2650
2651 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2652                 struct xhci_virt_device *virt_dev,
2653                 struct xhci_container_ctx *in_ctx)
2654 {
2655         struct xhci_bw_info ep_bw_info[31];
2656         int i;
2657         struct xhci_input_control_ctx *ctrl_ctx;
2658         int old_active_eps = 0;
2659
2660         if (virt_dev->tt_info)
2661                 old_active_eps = virt_dev->tt_info->active_eps;
2662
2663         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2664         if (!ctrl_ctx) {
2665                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2666                                 __func__);
2667                 return -ENOMEM;
2668         }
2669
2670         for (i = 0; i < 31; i++) {
2671                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2672                         continue;
2673
2674                 /* Make a copy of the BW info in case we need to revert this */
2675                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2676                                 sizeof(ep_bw_info[i]));
2677                 /* Drop the endpoint from the interval table if the endpoint is
2678                  * being dropped or changed.
2679                  */
2680                 if (EP_IS_DROPPED(ctrl_ctx, i))
2681                         xhci_drop_ep_from_interval_table(xhci,
2682                                         &virt_dev->eps[i].bw_info,
2683                                         virt_dev->bw_table,
2684                                         virt_dev->udev,
2685                                         &virt_dev->eps[i],
2686                                         virt_dev->tt_info);
2687         }
2688         /* Overwrite the information stored in the endpoints' bw_info */
2689         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2690         for (i = 0; i < 31; i++) {
2691                 /* Add any changed or added endpoints to the interval table */
2692                 if (EP_IS_ADDED(ctrl_ctx, i))
2693                         xhci_add_ep_to_interval_table(xhci,
2694                                         &virt_dev->eps[i].bw_info,
2695                                         virt_dev->bw_table,
2696                                         virt_dev->udev,
2697                                         &virt_dev->eps[i],
2698                                         virt_dev->tt_info);
2699         }
2700
2701         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2702                 /* Ok, this fits in the bandwidth we have.
2703                  * Update the number of active TTs.
2704                  */
2705                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2706                 return 0;
2707         }
2708
2709         /* We don't have enough bandwidth for this, revert the stored info. */
2710         for (i = 0; i < 31; i++) {
2711                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712                         continue;
2713
2714                 /* Drop the new copies of any added or changed endpoints from
2715                  * the interval table.
2716                  */
2717                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2718                         xhci_drop_ep_from_interval_table(xhci,
2719                                         &virt_dev->eps[i].bw_info,
2720                                         virt_dev->bw_table,
2721                                         virt_dev->udev,
2722                                         &virt_dev->eps[i],
2723                                         virt_dev->tt_info);
2724                 }
2725                 /* Revert the endpoint back to its old information */
2726                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2727                                 sizeof(ep_bw_info[i]));
2728                 /* Add any changed or dropped endpoints back into the table */
2729                 if (EP_IS_DROPPED(ctrl_ctx, i))
2730                         xhci_add_ep_to_interval_table(xhci,
2731                                         &virt_dev->eps[i].bw_info,
2732                                         virt_dev->bw_table,
2733                                         virt_dev->udev,
2734                                         &virt_dev->eps[i],
2735                                         virt_dev->tt_info);
2736         }
2737         return -ENOMEM;
2738 }
2739
2740
2741 /* Issue a configure endpoint command or evaluate context command
2742  * and wait for it to finish.
2743  */
2744 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2745                 struct usb_device *udev,
2746                 struct xhci_command *command,
2747                 bool ctx_change, bool must_succeed)
2748 {
2749         int ret;
2750         unsigned long flags;
2751         struct xhci_input_control_ctx *ctrl_ctx;
2752         struct xhci_virt_device *virt_dev;
2753         struct xhci_slot_ctx *slot_ctx;
2754
2755         if (!command)
2756                 return -EINVAL;
2757
2758         spin_lock_irqsave(&xhci->lock, flags);
2759
2760         if (xhci->xhc_state & XHCI_STATE_DYING) {
2761                 spin_unlock_irqrestore(&xhci->lock, flags);
2762                 return -ESHUTDOWN;
2763         }
2764
2765         virt_dev = xhci->devs[udev->slot_id];
2766
2767         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2768         if (!ctrl_ctx) {
2769                 spin_unlock_irqrestore(&xhci->lock, flags);
2770                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2771                                 __func__);
2772                 return -ENOMEM;
2773         }
2774
2775         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2776                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2777                 spin_unlock_irqrestore(&xhci->lock, flags);
2778                 xhci_warn(xhci, "Not enough host resources, "
2779                                 "active endpoint contexts = %u\n",
2780                                 xhci->num_active_eps);
2781                 return -ENOMEM;
2782         }
2783         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2784             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2785                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2786                         xhci_free_host_resources(xhci, ctrl_ctx);
2787                 spin_unlock_irqrestore(&xhci->lock, flags);
2788                 xhci_warn(xhci, "Not enough bandwidth\n");
2789                 return -ENOMEM;
2790         }
2791
2792         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2793
2794         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2795         trace_xhci_configure_endpoint(slot_ctx);
2796
2797         if (!ctx_change)
2798                 ret = xhci_queue_configure_endpoint(xhci, command,
2799                                 command->in_ctx->dma,
2800                                 udev->slot_id, must_succeed);
2801         else
2802                 ret = xhci_queue_evaluate_context(xhci, command,
2803                                 command->in_ctx->dma,
2804                                 udev->slot_id, must_succeed);
2805         if (ret < 0) {
2806                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2807                         xhci_free_host_resources(xhci, ctrl_ctx);
2808                 spin_unlock_irqrestore(&xhci->lock, flags);
2809                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2810                                 "FIXME allocate a new ring segment");
2811                 return -ENOMEM;
2812         }
2813         xhci_ring_cmd_db(xhci);
2814         spin_unlock_irqrestore(&xhci->lock, flags);
2815
2816         /* Wait for the configure endpoint command to complete */
2817         wait_for_completion(command->completion);
2818
2819         if (!ctx_change)
2820                 ret = xhci_configure_endpoint_result(xhci, udev,
2821                                                      &command->status);
2822         else
2823                 ret = xhci_evaluate_context_result(xhci, udev,
2824                                                    &command->status);
2825
2826         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2827                 spin_lock_irqsave(&xhci->lock, flags);
2828                 /* If the command failed, remove the reserved resources.
2829                  * Otherwise, clean up the estimate to include dropped eps.
2830                  */
2831                 if (ret)
2832                         xhci_free_host_resources(xhci, ctrl_ctx);
2833                 else
2834                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2835                 spin_unlock_irqrestore(&xhci->lock, flags);
2836         }
2837         return ret;
2838 }
2839
2840 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2841         struct xhci_virt_device *vdev, int i)
2842 {
2843         struct xhci_virt_ep *ep = &vdev->eps[i];
2844
2845         if (ep->ep_state & EP_HAS_STREAMS) {
2846                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2847                                 xhci_get_endpoint_address(i));
2848                 xhci_free_stream_info(xhci, ep->stream_info);
2849                 ep->stream_info = NULL;
2850                 ep->ep_state &= ~EP_HAS_STREAMS;
2851         }
2852 }
2853
2854 /* Called after one or more calls to xhci_add_endpoint() or
2855  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2856  * to call xhci_reset_bandwidth().
2857  *
2858  * Since we are in the middle of changing either configuration or
2859  * installing a new alt setting, the USB core won't allow URBs to be
2860  * enqueued for any endpoint on the old config or interface.  Nothing
2861  * else should be touching the xhci->devs[slot_id] structure, so we
2862  * don't need to take the xhci->lock for manipulating that.
2863  */
2864 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2865 {
2866         int i;
2867         int ret = 0;
2868         struct xhci_hcd *xhci;
2869         struct xhci_virt_device *virt_dev;
2870         struct xhci_input_control_ctx *ctrl_ctx;
2871         struct xhci_slot_ctx *slot_ctx;
2872         struct xhci_command *command;
2873
2874         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2875         if (ret <= 0)
2876                 return ret;
2877         xhci = hcd_to_xhci(hcd);
2878         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2879                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2880                 return -ENODEV;
2881
2882         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2883         virt_dev = xhci->devs[udev->slot_id];
2884
2885         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2886         if (!command)
2887                 return -ENOMEM;
2888
2889         command->in_ctx = virt_dev->in_ctx;
2890
2891         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2892         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2893         if (!ctrl_ctx) {
2894                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895                                 __func__);
2896                 ret = -ENOMEM;
2897                 goto command_cleanup;
2898         }
2899         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2901         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2902
2903         /* Don't issue the command if there's no endpoints to update. */
2904         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2905             ctrl_ctx->drop_flags == 0) {
2906                 ret = 0;
2907                 goto command_cleanup;
2908         }
2909         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2910         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2911         for (i = 31; i >= 1; i--) {
2912                 __le32 le32 = cpu_to_le32(BIT(i));
2913
2914                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2915                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2916                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2917                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2918                         break;
2919                 }
2920         }
2921
2922         ret = xhci_configure_endpoint(xhci, udev, command,
2923                         false, false);
2924         if (ret)
2925                 /* Callee should call reset_bandwidth() */
2926                 goto command_cleanup;
2927
2928         /* Free any rings that were dropped, but not changed. */
2929         for (i = 1; i < 31; i++) {
2930                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2931                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2932                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2933                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2934                 }
2935         }
2936         xhci_zero_in_ctx(xhci, virt_dev);
2937         /*
2938          * Install any rings for completely new endpoints or changed endpoints,
2939          * and free any old rings from changed endpoints.
2940          */
2941         for (i = 1; i < 31; i++) {
2942                 if (!virt_dev->eps[i].new_ring)
2943                         continue;
2944                 /* Only free the old ring if it exists.
2945                  * It may not if this is the first add of an endpoint.
2946                  */
2947                 if (virt_dev->eps[i].ring) {
2948                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2949                 }
2950                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2951                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2952                 virt_dev->eps[i].new_ring = NULL;
2953                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2954         }
2955 command_cleanup:
2956         kfree(command->completion);
2957         kfree(command);
2958
2959         return ret;
2960 }
2961
2962 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2963 {
2964         struct xhci_hcd *xhci;
2965         struct xhci_virt_device *virt_dev;
2966         int i, ret;
2967
2968         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2969         if (ret <= 0)
2970                 return;
2971         xhci = hcd_to_xhci(hcd);
2972
2973         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2974         virt_dev = xhci->devs[udev->slot_id];
2975         /* Free any rings allocated for added endpoints */
2976         for (i = 0; i < 31; i++) {
2977                 if (virt_dev->eps[i].new_ring) {
2978                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2979                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2980                         virt_dev->eps[i].new_ring = NULL;
2981                 }
2982         }
2983         xhci_zero_in_ctx(xhci, virt_dev);
2984 }
2985
2986 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2987                 struct xhci_container_ctx *in_ctx,
2988                 struct xhci_container_ctx *out_ctx,
2989                 struct xhci_input_control_ctx *ctrl_ctx,
2990                 u32 add_flags, u32 drop_flags)
2991 {
2992         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2993         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2994         xhci_slot_copy(xhci, in_ctx, out_ctx);
2995         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2996 }
2997
2998 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2999                 unsigned int slot_id, unsigned int ep_index,
3000                 struct xhci_dequeue_state *deq_state)
3001 {
3002         struct xhci_input_control_ctx *ctrl_ctx;
3003         struct xhci_container_ctx *in_ctx;
3004         struct xhci_ep_ctx *ep_ctx;
3005         u32 added_ctxs;
3006         dma_addr_t addr;
3007
3008         in_ctx = xhci->devs[slot_id]->in_ctx;
3009         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3010         if (!ctrl_ctx) {
3011                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3012                                 __func__);
3013                 return;
3014         }
3015
3016         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3017                         xhci->devs[slot_id]->out_ctx, ep_index);
3018         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3019         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3020                         deq_state->new_deq_ptr);
3021         if (addr == 0) {
3022                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3023                                 "reset ep command\n");
3024                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3025                                 deq_state->new_deq_seg,
3026                                 deq_state->new_deq_ptr);
3027                 return;
3028         }
3029         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3030
3031         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3032         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3033                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3034                         added_ctxs, added_ctxs);
3035 }
3036
3037 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3038                                unsigned int ep_index, unsigned int stream_id,
3039                                struct xhci_td *td)
3040 {
3041         struct xhci_dequeue_state deq_state;
3042
3043         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3044                         "Cleaning up stalled endpoint ring");
3045         /* We need to move the HW's dequeue pointer past this TD,
3046          * or it will attempt to resend it on the next doorbell ring.
3047          */
3048         xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3049                                     &deq_state);
3050
3051         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3052                 return;
3053
3054         /* HW with the reset endpoint quirk will use the saved dequeue state to
3055          * issue a configure endpoint command later.
3056          */
3057         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3058                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3059                                 "Queueing new dequeue state");
3060                 xhci_queue_new_dequeue_state(xhci, slot_id,
3061                                 ep_index, &deq_state);
3062         } else {
3063                 /* Better hope no one uses the input context between now and the
3064                  * reset endpoint completion!
3065                  * XXX: No idea how this hardware will react when stream rings
3066                  * are enabled.
3067                  */
3068                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3069                                 "Setting up input context for "
3070                                 "configure endpoint command");
3071                 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3072                                 ep_index, &deq_state);
3073         }
3074 }
3075
3076 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3077                                   struct usb_host_endpoint *host_ep)
3078 {
3079         struct xhci_hcd         *xhci;
3080         struct xhci_virt_device *vdev;
3081         struct xhci_virt_ep     *ep;
3082         struct usb_device       *udev;
3083         unsigned long           flags;
3084         unsigned int            ep_index;
3085
3086         xhci = hcd_to_xhci(hcd);
3087 rescan:
3088         spin_lock_irqsave(&xhci->lock, flags);
3089
3090         udev = (struct usb_device *)host_ep->hcpriv;
3091         if (!udev || !udev->slot_id)
3092                 goto done;
3093
3094         vdev = xhci->devs[udev->slot_id];
3095         if (!vdev)
3096                 goto done;
3097
3098         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3099         ep = &vdev->eps[ep_index];
3100         if (!ep)
3101                 goto done;
3102
3103         /* wait for hub_tt_work to finish clearing hub TT */
3104         if (ep->ep_state & EP_CLEARING_TT) {
3105                 spin_unlock_irqrestore(&xhci->lock, flags);
3106                 schedule_timeout_uninterruptible(1);
3107                 goto rescan;
3108         }
3109
3110         if (ep->ep_state)
3111                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3112                          ep->ep_state);
3113 done:
3114         host_ep->hcpriv = NULL;
3115         spin_unlock_irqrestore(&xhci->lock, flags);
3116 }
3117
3118 /*
3119  * Called after usb core issues a clear halt control message.
3120  * The host side of the halt should already be cleared by a reset endpoint
3121  * command issued when the STALL event was received.
3122  *
3123  * The reset endpoint command may only be issued to endpoints in the halted
3124  * state. For software that wishes to reset the data toggle or sequence number
3125  * of an endpoint that isn't in the halted state this function will issue a
3126  * configure endpoint command with the Drop and Add bits set for the target
3127  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3128  */
3129
3130 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3131                 struct usb_host_endpoint *host_ep)
3132 {
3133         struct xhci_hcd *xhci;
3134         struct usb_device *udev;
3135         struct xhci_virt_device *vdev;
3136         struct xhci_virt_ep *ep;
3137         struct xhci_input_control_ctx *ctrl_ctx;
3138         struct xhci_command *stop_cmd, *cfg_cmd;
3139         unsigned int ep_index;
3140         unsigned long flags;
3141         u32 ep_flag;
3142         int err;
3143
3144         xhci = hcd_to_xhci(hcd);
3145         if (!host_ep->hcpriv)
3146                 return;
3147         udev = (struct usb_device *) host_ep->hcpriv;
3148         vdev = xhci->devs[udev->slot_id];
3149
3150         /*
3151          * vdev may be lost due to xHC restore error and re-initialization
3152          * during S3/S4 resume. A new vdev will be allocated later by
3153          * xhci_discover_or_reset_device()
3154          */
3155         if (!udev->slot_id || !vdev)
3156                 return;
3157         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3158         ep = &vdev->eps[ep_index];
3159         if (!ep)
3160                 return;
3161
3162         /* Bail out if toggle is already being cleared by a endpoint reset */
3163         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3164                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3165                 return;
3166         }
3167         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3168         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3169             usb_endpoint_xfer_isoc(&host_ep->desc))
3170                 return;
3171
3172         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3173
3174         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3175                 return;
3176
3177         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3178         if (!stop_cmd)
3179                 return;
3180
3181         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3182         if (!cfg_cmd)
3183                 goto cleanup;
3184
3185         spin_lock_irqsave(&xhci->lock, flags);
3186
3187         /* block queuing new trbs and ringing ep doorbell */
3188         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3189
3190         /*
3191          * Make sure endpoint ring is empty before resetting the toggle/seq.
3192          * Driver is required to synchronously cancel all transfer request.
3193          * Stop the endpoint to force xHC to update the output context
3194          */
3195
3196         if (!list_empty(&ep->ring->td_list)) {
3197                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3198                 spin_unlock_irqrestore(&xhci->lock, flags);
3199                 xhci_free_command(xhci, cfg_cmd);
3200                 goto cleanup;
3201         }
3202
3203         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3204                                         ep_index, 0);
3205         if (err < 0) {
3206                 spin_unlock_irqrestore(&xhci->lock, flags);
3207                 xhci_free_command(xhci, cfg_cmd);
3208                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3209                                 __func__, err);
3210                 goto cleanup;
3211         }
3212
3213         xhci_ring_cmd_db(xhci);
3214         spin_unlock_irqrestore(&xhci->lock, flags);
3215
3216         wait_for_completion(stop_cmd->completion);
3217
3218         spin_lock_irqsave(&xhci->lock, flags);
3219
3220         /* config ep command clears toggle if add and drop ep flags are set */
3221         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3222         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3223                                            ctrl_ctx, ep_flag, ep_flag);
3224         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3225
3226         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3227                                       udev->slot_id, false);
3228         if (err < 0) {
3229                 spin_unlock_irqrestore(&xhci->lock, flags);
3230                 xhci_free_command(xhci, cfg_cmd);
3231                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3232                                 __func__, err);
3233                 goto cleanup;
3234         }
3235
3236         xhci_ring_cmd_db(xhci);
3237         spin_unlock_irqrestore(&xhci->lock, flags);
3238
3239         wait_for_completion(cfg_cmd->completion);
3240
3241         xhci_free_command(xhci, cfg_cmd);
3242 cleanup:
3243         xhci_free_command(xhci, stop_cmd);
3244         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246 }
3247
3248 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3249                 struct usb_device *udev, struct usb_host_endpoint *ep,
3250                 unsigned int slot_id)
3251 {
3252         int ret;
3253         unsigned int ep_index;
3254         unsigned int ep_state;
3255
3256         if (!ep)
3257                 return -EINVAL;
3258         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3259         if (ret <= 0)
3260                 return -EINVAL;
3261         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3262                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3263                                 " descriptor for ep 0x%x does not support streams\n",
3264                                 ep->desc.bEndpointAddress);
3265                 return -EINVAL;
3266         }
3267
3268         ep_index = xhci_get_endpoint_index(&ep->desc);
3269         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3270         if (ep_state & EP_HAS_STREAMS ||
3271                         ep_state & EP_GETTING_STREAMS) {
3272                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3273                                 "already has streams set up.\n",
3274                                 ep->desc.bEndpointAddress);
3275                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3276                                 "dynamic stream context array reallocation.\n");
3277                 return -EINVAL;
3278         }
3279         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3280                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3281                                 "endpoint 0x%x; URBs are pending.\n",
3282                                 ep->desc.bEndpointAddress);
3283                 return -EINVAL;
3284         }
3285         return 0;
3286 }
3287
3288 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3289                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3290 {
3291         unsigned int max_streams;
3292
3293         /* The stream context array size must be a power of two */
3294         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3295         /*
3296          * Find out how many primary stream array entries the host controller
3297          * supports.  Later we may use secondary stream arrays (similar to 2nd
3298          * level page entries), but that's an optional feature for xHCI host
3299          * controllers. xHCs must support at least 4 stream IDs.
3300          */
3301         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3302         if (*num_stream_ctxs > max_streams) {
3303                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3304                                 max_streams);
3305                 *num_stream_ctxs = max_streams;
3306                 *num_streams = max_streams;
3307         }
3308 }
3309
3310 /* Returns an error code if one of the endpoint already has streams.
3311  * This does not change any data structures, it only checks and gathers
3312  * information.
3313  */
3314 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3315                 struct usb_device *udev,
3316                 struct usb_host_endpoint **eps, unsigned int num_eps,
3317                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3318 {
3319         unsigned int max_streams;
3320         unsigned int endpoint_flag;
3321         int i;
3322         int ret;
3323
3324         for (i = 0; i < num_eps; i++) {
3325                 ret = xhci_check_streams_endpoint(xhci, udev,
3326                                 eps[i], udev->slot_id);
3327                 if (ret < 0)
3328                         return ret;
3329
3330                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3331                 if (max_streams < (*num_streams - 1)) {
3332                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3333                                         eps[i]->desc.bEndpointAddress,
3334                                         max_streams);
3335                         *num_streams = max_streams+1;
3336                 }
3337
3338                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3339                 if (*changed_ep_bitmask & endpoint_flag)
3340                         return -EINVAL;
3341                 *changed_ep_bitmask |= endpoint_flag;
3342         }
3343         return 0;
3344 }
3345
3346 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3347                 struct usb_device *udev,
3348                 struct usb_host_endpoint **eps, unsigned int num_eps)
3349 {
3350         u32 changed_ep_bitmask = 0;
3351         unsigned int slot_id;
3352         unsigned int ep_index;
3353         unsigned int ep_state;
3354         int i;
3355
3356         slot_id = udev->slot_id;
3357         if (!xhci->devs[slot_id])
3358                 return 0;
3359
3360         for (i = 0; i < num_eps; i++) {
3361                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3362                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3363                 /* Are streams already being freed for the endpoint? */
3364                 if (ep_state & EP_GETTING_NO_STREAMS) {
3365                         xhci_warn(xhci, "WARN Can't disable streams for "
3366                                         "endpoint 0x%x, "
3367                                         "streams are being disabled already\n",
3368                                         eps[i]->desc.bEndpointAddress);
3369                         return 0;
3370                 }
3371                 /* Are there actually any streams to free? */
3372                 if (!(ep_state & EP_HAS_STREAMS) &&
3373                                 !(ep_state & EP_GETTING_STREAMS)) {
3374                         xhci_warn(xhci, "WARN Can't disable streams for "
3375                                         "endpoint 0x%x, "
3376                                         "streams are already disabled!\n",
3377                                         eps[i]->desc.bEndpointAddress);
3378                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3379                                         "with non-streams endpoint\n");
3380                         return 0;
3381                 }
3382                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3383         }
3384         return changed_ep_bitmask;
3385 }
3386
3387 /*
3388  * The USB device drivers use this function (through the HCD interface in USB
3389  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3390  * coordinate mass storage command queueing across multiple endpoints (basically
3391  * a stream ID == a task ID).
3392  *
3393  * Setting up streams involves allocating the same size stream context array
3394  * for each endpoint and issuing a configure endpoint command for all endpoints.
3395  *
3396  * Don't allow the call to succeed if one endpoint only supports one stream
3397  * (which means it doesn't support streams at all).
3398  *
3399  * Drivers may get less stream IDs than they asked for, if the host controller
3400  * hardware or endpoints claim they can't support the number of requested
3401  * stream IDs.
3402  */
3403 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3404                 struct usb_host_endpoint **eps, unsigned int num_eps,
3405                 unsigned int num_streams, gfp_t mem_flags)
3406 {
3407         int i, ret;
3408         struct xhci_hcd *xhci;
3409         struct xhci_virt_device *vdev;
3410         struct xhci_command *config_cmd;
3411         struct xhci_input_control_ctx *ctrl_ctx;
3412         unsigned int ep_index;
3413         unsigned int num_stream_ctxs;
3414         unsigned int max_packet;
3415         unsigned long flags;
3416         u32 changed_ep_bitmask = 0;
3417
3418         if (!eps)
3419                 return -EINVAL;
3420
3421         /* Add one to the number of streams requested to account for
3422          * stream 0 that is reserved for xHCI usage.
3423          */
3424         num_streams += 1;
3425         xhci = hcd_to_xhci(hcd);
3426         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3427                         num_streams);
3428
3429         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3430         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3431                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3432                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3433                 return -ENOSYS;
3434         }
3435
3436         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3437         if (!config_cmd)
3438                 return -ENOMEM;
3439
3440         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3441         if (!ctrl_ctx) {
3442                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3443                                 __func__);
3444                 xhci_free_command(xhci, config_cmd);
3445                 return -ENOMEM;
3446         }
3447
3448         /* Check to make sure all endpoints are not already configured for
3449          * streams.  While we're at it, find the maximum number of streams that
3450          * all the endpoints will support and check for duplicate endpoints.
3451          */
3452         spin_lock_irqsave(&xhci->lock, flags);
3453         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3454                         num_eps, &num_streams, &changed_ep_bitmask);
3455         if (ret < 0) {
3456                 xhci_free_command(xhci, config_cmd);
3457                 spin_unlock_irqrestore(&xhci->lock, flags);
3458                 return ret;
3459         }
3460         if (num_streams <= 1) {
3461                 xhci_warn(xhci, "WARN: endpoints can't handle "
3462                                 "more than one stream.\n");
3463                 xhci_free_command(xhci, config_cmd);
3464                 spin_unlock_irqrestore(&xhci->lock, flags);
3465                 return -EINVAL;
3466         }
3467         vdev = xhci->devs[udev->slot_id];
3468         /* Mark each endpoint as being in transition, so
3469          * xhci_urb_enqueue() will reject all URBs.
3470          */
3471         for (i = 0; i < num_eps; i++) {
3472                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3473                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3474         }
3475         spin_unlock_irqrestore(&xhci->lock, flags);
3476
3477         /* Setup internal data structures and allocate HW data structures for
3478          * streams (but don't install the HW structures in the input context
3479          * until we're sure all memory allocation succeeded).
3480          */
3481         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3482         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3483                         num_stream_ctxs, num_streams);
3484
3485         for (i = 0; i < num_eps; i++) {
3486                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3487                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3488                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3489                                 num_stream_ctxs,
3490                                 num_streams,
3491                                 max_packet, mem_flags);
3492                 if (!vdev->eps[ep_index].stream_info)
3493                         goto cleanup;
3494                 /* Set maxPstreams in endpoint context and update deq ptr to
3495                  * point to stream context array. FIXME
3496                  */
3497         }
3498
3499         /* Set up the input context for a configure endpoint command. */
3500         for (i = 0; i < num_eps; i++) {
3501                 struct xhci_ep_ctx *ep_ctx;
3502
3503                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3504                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3505
3506                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3507                                 vdev->out_ctx, ep_index);
3508                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3509                                 vdev->eps[ep_index].stream_info);
3510         }
3511         /* Tell the HW to drop its old copy of the endpoint context info
3512          * and add the updated copy from the input context.
3513          */
3514         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3515                         vdev->out_ctx, ctrl_ctx,
3516                         changed_ep_bitmask, changed_ep_bitmask);
3517
3518         /* Issue and wait for the configure endpoint command */
3519         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3520                         false, false);
3521
3522         /* xHC rejected the configure endpoint command for some reason, so we
3523          * leave the old ring intact and free our internal streams data
3524          * structure.
3525          */
3526         if (ret < 0)
3527                 goto cleanup;
3528
3529         spin_lock_irqsave(&xhci->lock, flags);
3530         for (i = 0; i < num_eps; i++) {
3531                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3532                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3533                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3534                          udev->slot_id, ep_index);
3535                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3536         }
3537         xhci_free_command(xhci, config_cmd);
3538         spin_unlock_irqrestore(&xhci->lock, flags);
3539
3540         for (i = 0; i < num_eps; i++) {
3541                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3542                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3543         }
3544         /* Subtract 1 for stream 0, which drivers can't use */
3545         return num_streams - 1;
3546
3547 cleanup:
3548         /* If it didn't work, free the streams! */
3549         for (i = 0; i < num_eps; i++) {
3550                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3551                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3552                 vdev->eps[ep_index].stream_info = NULL;
3553                 /* FIXME Unset maxPstreams in endpoint context and
3554                  * update deq ptr to point to normal string ring.
3555                  */
3556                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3557                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3558                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3559         }
3560         xhci_free_command(xhci, config_cmd);
3561         return -ENOMEM;
3562 }
3563
3564 /* Transition the endpoint from using streams to being a "normal" endpoint
3565  * without streams.
3566  *
3567  * Modify the endpoint context state, submit a configure endpoint command,
3568  * and free all endpoint rings for streams if that completes successfully.
3569  */
3570 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3571                 struct usb_host_endpoint **eps, unsigned int num_eps,
3572                 gfp_t mem_flags)
3573 {
3574         int i, ret;
3575         struct xhci_hcd *xhci;
3576         struct xhci_virt_device *vdev;
3577         struct xhci_command *command;
3578         struct xhci_input_control_ctx *ctrl_ctx;
3579         unsigned int ep_index;
3580         unsigned long flags;
3581         u32 changed_ep_bitmask;
3582
3583         xhci = hcd_to_xhci(hcd);
3584         vdev = xhci->devs[udev->slot_id];
3585
3586         /* Set up a configure endpoint command to remove the streams rings */
3587         spin_lock_irqsave(&xhci->lock, flags);
3588         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3589                         udev, eps, num_eps);
3590         if (changed_ep_bitmask == 0) {
3591                 spin_unlock_irqrestore(&xhci->lock, flags);
3592                 return -EINVAL;
3593         }
3594
3595         /* Use the xhci_command structure from the first endpoint.  We may have
3596          * allocated too many, but the driver may call xhci_free_streams() for
3597          * each endpoint it grouped into one call to xhci_alloc_streams().
3598          */
3599         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3600         command = vdev->eps[ep_index].stream_info->free_streams_command;
3601         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3602         if (!ctrl_ctx) {
3603                 spin_unlock_irqrestore(&xhci->lock, flags);
3604                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3605                                 __func__);
3606                 return -EINVAL;
3607         }
3608
3609         for (i = 0; i < num_eps; i++) {
3610                 struct xhci_ep_ctx *ep_ctx;
3611
3612                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3613                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3614                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3615                         EP_GETTING_NO_STREAMS;
3616
3617                 xhci_endpoint_copy(xhci, command->in_ctx,
3618                                 vdev->out_ctx, ep_index);
3619                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3620                                 &vdev->eps[ep_index]);
3621         }
3622         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3623                         vdev->out_ctx, ctrl_ctx,
3624                         changed_ep_bitmask, changed_ep_bitmask);
3625         spin_unlock_irqrestore(&xhci->lock, flags);
3626
3627         /* Issue and wait for the configure endpoint command,
3628          * which must succeed.
3629          */
3630         ret = xhci_configure_endpoint(xhci, udev, command,
3631                         false, true);
3632
3633         /* xHC rejected the configure endpoint command for some reason, so we
3634          * leave the streams rings intact.
3635          */
3636         if (ret < 0)
3637                 return ret;
3638
3639         spin_lock_irqsave(&xhci->lock, flags);
3640         for (i = 0; i < num_eps; i++) {
3641                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3642                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3643                 vdev->eps[ep_index].stream_info = NULL;
3644                 /* FIXME Unset maxPstreams in endpoint context and
3645                  * update deq ptr to point to normal string ring.
3646                  */
3647                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3648                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3649         }
3650         spin_unlock_irqrestore(&xhci->lock, flags);
3651
3652         return 0;
3653 }
3654
3655 /*
3656  * Deletes endpoint resources for endpoints that were active before a Reset
3657  * Device command, or a Disable Slot command.  The Reset Device command leaves
3658  * the control endpoint intact, whereas the Disable Slot command deletes it.
3659  *
3660  * Must be called with xhci->lock held.
3661  */
3662 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3663         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3664 {
3665         int i;
3666         unsigned int num_dropped_eps = 0;
3667         unsigned int drop_flags = 0;
3668
3669         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3670                 if (virt_dev->eps[i].ring) {
3671                         drop_flags |= 1 << i;
3672                         num_dropped_eps++;
3673                 }
3674         }
3675         xhci->num_active_eps -= num_dropped_eps;
3676         if (num_dropped_eps)
3677                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3678                                 "Dropped %u ep ctxs, flags = 0x%x, "
3679                                 "%u now active.",
3680                                 num_dropped_eps, drop_flags,
3681                                 xhci->num_active_eps);
3682 }
3683
3684 /*
3685  * This submits a Reset Device Command, which will set the device state to 0,
3686  * set the device address to 0, and disable all the endpoints except the default
3687  * control endpoint.  The USB core should come back and call
3688  * xhci_address_device(), and then re-set up the configuration.  If this is
3689  * called because of a usb_reset_and_verify_device(), then the old alternate
3690  * settings will be re-installed through the normal bandwidth allocation
3691  * functions.
3692  *
3693  * Wait for the Reset Device command to finish.  Remove all structures
3694  * associated with the endpoints that were disabled.  Clear the input device
3695  * structure? Reset the control endpoint 0 max packet size?
3696  *
3697  * If the virt_dev to be reset does not exist or does not match the udev,
3698  * it means the device is lost, possibly due to the xHC restore error and
3699  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3700  * re-allocate the device.
3701  */
3702 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3703                 struct usb_device *udev)
3704 {
3705         int ret, i;
3706         unsigned long flags;
3707         struct xhci_hcd *xhci;
3708         unsigned int slot_id;
3709         struct xhci_virt_device *virt_dev;
3710         struct xhci_command *reset_device_cmd;
3711         struct xhci_slot_ctx *slot_ctx;
3712         int old_active_eps = 0;
3713
3714         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3715         if (ret <= 0)
3716                 return ret;
3717         xhci = hcd_to_xhci(hcd);
3718         slot_id = udev->slot_id;
3719         virt_dev = xhci->devs[slot_id];
3720         if (!virt_dev) {
3721                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3722                                 "not exist. Re-allocate the device\n", slot_id);
3723                 ret = xhci_alloc_dev(hcd, udev);
3724                 if (ret == 1)
3725                         return 0;
3726                 else
3727                         return -EINVAL;
3728         }
3729
3730         if (virt_dev->tt_info)
3731                 old_active_eps = virt_dev->tt_info->active_eps;
3732
3733         if (virt_dev->udev != udev) {
3734                 /* If the virt_dev and the udev does not match, this virt_dev
3735                  * may belong to another udev.
3736                  * Re-allocate the device.
3737                  */
3738                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3739                                 "not match the udev. Re-allocate the device\n",
3740                                 slot_id);
3741                 ret = xhci_alloc_dev(hcd, udev);
3742                 if (ret == 1)
3743                         return 0;
3744                 else
3745                         return -EINVAL;
3746         }
3747
3748         /* If device is not setup, there is no point in resetting it */
3749         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3750         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3751                                                 SLOT_STATE_DISABLED)
3752                 return 0;
3753
3754         trace_xhci_discover_or_reset_device(slot_ctx);
3755
3756         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3757         /* Allocate the command structure that holds the struct completion.
3758          * Assume we're in process context, since the normal device reset
3759          * process has to wait for the device anyway.  Storage devices are
3760          * reset as part of error handling, so use GFP_NOIO instead of
3761          * GFP_KERNEL.
3762          */
3763         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3764         if (!reset_device_cmd) {
3765                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3766                 return -ENOMEM;
3767         }
3768
3769         /* Attempt to submit the Reset Device command to the command ring */
3770         spin_lock_irqsave(&xhci->lock, flags);
3771
3772         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3773         if (ret) {
3774                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3775                 spin_unlock_irqrestore(&xhci->lock, flags);
3776                 goto command_cleanup;
3777         }
3778         xhci_ring_cmd_db(xhci);
3779         spin_unlock_irqrestore(&xhci->lock, flags);
3780
3781         /* Wait for the Reset Device command to finish */
3782         wait_for_completion(reset_device_cmd->completion);
3783
3784         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3785          * unless we tried to reset a slot ID that wasn't enabled,
3786          * or the device wasn't in the addressed or configured state.
3787          */
3788         ret = reset_device_cmd->status;
3789         switch (ret) {
3790         case COMP_COMMAND_ABORTED:
3791         case COMP_COMMAND_RING_STOPPED:
3792                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3793                 ret = -ETIME;
3794                 goto command_cleanup;
3795         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3796         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3797                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3798                                 slot_id,
3799                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3800                 xhci_dbg(xhci, "Not freeing device rings.\n");
3801                 /* Don't treat this as an error.  May change my mind later. */
3802                 ret = 0;
3803                 goto command_cleanup;
3804         case COMP_SUCCESS:
3805                 xhci_dbg(xhci, "Successful reset device command.\n");
3806                 break;
3807         default:
3808                 if (xhci_is_vendor_info_code(xhci, ret))
3809                         break;
3810                 xhci_warn(xhci, "Unknown completion code %u for "
3811                                 "reset device command.\n", ret);
3812                 ret = -EINVAL;
3813                 goto command_cleanup;
3814         }
3815
3816         /* Free up host controller endpoint resources */
3817         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3818                 spin_lock_irqsave(&xhci->lock, flags);
3819                 /* Don't delete the default control endpoint resources */
3820                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3821                 spin_unlock_irqrestore(&xhci->lock, flags);
3822         }
3823
3824         /* Everything but endpoint 0 is disabled, so free the rings. */
3825         for (i = 1; i < 31; i++) {
3826                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3827
3828                 if (ep->ep_state & EP_HAS_STREAMS) {
3829                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3830                                         xhci_get_endpoint_address(i));
3831                         xhci_free_stream_info(xhci, ep->stream_info);
3832                         ep->stream_info = NULL;
3833                         ep->ep_state &= ~EP_HAS_STREAMS;
3834                 }
3835
3836                 if (ep->ring) {
3837                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3838                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3839                 }
3840                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3841                         xhci_drop_ep_from_interval_table(xhci,
3842                                         &virt_dev->eps[i].bw_info,
3843                                         virt_dev->bw_table,
3844                                         udev,
3845                                         &virt_dev->eps[i],
3846                                         virt_dev->tt_info);
3847                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3848         }
3849         /* If necessary, update the number of active TTs on this root port */
3850         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3851         virt_dev->flags = 0;
3852         ret = 0;
3853
3854 command_cleanup:
3855         xhci_free_command(xhci, reset_device_cmd);
3856         return ret;
3857 }
3858
3859 /*
3860  * At this point, the struct usb_device is about to go away, the device has
3861  * disconnected, and all traffic has been stopped and the endpoints have been
3862  * disabled.  Free any HC data structures associated with that device.
3863  */
3864 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3865 {
3866         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3867         struct xhci_virt_device *virt_dev;
3868         struct xhci_slot_ctx *slot_ctx;
3869         int i, ret;
3870
3871 #ifndef CONFIG_USB_DEFAULT_PERSIST
3872         /*
3873          * We called pm_runtime_get_noresume when the device was attached.
3874          * Decrement the counter here to allow controller to runtime suspend
3875          * if no devices remain.
3876          */
3877         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3878                 pm_runtime_put_noidle(hcd->self.controller);
3879 #endif
3880
3881         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3882         /* If the host is halted due to driver unload, we still need to free the
3883          * device.
3884          */
3885         if (ret <= 0 && ret != -ENODEV)
3886                 return;
3887
3888         virt_dev = xhci->devs[udev->slot_id];
3889         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3890         trace_xhci_free_dev(slot_ctx);
3891
3892         /* Stop any wayward timer functions (which may grab the lock) */
3893         for (i = 0; i < 31; i++) {
3894                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3895                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3896         }
3897         virt_dev->udev = NULL;
3898         ret = xhci_disable_slot(xhci, udev->slot_id);
3899         if (ret)
3900                 xhci_free_virt_device(xhci, udev->slot_id);
3901 }
3902
3903 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3904 {
3905         struct xhci_command *command;
3906         unsigned long flags;
3907         u32 state;
3908         int ret = 0;
3909
3910         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3911         if (!command)
3912                 return -ENOMEM;
3913
3914         xhci_debugfs_remove_slot(xhci, slot_id);
3915
3916         spin_lock_irqsave(&xhci->lock, flags);
3917         /* Don't disable the slot if the host controller is dead. */
3918         state = readl(&xhci->op_regs->status);
3919         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3920                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3921                 spin_unlock_irqrestore(&xhci->lock, flags);
3922                 kfree(command);
3923                 return -ENODEV;
3924         }
3925
3926         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3927                                 slot_id);
3928         if (ret) {
3929                 spin_unlock_irqrestore(&xhci->lock, flags);
3930                 kfree(command);
3931                 return ret;
3932         }
3933         xhci_ring_cmd_db(xhci);
3934         spin_unlock_irqrestore(&xhci->lock, flags);
3935         return ret;
3936 }
3937
3938 /*
3939  * Checks if we have enough host controller resources for the default control
3940  * endpoint.
3941  *
3942  * Must be called with xhci->lock held.
3943  */
3944 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3945 {
3946         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3947                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948                                 "Not enough ep ctxs: "
3949                                 "%u active, need to add 1, limit is %u.",
3950                                 xhci->num_active_eps, xhci->limit_active_eps);
3951                 return -ENOMEM;
3952         }
3953         xhci->num_active_eps += 1;
3954         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3955                         "Adding 1 ep ctx, %u now active.",
3956                         xhci->num_active_eps);
3957         return 0;
3958 }
3959
3960
3961 /*
3962  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3963  * timed out, or allocating memory failed.  Returns 1 on success.
3964  */
3965 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968         struct xhci_virt_device *vdev;
3969         struct xhci_slot_ctx *slot_ctx;
3970         unsigned long flags;
3971         int ret, slot_id;
3972         struct xhci_command *command;
3973
3974         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3975         if (!command)
3976                 return 0;
3977
3978         spin_lock_irqsave(&xhci->lock, flags);
3979         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3980         if (ret) {
3981                 spin_unlock_irqrestore(&xhci->lock, flags);
3982                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3983                 xhci_free_command(xhci, command);
3984                 return 0;
3985         }
3986         xhci_ring_cmd_db(xhci);
3987         spin_unlock_irqrestore(&xhci->lock, flags);
3988
3989         wait_for_completion(command->completion);
3990         slot_id = command->slot_id;
3991
3992         if (!slot_id || command->status != COMP_SUCCESS) {
3993                 xhci_err(xhci, "Error while assigning device slot ID\n");
3994                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3995                                 HCS_MAX_SLOTS(
3996                                         readl(&xhci->cap_regs->hcs_params1)));
3997                 xhci_free_command(xhci, command);
3998                 return 0;
3999         }
4000
4001         xhci_free_command(xhci, command);
4002
4003         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4004                 spin_lock_irqsave(&xhci->lock, flags);
4005                 ret = xhci_reserve_host_control_ep_resources(xhci);
4006                 if (ret) {
4007                         spin_unlock_irqrestore(&xhci->lock, flags);
4008                         xhci_warn(xhci, "Not enough host resources, "
4009                                         "active endpoint contexts = %u\n",
4010                                         xhci->num_active_eps);
4011                         goto disable_slot;
4012                 }
4013                 spin_unlock_irqrestore(&xhci->lock, flags);
4014         }
4015         /* Use GFP_NOIO, since this function can be called from
4016          * xhci_discover_or_reset_device(), which may be called as part of
4017          * mass storage driver error handling.
4018          */
4019         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4020                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4021                 goto disable_slot;
4022         }
4023         vdev = xhci->devs[slot_id];
4024         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4025         trace_xhci_alloc_dev(slot_ctx);
4026
4027         udev->slot_id = slot_id;
4028
4029         xhci_debugfs_create_slot(xhci, slot_id);
4030
4031 #ifndef CONFIG_USB_DEFAULT_PERSIST
4032         /*
4033          * If resetting upon resume, we can't put the controller into runtime
4034          * suspend if there is a device attached.
4035          */
4036         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4037                 pm_runtime_get_noresume(hcd->self.controller);
4038 #endif
4039
4040         /* Is this a LS or FS device under a HS hub? */
4041         /* Hub or peripherial? */
4042         return 1;
4043
4044 disable_slot:
4045         ret = xhci_disable_slot(xhci, udev->slot_id);
4046         if (ret)
4047                 xhci_free_virt_device(xhci, udev->slot_id);
4048
4049         return 0;
4050 }
4051
4052 /*
4053  * Issue an Address Device command and optionally send a corresponding
4054  * SetAddress request to the device.
4055  */
4056 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4057                              enum xhci_setup_dev setup)
4058 {
4059         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4060         unsigned long flags;
4061         struct xhci_virt_device *virt_dev;
4062         int ret = 0;
4063         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4064         struct xhci_slot_ctx *slot_ctx;
4065         struct xhci_input_control_ctx *ctrl_ctx;
4066         u64 temp_64;
4067         struct xhci_command *command = NULL;
4068
4069         mutex_lock(&xhci->mutex);
4070
4071         if (xhci->xhc_state) {  /* dying, removing or halted */
4072                 ret = -ESHUTDOWN;
4073                 goto out;
4074         }
4075
4076         if (!udev->slot_id) {
4077                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4078                                 "Bad Slot ID %d", udev->slot_id);
4079                 ret = -EINVAL;
4080                 goto out;
4081         }
4082
4083         virt_dev = xhci->devs[udev->slot_id];
4084
4085         if (WARN_ON(!virt_dev)) {
4086                 /*
4087                  * In plug/unplug torture test with an NEC controller,
4088                  * a zero-dereference was observed once due to virt_dev = 0.
4089                  * Print useful debug rather than crash if it is observed again!
4090                  */
4091                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4092                         udev->slot_id);
4093                 ret = -EINVAL;
4094                 goto out;
4095         }
4096         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4097         trace_xhci_setup_device_slot(slot_ctx);
4098
4099         if (setup == SETUP_CONTEXT_ONLY) {
4100                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4101                     SLOT_STATE_DEFAULT) {
4102                         xhci_dbg(xhci, "Slot already in default state\n");
4103                         goto out;
4104                 }
4105         }
4106
4107         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4108         if (!command) {
4109                 ret = -ENOMEM;
4110                 goto out;
4111         }
4112
4113         command->in_ctx = virt_dev->in_ctx;
4114
4115         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4116         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4117         if (!ctrl_ctx) {
4118                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4119                                 __func__);
4120                 ret = -EINVAL;
4121                 goto out;
4122         }
4123         /*
4124          * If this is the first Set Address since device plug-in or
4125          * virt_device realloaction after a resume with an xHCI power loss,
4126          * then set up the slot context.
4127          */
4128         if (!slot_ctx->dev_info)
4129                 xhci_setup_addressable_virt_dev(xhci, udev);
4130         /* Otherwise, update the control endpoint ring enqueue pointer. */
4131         else
4132                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4133         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4134         ctrl_ctx->drop_flags = 0;
4135
4136         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4137                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4138
4139         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4140         spin_lock_irqsave(&xhci->lock, flags);
4141         trace_xhci_setup_device(virt_dev);
4142         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4143                                         udev->slot_id, setup);
4144         if (ret) {
4145                 spin_unlock_irqrestore(&xhci->lock, flags);
4146                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4147                                 "FIXME: allocate a command ring segment");
4148                 goto out;
4149         }
4150         xhci_ring_cmd_db(xhci);
4151         spin_unlock_irqrestore(&xhci->lock, flags);
4152
4153         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4154         wait_for_completion(command->completion);
4155
4156         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4157          * the SetAddress() "recovery interval" required by USB and aborting the
4158          * command on a timeout.
4159          */
4160         switch (command->status) {
4161         case COMP_COMMAND_ABORTED:
4162         case COMP_COMMAND_RING_STOPPED:
4163                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4164                 ret = -ETIME;
4165                 break;
4166         case COMP_CONTEXT_STATE_ERROR:
4167         case COMP_SLOT_NOT_ENABLED_ERROR:
4168                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4169                          act, udev->slot_id);
4170                 ret = -EINVAL;
4171                 break;
4172         case COMP_USB_TRANSACTION_ERROR:
4173                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4174
4175                 mutex_unlock(&xhci->mutex);
4176                 ret = xhci_disable_slot(xhci, udev->slot_id);
4177                 if (!ret)
4178                         xhci_alloc_dev(hcd, udev);
4179                 kfree(command->completion);
4180                 kfree(command);
4181                 return -EPROTO;
4182         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4183                 dev_warn(&udev->dev,
4184                          "ERROR: Incompatible device for setup %s command\n", act);
4185                 ret = -ENODEV;
4186                 break;
4187         case COMP_SUCCESS:
4188                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4189                                "Successful setup %s command", act);
4190                 break;
4191         default:
4192                 xhci_err(xhci,
4193                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4194                          act, command->status);
4195                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4196                 ret = -EINVAL;
4197                 break;
4198         }
4199         if (ret)
4200                 goto out;
4201         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4202         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203                         "Op regs DCBAA ptr = %#016llx", temp_64);
4204         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4205                 "Slot ID %d dcbaa entry @%p = %#016llx",
4206                 udev->slot_id,
4207                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4208                 (unsigned long long)
4209                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4210         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4211                         "Output Context DMA address = %#08llx",
4212                         (unsigned long long)virt_dev->out_ctx->dma);
4213         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4214                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4215         /*
4216          * USB core uses address 1 for the roothubs, so we add one to the
4217          * address given back to us by the HC.
4218          */
4219         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4220                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4221         /* Zero the input context control for later use */
4222         ctrl_ctx->add_flags = 0;
4223         ctrl_ctx->drop_flags = 0;
4224         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4225         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4226
4227         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4228                        "Internal device address = %d",
4229                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4230 out:
4231         mutex_unlock(&xhci->mutex);
4232         if (command) {
4233                 kfree(command->completion);
4234                 kfree(command);
4235         }
4236         return ret;
4237 }
4238
4239 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4240 {
4241         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4242 }
4243
4244 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4245 {
4246         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4247 }
4248
4249 /*
4250  * Transfer the port index into real index in the HW port status
4251  * registers. Caculate offset between the port's PORTSC register
4252  * and port status base. Divide the number of per port register
4253  * to get the real index. The raw port number bases 1.
4254  */
4255 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4256 {
4257         struct xhci_hub *rhub;
4258
4259         rhub = xhci_get_rhub(hcd);
4260         return rhub->ports[port1 - 1]->hw_portnum + 1;
4261 }
4262
4263 /*
4264  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4265  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4266  */
4267 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4268                         struct usb_device *udev, u16 max_exit_latency)
4269 {
4270         struct xhci_virt_device *virt_dev;
4271         struct xhci_command *command;
4272         struct xhci_input_control_ctx *ctrl_ctx;
4273         struct xhci_slot_ctx *slot_ctx;
4274         unsigned long flags;
4275         int ret;
4276
4277         spin_lock_irqsave(&xhci->lock, flags);
4278
4279         virt_dev = xhci->devs[udev->slot_id];
4280
4281         /*
4282          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4283          * xHC was re-initialized. Exit latency will be set later after
4284          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4285          */
4286
4287         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4288                 spin_unlock_irqrestore(&xhci->lock, flags);
4289                 return 0;
4290         }
4291
4292         /* Attempt to issue an Evaluate Context command to change the MEL. */
4293         command = xhci->lpm_command;
4294         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4295         if (!ctrl_ctx) {
4296                 spin_unlock_irqrestore(&xhci->lock, flags);
4297                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4298                                 __func__);
4299                 return -ENOMEM;
4300         }
4301
4302         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4303         spin_unlock_irqrestore(&xhci->lock, flags);
4304
4305         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4306         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4307         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4308         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4309         slot_ctx->dev_state = 0;
4310
4311         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4312                         "Set up evaluate context for LPM MEL change.");
4313
4314         /* Issue and wait for the evaluate context command. */
4315         ret = xhci_configure_endpoint(xhci, udev, command,
4316                         true, true);
4317
4318         if (!ret) {
4319                 spin_lock_irqsave(&xhci->lock, flags);
4320                 virt_dev->current_mel = max_exit_latency;
4321                 spin_unlock_irqrestore(&xhci->lock, flags);
4322         }
4323         return ret;
4324 }
4325
4326 #ifdef CONFIG_PM
4327
4328 /* BESL to HIRD Encoding array for USB2 LPM */
4329 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4330         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4331
4332 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4333 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4334                                         struct usb_device *udev)
4335 {
4336         int u2del, besl, besl_host;
4337         int besl_device = 0;
4338         u32 field;
4339
4340         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4341         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4342
4343         if (field & USB_BESL_SUPPORT) {
4344                 for (besl_host = 0; besl_host < 16; besl_host++) {
4345                         if (xhci_besl_encoding[besl_host] >= u2del)
4346                                 break;
4347                 }
4348                 /* Use baseline BESL value as default */
4349                 if (field & USB_BESL_BASELINE_VALID)
4350                         besl_device = USB_GET_BESL_BASELINE(field);
4351                 else if (field & USB_BESL_DEEP_VALID)
4352                         besl_device = USB_GET_BESL_DEEP(field);
4353         } else {
4354                 if (u2del <= 50)
4355                         besl_host = 0;
4356                 else
4357                         besl_host = (u2del - 51) / 75 + 1;
4358         }
4359
4360         besl = besl_host + besl_device;
4361         if (besl > 15)
4362                 besl = 15;
4363
4364         return besl;
4365 }
4366
4367 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4368 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4369 {
4370         u32 field;
4371         int l1;
4372         int besld = 0;
4373         int hirdm = 0;
4374
4375         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4376
4377         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4378         l1 = udev->l1_params.timeout / 256;
4379
4380         /* device has preferred BESLD */
4381         if (field & USB_BESL_DEEP_VALID) {
4382                 besld = USB_GET_BESL_DEEP(field);
4383                 hirdm = 1;
4384         }
4385
4386         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4387 }
4388
4389 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4390                         struct usb_device *udev, int enable)
4391 {
4392         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4393         struct xhci_port **ports;
4394         __le32 __iomem  *pm_addr, *hlpm_addr;
4395         u32             pm_val, hlpm_val, field;
4396         unsigned int    port_num;
4397         unsigned long   flags;
4398         int             hird, exit_latency;
4399         int             ret;
4400
4401         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4402                 return -EPERM;
4403
4404         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4405                         !udev->lpm_capable)
4406                 return -EPERM;
4407
4408         if (!udev->parent || udev->parent->parent ||
4409                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4410                 return -EPERM;
4411
4412         if (udev->usb2_hw_lpm_capable != 1)
4413                 return -EPERM;
4414
4415         spin_lock_irqsave(&xhci->lock, flags);
4416
4417         ports = xhci->usb2_rhub.ports;
4418         port_num = udev->portnum - 1;
4419         pm_addr = ports[port_num]->addr + PORTPMSC;
4420         pm_val = readl(pm_addr);
4421         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4422
4423         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4424                         enable ? "enable" : "disable", port_num + 1);
4425
4426         if (enable) {
4427                 /* Host supports BESL timeout instead of HIRD */
4428                 if (udev->usb2_hw_lpm_besl_capable) {
4429                         /* if device doesn't have a preferred BESL value use a
4430                          * default one which works with mixed HIRD and BESL
4431                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4432                          */
4433                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4434                         if ((field & USB_BESL_SUPPORT) &&
4435                             (field & USB_BESL_BASELINE_VALID))
4436                                 hird = USB_GET_BESL_BASELINE(field);
4437                         else
4438                                 hird = udev->l1_params.besl;
4439
4440                         exit_latency = xhci_besl_encoding[hird];
4441                         spin_unlock_irqrestore(&xhci->lock, flags);
4442
4443                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4444                          * input context for link powermanagement evaluate
4445                          * context commands. It is protected by hcd->bandwidth
4446                          * mutex and is shared by all devices. We need to set
4447                          * the max ext latency in USB 2 BESL LPM as well, so
4448                          * use the same mutex and xhci_change_max_exit_latency()
4449                          */
4450                         mutex_lock(hcd->bandwidth_mutex);
4451                         ret = xhci_change_max_exit_latency(xhci, udev,
4452                                                            exit_latency);
4453                         mutex_unlock(hcd->bandwidth_mutex);
4454
4455                         if (ret < 0)
4456                                 return ret;
4457                         spin_lock_irqsave(&xhci->lock, flags);
4458
4459                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4460                         writel(hlpm_val, hlpm_addr);
4461                         /* flush write */
4462                         readl(hlpm_addr);
4463                 } else {
4464                         hird = xhci_calculate_hird_besl(xhci, udev);
4465                 }
4466
4467                 pm_val &= ~PORT_HIRD_MASK;
4468                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4469                 writel(pm_val, pm_addr);
4470                 pm_val = readl(pm_addr);
4471                 pm_val |= PORT_HLE;
4472                 writel(pm_val, pm_addr);
4473                 /* flush write */
4474                 readl(pm_addr);
4475         } else {
4476                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4477                 writel(pm_val, pm_addr);
4478                 /* flush write */
4479                 readl(pm_addr);
4480                 if (udev->usb2_hw_lpm_besl_capable) {
4481                         spin_unlock_irqrestore(&xhci->lock, flags);
4482                         mutex_lock(hcd->bandwidth_mutex);
4483                         xhci_change_max_exit_latency(xhci, udev, 0);
4484                         mutex_unlock(hcd->bandwidth_mutex);
4485                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4486                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4487                                            100, 10000);
4488                         return 0;
4489                 }
4490         }
4491
4492         spin_unlock_irqrestore(&xhci->lock, flags);
4493         return 0;
4494 }
4495
4496 /* check if a usb2 port supports a given extened capability protocol
4497  * only USB2 ports extended protocol capability values are cached.
4498  * Return 1 if capability is supported
4499  */
4500 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4501                                            unsigned capability)
4502 {
4503         u32 port_offset, port_count;
4504         int i;
4505
4506         for (i = 0; i < xhci->num_ext_caps; i++) {
4507                 if (xhci->ext_caps[i] & capability) {
4508                         /* port offsets starts at 1 */
4509                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4510                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4511                         if (port >= port_offset &&
4512                             port < port_offset + port_count)
4513                                 return 1;
4514                 }
4515         }
4516         return 0;
4517 }
4518
4519 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4520 {
4521         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4522         int             portnum = udev->portnum - 1;
4523
4524         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4525                 return 0;
4526
4527         /* we only support lpm for non-hub device connected to root hub yet */
4528         if (!udev->parent || udev->parent->parent ||
4529                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4530                 return 0;
4531
4532         if (xhci->hw_lpm_support == 1 &&
4533                         xhci_check_usb2_port_capability(
4534                                 xhci, portnum, XHCI_HLC)) {
4535                 udev->usb2_hw_lpm_capable = 1;
4536                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4537                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4538                 if (xhci_check_usb2_port_capability(xhci, portnum,
4539                                         XHCI_BLC))
4540                         udev->usb2_hw_lpm_besl_capable = 1;
4541         }
4542
4543         return 0;
4544 }
4545
4546 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4547
4548 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4549 static unsigned long long xhci_service_interval_to_ns(
4550                 struct usb_endpoint_descriptor *desc)
4551 {
4552         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4553 }
4554
4555 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4556                 enum usb3_link_state state)
4557 {
4558         unsigned long long sel;
4559         unsigned long long pel;
4560         unsigned int max_sel_pel;
4561         char *state_name;
4562
4563         switch (state) {
4564         case USB3_LPM_U1:
4565                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4566                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4567                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4568                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4569                 state_name = "U1";
4570                 break;
4571         case USB3_LPM_U2:
4572                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4573                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4574                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4575                 state_name = "U2";
4576                 break;
4577         default:
4578                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4579                                 __func__);
4580                 return USB3_LPM_DISABLED;
4581         }
4582
4583         if (sel <= max_sel_pel && pel <= max_sel_pel)
4584                 return USB3_LPM_DEVICE_INITIATED;
4585
4586         if (sel > max_sel_pel)
4587                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4588                                 "due to long SEL %llu ms\n",
4589                                 state_name, sel);
4590         else
4591                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4592                                 "due to long PEL %llu ms\n",
4593                                 state_name, pel);
4594         return USB3_LPM_DISABLED;
4595 }
4596
4597 /* The U1 timeout should be the maximum of the following values:
4598  *  - For control endpoints, U1 system exit latency (SEL) * 3
4599  *  - For bulk endpoints, U1 SEL * 5
4600  *  - For interrupt endpoints:
4601  *    - Notification EPs, U1 SEL * 3
4602  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4603  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4604  */
4605 static unsigned long long xhci_calculate_intel_u1_timeout(
4606                 struct usb_device *udev,
4607                 struct usb_endpoint_descriptor *desc)
4608 {
4609         unsigned long long timeout_ns;
4610         int ep_type;
4611         int intr_type;
4612
4613         ep_type = usb_endpoint_type(desc);
4614         switch (ep_type) {
4615         case USB_ENDPOINT_XFER_CONTROL:
4616                 timeout_ns = udev->u1_params.sel * 3;
4617                 break;
4618         case USB_ENDPOINT_XFER_BULK:
4619                 timeout_ns = udev->u1_params.sel * 5;
4620                 break;
4621         case USB_ENDPOINT_XFER_INT:
4622                 intr_type = usb_endpoint_interrupt_type(desc);
4623                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4624                         timeout_ns = udev->u1_params.sel * 3;
4625                         break;
4626                 }
4627                 /* Otherwise the calculation is the same as isoc eps */
4628                 fallthrough;
4629         case USB_ENDPOINT_XFER_ISOC:
4630                 timeout_ns = xhci_service_interval_to_ns(desc);
4631                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4632                 if (timeout_ns < udev->u1_params.sel * 2)
4633                         timeout_ns = udev->u1_params.sel * 2;
4634                 break;
4635         default:
4636                 return 0;
4637         }
4638
4639         return timeout_ns;
4640 }
4641
4642 /* Returns the hub-encoded U1 timeout value. */
4643 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4644                 struct usb_device *udev,
4645                 struct usb_endpoint_descriptor *desc)
4646 {
4647         unsigned long long timeout_ns;
4648
4649         /* Prevent U1 if service interval is shorter than U1 exit latency */
4650         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4651                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4652                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4653                         return USB3_LPM_DISABLED;
4654                 }
4655         }
4656
4657         if (xhci->quirks & XHCI_INTEL_HOST)
4658                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4659         else
4660                 timeout_ns = udev->u1_params.sel;
4661
4662         /* The U1 timeout is encoded in 1us intervals.
4663          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4664          */
4665         if (timeout_ns == USB3_LPM_DISABLED)
4666                 timeout_ns = 1;
4667         else
4668                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4669
4670         /* If the necessary timeout value is bigger than what we can set in the
4671          * USB 3.0 hub, we have to disable hub-initiated U1.
4672          */
4673         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4674                 return timeout_ns;
4675         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4676                         "due to long timeout %llu ms\n", timeout_ns);
4677         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4678 }
4679
4680 /* The U2 timeout should be the maximum of:
4681  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4682  *  - largest bInterval of any active periodic endpoint (to avoid going
4683  *    into lower power link states between intervals).
4684  *  - the U2 Exit Latency of the device
4685  */
4686 static unsigned long long xhci_calculate_intel_u2_timeout(
4687                 struct usb_device *udev,
4688                 struct usb_endpoint_descriptor *desc)
4689 {
4690         unsigned long long timeout_ns;
4691         unsigned long long u2_del_ns;
4692
4693         timeout_ns = 10 * 1000 * 1000;
4694
4695         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4696                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4697                 timeout_ns = xhci_service_interval_to_ns(desc);
4698
4699         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4700         if (u2_del_ns > timeout_ns)
4701                 timeout_ns = u2_del_ns;
4702
4703         return timeout_ns;
4704 }
4705
4706 /* Returns the hub-encoded U2 timeout value. */
4707 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4708                 struct usb_device *udev,
4709                 struct usb_endpoint_descriptor *desc)
4710 {
4711         unsigned long long timeout_ns;
4712
4713         /* Prevent U2 if service interval is shorter than U2 exit latency */
4714         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4715                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4716                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4717                         return USB3_LPM_DISABLED;
4718                 }
4719         }
4720
4721         if (xhci->quirks & XHCI_INTEL_HOST)
4722                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4723         else
4724                 timeout_ns = udev->u2_params.sel;
4725
4726         /* The U2 timeout is encoded in 256us intervals */
4727         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4728         /* If the necessary timeout value is bigger than what we can set in the
4729          * USB 3.0 hub, we have to disable hub-initiated U2.
4730          */
4731         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4732                 return timeout_ns;
4733         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4734                         "due to long timeout %llu ms\n", timeout_ns);
4735         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4736 }
4737
4738 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4739                 struct usb_device *udev,
4740                 struct usb_endpoint_descriptor *desc,
4741                 enum usb3_link_state state,
4742                 u16 *timeout)
4743 {
4744         if (state == USB3_LPM_U1)
4745                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4746         else if (state == USB3_LPM_U2)
4747                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4748
4749         return USB3_LPM_DISABLED;
4750 }
4751
4752 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4753                 struct usb_device *udev,
4754                 struct usb_endpoint_descriptor *desc,
4755                 enum usb3_link_state state,
4756                 u16 *timeout)
4757 {
4758         u16 alt_timeout;
4759
4760         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4761                 desc, state, timeout);
4762
4763         /* If we found we can't enable hub-initiated LPM, and
4764          * the U1 or U2 exit latency was too high to allow
4765          * device-initiated LPM as well, then we will disable LPM
4766          * for this device, so stop searching any further.
4767          */
4768         if (alt_timeout == USB3_LPM_DISABLED) {
4769                 *timeout = alt_timeout;
4770                 return -E2BIG;
4771         }
4772         if (alt_timeout > *timeout)
4773                 *timeout = alt_timeout;
4774         return 0;
4775 }
4776
4777 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4778                 struct usb_device *udev,
4779                 struct usb_host_interface *alt,
4780                 enum usb3_link_state state,
4781                 u16 *timeout)
4782 {
4783         int j;
4784
4785         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4786                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4787                                         &alt->endpoint[j].desc, state, timeout))
4788                         return -E2BIG;
4789                 continue;
4790         }
4791         return 0;
4792 }
4793
4794 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4795                 enum usb3_link_state state)
4796 {
4797         struct usb_device *parent;
4798         unsigned int num_hubs;
4799
4800         if (state == USB3_LPM_U2)
4801                 return 0;
4802
4803         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4804         for (parent = udev->parent, num_hubs = 0; parent->parent;
4805                         parent = parent->parent)
4806                 num_hubs++;
4807
4808         if (num_hubs < 2)
4809                 return 0;
4810
4811         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4812                         " below second-tier hub.\n");
4813         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4814                         "to decrease power consumption.\n");
4815         return -E2BIG;
4816 }
4817
4818 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4819                 struct usb_device *udev,
4820                 enum usb3_link_state state)
4821 {
4822         if (xhci->quirks & XHCI_INTEL_HOST)
4823                 return xhci_check_intel_tier_policy(udev, state);
4824         else
4825                 return 0;
4826 }
4827
4828 /* Returns the U1 or U2 timeout that should be enabled.
4829  * If the tier check or timeout setting functions return with a non-zero exit
4830  * code, that means the timeout value has been finalized and we shouldn't look
4831  * at any more endpoints.
4832  */
4833 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4834                         struct usb_device *udev, enum usb3_link_state state)
4835 {
4836         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4837         struct usb_host_config *config;
4838         char *state_name;
4839         int i;
4840         u16 timeout = USB3_LPM_DISABLED;
4841
4842         if (state == USB3_LPM_U1)
4843                 state_name = "U1";
4844         else if (state == USB3_LPM_U2)
4845                 state_name = "U2";
4846         else {
4847                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4848                                 state);
4849                 return timeout;
4850         }
4851
4852         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4853                 return timeout;
4854
4855         /* Gather some information about the currently installed configuration
4856          * and alternate interface settings.
4857          */
4858         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4859                         state, &timeout))
4860                 return timeout;
4861
4862         config = udev->actconfig;
4863         if (!config)
4864                 return timeout;
4865
4866         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4867                 struct usb_driver *driver;
4868                 struct usb_interface *intf = config->interface[i];
4869
4870                 if (!intf)
4871                         continue;
4872
4873                 /* Check if any currently bound drivers want hub-initiated LPM
4874                  * disabled.
4875                  */
4876                 if (intf->dev.driver) {
4877                         driver = to_usb_driver(intf->dev.driver);
4878                         if (driver && driver->disable_hub_initiated_lpm) {
4879                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4880                                         state_name, driver->name);
4881                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4882                                                                       state);
4883                                 if (timeout == USB3_LPM_DISABLED)
4884                                         return timeout;
4885                         }
4886                 }
4887
4888                 /* Not sure how this could happen... */
4889                 if (!intf->cur_altsetting)
4890                         continue;
4891
4892                 if (xhci_update_timeout_for_interface(xhci, udev,
4893                                         intf->cur_altsetting,
4894                                         state, &timeout))
4895                         return timeout;
4896         }
4897         return timeout;
4898 }
4899
4900 static int calculate_max_exit_latency(struct usb_device *udev,
4901                 enum usb3_link_state state_changed,
4902                 u16 hub_encoded_timeout)
4903 {
4904         unsigned long long u1_mel_us = 0;
4905         unsigned long long u2_mel_us = 0;
4906         unsigned long long mel_us = 0;
4907         bool disabling_u1;
4908         bool disabling_u2;
4909         bool enabling_u1;
4910         bool enabling_u2;
4911
4912         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4913                         hub_encoded_timeout == USB3_LPM_DISABLED);
4914         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4915                         hub_encoded_timeout == USB3_LPM_DISABLED);
4916
4917         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4918                         hub_encoded_timeout != USB3_LPM_DISABLED);
4919         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4920                         hub_encoded_timeout != USB3_LPM_DISABLED);
4921
4922         /* If U1 was already enabled and we're not disabling it,
4923          * or we're going to enable U1, account for the U1 max exit latency.
4924          */
4925         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4926                         enabling_u1)
4927                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4928         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4929                         enabling_u2)
4930                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4931
4932         if (u1_mel_us > u2_mel_us)
4933                 mel_us = u1_mel_us;
4934         else
4935                 mel_us = u2_mel_us;
4936         /* xHCI host controller max exit latency field is only 16 bits wide. */
4937         if (mel_us > MAX_EXIT) {
4938                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4939                                 "is too big.\n", mel_us);
4940                 return -E2BIG;
4941         }
4942         return mel_us;
4943 }
4944
4945 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4946 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4947                         struct usb_device *udev, enum usb3_link_state state)
4948 {
4949         struct xhci_hcd *xhci;
4950         u16 hub_encoded_timeout;
4951         int mel;
4952         int ret;
4953
4954         xhci = hcd_to_xhci(hcd);
4955         /* The LPM timeout values are pretty host-controller specific, so don't
4956          * enable hub-initiated timeouts unless the vendor has provided
4957          * information about their timeout algorithm.
4958          */
4959         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4960                         !xhci->devs[udev->slot_id])
4961                 return USB3_LPM_DISABLED;
4962
4963         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4964         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4965         if (mel < 0) {
4966                 /* Max Exit Latency is too big, disable LPM. */
4967                 hub_encoded_timeout = USB3_LPM_DISABLED;
4968                 mel = 0;
4969         }
4970
4971         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4972         if (ret)
4973                 return ret;
4974         return hub_encoded_timeout;
4975 }
4976
4977 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4978                         struct usb_device *udev, enum usb3_link_state state)
4979 {
4980         struct xhci_hcd *xhci;
4981         u16 mel;
4982
4983         xhci = hcd_to_xhci(hcd);
4984         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4985                         !xhci->devs[udev->slot_id])
4986                 return 0;
4987
4988         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4989         return xhci_change_max_exit_latency(xhci, udev, mel);
4990 }
4991 #else /* CONFIG_PM */
4992
4993 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4994                                 struct usb_device *udev, int enable)
4995 {
4996         return 0;
4997 }
4998
4999 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5000 {
5001         return 0;
5002 }
5003
5004 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5005                         struct usb_device *udev, enum usb3_link_state state)
5006 {
5007         return USB3_LPM_DISABLED;
5008 }
5009
5010 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5011                         struct usb_device *udev, enum usb3_link_state state)
5012 {
5013         return 0;
5014 }
5015 #endif  /* CONFIG_PM */
5016
5017 /*-------------------------------------------------------------------------*/
5018
5019 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5020  * internal data structures for the device.
5021  */
5022 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5023                         struct usb_tt *tt, gfp_t mem_flags)
5024 {
5025         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5026         struct xhci_virt_device *vdev;
5027         struct xhci_command *config_cmd;
5028         struct xhci_input_control_ctx *ctrl_ctx;
5029         struct xhci_slot_ctx *slot_ctx;
5030         unsigned long flags;
5031         unsigned think_time;
5032         int ret;
5033
5034         /* Ignore root hubs */
5035         if (!hdev->parent)
5036                 return 0;
5037
5038         vdev = xhci->devs[hdev->slot_id];
5039         if (!vdev) {
5040                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5041                 return -EINVAL;
5042         }
5043
5044         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5045         if (!config_cmd)
5046                 return -ENOMEM;
5047
5048         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5049         if (!ctrl_ctx) {
5050                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5051                                 __func__);
5052                 xhci_free_command(xhci, config_cmd);
5053                 return -ENOMEM;
5054         }
5055
5056         spin_lock_irqsave(&xhci->lock, flags);
5057         if (hdev->speed == USB_SPEED_HIGH &&
5058                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5059                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5060                 xhci_free_command(xhci, config_cmd);
5061                 spin_unlock_irqrestore(&xhci->lock, flags);
5062                 return -ENOMEM;
5063         }
5064
5065         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5066         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5067         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5068         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5069         /*
5070          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5071          * but it may be already set to 1 when setup an xHCI virtual
5072          * device, so clear it anyway.
5073          */
5074         if (tt->multi)
5075                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5076         else if (hdev->speed == USB_SPEED_FULL)
5077                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5078
5079         if (xhci->hci_version > 0x95) {
5080                 xhci_dbg(xhci, "xHCI version %x needs hub "
5081                                 "TT think time and number of ports\n",
5082                                 (unsigned int) xhci->hci_version);
5083                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5084                 /* Set TT think time - convert from ns to FS bit times.
5085                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5086                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5087                  *
5088                  * xHCI 1.0: this field shall be 0 if the device is not a
5089                  * High-spped hub.
5090                  */
5091                 think_time = tt->think_time;
5092                 if (think_time != 0)
5093                         think_time = (think_time / 666) - 1;
5094                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5095                         slot_ctx->tt_info |=
5096                                 cpu_to_le32(TT_THINK_TIME(think_time));
5097         } else {
5098                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5099                                 "TT think time or number of ports\n",
5100                                 (unsigned int) xhci->hci_version);
5101         }
5102         slot_ctx->dev_state = 0;
5103         spin_unlock_irqrestore(&xhci->lock, flags);
5104
5105         xhci_dbg(xhci, "Set up %s for hub device.\n",
5106                         (xhci->hci_version > 0x95) ?
5107                         "configure endpoint" : "evaluate context");
5108
5109         /* Issue and wait for the configure endpoint or
5110          * evaluate context command.
5111          */
5112         if (xhci->hci_version > 0x95)
5113                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5114                                 false, false);
5115         else
5116                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5117                                 true, false);
5118
5119         xhci_free_command(xhci, config_cmd);
5120         return ret;
5121 }
5122
5123 static int xhci_get_frame(struct usb_hcd *hcd)
5124 {
5125         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5126         /* EHCI mods by the periodic size.  Why? */
5127         return readl(&xhci->run_regs->microframe_index) >> 3;
5128 }
5129
5130 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5131 {
5132         struct xhci_hcd         *xhci;
5133         /*
5134          * TODO: Check with DWC3 clients for sysdev according to
5135          * quirks
5136          */
5137         struct device           *dev = hcd->self.sysdev;
5138         unsigned int            minor_rev;
5139         int                     retval;
5140
5141         /* Accept arbitrarily long scatter-gather lists */
5142         hcd->self.sg_tablesize = ~0;
5143
5144         /* support to build packet from discontinuous buffers */
5145         hcd->self.no_sg_constraint = 1;
5146
5147         /* XHCI controllers don't stop the ep queue on short packets :| */
5148         hcd->self.no_stop_on_short = 1;
5149
5150         xhci = hcd_to_xhci(hcd);
5151
5152         if (usb_hcd_is_primary_hcd(hcd)) {
5153                 xhci->main_hcd = hcd;
5154                 xhci->usb2_rhub.hcd = hcd;
5155                 /* Mark the first roothub as being USB 2.0.
5156                  * The xHCI driver will register the USB 3.0 roothub.
5157                  */
5158                 hcd->speed = HCD_USB2;
5159                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5160                 /*
5161                  * USB 2.0 roothub under xHCI has an integrated TT,
5162                  * (rate matching hub) as opposed to having an OHCI/UHCI
5163                  * companion controller.
5164                  */
5165                 hcd->has_tt = 1;
5166         } else {
5167                 /*
5168                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5169                  * should return 0x31 for sbrn, or that the minor revision
5170                  * is a two digit BCD containig minor and sub-minor numbers.
5171                  * This was later clarified in xHCI 1.2.
5172                  *
5173                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5174                  * minor revision set to 0x1 instead of 0x10.
5175                  */
5176                 if (xhci->usb3_rhub.min_rev == 0x1)
5177                         minor_rev = 1;
5178                 else
5179                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5180
5181                 switch (minor_rev) {
5182                 case 2:
5183                         hcd->speed = HCD_USB32;
5184                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5185                         hcd->self.root_hub->rx_lanes = 2;
5186                         hcd->self.root_hub->tx_lanes = 2;
5187                         break;
5188                 case 1:
5189                         hcd->speed = HCD_USB31;
5190                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5191                         break;
5192                 }
5193                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5194                           minor_rev,
5195                           minor_rev ? "Enhanced " : "");
5196
5197                 xhci->usb3_rhub.hcd = hcd;
5198                 /* xHCI private pointer was set in xhci_pci_probe for the second
5199                  * registered roothub.
5200                  */
5201                 return 0;
5202         }
5203
5204         mutex_init(&xhci->mutex);
5205         xhci->cap_regs = hcd->regs;
5206         xhci->op_regs = hcd->regs +
5207                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5208         xhci->run_regs = hcd->regs +
5209                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5210         /* Cache read-only capability registers */
5211         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5212         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5213         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5214         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5215         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5216         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5217         if (xhci->hci_version > 0x100)
5218                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5219
5220         xhci->quirks |= quirks;
5221
5222         get_quirks(dev, xhci);
5223
5224         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5225          * success event after a short transfer. This quirk will ignore such
5226          * spurious event.
5227          */
5228         if (xhci->hci_version > 0x96)
5229                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5230
5231         /* Make sure the HC is halted. */
5232         retval = xhci_halt(xhci);
5233         if (retval)
5234                 return retval;
5235
5236         xhci_zero_64b_regs(xhci);
5237
5238         xhci_dbg(xhci, "Resetting HCD\n");
5239         /* Reset the internal HC memory state and registers. */
5240         retval = xhci_reset(xhci);
5241         if (retval)
5242                 return retval;
5243         xhci_dbg(xhci, "Reset complete\n");
5244
5245         /*
5246          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5247          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5248          * address memory pointers actually. So, this driver clears the AC64
5249          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5250          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5251          */
5252         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5253                 xhci->hcc_params &= ~BIT(0);
5254
5255         /* Set dma_mask and coherent_dma_mask to 64-bits,
5256          * if xHC supports 64-bit addressing */
5257         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5258                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5259                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5260                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5261         } else {
5262                 /*
5263                  * This is to avoid error in cases where a 32-bit USB
5264                  * controller is used on a 64-bit capable system.
5265                  */
5266                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5267                 if (retval)
5268                         return retval;
5269                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5270                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5271         }
5272
5273         xhci_dbg(xhci, "Calling HCD init\n");
5274         /* Initialize HCD and host controller data structures. */
5275         retval = xhci_init(hcd);
5276         if (retval)
5277                 return retval;
5278         xhci_dbg(xhci, "Called HCD init\n");
5279
5280         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5281                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5282
5283         return 0;
5284 }
5285 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5286
5287 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5288                 struct usb_host_endpoint *ep)
5289 {
5290         struct xhci_hcd *xhci;
5291         struct usb_device *udev;
5292         unsigned int slot_id;
5293         unsigned int ep_index;
5294         unsigned long flags;
5295
5296         xhci = hcd_to_xhci(hcd);
5297
5298         spin_lock_irqsave(&xhci->lock, flags);
5299         udev = (struct usb_device *)ep->hcpriv;
5300         slot_id = udev->slot_id;
5301         ep_index = xhci_get_endpoint_index(&ep->desc);
5302
5303         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5304         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5305         spin_unlock_irqrestore(&xhci->lock, flags);
5306 }
5307
5308 static const struct hc_driver xhci_hc_driver = {
5309         .description =          "xhci-hcd",
5310         .product_desc =         "xHCI Host Controller",
5311         .hcd_priv_size =        sizeof(struct xhci_hcd),
5312
5313         /*
5314          * generic hardware linkage
5315          */
5316         .irq =                  xhci_irq,
5317         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5318                                 HCD_BH,
5319
5320         /*
5321          * basic lifecycle operations
5322          */
5323         .reset =                NULL, /* set in xhci_init_driver() */
5324         .start =                xhci_run,
5325         .stop =                 xhci_stop,
5326         .shutdown =             xhci_shutdown,
5327
5328         /*
5329          * managing i/o requests and associated device resources
5330          */
5331         .map_urb_for_dma =      xhci_map_urb_for_dma,
5332         .urb_enqueue =          xhci_urb_enqueue,
5333         .urb_dequeue =          xhci_urb_dequeue,
5334         .alloc_dev =            xhci_alloc_dev,
5335         .free_dev =             xhci_free_dev,
5336         .alloc_streams =        xhci_alloc_streams,
5337         .free_streams =         xhci_free_streams,
5338         .add_endpoint =         xhci_add_endpoint,
5339         .drop_endpoint =        xhci_drop_endpoint,
5340         .endpoint_disable =     xhci_endpoint_disable,
5341         .endpoint_reset =       xhci_endpoint_reset,
5342         .check_bandwidth =      xhci_check_bandwidth,
5343         .reset_bandwidth =      xhci_reset_bandwidth,
5344         .address_device =       xhci_address_device,
5345         .enable_device =        xhci_enable_device,
5346         .update_hub_device =    xhci_update_hub_device,
5347         .reset_device =         xhci_discover_or_reset_device,
5348
5349         /*
5350          * scheduling support
5351          */
5352         .get_frame_number =     xhci_get_frame,
5353
5354         /*
5355          * root hub support
5356          */
5357         .hub_control =          xhci_hub_control,
5358         .hub_status_data =      xhci_hub_status_data,
5359         .bus_suspend =          xhci_bus_suspend,
5360         .bus_resume =           xhci_bus_resume,
5361         .get_resuming_ports =   xhci_get_resuming_ports,
5362
5363         /*
5364          * call back when device connected and addressed
5365          */
5366         .update_device =        xhci_update_device,
5367         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5368         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5369         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5370         .find_raw_port_number = xhci_find_raw_port_number,
5371         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5372 };
5373
5374 void xhci_init_driver(struct hc_driver *drv,
5375                       const struct xhci_driver_overrides *over)
5376 {
5377         BUG_ON(!over);
5378
5379         /* Copy the generic table to drv then apply the overrides */
5380         *drv = xhci_hc_driver;
5381
5382         if (over) {
5383                 drv->hcd_priv_size += over->extra_priv_size;
5384                 if (over->reset)
5385                         drv->reset = over->reset;
5386                 if (over->start)
5387                         drv->start = over->start;
5388         }
5389 }
5390 EXPORT_SYMBOL_GPL(xhci_init_driver);
5391
5392 MODULE_DESCRIPTION(DRIVER_DESC);
5393 MODULE_AUTHOR(DRIVER_AUTHOR);
5394 MODULE_LICENSE("GPL");
5395
5396 static int __init xhci_hcd_init(void)
5397 {
5398         /*
5399          * Check the compiler generated sizes of structures that must be laid
5400          * out in specific ways for hardware access.
5401          */
5402         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5403         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5404         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5405         /* xhci_device_control has eight fields, and also
5406          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5407          */
5408         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5409         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5410         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5411         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5412         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5413         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5414         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5415
5416         if (usb_disabled())
5417                 return -ENODEV;
5418
5419         xhci_debugfs_create_root();
5420
5421         return 0;
5422 }
5423
5424 /*
5425  * If an init function is provided, an exit function must also be provided
5426  * to allow module unload.
5427  */
5428 static void __exit xhci_hcd_fini(void)
5429 {
5430         xhci_debugfs_remove_root();
5431 }
5432
5433 module_init(xhci_hcd_init);
5434 module_exit(xhci_hcd_fini);