Merge tag 'selinux-pr-20210629' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / usb / host / fotg210-hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *         Feng-Hsin Chiang <john453@faraday-tech.com>
8  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/clk.h>
37
38 #include <asm/byteorder.h>
39 #include <asm/irq.h>
40 #include <asm/unaligned.h>
41
42 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
43 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
44 static const char hcd_name[] = "fotg210_hcd";
45
46 #undef FOTG210_URB_TRACE
47 #define FOTG210_STATS
48
49 /* magic numbers that can affect system performance */
50 #define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
51 #define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
52 #define FOTG210_TUNE_RL_TT      0
53 #define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
54 #define FOTG210_TUNE_MULT_TT    1
55
56 /* Some drivers think it's safe to schedule isochronous transfers more than 256
57  * ms into the future (partly as a result of an old bug in the scheduling
58  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
59  * length of 512 frames instead of 256.
60  */
61 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
62
63 /* Initial IRQ latency:  faster than hw default */
64 static int log2_irq_thresh; /* 0 to 6 */
65 module_param(log2_irq_thresh, int, S_IRUGO);
66 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
67
68 /* initial park setting:  slower than hw default */
69 static unsigned park;
70 module_param(park, uint, S_IRUGO);
71 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
72
73 /* for link power management(LPM) feature */
74 static unsigned int hird;
75 module_param(hird, int, S_IRUGO);
76 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
77
78 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79
80 #include "fotg210.h"
81
82 #define fotg210_dbg(fotg210, fmt, args...) \
83         dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_err(fotg210, fmt, args...) \
85         dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_info(fotg210, fmt, args...) \
87         dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 #define fotg210_warn(fotg210, fmt, args...) \
89         dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
90
91 /* check the values in the HCSPARAMS register (host controller _Structural_
92  * parameters) see EHCI spec, Table 2-4 for each value
93  */
94 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
95 {
96         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
97
98         fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
99                         HCS_N_PORTS(params));
100 }
101
102 /* check the values in the HCCPARAMS register (host controller _Capability_
103  * parameters) see EHCI Spec, Table 2-5 for each value
104  */
105 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
106 {
107         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
108
109         fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
110                         params,
111                         HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
112                         HCC_CANPARK(params) ? " park" : "");
113 }
114
115 static void __maybe_unused
116 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
117 {
118         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
119                         hc32_to_cpup(fotg210, &qtd->hw_next),
120                         hc32_to_cpup(fotg210, &qtd->hw_alt_next),
121                         hc32_to_cpup(fotg210, &qtd->hw_token),
122                         hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
123         if (qtd->hw_buf[1])
124                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
125                                 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
126                                 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
127                                 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
128                                 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
129 }
130
131 static void __maybe_unused
132 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
133 {
134         struct fotg210_qh_hw *hw = qh->hw;
135
136         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
137                         hw->hw_next, hw->hw_info1, hw->hw_info2,
138                         hw->hw_current);
139
140         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
141 }
142
143 static void __maybe_unused
144 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
145 {
146         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
147                         itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
148                         itd->urb);
149
150         fotg210_dbg(fotg210,
151                         "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
152                         hc32_to_cpu(fotg210, itd->hw_transaction[0]),
153                         hc32_to_cpu(fotg210, itd->hw_transaction[1]),
154                         hc32_to_cpu(fotg210, itd->hw_transaction[2]),
155                         hc32_to_cpu(fotg210, itd->hw_transaction[3]),
156                         hc32_to_cpu(fotg210, itd->hw_transaction[4]),
157                         hc32_to_cpu(fotg210, itd->hw_transaction[5]),
158                         hc32_to_cpu(fotg210, itd->hw_transaction[6]),
159                         hc32_to_cpu(fotg210, itd->hw_transaction[7]));
160
161         fotg210_dbg(fotg210,
162                         "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
163                         hc32_to_cpu(fotg210, itd->hw_bufp[0]),
164                         hc32_to_cpu(fotg210, itd->hw_bufp[1]),
165                         hc32_to_cpu(fotg210, itd->hw_bufp[2]),
166                         hc32_to_cpu(fotg210, itd->hw_bufp[3]),
167                         hc32_to_cpu(fotg210, itd->hw_bufp[4]),
168                         hc32_to_cpu(fotg210, itd->hw_bufp[5]),
169                         hc32_to_cpu(fotg210, itd->hw_bufp[6]));
170
171         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
172                         itd->index[0], itd->index[1], itd->index[2],
173                         itd->index[3], itd->index[4], itd->index[5],
174                         itd->index[6], itd->index[7]);
175 }
176
177 static int __maybe_unused
178 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
179 {
180         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
181                         label, label[0] ? " " : "", status,
182                         (status & STS_ASS) ? " Async" : "",
183                         (status & STS_PSS) ? " Periodic" : "",
184                         (status & STS_RECL) ? " Recl" : "",
185                         (status & STS_HALT) ? " Halt" : "",
186                         (status & STS_IAA) ? " IAA" : "",
187                         (status & STS_FATAL) ? " FATAL" : "",
188                         (status & STS_FLR) ? " FLR" : "",
189                         (status & STS_PCD) ? " PCD" : "",
190                         (status & STS_ERR) ? " ERR" : "",
191                         (status & STS_INT) ? " INT" : "");
192 }
193
194 static int __maybe_unused
195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 {
197         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
198                         label, label[0] ? " " : "", enable,
199                         (enable & STS_IAA) ? " IAA" : "",
200                         (enable & STS_FATAL) ? " FATAL" : "",
201                         (enable & STS_FLR) ? " FLR" : "",
202                         (enable & STS_PCD) ? " PCD" : "",
203                         (enable & STS_ERR) ? " ERR" : "",
204                         (enable & STS_INT) ? " INT" : "");
205 }
206
207 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
208
209 static int dbg_command_buf(char *buf, unsigned len, const char *label,
210                 u32 command)
211 {
212         return scnprintf(buf, len,
213                         "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
214                         label, label[0] ? " " : "", command,
215                         (command & CMD_PARK) ? " park" : "(park)",
216                         CMD_PARK_CNT(command),
217                         (command >> 16) & 0x3f,
218                         (command & CMD_IAAD) ? " IAAD" : "",
219                         (command & CMD_ASE) ? " Async" : "",
220                         (command & CMD_PSE) ? " Periodic" : "",
221                         fls_strings[(command >> 2) & 0x3],
222                         (command & CMD_RESET) ? " Reset" : "",
223                         (command & CMD_RUN) ? "RUN" : "HALT");
224 }
225
226 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
227                 u32 status)
228 {
229         char *sig;
230
231         /* signaling state */
232         switch (status & (3 << 10)) {
233         case 0 << 10:
234                 sig = "se0";
235                 break;
236         case 1 << 10:
237                 sig = "k";
238                 break; /* low speed */
239         case 2 << 10:
240                 sig = "j";
241                 break;
242         default:
243                 sig = "?";
244                 break;
245         }
246
247         scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
248                         label, label[0] ? " " : "", port, status,
249                         status >> 25, /*device address */
250                         sig,
251                         (status & PORT_RESET) ? " RESET" : "",
252                         (status & PORT_SUSPEND) ? " SUSPEND" : "",
253                         (status & PORT_RESUME) ? " RESUME" : "",
254                         (status & PORT_PEC) ? " PEC" : "",
255                         (status & PORT_PE) ? " PE" : "",
256                         (status & PORT_CSC) ? " CSC" : "",
257                         (status & PORT_CONNECT) ? " CONNECT" : "");
258
259         return buf;
260 }
261
262 /* functions have the "wrong" filename when they're output... */
263 #define dbg_status(fotg210, label, status) {                    \
264         char _buf[80];                                          \
265         dbg_status_buf(_buf, sizeof(_buf), label, status);      \
266         fotg210_dbg(fotg210, "%s\n", _buf);                     \
267 }
268
269 #define dbg_cmd(fotg210, label, command) {                      \
270         char _buf[80];                                          \
271         dbg_command_buf(_buf, sizeof(_buf), label, command);    \
272         fotg210_dbg(fotg210, "%s\n", _buf);                     \
273 }
274
275 #define dbg_port(fotg210, label, port, status) {                               \
276         char _buf[80];                                                         \
277         fotg210_dbg(fotg210, "%s\n",                                           \
278                         dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
279 }
280
281 /* troubleshooting help: expose state in debugfs */
282 static int debug_async_open(struct inode *, struct file *);
283 static int debug_periodic_open(struct inode *, struct file *);
284 static int debug_registers_open(struct inode *, struct file *);
285 static int debug_async_open(struct inode *, struct file *);
286
287 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
288 static int debug_close(struct inode *, struct file *);
289
290 static const struct file_operations debug_async_fops = {
291         .owner          = THIS_MODULE,
292         .open           = debug_async_open,
293         .read           = debug_output,
294         .release        = debug_close,
295         .llseek         = default_llseek,
296 };
297 static const struct file_operations debug_periodic_fops = {
298         .owner          = THIS_MODULE,
299         .open           = debug_periodic_open,
300         .read           = debug_output,
301         .release        = debug_close,
302         .llseek         = default_llseek,
303 };
304 static const struct file_operations debug_registers_fops = {
305         .owner          = THIS_MODULE,
306         .open           = debug_registers_open,
307         .read           = debug_output,
308         .release        = debug_close,
309         .llseek         = default_llseek,
310 };
311
312 static struct dentry *fotg210_debug_root;
313
314 struct debug_buffer {
315         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
316         struct usb_bus *bus;
317         struct mutex mutex;     /* protect filling of buffer */
318         size_t count;           /* number of characters filled into buffer */
319         char *output_buf;
320         size_t alloc_size;
321 };
322
323 static inline char speed_char(u32 scratch)
324 {
325         switch (scratch & (3 << 12)) {
326         case QH_FULL_SPEED:
327                 return 'f';
328
329         case QH_LOW_SPEED:
330                 return 'l';
331
332         case QH_HIGH_SPEED:
333                 return 'h';
334
335         default:
336                 return '?';
337         }
338 }
339
340 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
341 {
342         __u32 v = hc32_to_cpu(fotg210, token);
343
344         if (v & QTD_STS_ACTIVE)
345                 return '*';
346         if (v & QTD_STS_HALT)
347                 return '-';
348         if (!IS_SHORT_READ(v))
349                 return ' ';
350         /* tries to advance through hw_alt_next */
351         return '/';
352 }
353
354 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
355                 char **nextp, unsigned *sizep)
356 {
357         u32 scratch;
358         u32 hw_curr;
359         struct fotg210_qtd *td;
360         unsigned temp;
361         unsigned size = *sizep;
362         char *next = *nextp;
363         char mark;
364         __le32 list_end = FOTG210_LIST_END(fotg210);
365         struct fotg210_qh_hw *hw = qh->hw;
366
367         if (hw->hw_qtd_next == list_end) /* NEC does this */
368                 mark = '@';
369         else
370                 mark = token_mark(fotg210, hw->hw_token);
371         if (mark == '/') { /* qh_alt_next controls qh advance? */
372                 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
373                     fotg210->async->hw->hw_alt_next)
374                         mark = '#'; /* blocked */
375                 else if (hw->hw_alt_next == list_end)
376                         mark = '.'; /* use hw_qtd_next */
377                 /* else alt_next points to some other qtd */
378         }
379         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
380         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
381         temp = scnprintf(next, size,
382                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
383                         qh, scratch & 0x007f,
384                         speed_char(scratch),
385                         (scratch >> 8) & 0x000f,
386                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
387                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
388                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
389                                 ? "data1" : "data0",
390                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
391         size -= temp;
392         next += temp;
393
394         /* hc may be modifying the list as we read it ... */
395         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
396                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
397                 mark = ' ';
398                 if (hw_curr == td->qtd_dma)
399                         mark = '*';
400                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
401                         mark = '+';
402                 else if (QTD_LENGTH(scratch)) {
403                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
404                                 mark = '#';
405                         else if (td->hw_alt_next != list_end)
406                                 mark = '/';
407                 }
408                 temp = snprintf(next, size,
409                                 "\n\t%p%c%s len=%d %08x urb %p",
410                                 td, mark, ({ char *tmp;
411                                 switch ((scratch>>8)&0x03) {
412                                 case 0:
413                                         tmp = "out";
414                                         break;
415                                 case 1:
416                                         tmp = "in";
417                                         break;
418                                 case 2:
419                                         tmp = "setup";
420                                         break;
421                                 default:
422                                         tmp = "?";
423                                         break;
424                                  } tmp; }),
425                                 (scratch >> 16) & 0x7fff,
426                                 scratch,
427                                 td->urb);
428                 if (size < temp)
429                         temp = size;
430                 size -= temp;
431                 next += temp;
432                 if (temp == size)
433                         goto done;
434         }
435
436         temp = snprintf(next, size, "\n");
437         if (size < temp)
438                 temp = size;
439
440         size -= temp;
441         next += temp;
442
443 done:
444         *sizep = size;
445         *nextp = next;
446 }
447
448 static ssize_t fill_async_buffer(struct debug_buffer *buf)
449 {
450         struct usb_hcd *hcd;
451         struct fotg210_hcd *fotg210;
452         unsigned long flags;
453         unsigned temp, size;
454         char *next;
455         struct fotg210_qh *qh;
456
457         hcd = bus_to_hcd(buf->bus);
458         fotg210 = hcd_to_fotg210(hcd);
459         next = buf->output_buf;
460         size = buf->alloc_size;
461
462         *next = 0;
463
464         /* dumps a snapshot of the async schedule.
465          * usually empty except for long-term bulk reads, or head.
466          * one QH per line, and TDs we know about
467          */
468         spin_lock_irqsave(&fotg210->lock, flags);
469         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
470                         qh = qh->qh_next.qh)
471                 qh_lines(fotg210, qh, &next, &size);
472         if (fotg210->async_unlink && size > 0) {
473                 temp = scnprintf(next, size, "\nunlink =\n");
474                 size -= temp;
475                 next += temp;
476
477                 for (qh = fotg210->async_unlink; size > 0 && qh;
478                                 qh = qh->unlink_next)
479                         qh_lines(fotg210, qh, &next, &size);
480         }
481         spin_unlock_irqrestore(&fotg210->lock, flags);
482
483         return strlen(buf->output_buf);
484 }
485
486 /* count tds, get ep direction */
487 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
488                 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
489 {
490         u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
491         struct fotg210_qtd *qtd;
492         char *type = "";
493         unsigned temp = 0;
494
495         /* count tds, get ep direction */
496         list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
497                 temp++;
498                 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
499                 case 0:
500                         type = "out";
501                         continue;
502                 case 1:
503                         type = "in";
504                         continue;
505                 }
506         }
507
508         return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
509                         speed_char(scratch), scratch & 0x007f,
510                         (scratch >> 8) & 0x000f, type, qh->usecs,
511                         qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
512 }
513
514 #define DBG_SCHED_LIMIT 64
515 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
516 {
517         struct usb_hcd *hcd;
518         struct fotg210_hcd *fotg210;
519         unsigned long flags;
520         union fotg210_shadow p, *seen;
521         unsigned temp, size, seen_count;
522         char *next;
523         unsigned i;
524         __hc32 tag;
525
526         seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
527         if (!seen)
528                 return 0;
529
530         seen_count = 0;
531
532         hcd = bus_to_hcd(buf->bus);
533         fotg210 = hcd_to_fotg210(hcd);
534         next = buf->output_buf;
535         size = buf->alloc_size;
536
537         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
538         size -= temp;
539         next += temp;
540
541         /* dump a snapshot of the periodic schedule.
542          * iso changes, interrupt usually doesn't.
543          */
544         spin_lock_irqsave(&fotg210->lock, flags);
545         for (i = 0; i < fotg210->periodic_size; i++) {
546                 p = fotg210->pshadow[i];
547                 if (likely(!p.ptr))
548                         continue;
549
550                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
551
552                 temp = scnprintf(next, size, "%4d: ", i);
553                 size -= temp;
554                 next += temp;
555
556                 do {
557                         struct fotg210_qh_hw *hw;
558
559                         switch (hc32_to_cpu(fotg210, tag)) {
560                         case Q_TYPE_QH:
561                                 hw = p.qh->hw;
562                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
563                                                 p.qh->period,
564                                                 hc32_to_cpup(fotg210,
565                                                         &hw->hw_info2)
566                                                         /* uframe masks */
567                                                         & (QH_CMASK | QH_SMASK),
568                                                 p.qh);
569                                 size -= temp;
570                                 next += temp;
571                                 /* don't repeat what follows this qh */
572                                 for (temp = 0; temp < seen_count; temp++) {
573                                         if (seen[temp].ptr != p.ptr)
574                                                 continue;
575                                         if (p.qh->qh_next.ptr) {
576                                                 temp = scnprintf(next, size,
577                                                                 " ...");
578                                                 size -= temp;
579                                                 next += temp;
580                                         }
581                                         break;
582                                 }
583                                 /* show more info the first time around */
584                                 if (temp == seen_count) {
585                                         temp = output_buf_tds_dir(next,
586                                                         fotg210, hw,
587                                                         p.qh, size);
588
589                                         if (seen_count < DBG_SCHED_LIMIT)
590                                                 seen[seen_count++].qh = p.qh;
591                                 } else
592                                         temp = 0;
593                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
594                                 p = p.qh->qh_next;
595                                 break;
596                         case Q_TYPE_FSTN:
597                                 temp = scnprintf(next, size,
598                                                 " fstn-%8x/%p",
599                                                 p.fstn->hw_prev, p.fstn);
600                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
601                                 p = p.fstn->fstn_next;
602                                 break;
603                         case Q_TYPE_ITD:
604                                 temp = scnprintf(next, size,
605                                                 " itd/%p", p.itd);
606                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
607                                 p = p.itd->itd_next;
608                                 break;
609                         }
610                         size -= temp;
611                         next += temp;
612                 } while (p.ptr);
613
614                 temp = scnprintf(next, size, "\n");
615                 size -= temp;
616                 next += temp;
617         }
618         spin_unlock_irqrestore(&fotg210->lock, flags);
619         kfree(seen);
620
621         return buf->alloc_size - size;
622 }
623 #undef DBG_SCHED_LIMIT
624
625 static const char *rh_state_string(struct fotg210_hcd *fotg210)
626 {
627         switch (fotg210->rh_state) {
628         case FOTG210_RH_HALTED:
629                 return "halted";
630         case FOTG210_RH_SUSPENDED:
631                 return "suspended";
632         case FOTG210_RH_RUNNING:
633                 return "running";
634         case FOTG210_RH_STOPPING:
635                 return "stopping";
636         }
637         return "?";
638 }
639
640 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
641 {
642         struct usb_hcd *hcd;
643         struct fotg210_hcd *fotg210;
644         unsigned long flags;
645         unsigned temp, size, i;
646         char *next, scratch[80];
647         static const char fmt[] = "%*s\n";
648         static const char label[] = "";
649
650         hcd = bus_to_hcd(buf->bus);
651         fotg210 = hcd_to_fotg210(hcd);
652         next = buf->output_buf;
653         size = buf->alloc_size;
654
655         spin_lock_irqsave(&fotg210->lock, flags);
656
657         if (!HCD_HW_ACCESSIBLE(hcd)) {
658                 size = scnprintf(next, size,
659                                 "bus %s, device %s\n"
660                                 "%s\n"
661                                 "SUSPENDED(no register access)\n",
662                                 hcd->self.controller->bus->name,
663                                 dev_name(hcd->self.controller),
664                                 hcd->product_desc);
665                 goto done;
666         }
667
668         /* Capability Registers */
669         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
670                         &fotg210->caps->hc_capbase));
671         temp = scnprintf(next, size,
672                         "bus %s, device %s\n"
673                         "%s\n"
674                         "EHCI %x.%02x, rh state %s\n",
675                         hcd->self.controller->bus->name,
676                         dev_name(hcd->self.controller),
677                         hcd->product_desc,
678                         i >> 8, i & 0x0ff, rh_state_string(fotg210));
679         size -= temp;
680         next += temp;
681
682         /* FIXME interpret both types of params */
683         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
684         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
685         size -= temp;
686         next += temp;
687
688         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
689         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
690         size -= temp;
691         next += temp;
692
693         /* Operational Registers */
694         temp = dbg_status_buf(scratch, sizeof(scratch), label,
695                         fotg210_readl(fotg210, &fotg210->regs->status));
696         temp = scnprintf(next, size, fmt, temp, scratch);
697         size -= temp;
698         next += temp;
699
700         temp = dbg_command_buf(scratch, sizeof(scratch), label,
701                         fotg210_readl(fotg210, &fotg210->regs->command));
702         temp = scnprintf(next, size, fmt, temp, scratch);
703         size -= temp;
704         next += temp;
705
706         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
707                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
708         temp = scnprintf(next, size, fmt, temp, scratch);
709         size -= temp;
710         next += temp;
711
712         temp = scnprintf(next, size, "uframe %04x\n",
713                         fotg210_read_frame_index(fotg210));
714         size -= temp;
715         next += temp;
716
717         if (fotg210->async_unlink) {
718                 temp = scnprintf(next, size, "async unlink qh %p\n",
719                                 fotg210->async_unlink);
720                 size -= temp;
721                 next += temp;
722         }
723
724 #ifdef FOTG210_STATS
725         temp = scnprintf(next, size,
726                         "irq normal %ld err %ld iaa %ld(lost %ld)\n",
727                         fotg210->stats.normal, fotg210->stats.error,
728                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
729         size -= temp;
730         next += temp;
731
732         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
733                         fotg210->stats.complete, fotg210->stats.unlink);
734         size -= temp;
735         next += temp;
736 #endif
737
738 done:
739         spin_unlock_irqrestore(&fotg210->lock, flags);
740
741         return buf->alloc_size - size;
742 }
743
744 static struct debug_buffer
745 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
746 {
747         struct debug_buffer *buf;
748
749         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
750
751         if (buf) {
752                 buf->bus = bus;
753                 buf->fill_func = fill_func;
754                 mutex_init(&buf->mutex);
755                 buf->alloc_size = PAGE_SIZE;
756         }
757
758         return buf;
759 }
760
761 static int fill_buffer(struct debug_buffer *buf)
762 {
763         int ret = 0;
764
765         if (!buf->output_buf)
766                 buf->output_buf = vmalloc(buf->alloc_size);
767
768         if (!buf->output_buf) {
769                 ret = -ENOMEM;
770                 goto out;
771         }
772
773         ret = buf->fill_func(buf);
774
775         if (ret >= 0) {
776                 buf->count = ret;
777                 ret = 0;
778         }
779
780 out:
781         return ret;
782 }
783
784 static ssize_t debug_output(struct file *file, char __user *user_buf,
785                 size_t len, loff_t *offset)
786 {
787         struct debug_buffer *buf = file->private_data;
788         int ret = 0;
789
790         mutex_lock(&buf->mutex);
791         if (buf->count == 0) {
792                 ret = fill_buffer(buf);
793                 if (ret != 0) {
794                         mutex_unlock(&buf->mutex);
795                         goto out;
796                 }
797         }
798         mutex_unlock(&buf->mutex);
799
800         ret = simple_read_from_buffer(user_buf, len, offset,
801                         buf->output_buf, buf->count);
802
803 out:
804         return ret;
805
806 }
807
808 static int debug_close(struct inode *inode, struct file *file)
809 {
810         struct debug_buffer *buf = file->private_data;
811
812         if (buf) {
813                 vfree(buf->output_buf);
814                 kfree(buf);
815         }
816
817         return 0;
818 }
819 static int debug_async_open(struct inode *inode, struct file *file)
820 {
821         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
822
823         return file->private_data ? 0 : -ENOMEM;
824 }
825
826 static int debug_periodic_open(struct inode *inode, struct file *file)
827 {
828         struct debug_buffer *buf;
829
830         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
831         if (!buf)
832                 return -ENOMEM;
833
834         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
835         file->private_data = buf;
836         return 0;
837 }
838
839 static int debug_registers_open(struct inode *inode, struct file *file)
840 {
841         file->private_data = alloc_buffer(inode->i_private,
842                         fill_registers_buffer);
843
844         return file->private_data ? 0 : -ENOMEM;
845 }
846
847 static inline void create_debug_files(struct fotg210_hcd *fotg210)
848 {
849         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
850         struct dentry *root;
851
852         root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
853         fotg210->debug_dir = root;
854
855         debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
856         debugfs_create_file("periodic", S_IRUGO, root, bus,
857                             &debug_periodic_fops);
858         debugfs_create_file("registers", S_IRUGO, root, bus,
859                             &debug_registers_fops);
860 }
861
862 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
863 {
864         debugfs_remove_recursive(fotg210->debug_dir);
865 }
866
867 /* handshake - spin reading hc until handshake completes or fails
868  * @ptr: address of hc register to be read
869  * @mask: bits to look at in result of read
870  * @done: value of those bits when handshake succeeds
871  * @usec: timeout in microseconds
872  *
873  * Returns negative errno, or zero on success
874  *
875  * Success happens when the "mask" bits have the specified value (hardware
876  * handshake done).  There are two failure modes:  "usec" have passed (major
877  * hardware flakeout), or the register reads as all-ones (hardware removed).
878  *
879  * That last failure should_only happen in cases like physical cardbus eject
880  * before driver shutdown. But it also seems to be caused by bugs in cardbus
881  * bridge shutdown:  shutting down the bridge before the devices using it.
882  */
883 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
884                 u32 mask, u32 done, int usec)
885 {
886         u32 result;
887         int ret;
888
889         ret = readl_poll_timeout_atomic(ptr, result,
890                                         ((result & mask) == done ||
891                                          result == U32_MAX), 1, usec);
892         if (result == U32_MAX)          /* card removed */
893                 return -ENODEV;
894
895         return ret;
896 }
897
898 /* Force HC to halt state from unknown (EHCI spec section 2.3).
899  * Must be called with interrupts enabled and the lock not held.
900  */
901 static int fotg210_halt(struct fotg210_hcd *fotg210)
902 {
903         u32 temp;
904
905         spin_lock_irq(&fotg210->lock);
906
907         /* disable any irqs left enabled by previous code */
908         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
909
910         /*
911          * This routine gets called during probe before fotg210->command
912          * has been initialized, so we can't rely on its value.
913          */
914         fotg210->command &= ~CMD_RUN;
915         temp = fotg210_readl(fotg210, &fotg210->regs->command);
916         temp &= ~(CMD_RUN | CMD_IAAD);
917         fotg210_writel(fotg210, temp, &fotg210->regs->command);
918
919         spin_unlock_irq(&fotg210->lock);
920         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
921
922         return handshake(fotg210, &fotg210->regs->status,
923                         STS_HALT, STS_HALT, 16 * 125);
924 }
925
926 /* Reset a non-running (STS_HALT == 1) controller.
927  * Must be called with interrupts enabled and the lock not held.
928  */
929 static int fotg210_reset(struct fotg210_hcd *fotg210)
930 {
931         int retval;
932         u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
933
934         /* If the EHCI debug controller is active, special care must be
935          * taken before and after a host controller reset
936          */
937         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
938                 fotg210->debug = NULL;
939
940         command |= CMD_RESET;
941         dbg_cmd(fotg210, "reset", command);
942         fotg210_writel(fotg210, command, &fotg210->regs->command);
943         fotg210->rh_state = FOTG210_RH_HALTED;
944         fotg210->next_statechange = jiffies;
945         retval = handshake(fotg210, &fotg210->regs->command,
946                         CMD_RESET, 0, 250 * 1000);
947
948         if (retval)
949                 return retval;
950
951         if (fotg210->debug)
952                 dbgp_external_startup(fotg210_to_hcd(fotg210));
953
954         fotg210->port_c_suspend = fotg210->suspended_ports =
955                         fotg210->resuming_ports = 0;
956         return retval;
957 }
958
959 /* Idle the controller (turn off the schedules).
960  * Must be called with interrupts enabled and the lock not held.
961  */
962 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
963 {
964         u32 temp;
965
966         if (fotg210->rh_state != FOTG210_RH_RUNNING)
967                 return;
968
969         /* wait for any schedule enables/disables to take effect */
970         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
971         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
972                         16 * 125);
973
974         /* then disable anything that's still active */
975         spin_lock_irq(&fotg210->lock);
976         fotg210->command &= ~(CMD_ASE | CMD_PSE);
977         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
978         spin_unlock_irq(&fotg210->lock);
979
980         /* hardware can take 16 microframes to turn off ... */
981         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
982                         16 * 125);
983 }
984
985 static void end_unlink_async(struct fotg210_hcd *fotg210);
986 static void unlink_empty_async(struct fotg210_hcd *fotg210);
987 static void fotg210_work(struct fotg210_hcd *fotg210);
988 static void start_unlink_intr(struct fotg210_hcd *fotg210,
989                               struct fotg210_qh *qh);
990 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
991
992 /* Set a bit in the USBCMD register */
993 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
994 {
995         fotg210->command |= bit;
996         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
997
998         /* unblock posted write */
999         fotg210_readl(fotg210, &fotg210->regs->command);
1000 }
1001
1002 /* Clear a bit in the USBCMD register */
1003 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1004 {
1005         fotg210->command &= ~bit;
1006         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1007
1008         /* unblock posted write */
1009         fotg210_readl(fotg210, &fotg210->regs->command);
1010 }
1011
1012 /* EHCI timer support...  Now using hrtimers.
1013  *
1014  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1015  * the timer routine runs, it checks each possible event; events that are
1016  * currently enabled and whose expiration time has passed get handled.
1017  * The set of enabled events is stored as a collection of bitflags in
1018  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019  * increasing delay values (ranging between 1 ms and 100 ms).
1020  *
1021  * Rather than implementing a sorted list or tree of all pending events,
1022  * we keep track only of the lowest-numbered pending event, in
1023  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1024  * expiration time is set to the timeout value for this event.
1025  *
1026  * As a result, events might not get handled right away; the actual delay
1027  * could be anywhere up to twice the requested delay.  This doesn't
1028  * matter, because none of the events are especially time-critical.  The
1029  * ones that matter most all have a delay of 1 ms, so they will be
1030  * handled after 2 ms at most, which is okay.  In addition to this, we
1031  * allow for an expiration range of 1 ms.
1032  */
1033
1034 /* Delay lengths for the hrtimer event types.
1035  * Keep this list sorted by delay length, in the same order as
1036  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1037  */
1038 static unsigned event_delays_ns[] = {
1039         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1040         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1041         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1042         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1043         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1044         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1046         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1048         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1049 };
1050
1051 /* Enable a pending hrtimer event */
1052 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1053                 bool resched)
1054 {
1055         ktime_t *timeout = &fotg210->hr_timeouts[event];
1056
1057         if (resched)
1058                 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1059         fotg210->enabled_hrtimer_events |= (1 << event);
1060
1061         /* Track only the lowest-numbered pending event */
1062         if (event < fotg210->next_hrtimer_event) {
1063                 fotg210->next_hrtimer_event = event;
1064                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1065                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1066         }
1067 }
1068
1069
1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1071 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1072 {
1073         unsigned actual, want;
1074
1075         /* Don't enable anything if the controller isn't running (e.g., died) */
1076         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1077                 return;
1078
1079         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1080         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1081
1082         if (want != actual) {
1083
1084                 /* Poll again later, but give up after about 20 ms */
1085                 if (fotg210->ASS_poll_count++ < 20) {
1086                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1087                                         true);
1088                         return;
1089                 }
1090                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1091                                 want, actual);
1092         }
1093         fotg210->ASS_poll_count = 0;
1094
1095         /* The status is up-to-date; restart or stop the schedule as needed */
1096         if (want == 0) {        /* Stopped */
1097                 if (fotg210->async_count > 0)
1098                         fotg210_set_command_bit(fotg210, CMD_ASE);
1099
1100         } else {                /* Running */
1101                 if (fotg210->async_count == 0) {
1102
1103                         /* Turn off the schedule after a while */
1104                         fotg210_enable_event(fotg210,
1105                                         FOTG210_HRTIMER_DISABLE_ASYNC,
1106                                         true);
1107                 }
1108         }
1109 }
1110
1111 /* Turn off the async schedule after a brief delay */
1112 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1113 {
1114         fotg210_clear_command_bit(fotg210, CMD_ASE);
1115 }
1116
1117
1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1119 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1120 {
1121         unsigned actual, want;
1122
1123         /* Don't do anything if the controller isn't running (e.g., died) */
1124         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1125                 return;
1126
1127         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1128         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1129
1130         if (want != actual) {
1131
1132                 /* Poll again later, but give up after about 20 ms */
1133                 if (fotg210->PSS_poll_count++ < 20) {
1134                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1135                                         true);
1136                         return;
1137                 }
1138                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1139                                 want, actual);
1140         }
1141         fotg210->PSS_poll_count = 0;
1142
1143         /* The status is up-to-date; restart or stop the schedule as needed */
1144         if (want == 0) {        /* Stopped */
1145                 if (fotg210->periodic_count > 0)
1146                         fotg210_set_command_bit(fotg210, CMD_PSE);
1147
1148         } else {                /* Running */
1149                 if (fotg210->periodic_count == 0) {
1150
1151                         /* Turn off the schedule after a while */
1152                         fotg210_enable_event(fotg210,
1153                                         FOTG210_HRTIMER_DISABLE_PERIODIC,
1154                                         true);
1155                 }
1156         }
1157 }
1158
1159 /* Turn off the periodic schedule after a brief delay */
1160 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1161 {
1162         fotg210_clear_command_bit(fotg210, CMD_PSE);
1163 }
1164
1165
1166 /* Poll the STS_HALT status bit; see when a dead controller stops */
1167 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1168 {
1169         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1170
1171                 /* Give up after a few milliseconds */
1172                 if (fotg210->died_poll_count++ < 5) {
1173                         /* Try again later */
1174                         fotg210_enable_event(fotg210,
1175                                         FOTG210_HRTIMER_POLL_DEAD, true);
1176                         return;
1177                 }
1178                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1179         }
1180
1181         /* Clean up the mess */
1182         fotg210->rh_state = FOTG210_RH_HALTED;
1183         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1184         fotg210_work(fotg210);
1185         end_unlink_async(fotg210);
1186
1187         /* Not in process context, so don't try to reset the controller */
1188 }
1189
1190
1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1193 {
1194         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1195
1196         /*
1197          * Process all the QHs on the intr_unlink list that were added
1198          * before the current unlink cycle began.  The list is in
1199          * temporal order, so stop when we reach the first entry in the
1200          * current cycle.  But if the root hub isn't running then
1201          * process all the QHs on the list.
1202          */
1203         fotg210->intr_unlinking = true;
1204         while (fotg210->intr_unlink) {
1205                 struct fotg210_qh *qh = fotg210->intr_unlink;
1206
1207                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1208                         break;
1209                 fotg210->intr_unlink = qh->unlink_next;
1210                 qh->unlink_next = NULL;
1211                 end_unlink_intr(fotg210, qh);
1212         }
1213
1214         /* Handle remaining entries later */
1215         if (fotg210->intr_unlink) {
1216                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1217                                 true);
1218                 ++fotg210->intr_unlink_cycle;
1219         }
1220         fotg210->intr_unlinking = false;
1221 }
1222
1223
1224 /* Start another free-iTDs/siTDs cycle */
1225 static void start_free_itds(struct fotg210_hcd *fotg210)
1226 {
1227         if (!(fotg210->enabled_hrtimer_events &
1228                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1229                 fotg210->last_itd_to_free = list_entry(
1230                                 fotg210->cached_itd_list.prev,
1231                                 struct fotg210_itd, itd_list);
1232                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1233         }
1234 }
1235
1236 /* Wait for controller to stop using old iTDs and siTDs */
1237 static void end_free_itds(struct fotg210_hcd *fotg210)
1238 {
1239         struct fotg210_itd *itd, *n;
1240
1241         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1242                 fotg210->last_itd_to_free = NULL;
1243
1244         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1245                 list_del(&itd->itd_list);
1246                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1247                 if (itd == fotg210->last_itd_to_free)
1248                         break;
1249         }
1250
1251         if (!list_empty(&fotg210->cached_itd_list))
1252                 start_free_itds(fotg210);
1253 }
1254
1255
1256 /* Handle lost (or very late) IAA interrupts */
1257 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1258 {
1259         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1260                 return;
1261
1262         /*
1263          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264          * So we need this watchdog, but must protect it against both
1265          * (a) SMP races against real IAA firing and retriggering, and
1266          * (b) clean HC shutdown, when IAA watchdog was pending.
1267          */
1268         if (fotg210->async_iaa) {
1269                 u32 cmd, status;
1270
1271                 /* If we get here, IAA is *REALLY* late.  It's barely
1272                  * conceivable that the system is so busy that CMD_IAAD
1273                  * is still legitimately set, so let's be sure it's
1274                  * clear before we read STS_IAA.  (The HC should clear
1275                  * CMD_IAAD when it sets STS_IAA.)
1276                  */
1277                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1278
1279                 /*
1280                  * If IAA is set here it either legitimately triggered
1281                  * after the watchdog timer expired (_way_ late, so we'll
1282                  * still count it as lost) ... or a silicon erratum:
1283                  * - VIA seems to set IAA without triggering the IRQ;
1284                  * - IAAD potentially cleared without setting IAA.
1285                  */
1286                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1287                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1288                         INCR(fotg210->stats.lost_iaa);
1289                         fotg210_writel(fotg210, STS_IAA,
1290                                         &fotg210->regs->status);
1291                 }
1292
1293                 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1294                                 status, cmd);
1295                 end_unlink_async(fotg210);
1296         }
1297 }
1298
1299
1300 /* Enable the I/O watchdog, if appropriate */
1301 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1302 {
1303         /* Not needed if the controller isn't running or it's already enabled */
1304         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1305                         (fotg210->enabled_hrtimer_events &
1306                         BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1307                 return;
1308
1309         /*
1310          * Isochronous transfers always need the watchdog.
1311          * For other sorts we use it only if the flag is set.
1312          */
1313         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1314                         fotg210->async_count + fotg210->intr_count > 0))
1315                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1316                                 true);
1317 }
1318
1319
1320 /* Handler functions for the hrtimer event types.
1321  * Keep this array in the same order as the event types indexed by
1322  * enum fotg210_hrtimer_event in fotg210.h.
1323  */
1324 static void (*event_handlers[])(struct fotg210_hcd *) = {
1325         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1326         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1327         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1328         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1329         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1330         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1332         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1334         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1335 };
1336
1337 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1338 {
1339         struct fotg210_hcd *fotg210 =
1340                         container_of(t, struct fotg210_hcd, hrtimer);
1341         ktime_t now;
1342         unsigned long events;
1343         unsigned long flags;
1344         unsigned e;
1345
1346         spin_lock_irqsave(&fotg210->lock, flags);
1347
1348         events = fotg210->enabled_hrtimer_events;
1349         fotg210->enabled_hrtimer_events = 0;
1350         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1351
1352         /*
1353          * Check each pending event.  If its time has expired, handle
1354          * the event; otherwise re-enable it.
1355          */
1356         now = ktime_get();
1357         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1358                 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1359                         event_handlers[e](fotg210);
1360                 else
1361                         fotg210_enable_event(fotg210, e, false);
1362         }
1363
1364         spin_unlock_irqrestore(&fotg210->lock, flags);
1365         return HRTIMER_NORESTART;
1366 }
1367
1368 #define fotg210_bus_suspend NULL
1369 #define fotg210_bus_resume NULL
1370
1371 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1372                 u32 __iomem *status_reg, int port_status)
1373 {
1374         if (!(port_status & PORT_CONNECT))
1375                 return port_status;
1376
1377         /* if reset finished and it's still not enabled -- handoff */
1378         if (!(port_status & PORT_PE))
1379                 /* with integrated TT, there's nobody to hand it to! */
1380                 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1381                                 index + 1);
1382         else
1383                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1384                                 index + 1);
1385
1386         return port_status;
1387 }
1388
1389
1390 /* build "status change" packet (one or two bytes) from HC registers */
1391
1392 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1393 {
1394         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1395         u32 temp, status;
1396         u32 mask;
1397         int retval = 1;
1398         unsigned long flags;
1399
1400         /* init status to no-changes */
1401         buf[0] = 0;
1402
1403         /* Inform the core about resumes-in-progress by returning
1404          * a non-zero value even if there are no status changes.
1405          */
1406         status = fotg210->resuming_ports;
1407
1408         mask = PORT_CSC | PORT_PEC;
1409         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1410
1411         /* no hub change reports (bit 0) for now (power, ...) */
1412
1413         /* port N changes (bit N)? */
1414         spin_lock_irqsave(&fotg210->lock, flags);
1415
1416         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1417
1418         /*
1419          * Return status information even for ports with OWNER set.
1420          * Otherwise hub_wq wouldn't see the disconnect event when a
1421          * high-speed device is switched over to the companion
1422          * controller by the user.
1423          */
1424
1425         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1426                         (fotg210->reset_done[0] &&
1427                         time_after_eq(jiffies, fotg210->reset_done[0]))) {
1428                 buf[0] |= 1 << 1;
1429                 status = STS_PCD;
1430         }
1431         /* FIXME autosuspend idle root hubs */
1432         spin_unlock_irqrestore(&fotg210->lock, flags);
1433         return status ? retval : 0;
1434 }
1435
1436 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1437                 struct usb_hub_descriptor *desc)
1438 {
1439         int ports = HCS_N_PORTS(fotg210->hcs_params);
1440         u16 temp;
1441
1442         desc->bDescriptorType = USB_DT_HUB;
1443         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1444         desc->bHubContrCurrent = 0;
1445
1446         desc->bNbrPorts = ports;
1447         temp = 1 + (ports / 8);
1448         desc->bDescLength = 7 + 2 * temp;
1449
1450         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1452         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1453
1454         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1455         temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1456         desc->wHubCharacteristics = cpu_to_le16(temp);
1457 }
1458
1459 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1460                 u16 wIndex, char *buf, u16 wLength)
1461 {
1462         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1463         int ports = HCS_N_PORTS(fotg210->hcs_params);
1464         u32 __iomem *status_reg = &fotg210->regs->port_status;
1465         u32 temp, temp1, status;
1466         unsigned long flags;
1467         int retval = 0;
1468         unsigned selector;
1469
1470         /*
1471          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473          * (track current state ourselves) ... blink for diagnostics,
1474          * power, "this is the one", etc.  EHCI spec supports this.
1475          */
1476
1477         spin_lock_irqsave(&fotg210->lock, flags);
1478         switch (typeReq) {
1479         case ClearHubFeature:
1480                 switch (wValue) {
1481                 case C_HUB_LOCAL_POWER:
1482                 case C_HUB_OVER_CURRENT:
1483                         /* no hub-wide feature/status flags */
1484                         break;
1485                 default:
1486                         goto error;
1487                 }
1488                 break;
1489         case ClearPortFeature:
1490                 if (!wIndex || wIndex > ports)
1491                         goto error;
1492                 wIndex--;
1493                 temp = fotg210_readl(fotg210, status_reg);
1494                 temp &= ~PORT_RWC_BITS;
1495
1496                 /*
1497                  * Even if OWNER is set, so the port is owned by the
1498                  * companion controller, hub_wq needs to be able to clear
1499                  * the port-change status bits (especially
1500                  * USB_PORT_STAT_C_CONNECTION).
1501                  */
1502
1503                 switch (wValue) {
1504                 case USB_PORT_FEAT_ENABLE:
1505                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1506                         break;
1507                 case USB_PORT_FEAT_C_ENABLE:
1508                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1509                         break;
1510                 case USB_PORT_FEAT_SUSPEND:
1511                         if (temp & PORT_RESET)
1512                                 goto error;
1513                         if (!(temp & PORT_SUSPEND))
1514                                 break;
1515                         if ((temp & PORT_PE) == 0)
1516                                 goto error;
1517
1518                         /* resume signaling for 20 msec */
1519                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1520                         fotg210->reset_done[wIndex] = jiffies
1521                                         + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1522                         break;
1523                 case USB_PORT_FEAT_C_SUSPEND:
1524                         clear_bit(wIndex, &fotg210->port_c_suspend);
1525                         break;
1526                 case USB_PORT_FEAT_C_CONNECTION:
1527                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1528                         break;
1529                 case USB_PORT_FEAT_C_OVER_CURRENT:
1530                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1531                                         &fotg210->regs->otgisr);
1532                         break;
1533                 case USB_PORT_FEAT_C_RESET:
1534                         /* GetPortStatus clears reset */
1535                         break;
1536                 default:
1537                         goto error;
1538                 }
1539                 fotg210_readl(fotg210, &fotg210->regs->command);
1540                 break;
1541         case GetHubDescriptor:
1542                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1543                                 buf);
1544                 break;
1545         case GetHubStatus:
1546                 /* no hub-wide feature/status flags */
1547                 memset(buf, 0, 4);
1548                 /*cpu_to_le32s ((u32 *) buf); */
1549                 break;
1550         case GetPortStatus:
1551                 if (!wIndex || wIndex > ports)
1552                         goto error;
1553                 wIndex--;
1554                 status = 0;
1555                 temp = fotg210_readl(fotg210, status_reg);
1556
1557                 /* wPortChange bits */
1558                 if (temp & PORT_CSC)
1559                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1560                 if (temp & PORT_PEC)
1561                         status |= USB_PORT_STAT_C_ENABLE << 16;
1562
1563                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1564                 if (temp1 & OTGISR_OVC)
1565                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1566
1567                 /* whoever resumes must GetPortStatus to complete it!! */
1568                 if (temp & PORT_RESUME) {
1569
1570                         /* Remote Wakeup received? */
1571                         if (!fotg210->reset_done[wIndex]) {
1572                                 /* resume signaling for 20 msec */
1573                                 fotg210->reset_done[wIndex] = jiffies
1574                                                 + msecs_to_jiffies(20);
1575                                 /* check the port again */
1576                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1577                                                 fotg210->reset_done[wIndex]);
1578                         }
1579
1580                         /* resume completed? */
1581                         else if (time_after_eq(jiffies,
1582                                         fotg210->reset_done[wIndex])) {
1583                                 clear_bit(wIndex, &fotg210->suspended_ports);
1584                                 set_bit(wIndex, &fotg210->port_c_suspend);
1585                                 fotg210->reset_done[wIndex] = 0;
1586
1587                                 /* stop resume signaling */
1588                                 temp = fotg210_readl(fotg210, status_reg);
1589                                 fotg210_writel(fotg210, temp &
1590                                                 ~(PORT_RWC_BITS | PORT_RESUME),
1591                                                 status_reg);
1592                                 clear_bit(wIndex, &fotg210->resuming_ports);
1593                                 retval = handshake(fotg210, status_reg,
1594                                                 PORT_RESUME, 0, 2000);/* 2ms */
1595                                 if (retval != 0) {
1596                                         fotg210_err(fotg210,
1597                                                         "port %d resume error %d\n",
1598                                                         wIndex + 1, retval);
1599                                         goto error;
1600                                 }
1601                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1602                         }
1603                 }
1604
1605                 /* whoever resets must GetPortStatus to complete it!! */
1606                 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1607                                 fotg210->reset_done[wIndex])) {
1608                         status |= USB_PORT_STAT_C_RESET << 16;
1609                         fotg210->reset_done[wIndex] = 0;
1610                         clear_bit(wIndex, &fotg210->resuming_ports);
1611
1612                         /* force reset to complete */
1613                         fotg210_writel(fotg210,
1614                                         temp & ~(PORT_RWC_BITS | PORT_RESET),
1615                                         status_reg);
1616                         /* REVISIT:  some hardware needs 550+ usec to clear
1617                          * this bit; seems too long to spin routinely...
1618                          */
1619                         retval = handshake(fotg210, status_reg,
1620                                         PORT_RESET, 0, 1000);
1621                         if (retval != 0) {
1622                                 fotg210_err(fotg210, "port %d reset error %d\n",
1623                                                 wIndex + 1, retval);
1624                                 goto error;
1625                         }
1626
1627                         /* see what we found out */
1628                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1629                                         fotg210_readl(fotg210, status_reg));
1630
1631                         /* restart schedule */
1632                         fotg210->command |= CMD_RUN;
1633                         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1634                 }
1635
1636                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1637                         fotg210->reset_done[wIndex] = 0;
1638                         clear_bit(wIndex, &fotg210->resuming_ports);
1639                 }
1640
1641                 /* transfer dedicated ports to the companion hc */
1642                 if ((temp & PORT_CONNECT) &&
1643                                 test_bit(wIndex, &fotg210->companion_ports)) {
1644                         temp &= ~PORT_RWC_BITS;
1645                         fotg210_writel(fotg210, temp, status_reg);
1646                         fotg210_dbg(fotg210, "port %d --> companion\n",
1647                                         wIndex + 1);
1648                         temp = fotg210_readl(fotg210, status_reg);
1649                 }
1650
1651                 /*
1652                  * Even if OWNER is set, there's no harm letting hub_wq
1653                  * see the wPortStatus values (they should all be 0 except
1654                  * for PORT_POWER anyway).
1655                  */
1656
1657                 if (temp & PORT_CONNECT) {
1658                         status |= USB_PORT_STAT_CONNECTION;
1659                         status |= fotg210_port_speed(fotg210, temp);
1660                 }
1661                 if (temp & PORT_PE)
1662                         status |= USB_PORT_STAT_ENABLE;
1663
1664                 /* maybe the port was unsuspended without our knowledge */
1665                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1666                         status |= USB_PORT_STAT_SUSPEND;
1667                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1668                         clear_bit(wIndex, &fotg210->suspended_ports);
1669                         clear_bit(wIndex, &fotg210->resuming_ports);
1670                         fotg210->reset_done[wIndex] = 0;
1671                         if (temp & PORT_PE)
1672                                 set_bit(wIndex, &fotg210->port_c_suspend);
1673                 }
1674
1675                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1676                 if (temp1 & OTGISR_OVC)
1677                         status |= USB_PORT_STAT_OVERCURRENT;
1678                 if (temp & PORT_RESET)
1679                         status |= USB_PORT_STAT_RESET;
1680                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1681                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1682
1683                 if (status & ~0xffff)   /* only if wPortChange is interesting */
1684                         dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1685                 put_unaligned_le32(status, buf);
1686                 break;
1687         case SetHubFeature:
1688                 switch (wValue) {
1689                 case C_HUB_LOCAL_POWER:
1690                 case C_HUB_OVER_CURRENT:
1691                         /* no hub-wide feature/status flags */
1692                         break;
1693                 default:
1694                         goto error;
1695                 }
1696                 break;
1697         case SetPortFeature:
1698                 selector = wIndex >> 8;
1699                 wIndex &= 0xff;
1700
1701                 if (!wIndex || wIndex > ports)
1702                         goto error;
1703                 wIndex--;
1704                 temp = fotg210_readl(fotg210, status_reg);
1705                 temp &= ~PORT_RWC_BITS;
1706                 switch (wValue) {
1707                 case USB_PORT_FEAT_SUSPEND:
1708                         if ((temp & PORT_PE) == 0
1709                                         || (temp & PORT_RESET) != 0)
1710                                 goto error;
1711
1712                         /* After above check the port must be connected.
1713                          * Set appropriate bit thus could put phy into low power
1714                          * mode if we have hostpc feature
1715                          */
1716                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1717                                         status_reg);
1718                         set_bit(wIndex, &fotg210->suspended_ports);
1719                         break;
1720                 case USB_PORT_FEAT_RESET:
1721                         if (temp & PORT_RESUME)
1722                                 goto error;
1723                         /* line status bits may report this as low speed,
1724                          * which can be fine if this root hub has a
1725                          * transaction translator built in.
1726                          */
1727                         fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1728                         temp |= PORT_RESET;
1729                         temp &= ~PORT_PE;
1730
1731                         /*
1732                          * caller must wait, then call GetPortStatus
1733                          * usb 2.0 spec says 50 ms resets on root
1734                          */
1735                         fotg210->reset_done[wIndex] = jiffies
1736                                         + msecs_to_jiffies(50);
1737                         fotg210_writel(fotg210, temp, status_reg);
1738                         break;
1739
1740                 /* For downstream facing ports (these):  one hub port is put
1741                  * into test mode according to USB2 11.24.2.13, then the hub
1742                  * must be reset (which for root hub now means rmmod+modprobe,
1743                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1744                  * about the EHCI-specific stuff.
1745                  */
1746                 case USB_PORT_FEAT_TEST:
1747                         if (!selector || selector > 5)
1748                                 goto error;
1749                         spin_unlock_irqrestore(&fotg210->lock, flags);
1750                         fotg210_quiesce(fotg210);
1751                         spin_lock_irqsave(&fotg210->lock, flags);
1752
1753                         /* Put all enabled ports into suspend */
1754                         temp = fotg210_readl(fotg210, status_reg) &
1755                                 ~PORT_RWC_BITS;
1756                         if (temp & PORT_PE)
1757                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1758                                                 status_reg);
1759
1760                         spin_unlock_irqrestore(&fotg210->lock, flags);
1761                         fotg210_halt(fotg210);
1762                         spin_lock_irqsave(&fotg210->lock, flags);
1763
1764                         temp = fotg210_readl(fotg210, status_reg);
1765                         temp |= selector << 16;
1766                         fotg210_writel(fotg210, temp, status_reg);
1767                         break;
1768
1769                 default:
1770                         goto error;
1771                 }
1772                 fotg210_readl(fotg210, &fotg210->regs->command);
1773                 break;
1774
1775         default:
1776 error:
1777                 /* "stall" on error */
1778                 retval = -EPIPE;
1779         }
1780         spin_unlock_irqrestore(&fotg210->lock, flags);
1781         return retval;
1782 }
1783
1784 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1785                 int portnum)
1786 {
1787         return;
1788 }
1789
1790 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1791                 int portnum)
1792 {
1793         return 0;
1794 }
1795
1796 /* There's basically three types of memory:
1797  *      - data used only by the HCD ... kmalloc is fine
1798  *      - async and periodic schedules, shared by HC and HCD ... these
1799  *        need to use dma_pool or dma_alloc_coherent
1800  *      - driver buffers, read/written by HC ... single shot DMA mapped
1801  *
1802  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1803  * No memory seen by this driver is pageable.
1804  */
1805
1806 /* Allocate the key transfer structures from the previously allocated pool */
1807 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1808                 struct fotg210_qtd *qtd, dma_addr_t dma)
1809 {
1810         memset(qtd, 0, sizeof(*qtd));
1811         qtd->qtd_dma = dma;
1812         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1813         qtd->hw_next = FOTG210_LIST_END(fotg210);
1814         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1815         INIT_LIST_HEAD(&qtd->qtd_list);
1816 }
1817
1818 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1819                 gfp_t flags)
1820 {
1821         struct fotg210_qtd *qtd;
1822         dma_addr_t dma;
1823
1824         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1825         if (qtd != NULL)
1826                 fotg210_qtd_init(fotg210, qtd, dma);
1827
1828         return qtd;
1829 }
1830
1831 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1832                 struct fotg210_qtd *qtd)
1833 {
1834         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1835 }
1836
1837
1838 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1839 {
1840         /* clean qtds first, and know this is not linked */
1841         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1842                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1843                 BUG();
1844         }
1845         if (qh->dummy)
1846                 fotg210_qtd_free(fotg210, qh->dummy);
1847         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1848         kfree(qh);
1849 }
1850
1851 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1852                 gfp_t flags)
1853 {
1854         struct fotg210_qh *qh;
1855         dma_addr_t dma;
1856
1857         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1858         if (!qh)
1859                 goto done;
1860         qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1861         if (!qh->hw)
1862                 goto fail;
1863         qh->qh_dma = dma;
1864         INIT_LIST_HEAD(&qh->qtd_list);
1865
1866         /* dummy td enables safe urb queuing */
1867         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1868         if (qh->dummy == NULL) {
1869                 fotg210_dbg(fotg210, "no dummy td\n");
1870                 goto fail1;
1871         }
1872 done:
1873         return qh;
1874 fail1:
1875         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1876 fail:
1877         kfree(qh);
1878         return NULL;
1879 }
1880
1881 /* The queue heads and transfer descriptors are managed from pools tied
1882  * to each of the "per device" structures.
1883  * This is the initialisation and cleanup code.
1884  */
1885
1886 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1887 {
1888         if (fotg210->async)
1889                 qh_destroy(fotg210, fotg210->async);
1890         fotg210->async = NULL;
1891
1892         if (fotg210->dummy)
1893                 qh_destroy(fotg210, fotg210->dummy);
1894         fotg210->dummy = NULL;
1895
1896         /* DMA consistent memory and pools */
1897         dma_pool_destroy(fotg210->qtd_pool);
1898         fotg210->qtd_pool = NULL;
1899
1900         dma_pool_destroy(fotg210->qh_pool);
1901         fotg210->qh_pool = NULL;
1902
1903         dma_pool_destroy(fotg210->itd_pool);
1904         fotg210->itd_pool = NULL;
1905
1906         if (fotg210->periodic)
1907                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1908                                 fotg210->periodic_size * sizeof(u32),
1909                                 fotg210->periodic, fotg210->periodic_dma);
1910         fotg210->periodic = NULL;
1911
1912         /* shadow periodic table */
1913         kfree(fotg210->pshadow);
1914         fotg210->pshadow = NULL;
1915 }
1916
1917 /* remember to add cleanup code (above) if you add anything here */
1918 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1919 {
1920         int i;
1921
1922         /* QTDs for control/bulk/intr transfers */
1923         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1924                         fotg210_to_hcd(fotg210)->self.controller,
1925                         sizeof(struct fotg210_qtd),
1926                         32 /* byte alignment (for hw parts) */,
1927                         4096 /* can't cross 4K */);
1928         if (!fotg210->qtd_pool)
1929                 goto fail;
1930
1931         /* QHs for control/bulk/intr transfers */
1932         fotg210->qh_pool = dma_pool_create("fotg210_qh",
1933                         fotg210_to_hcd(fotg210)->self.controller,
1934                         sizeof(struct fotg210_qh_hw),
1935                         32 /* byte alignment (for hw parts) */,
1936                         4096 /* can't cross 4K */);
1937         if (!fotg210->qh_pool)
1938                 goto fail;
1939
1940         fotg210->async = fotg210_qh_alloc(fotg210, flags);
1941         if (!fotg210->async)
1942                 goto fail;
1943
1944         /* ITD for high speed ISO transfers */
1945         fotg210->itd_pool = dma_pool_create("fotg210_itd",
1946                         fotg210_to_hcd(fotg210)->self.controller,
1947                         sizeof(struct fotg210_itd),
1948                         64 /* byte alignment (for hw parts) */,
1949                         4096 /* can't cross 4K */);
1950         if (!fotg210->itd_pool)
1951                 goto fail;
1952
1953         /* Hardware periodic table */
1954         fotg210->periodic =
1955                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1956                                 fotg210->periodic_size * sizeof(__le32),
1957                                 &fotg210->periodic_dma, 0);
1958         if (fotg210->periodic == NULL)
1959                 goto fail;
1960
1961         for (i = 0; i < fotg210->periodic_size; i++)
1962                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1963
1964         /* software shadow of hardware table */
1965         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1966                         flags);
1967         if (fotg210->pshadow != NULL)
1968                 return 0;
1969
1970 fail:
1971         fotg210_dbg(fotg210, "couldn't init memory\n");
1972         fotg210_mem_cleanup(fotg210);
1973         return -ENOMEM;
1974 }
1975 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1976  *
1977  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1978  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1979  * buffers needed for the larger number).  We use one QH per endpoint, queue
1980  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1981  *
1982  * ISO traffic uses "ISO TD" (itd) records, and (along with
1983  * interrupts) needs careful scheduling.  Performance improvements can be
1984  * an ongoing challenge.  That's in "ehci-sched.c".
1985  *
1986  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1987  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1988  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1989  * buffer low/full speed data so the host collects it at high speed.
1990  */
1991
1992 /* fill a qtd, returning how much of the buffer we were able to queue up */
1993 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1994                 dma_addr_t buf, size_t len, int token, int maxpacket)
1995 {
1996         int i, count;
1997         u64 addr = buf;
1998
1999         /* one buffer entry per 4K ... first might be short or unaligned */
2000         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2001         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2002         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2003         if (likely(len < count))                /* ... iff needed */
2004                 count = len;
2005         else {
2006                 buf +=  0x1000;
2007                 buf &= ~0x0fff;
2008
2009                 /* per-qtd limit: from 16K to 20K (best alignment) */
2010                 for (i = 1; count < len && i < 5; i++) {
2011                         addr = buf;
2012                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2013                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2014                                         (u32)(addr >> 32));
2015                         buf += 0x1000;
2016                         if ((count + 0x1000) < len)
2017                                 count += 0x1000;
2018                         else
2019                                 count = len;
2020                 }
2021
2022                 /* short packets may only terminate transfers */
2023                 if (count != len)
2024                         count -= (count % maxpacket);
2025         }
2026         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2027         qtd->length = count;
2028
2029         return count;
2030 }
2031
2032 static inline void qh_update(struct fotg210_hcd *fotg210,
2033                 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2034 {
2035         struct fotg210_qh_hw *hw = qh->hw;
2036
2037         /* writes to an active overlay are unsafe */
2038         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2039
2040         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2041         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2042
2043         /* Except for control endpoints, we make hardware maintain data
2044          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2045          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2046          * ever clear it.
2047          */
2048         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2049                 unsigned is_out, epnum;
2050
2051                 is_out = qh->is_out;
2052                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2053                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2054                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2055                         usb_settoggle(qh->dev, epnum, is_out, 1);
2056                 }
2057         }
2058
2059         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2060 }
2061
2062 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2063  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2064  * recovery (including urb dequeue) would need software changes to a QH...
2065  */
2066 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2067 {
2068         struct fotg210_qtd *qtd;
2069
2070         if (list_empty(&qh->qtd_list))
2071                 qtd = qh->dummy;
2072         else {
2073                 qtd = list_entry(qh->qtd_list.next,
2074                                 struct fotg210_qtd, qtd_list);
2075                 /*
2076                  * first qtd may already be partially processed.
2077                  * If we come here during unlink, the QH overlay region
2078                  * might have reference to the just unlinked qtd. The
2079                  * qtd is updated in qh_completions(). Update the QH
2080                  * overlay here.
2081                  */
2082                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2083                         qh->hw->hw_qtd_next = qtd->hw_next;
2084                         qtd = NULL;
2085                 }
2086         }
2087
2088         if (qtd)
2089                 qh_update(fotg210, qh, qtd);
2090 }
2091
2092 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2093
2094 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2095                 struct usb_host_endpoint *ep)
2096 {
2097         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2098         struct fotg210_qh *qh = ep->hcpriv;
2099         unsigned long flags;
2100
2101         spin_lock_irqsave(&fotg210->lock, flags);
2102         qh->clearing_tt = 0;
2103         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2104                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2105                 qh_link_async(fotg210, qh);
2106         spin_unlock_irqrestore(&fotg210->lock, flags);
2107 }
2108
2109 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2110                 struct fotg210_qh *qh, struct urb *urb, u32 token)
2111 {
2112
2113         /* If an async split transaction gets an error or is unlinked,
2114          * the TT buffer may be left in an indeterminate state.  We
2115          * have to clear the TT buffer.
2116          *
2117          * Note: this routine is never called for Isochronous transfers.
2118          */
2119         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2120                 struct usb_device *tt = urb->dev->tt->hub;
2121
2122                 dev_dbg(&tt->dev,
2123                                 "clear tt buffer port %d, a%d ep%d t%08x\n",
2124                                 urb->dev->ttport, urb->dev->devnum,
2125                                 usb_pipeendpoint(urb->pipe), token);
2126
2127                 if (urb->dev->tt->hub !=
2128                                 fotg210_to_hcd(fotg210)->self.root_hub) {
2129                         if (usb_hub_clear_tt_buffer(urb) == 0)
2130                                 qh->clearing_tt = 1;
2131                 }
2132         }
2133 }
2134
2135 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2136                 size_t length, u32 token)
2137 {
2138         int status = -EINPROGRESS;
2139
2140         /* count IN/OUT bytes, not SETUP (even short packets) */
2141         if (likely(QTD_PID(token) != 2))
2142                 urb->actual_length += length - QTD_LENGTH(token);
2143
2144         /* don't modify error codes */
2145         if (unlikely(urb->unlinked))
2146                 return status;
2147
2148         /* force cleanup after short read; not always an error */
2149         if (unlikely(IS_SHORT_READ(token)))
2150                 status = -EREMOTEIO;
2151
2152         /* serious "can't proceed" faults reported by the hardware */
2153         if (token & QTD_STS_HALT) {
2154                 if (token & QTD_STS_BABBLE) {
2155                         /* FIXME "must" disable babbling device's port too */
2156                         status = -EOVERFLOW;
2157                 /* CERR nonzero + halt --> stall */
2158                 } else if (QTD_CERR(token)) {
2159                         status = -EPIPE;
2160
2161                 /* In theory, more than one of the following bits can be set
2162                  * since they are sticky and the transaction is retried.
2163                  * Which to test first is rather arbitrary.
2164                  */
2165                 } else if (token & QTD_STS_MMF) {
2166                         /* fs/ls interrupt xfer missed the complete-split */
2167                         status = -EPROTO;
2168                 } else if (token & QTD_STS_DBE) {
2169                         status = (QTD_PID(token) == 1) /* IN ? */
2170                                 ? -ENOSR  /* hc couldn't read data */
2171                                 : -ECOMM; /* hc couldn't write data */
2172                 } else if (token & QTD_STS_XACT) {
2173                         /* timeout, bad CRC, wrong PID, etc */
2174                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2175                                         urb->dev->devpath,
2176                                         usb_pipeendpoint(urb->pipe),
2177                                         usb_pipein(urb->pipe) ? "in" : "out");
2178                         status = -EPROTO;
2179                 } else {        /* unknown */
2180                         status = -EPROTO;
2181                 }
2182
2183                 fotg210_dbg(fotg210,
2184                                 "dev%d ep%d%s qtd token %08x --> status %d\n",
2185                                 usb_pipedevice(urb->pipe),
2186                                 usb_pipeendpoint(urb->pipe),
2187                                 usb_pipein(urb->pipe) ? "in" : "out",
2188                                 token, status);
2189         }
2190
2191         return status;
2192 }
2193
2194 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2195                 int status)
2196 __releases(fotg210->lock)
2197 __acquires(fotg210->lock)
2198 {
2199         if (likely(urb->hcpriv != NULL)) {
2200                 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2201
2202                 /* S-mask in a QH means it's an interrupt urb */
2203                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2204
2205                         /* ... update hc-wide periodic stats (for usbfs) */
2206                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2207                 }
2208         }
2209
2210         if (unlikely(urb->unlinked)) {
2211                 INCR(fotg210->stats.unlink);
2212         } else {
2213                 /* report non-error and short read status as zero */
2214                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2215                         status = 0;
2216                 INCR(fotg210->stats.complete);
2217         }
2218
2219 #ifdef FOTG210_URB_TRACE
2220         fotg210_dbg(fotg210,
2221                         "%s %s urb %p ep%d%s status %d len %d/%d\n",
2222                         __func__, urb->dev->devpath, urb,
2223                         usb_pipeendpoint(urb->pipe),
2224                         usb_pipein(urb->pipe) ? "in" : "out",
2225                         status,
2226                         urb->actual_length, urb->transfer_buffer_length);
2227 #endif
2228
2229         /* complete() can reenter this HCD */
2230         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2231         spin_unlock(&fotg210->lock);
2232         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2233         spin_lock(&fotg210->lock);
2234 }
2235
2236 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2237
2238 /* Process and free completed qtds for a qh, returning URBs to drivers.
2239  * Chases up to qh->hw_current.  Returns number of completions called,
2240  * indicating how much "real" work we did.
2241  */
2242 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2243                 struct fotg210_qh *qh)
2244 {
2245         struct fotg210_qtd *last, *end = qh->dummy;
2246         struct fotg210_qtd *qtd, *tmp;
2247         int last_status;
2248         int stopped;
2249         unsigned count = 0;
2250         u8 state;
2251         struct fotg210_qh_hw *hw = qh->hw;
2252
2253         if (unlikely(list_empty(&qh->qtd_list)))
2254                 return count;
2255
2256         /* completions (or tasks on other cpus) must never clobber HALT
2257          * till we've gone through and cleaned everything up, even when
2258          * they add urbs to this qh's queue or mark them for unlinking.
2259          *
2260          * NOTE:  unlinking expects to be done in queue order.
2261          *
2262          * It's a bug for qh->qh_state to be anything other than
2263          * QH_STATE_IDLE, unless our caller is scan_async() or
2264          * scan_intr().
2265          */
2266         state = qh->qh_state;
2267         qh->qh_state = QH_STATE_COMPLETING;
2268         stopped = (state == QH_STATE_IDLE);
2269
2270 rescan:
2271         last = NULL;
2272         last_status = -EINPROGRESS;
2273         qh->needs_rescan = 0;
2274
2275         /* remove de-activated QTDs from front of queue.
2276          * after faults (including short reads), cleanup this urb
2277          * then let the queue advance.
2278          * if queue is stopped, handles unlinks.
2279          */
2280         list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2281                 struct urb *urb;
2282                 u32 token = 0;
2283
2284                 urb = qtd->urb;
2285
2286                 /* clean up any state from previous QTD ...*/
2287                 if (last) {
2288                         if (likely(last->urb != urb)) {
2289                                 fotg210_urb_done(fotg210, last->urb,
2290                                                 last_status);
2291                                 count++;
2292                                 last_status = -EINPROGRESS;
2293                         }
2294                         fotg210_qtd_free(fotg210, last);
2295                         last = NULL;
2296                 }
2297
2298                 /* ignore urbs submitted during completions we reported */
2299                 if (qtd == end)
2300                         break;
2301
2302                 /* hardware copies qtd out of qh overlay */
2303                 rmb();
2304                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2305
2306                 /* always clean up qtds the hc de-activated */
2307 retry_xacterr:
2308                 if ((token & QTD_STS_ACTIVE) == 0) {
2309
2310                         /* Report Data Buffer Error: non-fatal but useful */
2311                         if (token & QTD_STS_DBE)
2312                                 fotg210_dbg(fotg210,
2313                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2314                                         urb, usb_endpoint_num(&urb->ep->desc),
2315                                         usb_endpoint_dir_in(&urb->ep->desc)
2316                                                 ? "in" : "out",
2317                                         urb->transfer_buffer_length, qtd, qh);
2318
2319                         /* on STALL, error, and short reads this urb must
2320                          * complete and all its qtds must be recycled.
2321                          */
2322                         if ((token & QTD_STS_HALT) != 0) {
2323
2324                                 /* retry transaction errors until we
2325                                  * reach the software xacterr limit
2326                                  */
2327                                 if ((token & QTD_STS_XACT) &&
2328                                                 QTD_CERR(token) == 0 &&
2329                                                 ++qh->xacterrs < QH_XACTERR_MAX &&
2330                                                 !urb->unlinked) {
2331                                         fotg210_dbg(fotg210,
2332                                                 "detected XactErr len %zu/%zu retry %d\n",
2333                                                 qtd->length - QTD_LENGTH(token),
2334                                                 qtd->length,
2335                                                 qh->xacterrs);
2336
2337                                         /* reset the token in the qtd and the
2338                                          * qh overlay (which still contains
2339                                          * the qtd) so that we pick up from
2340                                          * where we left off
2341                                          */
2342                                         token &= ~QTD_STS_HALT;
2343                                         token |= QTD_STS_ACTIVE |
2344                                                  (FOTG210_TUNE_CERR << 10);
2345                                         qtd->hw_token = cpu_to_hc32(fotg210,
2346                                                         token);
2347                                         wmb();
2348                                         hw->hw_token = cpu_to_hc32(fotg210,
2349                                                         token);
2350                                         goto retry_xacterr;
2351                                 }
2352                                 stopped = 1;
2353
2354                         /* magic dummy for some short reads; qh won't advance.
2355                          * that silicon quirk can kick in with this dummy too.
2356                          *
2357                          * other short reads won't stop the queue, including
2358                          * control transfers (status stage handles that) or
2359                          * most other single-qtd reads ... the queue stops if
2360                          * URB_SHORT_NOT_OK was set so the driver submitting
2361                          * the urbs could clean it up.
2362                          */
2363                         } else if (IS_SHORT_READ(token) &&
2364                                         !(qtd->hw_alt_next &
2365                                         FOTG210_LIST_END(fotg210))) {
2366                                 stopped = 1;
2367                         }
2368
2369                 /* stop scanning when we reach qtds the hc is using */
2370                 } else if (likely(!stopped
2371                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2372                         break;
2373
2374                 /* scan the whole queue for unlinks whenever it stops */
2375                 } else {
2376                         stopped = 1;
2377
2378                         /* cancel everything if we halt, suspend, etc */
2379                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2380                                 last_status = -ESHUTDOWN;
2381
2382                         /* this qtd is active; skip it unless a previous qtd
2383                          * for its urb faulted, or its urb was canceled.
2384                          */
2385                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2386                                 continue;
2387
2388                         /* qh unlinked; token in overlay may be most current */
2389                         if (state == QH_STATE_IDLE &&
2390                                         cpu_to_hc32(fotg210, qtd->qtd_dma)
2391                                         == hw->hw_current) {
2392                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2393
2394                                 /* An unlink may leave an incomplete
2395                                  * async transaction in the TT buffer.
2396                                  * We have to clear it.
2397                                  */
2398                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2399                                                 token);
2400                         }
2401                 }
2402
2403                 /* unless we already know the urb's status, collect qtd status
2404                  * and update count of bytes transferred.  in common short read
2405                  * cases with only one data qtd (including control transfers),
2406                  * queue processing won't halt.  but with two or more qtds (for
2407                  * example, with a 32 KB transfer), when the first qtd gets a
2408                  * short read the second must be removed by hand.
2409                  */
2410                 if (last_status == -EINPROGRESS) {
2411                         last_status = qtd_copy_status(fotg210, urb,
2412                                         qtd->length, token);
2413                         if (last_status == -EREMOTEIO &&
2414                                         (qtd->hw_alt_next &
2415                                         FOTG210_LIST_END(fotg210)))
2416                                 last_status = -EINPROGRESS;
2417
2418                         /* As part of low/full-speed endpoint-halt processing
2419                          * we must clear the TT buffer (11.17.5).
2420                          */
2421                         if (unlikely(last_status != -EINPROGRESS &&
2422                                         last_status != -EREMOTEIO)) {
2423                                 /* The TT's in some hubs malfunction when they
2424                                  * receive this request following a STALL (they
2425                                  * stop sending isochronous packets).  Since a
2426                                  * STALL can't leave the TT buffer in a busy
2427                                  * state (if you believe Figures 11-48 - 11-51
2428                                  * in the USB 2.0 spec), we won't clear the TT
2429                                  * buffer in this case.  Strictly speaking this
2430                                  * is a violation of the spec.
2431                                  */
2432                                 if (last_status != -EPIPE)
2433                                         fotg210_clear_tt_buffer(fotg210, qh,
2434                                                         urb, token);
2435                         }
2436                 }
2437
2438                 /* if we're removing something not at the queue head,
2439                  * patch the hardware queue pointer.
2440                  */
2441                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2442                         last = list_entry(qtd->qtd_list.prev,
2443                                         struct fotg210_qtd, qtd_list);
2444                         last->hw_next = qtd->hw_next;
2445                 }
2446
2447                 /* remove qtd; it's recycled after possible urb completion */
2448                 list_del(&qtd->qtd_list);
2449                 last = qtd;
2450
2451                 /* reinit the xacterr counter for the next qtd */
2452                 qh->xacterrs = 0;
2453         }
2454
2455         /* last urb's completion might still need calling */
2456         if (likely(last != NULL)) {
2457                 fotg210_urb_done(fotg210, last->urb, last_status);
2458                 count++;
2459                 fotg210_qtd_free(fotg210, last);
2460         }
2461
2462         /* Do we need to rescan for URBs dequeued during a giveback? */
2463         if (unlikely(qh->needs_rescan)) {
2464                 /* If the QH is already unlinked, do the rescan now. */
2465                 if (state == QH_STATE_IDLE)
2466                         goto rescan;
2467
2468                 /* Otherwise we have to wait until the QH is fully unlinked.
2469                  * Our caller will start an unlink if qh->needs_rescan is
2470                  * set.  But if an unlink has already started, nothing needs
2471                  * to be done.
2472                  */
2473                 if (state != QH_STATE_LINKED)
2474                         qh->needs_rescan = 0;
2475         }
2476
2477         /* restore original state; caller must unlink or relink */
2478         qh->qh_state = state;
2479
2480         /* be sure the hardware's done with the qh before refreshing
2481          * it after fault cleanup, or recovering from silicon wrongly
2482          * overlaying the dummy qtd (which reduces DMA chatter).
2483          */
2484         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2485                 switch (state) {
2486                 case QH_STATE_IDLE:
2487                         qh_refresh(fotg210, qh);
2488                         break;
2489                 case QH_STATE_LINKED:
2490                         /* We won't refresh a QH that's linked (after the HC
2491                          * stopped the queue).  That avoids a race:
2492                          *  - HC reads first part of QH;
2493                          *  - CPU updates that first part and the token;
2494                          *  - HC reads rest of that QH, including token
2495                          * Result:  HC gets an inconsistent image, and then
2496                          * DMAs to/from the wrong memory (corrupting it).
2497                          *
2498                          * That should be rare for interrupt transfers,
2499                          * except maybe high bandwidth ...
2500                          */
2501
2502                         /* Tell the caller to start an unlink */
2503                         qh->needs_rescan = 1;
2504                         break;
2505                 /* otherwise, unlink already started */
2506                 }
2507         }
2508
2509         return count;
2510 }
2511
2512 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2513 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2514 /* ... and packet size, for any kind of endpoint descriptor */
2515 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2516
2517 /* reverse of qh_urb_transaction:  free a list of TDs.
2518  * used for cleanup after errors, before HC sees an URB's TDs.
2519  */
2520 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2521                 struct list_head *head)
2522 {
2523         struct fotg210_qtd *qtd, *temp;
2524
2525         list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2526                 list_del(&qtd->qtd_list);
2527                 fotg210_qtd_free(fotg210, qtd);
2528         }
2529 }
2530
2531 /* create a list of filled qtds for this URB; won't link into qh.
2532  */
2533 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2534                 struct urb *urb, struct list_head *head, gfp_t flags)
2535 {
2536         struct fotg210_qtd *qtd, *qtd_prev;
2537         dma_addr_t buf;
2538         int len, this_sg_len, maxpacket;
2539         int is_input;
2540         u32 token;
2541         int i;
2542         struct scatterlist *sg;
2543
2544         /*
2545          * URBs map to sequences of QTDs:  one logical transaction
2546          */
2547         qtd = fotg210_qtd_alloc(fotg210, flags);
2548         if (unlikely(!qtd))
2549                 return NULL;
2550         list_add_tail(&qtd->qtd_list, head);
2551         qtd->urb = urb;
2552
2553         token = QTD_STS_ACTIVE;
2554         token |= (FOTG210_TUNE_CERR << 10);
2555         /* for split transactions, SplitXState initialized to zero */
2556
2557         len = urb->transfer_buffer_length;
2558         is_input = usb_pipein(urb->pipe);
2559         if (usb_pipecontrol(urb->pipe)) {
2560                 /* SETUP pid */
2561                 qtd_fill(fotg210, qtd, urb->setup_dma,
2562                                 sizeof(struct usb_ctrlrequest),
2563                                 token | (2 /* "setup" */ << 8), 8);
2564
2565                 /* ... and always at least one more pid */
2566                 token ^= QTD_TOGGLE;
2567                 qtd_prev = qtd;
2568                 qtd = fotg210_qtd_alloc(fotg210, flags);
2569                 if (unlikely(!qtd))
2570                         goto cleanup;
2571                 qtd->urb = urb;
2572                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2573                 list_add_tail(&qtd->qtd_list, head);
2574
2575                 /* for zero length DATA stages, STATUS is always IN */
2576                 if (len == 0)
2577                         token |= (1 /* "in" */ << 8);
2578         }
2579
2580         /*
2581          * data transfer stage:  buffer setup
2582          */
2583         i = urb->num_mapped_sgs;
2584         if (len > 0 && i > 0) {
2585                 sg = urb->sg;
2586                 buf = sg_dma_address(sg);
2587
2588                 /* urb->transfer_buffer_length may be smaller than the
2589                  * size of the scatterlist (or vice versa)
2590                  */
2591                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2592         } else {
2593                 sg = NULL;
2594                 buf = urb->transfer_dma;
2595                 this_sg_len = len;
2596         }
2597
2598         if (is_input)
2599                 token |= (1 /* "in" */ << 8);
2600         /* else it's already initted to "out" pid (0 << 8) */
2601
2602         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2603
2604         /*
2605          * buffer gets wrapped in one or more qtds;
2606          * last one may be "short" (including zero len)
2607          * and may serve as a control status ack
2608          */
2609         for (;;) {
2610                 int this_qtd_len;
2611
2612                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2613                                 maxpacket);
2614                 this_sg_len -= this_qtd_len;
2615                 len -= this_qtd_len;
2616                 buf += this_qtd_len;
2617
2618                 /*
2619                  * short reads advance to a "magic" dummy instead of the next
2620                  * qtd ... that forces the queue to stop, for manual cleanup.
2621                  * (this will usually be overridden later.)
2622                  */
2623                 if (is_input)
2624                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2625
2626                 /* qh makes control packets use qtd toggle; maybe switch it */
2627                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2628                         token ^= QTD_TOGGLE;
2629
2630                 if (likely(this_sg_len <= 0)) {
2631                         if (--i <= 0 || len <= 0)
2632                                 break;
2633                         sg = sg_next(sg);
2634                         buf = sg_dma_address(sg);
2635                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2636                 }
2637
2638                 qtd_prev = qtd;
2639                 qtd = fotg210_qtd_alloc(fotg210, flags);
2640                 if (unlikely(!qtd))
2641                         goto cleanup;
2642                 qtd->urb = urb;
2643                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2644                 list_add_tail(&qtd->qtd_list, head);
2645         }
2646
2647         /*
2648          * unless the caller requires manual cleanup after short reads,
2649          * have the alt_next mechanism keep the queue running after the
2650          * last data qtd (the only one, for control and most other cases).
2651          */
2652         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2653                         usb_pipecontrol(urb->pipe)))
2654                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2655
2656         /*
2657          * control requests may need a terminating data "status" ack;
2658          * other OUT ones may need a terminating short packet
2659          * (zero length).
2660          */
2661         if (likely(urb->transfer_buffer_length != 0)) {
2662                 int one_more = 0;
2663
2664                 if (usb_pipecontrol(urb->pipe)) {
2665                         one_more = 1;
2666                         token ^= 0x0100;        /* "in" <--> "out"  */
2667                         token |= QTD_TOGGLE;    /* force DATA1 */
2668                 } else if (usb_pipeout(urb->pipe)
2669                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2670                                 && !(urb->transfer_buffer_length % maxpacket)) {
2671                         one_more = 1;
2672                 }
2673                 if (one_more) {
2674                         qtd_prev = qtd;
2675                         qtd = fotg210_qtd_alloc(fotg210, flags);
2676                         if (unlikely(!qtd))
2677                                 goto cleanup;
2678                         qtd->urb = urb;
2679                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2680                         list_add_tail(&qtd->qtd_list, head);
2681
2682                         /* never any data in such packets */
2683                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2684                 }
2685         }
2686
2687         /* by default, enable interrupt on urb completion */
2688         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2689                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2690         return head;
2691
2692 cleanup:
2693         qtd_list_free(fotg210, urb, head);
2694         return NULL;
2695 }
2696
2697 /* Would be best to create all qh's from config descriptors,
2698  * when each interface/altsetting is established.  Unlink
2699  * any previous qh and cancel its urbs first; endpoints are
2700  * implicitly reset then (data toggle too).
2701  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2702  */
2703
2704
2705 /* Each QH holds a qtd list; a QH is used for everything except iso.
2706  *
2707  * For interrupt urbs, the scheduler must set the microframe scheduling
2708  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2709  * just one microframe in the s-mask.  For split interrupt transactions
2710  * there are additional complications: c-mask, maybe FSTNs.
2711  */
2712 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2713                 gfp_t flags)
2714 {
2715         struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2716         u32 info1 = 0, info2 = 0;
2717         int is_input, type;
2718         int maxp = 0;
2719         struct usb_tt *tt = urb->dev->tt;
2720         struct fotg210_qh_hw *hw;
2721
2722         if (!qh)
2723                 return qh;
2724
2725         /*
2726          * init endpoint/device data for this QH
2727          */
2728         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2729         info1 |= usb_pipedevice(urb->pipe) << 0;
2730
2731         is_input = usb_pipein(urb->pipe);
2732         type = usb_pipetype(urb->pipe);
2733         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2734
2735         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2736          * acts like up to 3KB, but is built from smaller packets.
2737          */
2738         if (max_packet(maxp) > 1024) {
2739                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2740                                 max_packet(maxp));
2741                 goto done;
2742         }
2743
2744         /* Compute interrupt scheduling parameters just once, and save.
2745          * - allowing for high bandwidth, how many nsec/uframe are used?
2746          * - split transactions need a second CSPLIT uframe; same question
2747          * - splits also need a schedule gap (for full/low speed I/O)
2748          * - qh has a polling interval
2749          *
2750          * For control/bulk requests, the HC or TT handles these.
2751          */
2752         if (type == PIPE_INTERRUPT) {
2753                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2754                                 is_input, 0,
2755                                 hb_mult(maxp) * max_packet(maxp)));
2756                 qh->start = NO_FRAME;
2757
2758                 if (urb->dev->speed == USB_SPEED_HIGH) {
2759                         qh->c_usecs = 0;
2760                         qh->gap_uf = 0;
2761
2762                         qh->period = urb->interval >> 3;
2763                         if (qh->period == 0 && urb->interval != 1) {
2764                                 /* NOTE interval 2 or 4 uframes could work.
2765                                  * But interval 1 scheduling is simpler, and
2766                                  * includes high bandwidth.
2767                                  */
2768                                 urb->interval = 1;
2769                         } else if (qh->period > fotg210->periodic_size) {
2770                                 qh->period = fotg210->periodic_size;
2771                                 urb->interval = qh->period << 3;
2772                         }
2773                 } else {
2774                         int think_time;
2775
2776                         /* gap is f(FS/LS transfer times) */
2777                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2778                                         is_input, 0, maxp) / (125 * 1000);
2779
2780                         /* FIXME this just approximates SPLIT/CSPLIT times */
2781                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2782                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2783                                 qh->usecs = HS_USECS(1);
2784                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2785                                 qh->usecs += HS_USECS(1);
2786                                 qh->c_usecs = HS_USECS(0);
2787                         }
2788
2789                         think_time = tt ? tt->think_time : 0;
2790                         qh->tt_usecs = NS_TO_US(think_time +
2791                                         usb_calc_bus_time(urb->dev->speed,
2792                                         is_input, 0, max_packet(maxp)));
2793                         qh->period = urb->interval;
2794                         if (qh->period > fotg210->periodic_size) {
2795                                 qh->period = fotg210->periodic_size;
2796                                 urb->interval = qh->period;
2797                         }
2798                 }
2799         }
2800
2801         /* support for tt scheduling, and access to toggles */
2802         qh->dev = urb->dev;
2803
2804         /* using TT? */
2805         switch (urb->dev->speed) {
2806         case USB_SPEED_LOW:
2807                 info1 |= QH_LOW_SPEED;
2808                 fallthrough;
2809
2810         case USB_SPEED_FULL:
2811                 /* EPS 0 means "full" */
2812                 if (type != PIPE_INTERRUPT)
2813                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2814                 if (type == PIPE_CONTROL) {
2815                         info1 |= QH_CONTROL_EP;         /* for TT */
2816                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2817                 }
2818                 info1 |= maxp << 16;
2819
2820                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2821
2822                 /* Some Freescale processors have an erratum in which the
2823                  * port number in the queue head was 0..N-1 instead of 1..N.
2824                  */
2825                 if (fotg210_has_fsl_portno_bug(fotg210))
2826                         info2 |= (urb->dev->ttport-1) << 23;
2827                 else
2828                         info2 |= urb->dev->ttport << 23;
2829
2830                 /* set the address of the TT; for TDI's integrated
2831                  * root hub tt, leave it zeroed.
2832                  */
2833                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2834                         info2 |= tt->hub->devnum << 16;
2835
2836                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2837
2838                 break;
2839
2840         case USB_SPEED_HIGH:            /* no TT involved */
2841                 info1 |= QH_HIGH_SPEED;
2842                 if (type == PIPE_CONTROL) {
2843                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2844                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2845                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2846                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2847                 } else if (type == PIPE_BULK) {
2848                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2849                         /* The USB spec says that high speed bulk endpoints
2850                          * always use 512 byte maxpacket.  But some device
2851                          * vendors decided to ignore that, and MSFT is happy
2852                          * to help them do so.  So now people expect to use
2853                          * such nonconformant devices with Linux too; sigh.
2854                          */
2855                         info1 |= max_packet(maxp) << 16;
2856                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2857                 } else {                /* PIPE_INTERRUPT */
2858                         info1 |= max_packet(maxp) << 16;
2859                         info2 |= hb_mult(maxp) << 30;
2860                 }
2861                 break;
2862         default:
2863                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2864                                 urb->dev->speed);
2865 done:
2866                 qh_destroy(fotg210, qh);
2867                 return NULL;
2868         }
2869
2870         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2871
2872         /* init as live, toggle clear, advance to dummy */
2873         qh->qh_state = QH_STATE_IDLE;
2874         hw = qh->hw;
2875         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2876         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2877         qh->is_out = !is_input;
2878         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2879         qh_refresh(fotg210, qh);
2880         return qh;
2881 }
2882
2883 static void enable_async(struct fotg210_hcd *fotg210)
2884 {
2885         if (fotg210->async_count++)
2886                 return;
2887
2888         /* Stop waiting to turn off the async schedule */
2889         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2890
2891         /* Don't start the schedule until ASS is 0 */
2892         fotg210_poll_ASS(fotg210);
2893         turn_on_io_watchdog(fotg210);
2894 }
2895
2896 static void disable_async(struct fotg210_hcd *fotg210)
2897 {
2898         if (--fotg210->async_count)
2899                 return;
2900
2901         /* The async schedule and async_unlink list are supposed to be empty */
2902         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2903
2904         /* Don't turn off the schedule until ASS is 1 */
2905         fotg210_poll_ASS(fotg210);
2906 }
2907
2908 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2909
2910 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2911 {
2912         __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2913         struct fotg210_qh *head;
2914
2915         /* Don't link a QH if there's a Clear-TT-Buffer pending */
2916         if (unlikely(qh->clearing_tt))
2917                 return;
2918
2919         WARN_ON(qh->qh_state != QH_STATE_IDLE);
2920
2921         /* clear halt and/or toggle; and maybe recover from silicon quirk */
2922         qh_refresh(fotg210, qh);
2923
2924         /* splice right after start */
2925         head = fotg210->async;
2926         qh->qh_next = head->qh_next;
2927         qh->hw->hw_next = head->hw->hw_next;
2928         wmb();
2929
2930         head->qh_next.qh = qh;
2931         head->hw->hw_next = dma;
2932
2933         qh->xacterrs = 0;
2934         qh->qh_state = QH_STATE_LINKED;
2935         /* qtd completions reported later by interrupt */
2936
2937         enable_async(fotg210);
2938 }
2939
2940 /* For control/bulk/interrupt, return QH with these TDs appended.
2941  * Allocates and initializes the QH if necessary.
2942  * Returns null if it can't allocate a QH it needs to.
2943  * If the QH has TDs (urbs) already, that's great.
2944  */
2945 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2946                 struct urb *urb, struct list_head *qtd_list,
2947                 int epnum, void **ptr)
2948 {
2949         struct fotg210_qh *qh = NULL;
2950         __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2951
2952         qh = (struct fotg210_qh *) *ptr;
2953         if (unlikely(qh == NULL)) {
2954                 /* can't sleep here, we have fotg210->lock... */
2955                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2956                 *ptr = qh;
2957         }
2958         if (likely(qh != NULL)) {
2959                 struct fotg210_qtd *qtd;
2960
2961                 if (unlikely(list_empty(qtd_list)))
2962                         qtd = NULL;
2963                 else
2964                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2965                                         qtd_list);
2966
2967                 /* control qh may need patching ... */
2968                 if (unlikely(epnum == 0)) {
2969                         /* usb_reset_device() briefly reverts to address 0 */
2970                         if (usb_pipedevice(urb->pipe) == 0)
2971                                 qh->hw->hw_info1 &= ~qh_addr_mask;
2972                 }
2973
2974                 /* just one way to queue requests: swap with the dummy qtd.
2975                  * only hc or qh_refresh() ever modify the overlay.
2976                  */
2977                 if (likely(qtd != NULL)) {
2978                         struct fotg210_qtd *dummy;
2979                         dma_addr_t dma;
2980                         __hc32 token;
2981
2982                         /* to avoid racing the HC, use the dummy td instead of
2983                          * the first td of our list (becomes new dummy).  both
2984                          * tds stay deactivated until we're done, when the
2985                          * HC is allowed to fetch the old dummy (4.10.2).
2986                          */
2987                         token = qtd->hw_token;
2988                         qtd->hw_token = HALT_BIT(fotg210);
2989
2990                         dummy = qh->dummy;
2991
2992                         dma = dummy->qtd_dma;
2993                         *dummy = *qtd;
2994                         dummy->qtd_dma = dma;
2995
2996                         list_del(&qtd->qtd_list);
2997                         list_add(&dummy->qtd_list, qtd_list);
2998                         list_splice_tail(qtd_list, &qh->qtd_list);
2999
3000                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3001                         qh->dummy = qtd;
3002
3003                         /* hc must see the new dummy at list end */
3004                         dma = qtd->qtd_dma;
3005                         qtd = list_entry(qh->qtd_list.prev,
3006                                         struct fotg210_qtd, qtd_list);
3007                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3008
3009                         /* let the hc process these next qtds */
3010                         wmb();
3011                         dummy->hw_token = token;
3012
3013                         urb->hcpriv = qh;
3014                 }
3015         }
3016         return qh;
3017 }
3018
3019 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3020                 struct list_head *qtd_list, gfp_t mem_flags)
3021 {
3022         int epnum;
3023         unsigned long flags;
3024         struct fotg210_qh *qh = NULL;
3025         int rc;
3026
3027         epnum = urb->ep->desc.bEndpointAddress;
3028
3029 #ifdef FOTG210_URB_TRACE
3030         {
3031                 struct fotg210_qtd *qtd;
3032
3033                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3034                 fotg210_dbg(fotg210,
3035                                 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3036                                 __func__, urb->dev->devpath, urb,
3037                                 epnum & 0x0f, (epnum & USB_DIR_IN)
3038                                         ? "in" : "out",
3039                                 urb->transfer_buffer_length,
3040                                 qtd, urb->ep->hcpriv);
3041         }
3042 #endif
3043
3044         spin_lock_irqsave(&fotg210->lock, flags);
3045         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3046                 rc = -ESHUTDOWN;
3047                 goto done;
3048         }
3049         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3050         if (unlikely(rc))
3051                 goto done;
3052
3053         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3054         if (unlikely(qh == NULL)) {
3055                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3056                 rc = -ENOMEM;
3057                 goto done;
3058         }
3059
3060         /* Control/bulk operations through TTs don't need scheduling,
3061          * the HC and TT handle it when the TT has a buffer ready.
3062          */
3063         if (likely(qh->qh_state == QH_STATE_IDLE))
3064                 qh_link_async(fotg210, qh);
3065 done:
3066         spin_unlock_irqrestore(&fotg210->lock, flags);
3067         if (unlikely(qh == NULL))
3068                 qtd_list_free(fotg210, urb, qtd_list);
3069         return rc;
3070 }
3071
3072 static void single_unlink_async(struct fotg210_hcd *fotg210,
3073                 struct fotg210_qh *qh)
3074 {
3075         struct fotg210_qh *prev;
3076
3077         /* Add to the end of the list of QHs waiting for the next IAAD */
3078         qh->qh_state = QH_STATE_UNLINK;
3079         if (fotg210->async_unlink)
3080                 fotg210->async_unlink_last->unlink_next = qh;
3081         else
3082                 fotg210->async_unlink = qh;
3083         fotg210->async_unlink_last = qh;
3084
3085         /* Unlink it from the schedule */
3086         prev = fotg210->async;
3087         while (prev->qh_next.qh != qh)
3088                 prev = prev->qh_next.qh;
3089
3090         prev->hw->hw_next = qh->hw->hw_next;
3091         prev->qh_next = qh->qh_next;
3092         if (fotg210->qh_scan_next == qh)
3093                 fotg210->qh_scan_next = qh->qh_next.qh;
3094 }
3095
3096 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3097 {
3098         /*
3099          * Do nothing if an IAA cycle is already running or
3100          * if one will be started shortly.
3101          */
3102         if (fotg210->async_iaa || fotg210->async_unlinking)
3103                 return;
3104
3105         /* Do all the waiting QHs at once */
3106         fotg210->async_iaa = fotg210->async_unlink;
3107         fotg210->async_unlink = NULL;
3108
3109         /* If the controller isn't running, we don't have to wait for it */
3110         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3111                 if (!nested)            /* Avoid recursion */
3112                         end_unlink_async(fotg210);
3113
3114         /* Otherwise start a new IAA cycle */
3115         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3116                 /* Make sure the unlinks are all visible to the hardware */
3117                 wmb();
3118
3119                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3120                                 &fotg210->regs->command);
3121                 fotg210_readl(fotg210, &fotg210->regs->command);
3122                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3123                                 true);
3124         }
3125 }
3126
3127 /* the async qh for the qtds being unlinked are now gone from the HC */
3128
3129 static void end_unlink_async(struct fotg210_hcd *fotg210)
3130 {
3131         struct fotg210_qh *qh;
3132
3133         /* Process the idle QHs */
3134 restart:
3135         fotg210->async_unlinking = true;
3136         while (fotg210->async_iaa) {
3137                 qh = fotg210->async_iaa;
3138                 fotg210->async_iaa = qh->unlink_next;
3139                 qh->unlink_next = NULL;
3140
3141                 qh->qh_state = QH_STATE_IDLE;
3142                 qh->qh_next.qh = NULL;
3143
3144                 qh_completions(fotg210, qh);
3145                 if (!list_empty(&qh->qtd_list) &&
3146                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3147                         qh_link_async(fotg210, qh);
3148                 disable_async(fotg210);
3149         }
3150         fotg210->async_unlinking = false;
3151
3152         /* Start a new IAA cycle if any QHs are waiting for it */
3153         if (fotg210->async_unlink) {
3154                 start_iaa_cycle(fotg210, true);
3155                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3156                         goto restart;
3157         }
3158 }
3159
3160 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3161 {
3162         struct fotg210_qh *qh, *next;
3163         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3164         bool check_unlinks_later = false;
3165
3166         /* Unlink all the async QHs that have been empty for a timer cycle */
3167         next = fotg210->async->qh_next.qh;
3168         while (next) {
3169                 qh = next;
3170                 next = qh->qh_next.qh;
3171
3172                 if (list_empty(&qh->qtd_list) &&
3173                                 qh->qh_state == QH_STATE_LINKED) {
3174                         if (!stopped && qh->unlink_cycle ==
3175                                         fotg210->async_unlink_cycle)
3176                                 check_unlinks_later = true;
3177                         else
3178                                 single_unlink_async(fotg210, qh);
3179                 }
3180         }
3181
3182         /* Start a new IAA cycle if any QHs are waiting for it */
3183         if (fotg210->async_unlink)
3184                 start_iaa_cycle(fotg210, false);
3185
3186         /* QHs that haven't been empty for long enough will be handled later */
3187         if (check_unlinks_later) {
3188                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3189                                 true);
3190                 ++fotg210->async_unlink_cycle;
3191         }
3192 }
3193
3194 /* makes sure the async qh will become idle */
3195 /* caller must own fotg210->lock */
3196
3197 static void start_unlink_async(struct fotg210_hcd *fotg210,
3198                 struct fotg210_qh *qh)
3199 {
3200         /*
3201          * If the QH isn't linked then there's nothing we can do
3202          * unless we were called during a giveback, in which case
3203          * qh_completions() has to deal with it.
3204          */
3205         if (qh->qh_state != QH_STATE_LINKED) {
3206                 if (qh->qh_state == QH_STATE_COMPLETING)
3207                         qh->needs_rescan = 1;
3208                 return;
3209         }
3210
3211         single_unlink_async(fotg210, qh);
3212         start_iaa_cycle(fotg210, false);
3213 }
3214
3215 static void scan_async(struct fotg210_hcd *fotg210)
3216 {
3217         struct fotg210_qh *qh;
3218         bool check_unlinks_later = false;
3219
3220         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3221         while (fotg210->qh_scan_next) {
3222                 qh = fotg210->qh_scan_next;
3223                 fotg210->qh_scan_next = qh->qh_next.qh;
3224 rescan:
3225                 /* clean any finished work for this qh */
3226                 if (!list_empty(&qh->qtd_list)) {
3227                         int temp;
3228
3229                         /*
3230                          * Unlinks could happen here; completion reporting
3231                          * drops the lock.  That's why fotg210->qh_scan_next
3232                          * always holds the next qh to scan; if the next qh
3233                          * gets unlinked then fotg210->qh_scan_next is adjusted
3234                          * in single_unlink_async().
3235                          */
3236                         temp = qh_completions(fotg210, qh);
3237                         if (qh->needs_rescan) {
3238                                 start_unlink_async(fotg210, qh);
3239                         } else if (list_empty(&qh->qtd_list)
3240                                         && qh->qh_state == QH_STATE_LINKED) {
3241                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3242                                 check_unlinks_later = true;
3243                         } else if (temp != 0)
3244                                 goto rescan;
3245                 }
3246         }
3247
3248         /*
3249          * Unlink empty entries, reducing DMA usage as well
3250          * as HCD schedule-scanning costs.  Delay for any qh
3251          * we just scanned, there's a not-unusual case that it
3252          * doesn't stay idle for long.
3253          */
3254         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3255                         !(fotg210->enabled_hrtimer_events &
3256                         BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3257                 fotg210_enable_event(fotg210,
3258                                 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3259                 ++fotg210->async_unlink_cycle;
3260         }
3261 }
3262 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3263  * These are called "periodic" transactions in the EHCI spec.
3264  *
3265  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3266  * with the "asynchronous" transaction support (control/bulk transfers).
3267  * The only real difference is in how interrupt transfers are scheduled.
3268  *
3269  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3270  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3271  * pre-calculated schedule data to make appending to the queue be quick.
3272  */
3273 static int fotg210_get_frame(struct usb_hcd *hcd);
3274
3275 /* periodic_next_shadow - return "next" pointer on shadow list
3276  * @periodic: host pointer to qh/itd
3277  * @tag: hardware tag for type of this record
3278  */
3279 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3280                 union fotg210_shadow *periodic, __hc32 tag)
3281 {
3282         switch (hc32_to_cpu(fotg210, tag)) {
3283         case Q_TYPE_QH:
3284                 return &periodic->qh->qh_next;
3285         case Q_TYPE_FSTN:
3286                 return &periodic->fstn->fstn_next;
3287         default:
3288                 return &periodic->itd->itd_next;
3289         }
3290 }
3291
3292 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3293                 union fotg210_shadow *periodic, __hc32 tag)
3294 {
3295         switch (hc32_to_cpu(fotg210, tag)) {
3296         /* our fotg210_shadow.qh is actually software part */
3297         case Q_TYPE_QH:
3298                 return &periodic->qh->hw->hw_next;
3299         /* others are hw parts */
3300         default:
3301                 return periodic->hw_next;
3302         }
3303 }
3304
3305 /* caller must hold fotg210->lock */
3306 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3307                 void *ptr)
3308 {
3309         union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3310         __hc32 *hw_p = &fotg210->periodic[frame];
3311         union fotg210_shadow here = *prev_p;
3312
3313         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3314         while (here.ptr && here.ptr != ptr) {
3315                 prev_p = periodic_next_shadow(fotg210, prev_p,
3316                                 Q_NEXT_TYPE(fotg210, *hw_p));
3317                 hw_p = shadow_next_periodic(fotg210, &here,
3318                                 Q_NEXT_TYPE(fotg210, *hw_p));
3319                 here = *prev_p;
3320         }
3321         /* an interrupt entry (at list end) could have been shared */
3322         if (!here.ptr)
3323                 return;
3324
3325         /* update shadow and hardware lists ... the old "next" pointers
3326          * from ptr may still be in use, the caller updates them.
3327          */
3328         *prev_p = *periodic_next_shadow(fotg210, &here,
3329                         Q_NEXT_TYPE(fotg210, *hw_p));
3330
3331         *hw_p = *shadow_next_periodic(fotg210, &here,
3332                         Q_NEXT_TYPE(fotg210, *hw_p));
3333 }
3334
3335 /* how many of the uframe's 125 usecs are allocated? */
3336 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3337                 unsigned frame, unsigned uframe)
3338 {
3339         __hc32 *hw_p = &fotg210->periodic[frame];
3340         union fotg210_shadow *q = &fotg210->pshadow[frame];
3341         unsigned usecs = 0;
3342         struct fotg210_qh_hw *hw;
3343
3344         while (q->ptr) {
3345                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3346                 case Q_TYPE_QH:
3347                         hw = q->qh->hw;
3348                         /* is it in the S-mask? */
3349                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3350                                 usecs += q->qh->usecs;
3351                         /* ... or C-mask? */
3352                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3353                                         1 << (8 + uframe)))
3354                                 usecs += q->qh->c_usecs;
3355                         hw_p = &hw->hw_next;
3356                         q = &q->qh->qh_next;
3357                         break;
3358                 /* case Q_TYPE_FSTN: */
3359                 default:
3360                         /* for "save place" FSTNs, count the relevant INTR
3361                          * bandwidth from the previous frame
3362                          */
3363                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3364                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3365
3366                         hw_p = &q->fstn->hw_next;
3367                         q = &q->fstn->fstn_next;
3368                         break;
3369                 case Q_TYPE_ITD:
3370                         if (q->itd->hw_transaction[uframe])
3371                                 usecs += q->itd->stream->usecs;
3372                         hw_p = &q->itd->hw_next;
3373                         q = &q->itd->itd_next;
3374                         break;
3375                 }
3376         }
3377         if (usecs > fotg210->uframe_periodic_max)
3378                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3379                                 frame * 8 + uframe, usecs);
3380         return usecs;
3381 }
3382
3383 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3384 {
3385         if (!dev1->tt || !dev2->tt)
3386                 return 0;
3387         if (dev1->tt != dev2->tt)
3388                 return 0;
3389         if (dev1->tt->multi)
3390                 return dev1->ttport == dev2->ttport;
3391         else
3392                 return 1;
3393 }
3394
3395 /* return true iff the device's transaction translator is available
3396  * for a periodic transfer starting at the specified frame, using
3397  * all the uframes in the mask.
3398  */
3399 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3400                 struct usb_device *dev, unsigned frame, u32 uf_mask)
3401 {
3402         if (period == 0)        /* error */
3403                 return 0;
3404
3405         /* note bandwidth wastage:  split never follows csplit
3406          * (different dev or endpoint) until the next uframe.
3407          * calling convention doesn't make that distinction.
3408          */
3409         for (; frame < fotg210->periodic_size; frame += period) {
3410                 union fotg210_shadow here;
3411                 __hc32 type;
3412                 struct fotg210_qh_hw *hw;
3413
3414                 here = fotg210->pshadow[frame];
3415                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3416                 while (here.ptr) {
3417                         switch (hc32_to_cpu(fotg210, type)) {
3418                         case Q_TYPE_ITD:
3419                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3420                                 here = here.itd->itd_next;
3421                                 continue;
3422                         case Q_TYPE_QH:
3423                                 hw = here.qh->hw;
3424                                 if (same_tt(dev, here.qh->dev)) {
3425                                         u32 mask;
3426
3427                                         mask = hc32_to_cpu(fotg210,
3428                                                         hw->hw_info2);
3429                                         /* "knows" no gap is needed */
3430                                         mask |= mask >> 8;
3431                                         if (mask & uf_mask)
3432                                                 break;
3433                                 }
3434                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3435                                 here = here.qh->qh_next;
3436                                 continue;
3437                         /* case Q_TYPE_FSTN: */
3438                         default:
3439                                 fotg210_dbg(fotg210,
3440                                                 "periodic frame %d bogus type %d\n",
3441                                                 frame, type);
3442                         }
3443
3444                         /* collision or error */
3445                         return 0;
3446                 }
3447         }
3448
3449         /* no collision */
3450         return 1;
3451 }
3452
3453 static void enable_periodic(struct fotg210_hcd *fotg210)
3454 {
3455         if (fotg210->periodic_count++)
3456                 return;
3457
3458         /* Stop waiting to turn off the periodic schedule */
3459         fotg210->enabled_hrtimer_events &=
3460                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3461
3462         /* Don't start the schedule until PSS is 0 */
3463         fotg210_poll_PSS(fotg210);
3464         turn_on_io_watchdog(fotg210);
3465 }
3466
3467 static void disable_periodic(struct fotg210_hcd *fotg210)
3468 {
3469         if (--fotg210->periodic_count)
3470                 return;
3471
3472         /* Don't turn off the schedule until PSS is 1 */
3473         fotg210_poll_PSS(fotg210);
3474 }
3475
3476 /* periodic schedule slots have iso tds (normal or split) first, then a
3477  * sparse tree for active interrupt transfers.
3478  *
3479  * this just links in a qh; caller guarantees uframe masks are set right.
3480  * no FSTN support (yet; fotg210 0.96+)
3481  */
3482 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3483 {
3484         unsigned i;
3485         unsigned period = qh->period;
3486
3487         dev_dbg(&qh->dev->dev,
3488                         "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3489                         hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3490                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3491                         qh->c_usecs);
3492
3493         /* high bandwidth, or otherwise every microframe */
3494         if (period == 0)
3495                 period = 1;
3496
3497         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3498                 union fotg210_shadow *prev = &fotg210->pshadow[i];
3499                 __hc32 *hw_p = &fotg210->periodic[i];
3500                 union fotg210_shadow here = *prev;
3501                 __hc32 type = 0;
3502
3503                 /* skip the iso nodes at list head */
3504                 while (here.ptr) {
3505                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3506                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3507                                 break;
3508                         prev = periodic_next_shadow(fotg210, prev, type);
3509                         hw_p = shadow_next_periodic(fotg210, &here, type);
3510                         here = *prev;
3511                 }
3512
3513                 /* sorting each branch by period (slow-->fast)
3514                  * enables sharing interior tree nodes
3515                  */
3516                 while (here.ptr && qh != here.qh) {
3517                         if (qh->period > here.qh->period)
3518                                 break;
3519                         prev = &here.qh->qh_next;
3520                         hw_p = &here.qh->hw->hw_next;
3521                         here = *prev;
3522                 }
3523                 /* link in this qh, unless some earlier pass did that */
3524                 if (qh != here.qh) {
3525                         qh->qh_next = here;
3526                         if (here.qh)
3527                                 qh->hw->hw_next = *hw_p;
3528                         wmb();
3529                         prev->qh = qh;
3530                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3531                 }
3532         }
3533         qh->qh_state = QH_STATE_LINKED;
3534         qh->xacterrs = 0;
3535
3536         /* update per-qh bandwidth for usbfs */
3537         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3538                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3539                 : (qh->usecs * 8);
3540
3541         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3542
3543         /* maybe enable periodic schedule processing */
3544         ++fotg210->intr_count;
3545         enable_periodic(fotg210);
3546 }
3547
3548 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3549                 struct fotg210_qh *qh)
3550 {
3551         unsigned i;
3552         unsigned period;
3553
3554         /*
3555          * If qh is for a low/full-speed device, simply unlinking it
3556          * could interfere with an ongoing split transaction.  To unlink
3557          * it safely would require setting the QH_INACTIVATE bit and
3558          * waiting at least one frame, as described in EHCI 4.12.2.5.
3559          *
3560          * We won't bother with any of this.  Instead, we assume that the
3561          * only reason for unlinking an interrupt QH while the current URB
3562          * is still active is to dequeue all the URBs (flush the whole
3563          * endpoint queue).
3564          *
3565          * If rebalancing the periodic schedule is ever implemented, this
3566          * approach will no longer be valid.
3567          */
3568
3569         /* high bandwidth, or otherwise part of every microframe */
3570         period = qh->period;
3571         if (!period)
3572                 period = 1;
3573
3574         for (i = qh->start; i < fotg210->periodic_size; i += period)
3575                 periodic_unlink(fotg210, i, qh);
3576
3577         /* update per-qh bandwidth for usbfs */
3578         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3579                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3580                 : (qh->usecs * 8);
3581
3582         dev_dbg(&qh->dev->dev,
3583                         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3584                         qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3585                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3586                         qh->c_usecs);
3587
3588         /* qh->qh_next still "live" to HC */
3589         qh->qh_state = QH_STATE_UNLINK;
3590         qh->qh_next.ptr = NULL;
3591
3592         if (fotg210->qh_scan_next == qh)
3593                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3594                                 struct fotg210_qh, intr_node);
3595         list_del(&qh->intr_node);
3596 }
3597
3598 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3599                 struct fotg210_qh *qh)
3600 {
3601         /* If the QH isn't linked then there's nothing we can do
3602          * unless we were called during a giveback, in which case
3603          * qh_completions() has to deal with it.
3604          */
3605         if (qh->qh_state != QH_STATE_LINKED) {
3606                 if (qh->qh_state == QH_STATE_COMPLETING)
3607                         qh->needs_rescan = 1;
3608                 return;
3609         }
3610
3611         qh_unlink_periodic(fotg210, qh);
3612
3613         /* Make sure the unlinks are visible before starting the timer */
3614         wmb();
3615
3616         /*
3617          * The EHCI spec doesn't say how long it takes the controller to
3618          * stop accessing an unlinked interrupt QH.  The timer delay is
3619          * 9 uframes; presumably that will be long enough.
3620          */
3621         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3622
3623         /* New entries go at the end of the intr_unlink list */
3624         if (fotg210->intr_unlink)
3625                 fotg210->intr_unlink_last->unlink_next = qh;
3626         else
3627                 fotg210->intr_unlink = qh;
3628         fotg210->intr_unlink_last = qh;
3629
3630         if (fotg210->intr_unlinking)
3631                 ;       /* Avoid recursive calls */
3632         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3633                 fotg210_handle_intr_unlinks(fotg210);
3634         else if (fotg210->intr_unlink == qh) {
3635                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3636                                 true);
3637                 ++fotg210->intr_unlink_cycle;
3638         }
3639 }
3640
3641 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3642 {
3643         struct fotg210_qh_hw *hw = qh->hw;
3644         int rc;
3645
3646         qh->qh_state = QH_STATE_IDLE;
3647         hw->hw_next = FOTG210_LIST_END(fotg210);
3648
3649         qh_completions(fotg210, qh);
3650
3651         /* reschedule QH iff another request is queued */
3652         if (!list_empty(&qh->qtd_list) &&
3653                         fotg210->rh_state == FOTG210_RH_RUNNING) {
3654                 rc = qh_schedule(fotg210, qh);
3655
3656                 /* An error here likely indicates handshake failure
3657                  * or no space left in the schedule.  Neither fault
3658                  * should happen often ...
3659                  *
3660                  * FIXME kill the now-dysfunctional queued urbs
3661                  */
3662                 if (rc != 0)
3663                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3664                                         qh, rc);
3665         }
3666
3667         /* maybe turn off periodic schedule */
3668         --fotg210->intr_count;
3669         disable_periodic(fotg210);
3670 }
3671
3672 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3673                 unsigned uframe, unsigned period, unsigned usecs)
3674 {
3675         int claimed;
3676
3677         /* complete split running into next frame?
3678          * given FSTN support, we could sometimes check...
3679          */
3680         if (uframe >= 8)
3681                 return 0;
3682
3683         /* convert "usecs we need" to "max already claimed" */
3684         usecs = fotg210->uframe_periodic_max - usecs;
3685
3686         /* we "know" 2 and 4 uframe intervals were rejected; so
3687          * for period 0, check _every_ microframe in the schedule.
3688          */
3689         if (unlikely(period == 0)) {
3690                 do {
3691                         for (uframe = 0; uframe < 7; uframe++) {
3692                                 claimed = periodic_usecs(fotg210, frame,
3693                                                 uframe);
3694                                 if (claimed > usecs)
3695                                         return 0;
3696                         }
3697                 } while ((frame += 1) < fotg210->periodic_size);
3698
3699         /* just check the specified uframe, at that period */
3700         } else {
3701                 do {
3702                         claimed = periodic_usecs(fotg210, frame, uframe);
3703                         if (claimed > usecs)
3704                                 return 0;
3705                 } while ((frame += period) < fotg210->periodic_size);
3706         }
3707
3708         /* success! */
3709         return 1;
3710 }
3711
3712 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3713                 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3714 {
3715         int retval = -ENOSPC;
3716         u8 mask = 0;
3717
3718         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3719                 goto done;
3720
3721         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3722                 goto done;
3723         if (!qh->c_usecs) {
3724                 retval = 0;
3725                 *c_maskp = 0;
3726                 goto done;
3727         }
3728
3729         /* Make sure this tt's buffer is also available for CSPLITs.
3730          * We pessimize a bit; probably the typical full speed case
3731          * doesn't need the second CSPLIT.
3732          *
3733          * NOTE:  both SPLIT and CSPLIT could be checked in just
3734          * one smart pass...
3735          */
3736         mask = 0x03 << (uframe + qh->gap_uf);
3737         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3738
3739         mask |= 1 << uframe;
3740         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3741                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3742                                 qh->period, qh->c_usecs))
3743                         goto done;
3744                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3745                                 qh->period, qh->c_usecs))
3746                         goto done;
3747                 retval = 0;
3748         }
3749 done:
3750         return retval;
3751 }
3752
3753 /* "first fit" scheduling policy used the first time through,
3754  * or when the previous schedule slot can't be re-used.
3755  */
3756 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3757 {
3758         int status;
3759         unsigned uframe;
3760         __hc32 c_mask;
3761         unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3762         struct fotg210_qh_hw *hw = qh->hw;
3763
3764         qh_refresh(fotg210, qh);
3765         hw->hw_next = FOTG210_LIST_END(fotg210);
3766         frame = qh->start;
3767
3768         /* reuse the previous schedule slots, if we can */
3769         if (frame < qh->period) {
3770                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3771                 status = check_intr_schedule(fotg210, frame, --uframe,
3772                                 qh, &c_mask);
3773         } else {
3774                 uframe = 0;
3775                 c_mask = 0;
3776                 status = -ENOSPC;
3777         }
3778
3779         /* else scan the schedule to find a group of slots such that all
3780          * uframes have enough periodic bandwidth available.
3781          */
3782         if (status) {
3783                 /* "normal" case, uframing flexible except with splits */
3784                 if (qh->period) {
3785                         int i;
3786
3787                         for (i = qh->period; status && i > 0; --i) {
3788                                 frame = ++fotg210->random_frame % qh->period;
3789                                 for (uframe = 0; uframe < 8; uframe++) {
3790                                         status = check_intr_schedule(fotg210,
3791                                                         frame, uframe, qh,
3792                                                         &c_mask);
3793                                         if (status == 0)
3794                                                 break;
3795                                 }
3796                         }
3797
3798                 /* qh->period == 0 means every uframe */
3799                 } else {
3800                         frame = 0;
3801                         status = check_intr_schedule(fotg210, 0, 0, qh,
3802                                         &c_mask);
3803                 }
3804                 if (status)
3805                         goto done;
3806                 qh->start = frame;
3807
3808                 /* reset S-frame and (maybe) C-frame masks */
3809                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3810                 hw->hw_info2 |= qh->period
3811                         ? cpu_to_hc32(fotg210, 1 << uframe)
3812                         : cpu_to_hc32(fotg210, QH_SMASK);
3813                 hw->hw_info2 |= c_mask;
3814         } else
3815                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3816
3817         /* stuff into the periodic schedule */
3818         qh_link_periodic(fotg210, qh);
3819 done:
3820         return status;
3821 }
3822
3823 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3824                 struct list_head *qtd_list, gfp_t mem_flags)
3825 {
3826         unsigned epnum;
3827         unsigned long flags;
3828         struct fotg210_qh *qh;
3829         int status;
3830         struct list_head empty;
3831
3832         /* get endpoint and transfer/schedule data */
3833         epnum = urb->ep->desc.bEndpointAddress;
3834
3835         spin_lock_irqsave(&fotg210->lock, flags);
3836
3837         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3838                 status = -ESHUTDOWN;
3839                 goto done_not_linked;
3840         }
3841         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3842         if (unlikely(status))
3843                 goto done_not_linked;
3844
3845         /* get qh and force any scheduling errors */
3846         INIT_LIST_HEAD(&empty);
3847         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3848         if (qh == NULL) {
3849                 status = -ENOMEM;
3850                 goto done;
3851         }
3852         if (qh->qh_state == QH_STATE_IDLE) {
3853                 status = qh_schedule(fotg210, qh);
3854                 if (status)
3855                         goto done;
3856         }
3857
3858         /* then queue the urb's tds to the qh */
3859         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3860         BUG_ON(qh == NULL);
3861
3862         /* ... update usbfs periodic stats */
3863         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3864
3865 done:
3866         if (unlikely(status))
3867                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3868 done_not_linked:
3869         spin_unlock_irqrestore(&fotg210->lock, flags);
3870         if (status)
3871                 qtd_list_free(fotg210, urb, qtd_list);
3872
3873         return status;
3874 }
3875
3876 static void scan_intr(struct fotg210_hcd *fotg210)
3877 {
3878         struct fotg210_qh *qh;
3879
3880         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3881                         &fotg210->intr_qh_list, intr_node) {
3882 rescan:
3883                 /* clean any finished work for this qh */
3884                 if (!list_empty(&qh->qtd_list)) {
3885                         int temp;
3886
3887                         /*
3888                          * Unlinks could happen here; completion reporting
3889                          * drops the lock.  That's why fotg210->qh_scan_next
3890                          * always holds the next qh to scan; if the next qh
3891                          * gets unlinked then fotg210->qh_scan_next is adjusted
3892                          * in qh_unlink_periodic().
3893                          */
3894                         temp = qh_completions(fotg210, qh);
3895                         if (unlikely(qh->needs_rescan ||
3896                                         (list_empty(&qh->qtd_list) &&
3897                                         qh->qh_state == QH_STATE_LINKED)))
3898                                 start_unlink_intr(fotg210, qh);
3899                         else if (temp != 0)
3900                                 goto rescan;
3901                 }
3902         }
3903 }
3904
3905 /* fotg210_iso_stream ops work with both ITD and SITD */
3906
3907 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3908 {
3909         struct fotg210_iso_stream *stream;
3910
3911         stream = kzalloc(sizeof(*stream), mem_flags);
3912         if (likely(stream != NULL)) {
3913                 INIT_LIST_HEAD(&stream->td_list);
3914                 INIT_LIST_HEAD(&stream->free_list);
3915                 stream->next_uframe = -1;
3916         }
3917         return stream;
3918 }
3919
3920 static void iso_stream_init(struct fotg210_hcd *fotg210,
3921                 struct fotg210_iso_stream *stream, struct usb_device *dev,
3922                 int pipe, unsigned interval)
3923 {
3924         u32 buf1;
3925         unsigned epnum, maxp;
3926         int is_input;
3927         long bandwidth;
3928         unsigned multi;
3929
3930         /*
3931          * this might be a "high bandwidth" highspeed endpoint,
3932          * as encoded in the ep descriptor's wMaxPacket field
3933          */
3934         epnum = usb_pipeendpoint(pipe);
3935         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3936         maxp = usb_maxpacket(dev, pipe, !is_input);
3937         if (is_input)
3938                 buf1 = (1 << 11);
3939         else
3940                 buf1 = 0;
3941
3942         maxp = max_packet(maxp);
3943         multi = hb_mult(maxp);
3944         buf1 |= maxp;
3945         maxp *= multi;
3946
3947         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3948         stream->buf1 = cpu_to_hc32(fotg210, buf1);
3949         stream->buf2 = cpu_to_hc32(fotg210, multi);
3950
3951         /* usbfs wants to report the average usecs per frame tied up
3952          * when transfers on this endpoint are scheduled ...
3953          */
3954         if (dev->speed == USB_SPEED_FULL) {
3955                 interval <<= 3;
3956                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3957                                 is_input, 1, maxp));
3958                 stream->usecs /= 8;
3959         } else {
3960                 stream->highspeed = 1;
3961                 stream->usecs = HS_USECS_ISO(maxp);
3962         }
3963         bandwidth = stream->usecs * 8;
3964         bandwidth /= interval;
3965
3966         stream->bandwidth = bandwidth;
3967         stream->udev = dev;
3968         stream->bEndpointAddress = is_input | epnum;
3969         stream->interval = interval;
3970         stream->maxp = maxp;
3971 }
3972
3973 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3974                 struct urb *urb)
3975 {
3976         unsigned epnum;
3977         struct fotg210_iso_stream *stream;
3978         struct usb_host_endpoint *ep;
3979         unsigned long flags;
3980
3981         epnum = usb_pipeendpoint(urb->pipe);
3982         if (usb_pipein(urb->pipe))
3983                 ep = urb->dev->ep_in[epnum];
3984         else
3985                 ep = urb->dev->ep_out[epnum];
3986
3987         spin_lock_irqsave(&fotg210->lock, flags);
3988         stream = ep->hcpriv;
3989
3990         if (unlikely(stream == NULL)) {
3991                 stream = iso_stream_alloc(GFP_ATOMIC);
3992                 if (likely(stream != NULL)) {
3993                         ep->hcpriv = stream;
3994                         stream->ep = ep;
3995                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3996                                         urb->interval);
3997                 }
3998
3999         /* if dev->ep[epnum] is a QH, hw is set */
4000         } else if (unlikely(stream->hw != NULL)) {
4001                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4002                                 urb->dev->devpath, epnum,
4003                                 usb_pipein(urb->pipe) ? "in" : "out");
4004                 stream = NULL;
4005         }
4006
4007         spin_unlock_irqrestore(&fotg210->lock, flags);
4008         return stream;
4009 }
4010
4011 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4012
4013 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4014                 gfp_t mem_flags)
4015 {
4016         struct fotg210_iso_sched *iso_sched;
4017         int size = sizeof(*iso_sched);
4018
4019         size += packets * sizeof(struct fotg210_iso_packet);
4020         iso_sched = kzalloc(size, mem_flags);
4021         if (likely(iso_sched != NULL))
4022                 INIT_LIST_HEAD(&iso_sched->td_list);
4023
4024         return iso_sched;
4025 }
4026
4027 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4028                 struct fotg210_iso_sched *iso_sched,
4029                 struct fotg210_iso_stream *stream, struct urb *urb)
4030 {
4031         unsigned i;
4032         dma_addr_t dma = urb->transfer_dma;
4033
4034         /* how many uframes are needed for these transfers */
4035         iso_sched->span = urb->number_of_packets * stream->interval;
4036
4037         /* figure out per-uframe itd fields that we'll need later
4038          * when we fit new itds into the schedule.
4039          */
4040         for (i = 0; i < urb->number_of_packets; i++) {
4041                 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4042                 unsigned length;
4043                 dma_addr_t buf;
4044                 u32 trans;
4045
4046                 length = urb->iso_frame_desc[i].length;
4047                 buf = dma + urb->iso_frame_desc[i].offset;
4048
4049                 trans = FOTG210_ISOC_ACTIVE;
4050                 trans |= buf & 0x0fff;
4051                 if (unlikely(((i + 1) == urb->number_of_packets))
4052                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4053                         trans |= FOTG210_ITD_IOC;
4054                 trans |= length << 16;
4055                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4056
4057                 /* might need to cross a buffer page within a uframe */
4058                 uframe->bufp = (buf & ~(u64)0x0fff);
4059                 buf += length;
4060                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4061                         uframe->cross = 1;
4062         }
4063 }
4064
4065 static void iso_sched_free(struct fotg210_iso_stream *stream,
4066                 struct fotg210_iso_sched *iso_sched)
4067 {
4068         if (!iso_sched)
4069                 return;
4070         /* caller must hold fotg210->lock!*/
4071         list_splice(&iso_sched->td_list, &stream->free_list);
4072         kfree(iso_sched);
4073 }
4074
4075 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4076                 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4077 {
4078         struct fotg210_itd *itd;
4079         dma_addr_t itd_dma;
4080         int i;
4081         unsigned num_itds;
4082         struct fotg210_iso_sched *sched;
4083         unsigned long flags;
4084
4085         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4086         if (unlikely(sched == NULL))
4087                 return -ENOMEM;
4088
4089         itd_sched_init(fotg210, sched, stream, urb);
4090
4091         if (urb->interval < 8)
4092                 num_itds = 1 + (sched->span + 7) / 8;
4093         else
4094                 num_itds = urb->number_of_packets;
4095
4096         /* allocate/init ITDs */
4097         spin_lock_irqsave(&fotg210->lock, flags);
4098         for (i = 0; i < num_itds; i++) {
4099
4100                 /*
4101                  * Use iTDs from the free list, but not iTDs that may
4102                  * still be in use by the hardware.
4103                  */
4104                 if (likely(!list_empty(&stream->free_list))) {
4105                         itd = list_first_entry(&stream->free_list,
4106                                         struct fotg210_itd, itd_list);
4107                         if (itd->frame == fotg210->now_frame)
4108                                 goto alloc_itd;
4109                         list_del(&itd->itd_list);
4110                         itd_dma = itd->itd_dma;
4111                 } else {
4112 alloc_itd:
4113                         spin_unlock_irqrestore(&fotg210->lock, flags);
4114                         itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4115                                         &itd_dma);
4116                         spin_lock_irqsave(&fotg210->lock, flags);
4117                         if (!itd) {
4118                                 iso_sched_free(stream, sched);
4119                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4120                                 return -ENOMEM;
4121                         }
4122                 }
4123
4124                 itd->itd_dma = itd_dma;
4125                 list_add(&itd->itd_list, &sched->td_list);
4126         }
4127         spin_unlock_irqrestore(&fotg210->lock, flags);
4128
4129         /* temporarily store schedule info in hcpriv */
4130         urb->hcpriv = sched;
4131         urb->error_count = 0;
4132         return 0;
4133 }
4134
4135 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4136                 u8 usecs, u32 period)
4137 {
4138         uframe %= period;
4139         do {
4140                 /* can't commit more than uframe_periodic_max usec */
4141                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4142                                 > (fotg210->uframe_periodic_max - usecs))
4143                         return 0;
4144
4145                 /* we know urb->interval is 2^N uframes */
4146                 uframe += period;
4147         } while (uframe < mod);
4148         return 1;
4149 }
4150
4151 /* This scheduler plans almost as far into the future as it has actual
4152  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4153  * "as small as possible" to be cache-friendlier.)  That limits the size
4154  * transfers you can stream reliably; avoid more than 64 msec per urb.
4155  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4156  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4157  * and other factors); or more than about 230 msec total (for portability,
4158  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4159  */
4160
4161 #define SCHEDULE_SLOP 80 /* microframes */
4162
4163 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4164                 struct fotg210_iso_stream *stream)
4165 {
4166         u32 now, next, start, period, span;
4167         int status;
4168         unsigned mod = fotg210->periodic_size << 3;
4169         struct fotg210_iso_sched *sched = urb->hcpriv;
4170
4171         period = urb->interval;
4172         span = sched->span;
4173
4174         if (span > mod - SCHEDULE_SLOP) {
4175                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4176                 status = -EFBIG;
4177                 goto fail;
4178         }
4179
4180         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4181
4182         /* Typical case: reuse current schedule, stream is still active.
4183          * Hopefully there are no gaps from the host falling behind
4184          * (irq delays etc), but if there are we'll take the next
4185          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4186          */
4187         if (likely(!list_empty(&stream->td_list))) {
4188                 u32 excess;
4189
4190                 /* For high speed devices, allow scheduling within the
4191                  * isochronous scheduling threshold.  For full speed devices
4192                  * and Intel PCI-based controllers, don't (work around for
4193                  * Intel ICH9 bug).
4194                  */
4195                 if (!stream->highspeed && fotg210->fs_i_thresh)
4196                         next = now + fotg210->i_thresh;
4197                 else
4198                         next = now;
4199
4200                 /* Fell behind (by up to twice the slop amount)?
4201                  * We decide based on the time of the last currently-scheduled
4202                  * slot, not the time of the next available slot.
4203                  */
4204                 excess = (stream->next_uframe - period - next) & (mod - 1);
4205                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4206                         start = next + excess - mod + period *
4207                                         DIV_ROUND_UP(mod - excess, period);
4208                 else
4209                         start = next + excess + period;
4210                 if (start - now >= mod) {
4211                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4212                                         urb, start - now - period, period,
4213                                         mod);
4214                         status = -EFBIG;
4215                         goto fail;
4216                 }
4217         }
4218
4219         /* need to schedule; when's the next (u)frame we could start?
4220          * this is bigger than fotg210->i_thresh allows; scheduling itself
4221          * isn't free, the slop should handle reasonably slow cpus.  it
4222          * can also help high bandwidth if the dma and irq loads don't
4223          * jump until after the queue is primed.
4224          */
4225         else {
4226                 int done = 0;
4227
4228                 start = SCHEDULE_SLOP + (now & ~0x07);
4229
4230                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4231
4232                 /* find a uframe slot with enough bandwidth.
4233                  * Early uframes are more precious because full-speed
4234                  * iso IN transfers can't use late uframes,
4235                  * and therefore they should be allocated last.
4236                  */
4237                 next = start;
4238                 start += period;
4239                 do {
4240                         start--;
4241                         /* check schedule: enough space? */
4242                         if (itd_slot_ok(fotg210, mod, start,
4243                                         stream->usecs, period))
4244                                 done = 1;
4245                 } while (start > next && !done);
4246
4247                 /* no room in the schedule */
4248                 if (!done) {
4249                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4250                                         urb, now, now + mod);
4251                         status = -ENOSPC;
4252                         goto fail;
4253                 }
4254         }
4255
4256         /* Tried to schedule too far into the future? */
4257         if (unlikely(start - now + span - period >=
4258                         mod - 2 * SCHEDULE_SLOP)) {
4259                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4260                                 urb, start - now, span - period,
4261                                 mod - 2 * SCHEDULE_SLOP);
4262                 status = -EFBIG;
4263                 goto fail;
4264         }
4265
4266         stream->next_uframe = start & (mod - 1);
4267
4268         /* report high speed start in uframes; full speed, in frames */
4269         urb->start_frame = stream->next_uframe;
4270         if (!stream->highspeed)
4271                 urb->start_frame >>= 3;
4272
4273         /* Make sure scan_isoc() sees these */
4274         if (fotg210->isoc_count == 0)
4275                 fotg210->next_frame = now >> 3;
4276         return 0;
4277
4278 fail:
4279         iso_sched_free(stream, sched);
4280         urb->hcpriv = NULL;
4281         return status;
4282 }
4283
4284 static inline void itd_init(struct fotg210_hcd *fotg210,
4285                 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4286 {
4287         int i;
4288
4289         /* it's been recently zeroed */
4290         itd->hw_next = FOTG210_LIST_END(fotg210);
4291         itd->hw_bufp[0] = stream->buf0;
4292         itd->hw_bufp[1] = stream->buf1;
4293         itd->hw_bufp[2] = stream->buf2;
4294
4295         for (i = 0; i < 8; i++)
4296                 itd->index[i] = -1;
4297
4298         /* All other fields are filled when scheduling */
4299 }
4300
4301 static inline void itd_patch(struct fotg210_hcd *fotg210,
4302                 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4303                 unsigned index, u16 uframe)
4304 {
4305         struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4306         unsigned pg = itd->pg;
4307
4308         uframe &= 0x07;
4309         itd->index[uframe] = index;
4310
4311         itd->hw_transaction[uframe] = uf->transaction;
4312         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4313         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4314         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4315
4316         /* iso_frame_desc[].offset must be strictly increasing */
4317         if (unlikely(uf->cross)) {
4318                 u64 bufp = uf->bufp + 4096;
4319
4320                 itd->pg = ++pg;
4321                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4322                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4323         }
4324 }
4325
4326 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4327                 struct fotg210_itd *itd)
4328 {
4329         union fotg210_shadow *prev = &fotg210->pshadow[frame];
4330         __hc32 *hw_p = &fotg210->periodic[frame];
4331         union fotg210_shadow here = *prev;
4332         __hc32 type = 0;
4333
4334         /* skip any iso nodes which might belong to previous microframes */
4335         while (here.ptr) {
4336                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4337                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4338                         break;
4339                 prev = periodic_next_shadow(fotg210, prev, type);
4340                 hw_p = shadow_next_periodic(fotg210, &here, type);
4341                 here = *prev;
4342         }
4343
4344         itd->itd_next = here;
4345         itd->hw_next = *hw_p;
4346         prev->itd = itd;
4347         itd->frame = frame;
4348         wmb();
4349         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4350 }
4351
4352 /* fit urb's itds into the selected schedule slot; activate as needed */
4353 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4354                 unsigned mod, struct fotg210_iso_stream *stream)
4355 {
4356         int packet;
4357         unsigned next_uframe, uframe, frame;
4358         struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4359         struct fotg210_itd *itd;
4360
4361         next_uframe = stream->next_uframe & (mod - 1);
4362
4363         if (unlikely(list_empty(&stream->td_list))) {
4364                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4365                                 += stream->bandwidth;
4366                 fotg210_dbg(fotg210,
4367                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4368                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4369                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4370                         urb->interval,
4371                         next_uframe >> 3, next_uframe & 0x7);
4372         }
4373
4374         /* fill iTDs uframe by uframe */
4375         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4376                 if (itd == NULL) {
4377                         /* ASSERT:  we have all necessary itds */
4378
4379                         /* ASSERT:  no itds for this endpoint in this uframe */
4380
4381                         itd = list_entry(iso_sched->td_list.next,
4382                                         struct fotg210_itd, itd_list);
4383                         list_move_tail(&itd->itd_list, &stream->td_list);
4384                         itd->stream = stream;
4385                         itd->urb = urb;
4386                         itd_init(fotg210, stream, itd);
4387                 }
4388
4389                 uframe = next_uframe & 0x07;
4390                 frame = next_uframe >> 3;
4391
4392                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4393
4394                 next_uframe += stream->interval;
4395                 next_uframe &= mod - 1;
4396                 packet++;
4397
4398                 /* link completed itds into the schedule */
4399                 if (((next_uframe >> 3) != frame)
4400                                 || packet == urb->number_of_packets) {
4401                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4402                                         itd);
4403                         itd = NULL;
4404                 }
4405         }
4406         stream->next_uframe = next_uframe;
4407
4408         /* don't need that schedule data any more */
4409         iso_sched_free(stream, iso_sched);
4410         urb->hcpriv = NULL;
4411
4412         ++fotg210->isoc_count;
4413         enable_periodic(fotg210);
4414 }
4415
4416 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4417                 FOTG210_ISOC_XACTERR)
4418
4419 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4420  * and hence its completion callback probably added things to the hardware
4421  * schedule.
4422  *
4423  * Note that we carefully avoid recycling this descriptor until after any
4424  * completion callback runs, so that it won't be reused quickly.  That is,
4425  * assuming (a) no more than two urbs per frame on this endpoint, and also
4426  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4427  * corrupts things if you reuse completed descriptors very quickly...
4428  */
4429 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4430 {
4431         struct urb *urb = itd->urb;
4432         struct usb_iso_packet_descriptor *desc;
4433         u32 t;
4434         unsigned uframe;
4435         int urb_index = -1;
4436         struct fotg210_iso_stream *stream = itd->stream;
4437         struct usb_device *dev;
4438         bool retval = false;
4439
4440         /* for each uframe with a packet */
4441         for (uframe = 0; uframe < 8; uframe++) {
4442                 if (likely(itd->index[uframe] == -1))
4443                         continue;
4444                 urb_index = itd->index[uframe];
4445                 desc = &urb->iso_frame_desc[urb_index];
4446
4447                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4448                 itd->hw_transaction[uframe] = 0;
4449
4450                 /* report transfer status */
4451                 if (unlikely(t & ISO_ERRS)) {
4452                         urb->error_count++;
4453                         if (t & FOTG210_ISOC_BUF_ERR)
4454                                 desc->status = usb_pipein(urb->pipe)
4455                                         ? -ENOSR  /* hc couldn't read */
4456                                         : -ECOMM; /* hc couldn't write */
4457                         else if (t & FOTG210_ISOC_BABBLE)
4458                                 desc->status = -EOVERFLOW;
4459                         else /* (t & FOTG210_ISOC_XACTERR) */
4460                                 desc->status = -EPROTO;
4461
4462                         /* HC need not update length with this error */
4463                         if (!(t & FOTG210_ISOC_BABBLE)) {
4464                                 desc->actual_length =
4465                                         fotg210_itdlen(urb, desc, t);
4466                                 urb->actual_length += desc->actual_length;
4467                         }
4468                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4469                         desc->status = 0;
4470                         desc->actual_length = fotg210_itdlen(urb, desc, t);
4471                         urb->actual_length += desc->actual_length;
4472                 } else {
4473                         /* URB was too late */
4474                         desc->status = -EXDEV;
4475                 }
4476         }
4477
4478         /* handle completion now? */
4479         if (likely((urb_index + 1) != urb->number_of_packets))
4480                 goto done;
4481
4482         /* ASSERT: it's really the last itd for this urb
4483          * list_for_each_entry (itd, &stream->td_list, itd_list)
4484          *      BUG_ON (itd->urb == urb);
4485          */
4486
4487         /* give urb back to the driver; completion often (re)submits */
4488         dev = urb->dev;
4489         fotg210_urb_done(fotg210, urb, 0);
4490         retval = true;
4491         urb = NULL;
4492
4493         --fotg210->isoc_count;
4494         disable_periodic(fotg210);
4495
4496         if (unlikely(list_is_singular(&stream->td_list))) {
4497                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4498                                 -= stream->bandwidth;
4499                 fotg210_dbg(fotg210,
4500                         "deschedule devp %s ep%d%s-iso\n",
4501                         dev->devpath, stream->bEndpointAddress & 0x0f,
4502                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4503         }
4504
4505 done:
4506         itd->urb = NULL;
4507
4508         /* Add to the end of the free list for later reuse */
4509         list_move_tail(&itd->itd_list, &stream->free_list);
4510
4511         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4512         if (list_empty(&stream->td_list)) {
4513                 list_splice_tail_init(&stream->free_list,
4514                                 &fotg210->cached_itd_list);
4515                 start_free_itds(fotg210);
4516         }
4517
4518         return retval;
4519 }
4520
4521 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4522                 gfp_t mem_flags)
4523 {
4524         int status = -EINVAL;
4525         unsigned long flags;
4526         struct fotg210_iso_stream *stream;
4527
4528         /* Get iso_stream head */
4529         stream = iso_stream_find(fotg210, urb);
4530         if (unlikely(stream == NULL)) {
4531                 fotg210_dbg(fotg210, "can't get iso stream\n");
4532                 return -ENOMEM;
4533         }
4534         if (unlikely(urb->interval != stream->interval &&
4535                         fotg210_port_speed(fotg210, 0) ==
4536                         USB_PORT_STAT_HIGH_SPEED)) {
4537                 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4538                                 stream->interval, urb->interval);
4539                 goto done;
4540         }
4541
4542 #ifdef FOTG210_URB_TRACE
4543         fotg210_dbg(fotg210,
4544                         "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4545                         __func__, urb->dev->devpath, urb,
4546                         usb_pipeendpoint(urb->pipe),
4547                         usb_pipein(urb->pipe) ? "in" : "out",
4548                         urb->transfer_buffer_length,
4549                         urb->number_of_packets, urb->interval,
4550                         stream);
4551 #endif
4552
4553         /* allocate ITDs w/o locking anything */
4554         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4555         if (unlikely(status < 0)) {
4556                 fotg210_dbg(fotg210, "can't init itds\n");
4557                 goto done;
4558         }
4559
4560         /* schedule ... need to lock */
4561         spin_lock_irqsave(&fotg210->lock, flags);
4562         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4563                 status = -ESHUTDOWN;
4564                 goto done_not_linked;
4565         }
4566         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4567         if (unlikely(status))
4568                 goto done_not_linked;
4569         status = iso_stream_schedule(fotg210, urb, stream);
4570         if (likely(status == 0))
4571                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4572         else
4573                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4574 done_not_linked:
4575         spin_unlock_irqrestore(&fotg210->lock, flags);
4576 done:
4577         return status;
4578 }
4579
4580 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4581                 unsigned now_frame, bool live)
4582 {
4583         unsigned uf;
4584         bool modified;
4585         union fotg210_shadow q, *q_p;
4586         __hc32 type, *hw_p;
4587
4588         /* scan each element in frame's queue for completions */
4589         q_p = &fotg210->pshadow[frame];
4590         hw_p = &fotg210->periodic[frame];
4591         q.ptr = q_p->ptr;
4592         type = Q_NEXT_TYPE(fotg210, *hw_p);
4593         modified = false;
4594
4595         while (q.ptr) {
4596                 switch (hc32_to_cpu(fotg210, type)) {
4597                 case Q_TYPE_ITD:
4598                         /* If this ITD is still active, leave it for
4599                          * later processing ... check the next entry.
4600                          * No need to check for activity unless the
4601                          * frame is current.
4602                          */
4603                         if (frame == now_frame && live) {
4604                                 rmb();
4605                                 for (uf = 0; uf < 8; uf++) {
4606                                         if (q.itd->hw_transaction[uf] &
4607                                                         ITD_ACTIVE(fotg210))
4608                                                 break;
4609                                 }
4610                                 if (uf < 8) {
4611                                         q_p = &q.itd->itd_next;
4612                                         hw_p = &q.itd->hw_next;
4613                                         type = Q_NEXT_TYPE(fotg210,
4614                                                         q.itd->hw_next);
4615                                         q = *q_p;
4616                                         break;
4617                                 }
4618                         }
4619
4620                         /* Take finished ITDs out of the schedule
4621                          * and process them:  recycle, maybe report
4622                          * URB completion.  HC won't cache the
4623                          * pointer for much longer, if at all.
4624                          */
4625                         *q_p = q.itd->itd_next;
4626                         *hw_p = q.itd->hw_next;
4627                         type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4628                         wmb();
4629                         modified = itd_complete(fotg210, q.itd);
4630                         q = *q_p;
4631                         break;
4632                 default:
4633                         fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4634                                         type, frame, q.ptr);
4635                         fallthrough;
4636                 case Q_TYPE_QH:
4637                 case Q_TYPE_FSTN:
4638                         /* End of the iTDs and siTDs */
4639                         q.ptr = NULL;
4640                         break;
4641                 }
4642
4643                 /* assume completion callbacks modify the queue */
4644                 if (unlikely(modified && fotg210->isoc_count > 0))
4645                         return -EINVAL;
4646         }
4647         return 0;
4648 }
4649
4650 static void scan_isoc(struct fotg210_hcd *fotg210)
4651 {
4652         unsigned uf, now_frame, frame, ret;
4653         unsigned fmask = fotg210->periodic_size - 1;
4654         bool live;
4655
4656         /*
4657          * When running, scan from last scan point up to "now"
4658          * else clean up by scanning everything that's left.
4659          * Touches as few pages as possible:  cache-friendly.
4660          */
4661         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4662                 uf = fotg210_read_frame_index(fotg210);
4663                 now_frame = (uf >> 3) & fmask;
4664                 live = true;
4665         } else  {
4666                 now_frame = (fotg210->next_frame - 1) & fmask;
4667                 live = false;
4668         }
4669         fotg210->now_frame = now_frame;
4670
4671         frame = fotg210->next_frame;
4672         for (;;) {
4673                 ret = 1;
4674                 while (ret != 0)
4675                         ret = scan_frame_queue(fotg210, frame,
4676                                         now_frame, live);
4677
4678                 /* Stop when we have reached the current frame */
4679                 if (frame == now_frame)
4680                         break;
4681                 frame = (frame + 1) & fmask;
4682         }
4683         fotg210->next_frame = now_frame;
4684 }
4685
4686 /* Display / Set uframe_periodic_max
4687  */
4688 static ssize_t uframe_periodic_max_show(struct device *dev,
4689                 struct device_attribute *attr, char *buf)
4690 {
4691         struct fotg210_hcd *fotg210;
4692         int n;
4693
4694         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4695         n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4696         return n;
4697 }
4698
4699
4700 static ssize_t uframe_periodic_max_store(struct device *dev,
4701                 struct device_attribute *attr, const char *buf, size_t count)
4702 {
4703         struct fotg210_hcd *fotg210;
4704         unsigned uframe_periodic_max;
4705         unsigned frame, uframe;
4706         unsigned short allocated_max;
4707         unsigned long flags;
4708         ssize_t ret;
4709
4710         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4711         if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4712                 return -EINVAL;
4713
4714         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4715                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4716                                 uframe_periodic_max);
4717                 return -EINVAL;
4718         }
4719
4720         ret = -EINVAL;
4721
4722         /*
4723          * lock, so that our checking does not race with possible periodic
4724          * bandwidth allocation through submitting new urbs.
4725          */
4726         spin_lock_irqsave(&fotg210->lock, flags);
4727
4728         /*
4729          * for request to decrease max periodic bandwidth, we have to check
4730          * every microframe in the schedule to see whether the decrease is
4731          * possible.
4732          */
4733         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4734                 allocated_max = 0;
4735
4736                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4737                         for (uframe = 0; uframe < 7; ++uframe)
4738                                 allocated_max = max(allocated_max,
4739                                                 periodic_usecs(fotg210, frame,
4740                                                 uframe));
4741
4742                 if (allocated_max > uframe_periodic_max) {
4743                         fotg210_info(fotg210,
4744                                         "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4745                                         allocated_max, uframe_periodic_max);
4746                         goto out_unlock;
4747                 }
4748         }
4749
4750         /* increasing is always ok */
4751
4752         fotg210_info(fotg210,
4753                         "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4754                         100 * uframe_periodic_max/125, uframe_periodic_max);
4755
4756         if (uframe_periodic_max != 100)
4757                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4758
4759         fotg210->uframe_periodic_max = uframe_periodic_max;
4760         ret = count;
4761
4762 out_unlock:
4763         spin_unlock_irqrestore(&fotg210->lock, flags);
4764         return ret;
4765 }
4766
4767 static DEVICE_ATTR_RW(uframe_periodic_max);
4768
4769 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4770 {
4771         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4772
4773         return device_create_file(controller, &dev_attr_uframe_periodic_max);
4774 }
4775
4776 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4777 {
4778         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4779
4780         device_remove_file(controller, &dev_attr_uframe_periodic_max);
4781 }
4782 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4783  * The firmware seems to think that powering off is a wakeup event!
4784  * This routine turns off remote wakeup and everything else, on all ports.
4785  */
4786 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4787 {
4788         u32 __iomem *status_reg = &fotg210->regs->port_status;
4789
4790         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4791 }
4792
4793 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4794  * Must be called with interrupts enabled and the lock not held.
4795  */
4796 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4797 {
4798         fotg210_halt(fotg210);
4799
4800         spin_lock_irq(&fotg210->lock);
4801         fotg210->rh_state = FOTG210_RH_HALTED;
4802         fotg210_turn_off_all_ports(fotg210);
4803         spin_unlock_irq(&fotg210->lock);
4804 }
4805
4806 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4807  * This forcibly disables dma and IRQs, helping kexec and other cases
4808  * where the next system software may expect clean state.
4809  */
4810 static void fotg210_shutdown(struct usb_hcd *hcd)
4811 {
4812         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4813
4814         spin_lock_irq(&fotg210->lock);
4815         fotg210->shutdown = true;
4816         fotg210->rh_state = FOTG210_RH_STOPPING;
4817         fotg210->enabled_hrtimer_events = 0;
4818         spin_unlock_irq(&fotg210->lock);
4819
4820         fotg210_silence_controller(fotg210);
4821
4822         hrtimer_cancel(&fotg210->hrtimer);
4823 }
4824
4825 /* fotg210_work is called from some interrupts, timers, and so on.
4826  * it calls driver completion functions, after dropping fotg210->lock.
4827  */
4828 static void fotg210_work(struct fotg210_hcd *fotg210)
4829 {
4830         /* another CPU may drop fotg210->lock during a schedule scan while
4831          * it reports urb completions.  this flag guards against bogus
4832          * attempts at re-entrant schedule scanning.
4833          */
4834         if (fotg210->scanning) {
4835                 fotg210->need_rescan = true;
4836                 return;
4837         }
4838         fotg210->scanning = true;
4839
4840 rescan:
4841         fotg210->need_rescan = false;
4842         if (fotg210->async_count)
4843                 scan_async(fotg210);
4844         if (fotg210->intr_count > 0)
4845                 scan_intr(fotg210);
4846         if (fotg210->isoc_count > 0)
4847                 scan_isoc(fotg210);
4848         if (fotg210->need_rescan)
4849                 goto rescan;
4850         fotg210->scanning = false;
4851
4852         /* the IO watchdog guards against hardware or driver bugs that
4853          * misplace IRQs, and should let us run completely without IRQs.
4854          * such lossage has been observed on both VT6202 and VT8235.
4855          */
4856         turn_on_io_watchdog(fotg210);
4857 }
4858
4859 /* Called when the fotg210_hcd module is removed.
4860  */
4861 static void fotg210_stop(struct usb_hcd *hcd)
4862 {
4863         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4864
4865         fotg210_dbg(fotg210, "stop\n");
4866
4867         /* no more interrupts ... */
4868
4869         spin_lock_irq(&fotg210->lock);
4870         fotg210->enabled_hrtimer_events = 0;
4871         spin_unlock_irq(&fotg210->lock);
4872
4873         fotg210_quiesce(fotg210);
4874         fotg210_silence_controller(fotg210);
4875         fotg210_reset(fotg210);
4876
4877         hrtimer_cancel(&fotg210->hrtimer);
4878         remove_sysfs_files(fotg210);
4879         remove_debug_files(fotg210);
4880
4881         /* root hub is shut down separately (first, when possible) */
4882         spin_lock_irq(&fotg210->lock);
4883         end_free_itds(fotg210);
4884         spin_unlock_irq(&fotg210->lock);
4885         fotg210_mem_cleanup(fotg210);
4886
4887 #ifdef FOTG210_STATS
4888         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4889                         fotg210->stats.normal, fotg210->stats.error,
4890                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
4891         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4892                         fotg210->stats.complete, fotg210->stats.unlink);
4893 #endif
4894
4895         dbg_status(fotg210, "fotg210_stop completed",
4896                         fotg210_readl(fotg210, &fotg210->regs->status));
4897 }
4898
4899 /* one-time init, only for memory state */
4900 static int hcd_fotg210_init(struct usb_hcd *hcd)
4901 {
4902         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4903         u32 temp;
4904         int retval;
4905         u32 hcc_params;
4906         struct fotg210_qh_hw *hw;
4907
4908         spin_lock_init(&fotg210->lock);
4909
4910         /*
4911          * keep io watchdog by default, those good HCDs could turn off it later
4912          */
4913         fotg210->need_io_watchdog = 1;
4914
4915         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4916         fotg210->hrtimer.function = fotg210_hrtimer_func;
4917         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4918
4919         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4920
4921         /*
4922          * by default set standard 80% (== 100 usec/uframe) max periodic
4923          * bandwidth as required by USB 2.0
4924          */
4925         fotg210->uframe_periodic_max = 100;
4926
4927         /*
4928          * hw default: 1K periodic list heads, one per frame.
4929          * periodic_size can shrink by USBCMD update if hcc_params allows.
4930          */
4931         fotg210->periodic_size = DEFAULT_I_TDPS;
4932         INIT_LIST_HEAD(&fotg210->intr_qh_list);
4933         INIT_LIST_HEAD(&fotg210->cached_itd_list);
4934
4935         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4936                 /* periodic schedule size can be smaller than default */
4937                 switch (FOTG210_TUNE_FLS) {
4938                 case 0:
4939                         fotg210->periodic_size = 1024;
4940                         break;
4941                 case 1:
4942                         fotg210->periodic_size = 512;
4943                         break;
4944                 case 2:
4945                         fotg210->periodic_size = 256;
4946                         break;
4947                 default:
4948                         BUG();
4949                 }
4950         }
4951         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4952         if (retval < 0)
4953                 return retval;
4954
4955         /* controllers may cache some of the periodic schedule ... */
4956         fotg210->i_thresh = 2;
4957
4958         /*
4959          * dedicate a qh for the async ring head, since we couldn't unlink
4960          * a 'real' qh without stopping the async schedule [4.8].  use it
4961          * as the 'reclamation list head' too.
4962          * its dummy is used in hw_alt_next of many tds, to prevent the qh
4963          * from automatically advancing to the next td after short reads.
4964          */
4965         fotg210->async->qh_next.qh = NULL;
4966         hw = fotg210->async->hw;
4967         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4968         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4969         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4970         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4971         fotg210->async->qh_state = QH_STATE_LINKED;
4972         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4973
4974         /* clear interrupt enables, set irq latency */
4975         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4976                 log2_irq_thresh = 0;
4977         temp = 1 << (16 + log2_irq_thresh);
4978         if (HCC_CANPARK(hcc_params)) {
4979                 /* HW default park == 3, on hardware that supports it (like
4980                  * NVidia and ALI silicon), maximizes throughput on the async
4981                  * schedule by avoiding QH fetches between transfers.
4982                  *
4983                  * With fast usb storage devices and NForce2, "park" seems to
4984                  * make problems:  throughput reduction (!), data errors...
4985                  */
4986                 if (park) {
4987                         park = min_t(unsigned, park, 3);
4988                         temp |= CMD_PARK;
4989                         temp |= park << 8;
4990                 }
4991                 fotg210_dbg(fotg210, "park %d\n", park);
4992         }
4993         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4994                 /* periodic schedule size can be smaller than default */
4995                 temp &= ~(3 << 2);
4996                 temp |= (FOTG210_TUNE_FLS << 2);
4997         }
4998         fotg210->command = temp;
4999
5000         /* Accept arbitrarily long scatter-gather lists */
5001         if (!hcd->localmem_pool)
5002                 hcd->self.sg_tablesize = ~0;
5003         return 0;
5004 }
5005
5006 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5007 static int fotg210_run(struct usb_hcd *hcd)
5008 {
5009         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5010         u32 temp;
5011
5012         hcd->uses_new_polling = 1;
5013
5014         /* EHCI spec section 4.1 */
5015
5016         fotg210_writel(fotg210, fotg210->periodic_dma,
5017                         &fotg210->regs->frame_list);
5018         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5019                         &fotg210->regs->async_next);
5020
5021         /*
5022          * hcc_params controls whether fotg210->regs->segment must (!!!)
5023          * be used; it constrains QH/ITD/SITD and QTD locations.
5024          * dma_pool consistent memory always uses segment zero.
5025          * streaming mappings for I/O buffers, like pci_map_single(),
5026          * can return segments above 4GB, if the device allows.
5027          *
5028          * NOTE:  the dma mask is visible through dev->dma_mask, so
5029          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5030          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5031          * host side drivers though.
5032          */
5033         fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5034
5035         /*
5036          * Philips, Intel, and maybe others need CMD_RUN before the
5037          * root hub will detect new devices (why?); NEC doesn't
5038          */
5039         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5040         fotg210->command |= CMD_RUN;
5041         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5042         dbg_cmd(fotg210, "init", fotg210->command);
5043
5044         /*
5045          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5046          * are explicitly handed to companion controller(s), so no TT is
5047          * involved with the root hub.  (Except where one is integrated,
5048          * and there's no companion controller unless maybe for USB OTG.)
5049          *
5050          * Turning on the CF flag will transfer ownership of all ports
5051          * from the companions to the EHCI controller.  If any of the
5052          * companions are in the middle of a port reset at the time, it
5053          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5054          * guarantees that no resets are in progress.  After we set CF,
5055          * a short delay lets the hardware catch up; new resets shouldn't
5056          * be started before the port switching actions could complete.
5057          */
5058         down_write(&ehci_cf_port_reset_rwsem);
5059         fotg210->rh_state = FOTG210_RH_RUNNING;
5060         /* unblock posted writes */
5061         fotg210_readl(fotg210, &fotg210->regs->command);
5062         usleep_range(5000, 10000);
5063         up_write(&ehci_cf_port_reset_rwsem);
5064         fotg210->last_periodic_enable = ktime_get_real();
5065
5066         temp = HC_VERSION(fotg210,
5067                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5068         fotg210_info(fotg210,
5069                         "USB %x.%x started, EHCI %x.%02x\n",
5070                         ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5071                         temp >> 8, temp & 0xff);
5072
5073         fotg210_writel(fotg210, INTR_MASK,
5074                         &fotg210->regs->intr_enable); /* Turn On Interrupts */
5075
5076         /* GRR this is run-once init(), being done every time the HC starts.
5077          * So long as they're part of class devices, we can't do it init()
5078          * since the class device isn't created that early.
5079          */
5080         create_debug_files(fotg210);
5081         create_sysfs_files(fotg210);
5082
5083         return 0;
5084 }
5085
5086 static int fotg210_setup(struct usb_hcd *hcd)
5087 {
5088         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5089         int retval;
5090
5091         fotg210->regs = (void __iomem *)fotg210->caps +
5092                         HC_LENGTH(fotg210,
5093                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5094         dbg_hcs_params(fotg210, "reset");
5095         dbg_hcc_params(fotg210, "reset");
5096
5097         /* cache this readonly data; minimize chip reads */
5098         fotg210->hcs_params = fotg210_readl(fotg210,
5099                         &fotg210->caps->hcs_params);
5100
5101         fotg210->sbrn = HCD_USB2;
5102
5103         /* data structure init */
5104         retval = hcd_fotg210_init(hcd);
5105         if (retval)
5106                 return retval;
5107
5108         retval = fotg210_halt(fotg210);
5109         if (retval)
5110                 return retval;
5111
5112         fotg210_reset(fotg210);
5113
5114         return 0;
5115 }
5116
5117 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5118 {
5119         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5120         u32 status, masked_status, pcd_status = 0, cmd;
5121         int bh;
5122
5123         spin_lock(&fotg210->lock);
5124
5125         status = fotg210_readl(fotg210, &fotg210->regs->status);
5126
5127         /* e.g. cardbus physical eject */
5128         if (status == ~(u32) 0) {
5129                 fotg210_dbg(fotg210, "device removed\n");
5130                 goto dead;
5131         }
5132
5133         /*
5134          * We don't use STS_FLR, but some controllers don't like it to
5135          * remain on, so mask it out along with the other status bits.
5136          */
5137         masked_status = status & (INTR_MASK | STS_FLR);
5138
5139         /* Shared IRQ? */
5140         if (!masked_status ||
5141                         unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5142                 spin_unlock(&fotg210->lock);
5143                 return IRQ_NONE;
5144         }
5145
5146         /* clear (just) interrupts */
5147         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5148         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5149         bh = 0;
5150
5151         /* unrequested/ignored: Frame List Rollover */
5152         dbg_status(fotg210, "irq", status);
5153
5154         /* INT, ERR, and IAA interrupt rates can be throttled */
5155
5156         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5157         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5158                 if (likely((status & STS_ERR) == 0))
5159                         INCR(fotg210->stats.normal);
5160                 else
5161                         INCR(fotg210->stats.error);
5162                 bh = 1;
5163         }
5164
5165         /* complete the unlinking of some qh [4.15.2.3] */
5166         if (status & STS_IAA) {
5167
5168                 /* Turn off the IAA watchdog */
5169                 fotg210->enabled_hrtimer_events &=
5170                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5171
5172                 /*
5173                  * Mild optimization: Allow another IAAD to reset the
5174                  * hrtimer, if one occurs before the next expiration.
5175                  * In theory we could always cancel the hrtimer, but
5176                  * tests show that about half the time it will be reset
5177                  * for some other event anyway.
5178                  */
5179                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5180                         ++fotg210->next_hrtimer_event;
5181
5182                 /* guard against (alleged) silicon errata */
5183                 if (cmd & CMD_IAAD)
5184                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5185                 if (fotg210->async_iaa) {
5186                         INCR(fotg210->stats.iaa);
5187                         end_unlink_async(fotg210);
5188                 } else
5189                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5190         }
5191
5192         /* remote wakeup [4.3.1] */
5193         if (status & STS_PCD) {
5194                 int pstatus;
5195                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5196
5197                 /* kick root hub later */
5198                 pcd_status = status;
5199
5200                 /* resume root hub? */
5201                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5202                         usb_hcd_resume_root_hub(hcd);
5203
5204                 pstatus = fotg210_readl(fotg210, status_reg);
5205
5206                 if (test_bit(0, &fotg210->suspended_ports) &&
5207                                 ((pstatus & PORT_RESUME) ||
5208                                 !(pstatus & PORT_SUSPEND)) &&
5209                                 (pstatus & PORT_PE) &&
5210                                 fotg210->reset_done[0] == 0) {
5211
5212                         /* start 20 msec resume signaling from this port,
5213                          * and make hub_wq collect PORT_STAT_C_SUSPEND to
5214                          * stop that signaling.  Use 5 ms extra for safety,
5215                          * like usb_port_resume() does.
5216                          */
5217                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5218                         set_bit(0, &fotg210->resuming_ports);
5219                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5220                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5221                 }
5222         }
5223
5224         /* PCI errors [4.15.2.4] */
5225         if (unlikely((status & STS_FATAL) != 0)) {
5226                 fotg210_err(fotg210, "fatal error\n");
5227                 dbg_cmd(fotg210, "fatal", cmd);
5228                 dbg_status(fotg210, "fatal", status);
5229 dead:
5230                 usb_hc_died(hcd);
5231
5232                 /* Don't let the controller do anything more */
5233                 fotg210->shutdown = true;
5234                 fotg210->rh_state = FOTG210_RH_STOPPING;
5235                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5236                 fotg210_writel(fotg210, fotg210->command,
5237                                 &fotg210->regs->command);
5238                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5239                 fotg210_handle_controller_death(fotg210);
5240
5241                 /* Handle completions when the controller stops */
5242                 bh = 0;
5243         }
5244
5245         if (bh)
5246                 fotg210_work(fotg210);
5247         spin_unlock(&fotg210->lock);
5248         if (pcd_status)
5249                 usb_hcd_poll_rh_status(hcd);
5250         return IRQ_HANDLED;
5251 }
5252
5253 /* non-error returns are a promise to giveback() the urb later
5254  * we drop ownership so next owner (or urb unlink) can get it
5255  *
5256  * urb + dev is in hcd.self.controller.urb_list
5257  * we're queueing TDs onto software and hardware lists
5258  *
5259  * hcd-specific init for hcpriv hasn't been done yet
5260  *
5261  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5262  * to a (possibly active) QH, and the same QH scanning code.
5263  */
5264 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5265                 gfp_t mem_flags)
5266 {
5267         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5268         struct list_head qtd_list;
5269
5270         INIT_LIST_HEAD(&qtd_list);
5271
5272         switch (usb_pipetype(urb->pipe)) {
5273         case PIPE_CONTROL:
5274                 /* qh_completions() code doesn't handle all the fault cases
5275                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5276                  */
5277                 if (urb->transfer_buffer_length > (16 * 1024))
5278                         return -EMSGSIZE;
5279                 fallthrough;
5280         /* case PIPE_BULK: */
5281         default:
5282                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5283                         return -ENOMEM;
5284                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5285
5286         case PIPE_INTERRUPT:
5287                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5288                         return -ENOMEM;
5289                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5290
5291         case PIPE_ISOCHRONOUS:
5292                 return itd_submit(fotg210, urb, mem_flags);
5293         }
5294 }
5295
5296 /* remove from hardware lists
5297  * completions normally happen asynchronously
5298  */
5299
5300 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5301 {
5302         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5303         struct fotg210_qh *qh;
5304         unsigned long flags;
5305         int rc;
5306
5307         spin_lock_irqsave(&fotg210->lock, flags);
5308         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5309         if (rc)
5310                 goto done;
5311
5312         switch (usb_pipetype(urb->pipe)) {
5313         /* case PIPE_CONTROL: */
5314         /* case PIPE_BULK:*/
5315         default:
5316                 qh = (struct fotg210_qh *) urb->hcpriv;
5317                 if (!qh)
5318                         break;
5319                 switch (qh->qh_state) {
5320                 case QH_STATE_LINKED:
5321                 case QH_STATE_COMPLETING:
5322                         start_unlink_async(fotg210, qh);
5323                         break;
5324                 case QH_STATE_UNLINK:
5325                 case QH_STATE_UNLINK_WAIT:
5326                         /* already started */
5327                         break;
5328                 case QH_STATE_IDLE:
5329                         /* QH might be waiting for a Clear-TT-Buffer */
5330                         qh_completions(fotg210, qh);
5331                         break;
5332                 }
5333                 break;
5334
5335         case PIPE_INTERRUPT:
5336                 qh = (struct fotg210_qh *) urb->hcpriv;
5337                 if (!qh)
5338                         break;
5339                 switch (qh->qh_state) {
5340                 case QH_STATE_LINKED:
5341                 case QH_STATE_COMPLETING:
5342                         start_unlink_intr(fotg210, qh);
5343                         break;
5344                 case QH_STATE_IDLE:
5345                         qh_completions(fotg210, qh);
5346                         break;
5347                 default:
5348                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5349                                         qh, qh->qh_state);
5350                         goto done;
5351                 }
5352                 break;
5353
5354         case PIPE_ISOCHRONOUS:
5355                 /* itd... */
5356
5357                 /* wait till next completion, do it then. */
5358                 /* completion irqs can wait up to 1024 msec, */
5359                 break;
5360         }
5361 done:
5362         spin_unlock_irqrestore(&fotg210->lock, flags);
5363         return rc;
5364 }
5365
5366 /* bulk qh holds the data toggle */
5367
5368 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5369                 struct usb_host_endpoint *ep)
5370 {
5371         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5372         unsigned long flags;
5373         struct fotg210_qh *qh, *tmp;
5374
5375         /* ASSERT:  any requests/urbs are being unlinked */
5376         /* ASSERT:  nobody can be submitting urbs for this any more */
5377
5378 rescan:
5379         spin_lock_irqsave(&fotg210->lock, flags);
5380         qh = ep->hcpriv;
5381         if (!qh)
5382                 goto done;
5383
5384         /* endpoints can be iso streams.  for now, we don't
5385          * accelerate iso completions ... so spin a while.
5386          */
5387         if (qh->hw == NULL) {
5388                 struct fotg210_iso_stream *stream = ep->hcpriv;
5389
5390                 if (!list_empty(&stream->td_list))
5391                         goto idle_timeout;
5392
5393                 /* BUG_ON(!list_empty(&stream->free_list)); */
5394                 kfree(stream);
5395                 goto done;
5396         }
5397
5398         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5399                 qh->qh_state = QH_STATE_IDLE;
5400         switch (qh->qh_state) {
5401         case QH_STATE_LINKED:
5402         case QH_STATE_COMPLETING:
5403                 for (tmp = fotg210->async->qh_next.qh;
5404                                 tmp && tmp != qh;
5405                                 tmp = tmp->qh_next.qh)
5406                         continue;
5407                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5408                  * may already be unlinked.
5409                  */
5410                 if (tmp)
5411                         start_unlink_async(fotg210, qh);
5412                 fallthrough;
5413         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5414         case QH_STATE_UNLINK_WAIT:
5415 idle_timeout:
5416                 spin_unlock_irqrestore(&fotg210->lock, flags);
5417                 schedule_timeout_uninterruptible(1);
5418                 goto rescan;
5419         case QH_STATE_IDLE:             /* fully unlinked */
5420                 if (qh->clearing_tt)
5421                         goto idle_timeout;
5422                 if (list_empty(&qh->qtd_list)) {
5423                         qh_destroy(fotg210, qh);
5424                         break;
5425                 }
5426                 fallthrough;
5427         default:
5428                 /* caller was supposed to have unlinked any requests;
5429                  * that's not our job.  just leak this memory.
5430                  */
5431                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5432                                 qh, ep->desc.bEndpointAddress, qh->qh_state,
5433                                 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5434                 break;
5435         }
5436 done:
5437         ep->hcpriv = NULL;
5438         spin_unlock_irqrestore(&fotg210->lock, flags);
5439 }
5440
5441 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5442                 struct usb_host_endpoint *ep)
5443 {
5444         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5445         struct fotg210_qh *qh;
5446         int eptype = usb_endpoint_type(&ep->desc);
5447         int epnum = usb_endpoint_num(&ep->desc);
5448         int is_out = usb_endpoint_dir_out(&ep->desc);
5449         unsigned long flags;
5450
5451         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5452                 return;
5453
5454         spin_lock_irqsave(&fotg210->lock, flags);
5455         qh = ep->hcpriv;
5456
5457         /* For Bulk and Interrupt endpoints we maintain the toggle state
5458          * in the hardware; the toggle bits in udev aren't used at all.
5459          * When an endpoint is reset by usb_clear_halt() we must reset
5460          * the toggle bit in the QH.
5461          */
5462         if (qh) {
5463                 usb_settoggle(qh->dev, epnum, is_out, 0);
5464                 if (!list_empty(&qh->qtd_list)) {
5465                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5466                 } else if (qh->qh_state == QH_STATE_LINKED ||
5467                                 qh->qh_state == QH_STATE_COMPLETING) {
5468
5469                         /* The toggle value in the QH can't be updated
5470                          * while the QH is active.  Unlink it now;
5471                          * re-linking will call qh_refresh().
5472                          */
5473                         if (eptype == USB_ENDPOINT_XFER_BULK)
5474                                 start_unlink_async(fotg210, qh);
5475                         else
5476                                 start_unlink_intr(fotg210, qh);
5477                 }
5478         }
5479         spin_unlock_irqrestore(&fotg210->lock, flags);
5480 }
5481
5482 static int fotg210_get_frame(struct usb_hcd *hcd)
5483 {
5484         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5485
5486         return (fotg210_read_frame_index(fotg210) >> 3) %
5487                 fotg210->periodic_size;
5488 }
5489
5490 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5491  * because its registers (and irq) are shared between host/gadget/otg
5492  * functions  and in order to facilitate role switching we cannot
5493  * give the fotg210 driver exclusive access to those.
5494  */
5495 MODULE_DESCRIPTION(DRIVER_DESC);
5496 MODULE_AUTHOR(DRIVER_AUTHOR);
5497 MODULE_LICENSE("GPL");
5498
5499 static const struct hc_driver fotg210_fotg210_hc_driver = {
5500         .description            = hcd_name,
5501         .product_desc           = "Faraday USB2.0 Host Controller",
5502         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5503
5504         /*
5505          * generic hardware linkage
5506          */
5507         .irq                    = fotg210_irq,
5508         .flags                  = HCD_MEMORY | HCD_DMA | HCD_USB2,
5509
5510         /*
5511          * basic lifecycle operations
5512          */
5513         .reset                  = hcd_fotg210_init,
5514         .start                  = fotg210_run,
5515         .stop                   = fotg210_stop,
5516         .shutdown               = fotg210_shutdown,
5517
5518         /*
5519          * managing i/o requests and associated device resources
5520          */
5521         .urb_enqueue            = fotg210_urb_enqueue,
5522         .urb_dequeue            = fotg210_urb_dequeue,
5523         .endpoint_disable       = fotg210_endpoint_disable,
5524         .endpoint_reset         = fotg210_endpoint_reset,
5525
5526         /*
5527          * scheduling support
5528          */
5529         .get_frame_number       = fotg210_get_frame,
5530
5531         /*
5532          * root hub support
5533          */
5534         .hub_status_data        = fotg210_hub_status_data,
5535         .hub_control            = fotg210_hub_control,
5536         .bus_suspend            = fotg210_bus_suspend,
5537         .bus_resume             = fotg210_bus_resume,
5538
5539         .relinquish_port        = fotg210_relinquish_port,
5540         .port_handed_over       = fotg210_port_handed_over,
5541
5542         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5543 };
5544
5545 static void fotg210_init(struct fotg210_hcd *fotg210)
5546 {
5547         u32 value;
5548
5549         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5550                         &fotg210->regs->gmir);
5551
5552         value = ioread32(&fotg210->regs->otgcsr);
5553         value &= ~OTGCSR_A_BUS_DROP;
5554         value |= OTGCSR_A_BUS_REQ;
5555         iowrite32(value, &fotg210->regs->otgcsr);
5556 }
5557
5558 /*
5559  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5560  *
5561  * Allocates basic resources for this USB host controller, and
5562  * then invokes the start() method for the HCD associated with it
5563  * through the hotplug entry's driver_data.
5564  */
5565 static int fotg210_hcd_probe(struct platform_device *pdev)
5566 {
5567         struct device *dev = &pdev->dev;
5568         struct usb_hcd *hcd;
5569         struct resource *res;
5570         int irq;
5571         int retval;
5572         struct fotg210_hcd *fotg210;
5573
5574         if (usb_disabled())
5575                 return -ENODEV;
5576
5577         pdev->dev.power.power_state = PMSG_ON;
5578
5579         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5580         if (!res) {
5581                 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5582                                 dev_name(dev));
5583                 return -ENODEV;
5584         }
5585
5586         irq = res->start;
5587
5588         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5589                         dev_name(dev));
5590         if (!hcd) {
5591                 dev_err(dev, "failed to create hcd\n");
5592                 retval = -ENOMEM;
5593                 goto fail_create_hcd;
5594         }
5595
5596         hcd->has_tt = 1;
5597
5598         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5599         hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5600         if (IS_ERR(hcd->regs)) {
5601                 retval = PTR_ERR(hcd->regs);
5602                 goto failed_put_hcd;
5603         }
5604
5605         hcd->rsrc_start = res->start;
5606         hcd->rsrc_len = resource_size(res);
5607
5608         fotg210 = hcd_to_fotg210(hcd);
5609
5610         fotg210->caps = hcd->regs;
5611
5612         /* It's OK not to supply this clock */
5613         fotg210->pclk = clk_get(dev, "PCLK");
5614         if (!IS_ERR(fotg210->pclk)) {
5615                 retval = clk_prepare_enable(fotg210->pclk);
5616                 if (retval) {
5617                         dev_err(dev, "failed to enable PCLK\n");
5618                         goto failed_put_hcd;
5619                 }
5620         } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5621                 /*
5622                  * Percolate deferrals, for anything else,
5623                  * just live without the clocking.
5624                  */
5625                 retval = PTR_ERR(fotg210->pclk);
5626                 goto failed_dis_clk;
5627         }
5628
5629         retval = fotg210_setup(hcd);
5630         if (retval)
5631                 goto failed_dis_clk;
5632
5633         fotg210_init(fotg210);
5634
5635         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5636         if (retval) {
5637                 dev_err(dev, "failed to add hcd with err %d\n", retval);
5638                 goto failed_dis_clk;
5639         }
5640         device_wakeup_enable(hcd->self.controller);
5641         platform_set_drvdata(pdev, hcd);
5642
5643         return retval;
5644
5645 failed_dis_clk:
5646         if (!IS_ERR(fotg210->pclk)) {
5647                 clk_disable_unprepare(fotg210->pclk);
5648                 clk_put(fotg210->pclk);
5649         }
5650 failed_put_hcd:
5651         usb_put_hcd(hcd);
5652 fail_create_hcd:
5653         dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5654         return retval;
5655 }
5656
5657 /*
5658  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5659  * @dev: USB Host Controller being removed
5660  *
5661  */
5662 static int fotg210_hcd_remove(struct platform_device *pdev)
5663 {
5664         struct usb_hcd *hcd = platform_get_drvdata(pdev);
5665         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5666
5667         if (!IS_ERR(fotg210->pclk)) {
5668                 clk_disable_unprepare(fotg210->pclk);
5669                 clk_put(fotg210->pclk);
5670         }
5671
5672         usb_remove_hcd(hcd);
5673         usb_put_hcd(hcd);
5674
5675         return 0;
5676 }
5677
5678 #ifdef CONFIG_OF
5679 static const struct of_device_id fotg210_of_match[] = {
5680         { .compatible = "faraday,fotg210" },
5681         {},
5682 };
5683 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5684 #endif
5685
5686 static struct platform_driver fotg210_hcd_driver = {
5687         .driver = {
5688                 .name   = "fotg210-hcd",
5689                 .of_match_table = of_match_ptr(fotg210_of_match),
5690         },
5691         .probe  = fotg210_hcd_probe,
5692         .remove = fotg210_hcd_remove,
5693 };
5694
5695 static int __init fotg210_hcd_init(void)
5696 {
5697         int retval = 0;
5698
5699         if (usb_disabled())
5700                 return -ENODEV;
5701
5702         pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5703         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5704         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5705                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5706                 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5707
5708         pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5709                         hcd_name, sizeof(struct fotg210_qh),
5710                         sizeof(struct fotg210_qtd),
5711                         sizeof(struct fotg210_itd));
5712
5713         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5714
5715         retval = platform_driver_register(&fotg210_hcd_driver);
5716         if (retval < 0)
5717                 goto clean;
5718         return retval;
5719
5720 clean:
5721         debugfs_remove(fotg210_debug_root);
5722         fotg210_debug_root = NULL;
5723
5724         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5725         return retval;
5726 }
5727 module_init(fotg210_hcd_init);
5728
5729 static void __exit fotg210_hcd_cleanup(void)
5730 {
5731         platform_driver_unregister(&fotg210_hcd_driver);
5732         debugfs_remove(fotg210_debug_root);
5733         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5734 }
5735 module_exit(fotg210_hcd_cleanup);