Merge tag 'staging-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[sfrench/cifs-2.6.git] / drivers / usb / gadget / udc / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8
9 #define pr_fmt(fmt)     "UDC core: " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/idr.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/workqueue.h>
20
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb.h>
24
25 #include "trace.h"
26
27 static DEFINE_IDA(gadget_id_numbers);
28
29 static struct bus_type gadget_bus_type;
30
31 /**
32  * struct usb_udc - describes one usb device controller
33  * @driver: the gadget driver pointer. For use by the class code
34  * @dev: the child device to the actual controller
35  * @gadget: the gadget. For use by the class code
36  * @list: for use by the udc class driver
37  * @vbus: for udcs who care about vbus status, this value is real vbus status;
38  * for udcs who do not care about vbus status, this value is always true
39  * @started: the UDC's started state. True if the UDC had started.
40  *
41  * This represents the internal data structure which is used by the UDC-class
42  * to hold information about udc driver and gadget together.
43  */
44 struct usb_udc {
45         struct usb_gadget_driver        *driver;
46         struct usb_gadget               *gadget;
47         struct device                   dev;
48         struct list_head                list;
49         bool                            vbus;
50         bool                            started;
51 };
52
53 static struct class *udc_class;
54 static LIST_HEAD(udc_list);
55
56 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */
57 static DEFINE_MUTEX(udc_lock);
58
59 /* ------------------------------------------------------------------------- */
60
61 /**
62  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
63  * @ep:the endpoint being configured
64  * @maxpacket_limit:value of maximum packet size limit
65  *
66  * This function should be used only in UDC drivers to initialize endpoint
67  * (usually in probe function).
68  */
69 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
70                                               unsigned maxpacket_limit)
71 {
72         ep->maxpacket_limit = maxpacket_limit;
73         ep->maxpacket = maxpacket_limit;
74
75         trace_usb_ep_set_maxpacket_limit(ep, 0);
76 }
77 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
78
79 /**
80  * usb_ep_enable - configure endpoint, making it usable
81  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
82  *      drivers discover endpoints through the ep_list of a usb_gadget.
83  *
84  * When configurations are set, or when interface settings change, the driver
85  * will enable or disable the relevant endpoints.  while it is enabled, an
86  * endpoint may be used for i/o until the driver receives a disconnect() from
87  * the host or until the endpoint is disabled.
88  *
89  * the ep0 implementation (which calls this routine) must ensure that the
90  * hardware capabilities of each endpoint match the descriptor provided
91  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
92  * for interrupt transfers as well as bulk, but it likely couldn't be used
93  * for iso transfers or for endpoint 14.  some endpoints are fully
94  * configurable, with more generic names like "ep-a".  (remember that for
95  * USB, "in" means "towards the USB host".)
96  *
97  * This routine may be called in an atomic (interrupt) context.
98  *
99  * returns zero, or a negative error code.
100  */
101 int usb_ep_enable(struct usb_ep *ep)
102 {
103         int ret = 0;
104
105         if (ep->enabled)
106                 goto out;
107
108         /* UDC drivers can't handle endpoints with maxpacket size 0 */
109         if (usb_endpoint_maxp(ep->desc) == 0) {
110                 /*
111                  * We should log an error message here, but we can't call
112                  * dev_err() because there's no way to find the gadget
113                  * given only ep.
114                  */
115                 ret = -EINVAL;
116                 goto out;
117         }
118
119         ret = ep->ops->enable(ep, ep->desc);
120         if (ret)
121                 goto out;
122
123         ep->enabled = true;
124
125 out:
126         trace_usb_ep_enable(ep, ret);
127
128         return ret;
129 }
130 EXPORT_SYMBOL_GPL(usb_ep_enable);
131
132 /**
133  * usb_ep_disable - endpoint is no longer usable
134  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
135  *
136  * no other task may be using this endpoint when this is called.
137  * any pending and uncompleted requests will complete with status
138  * indicating disconnect (-ESHUTDOWN) before this call returns.
139  * gadget drivers must call usb_ep_enable() again before queueing
140  * requests to the endpoint.
141  *
142  * This routine may be called in an atomic (interrupt) context.
143  *
144  * returns zero, or a negative error code.
145  */
146 int usb_ep_disable(struct usb_ep *ep)
147 {
148         int ret = 0;
149
150         if (!ep->enabled)
151                 goto out;
152
153         ret = ep->ops->disable(ep);
154         if (ret)
155                 goto out;
156
157         ep->enabled = false;
158
159 out:
160         trace_usb_ep_disable(ep, ret);
161
162         return ret;
163 }
164 EXPORT_SYMBOL_GPL(usb_ep_disable);
165
166 /**
167  * usb_ep_alloc_request - allocate a request object to use with this endpoint
168  * @ep:the endpoint to be used with with the request
169  * @gfp_flags:GFP_* flags to use
170  *
171  * Request objects must be allocated with this call, since they normally
172  * need controller-specific setup and may even need endpoint-specific
173  * resources such as allocation of DMA descriptors.
174  * Requests may be submitted with usb_ep_queue(), and receive a single
175  * completion callback.  Free requests with usb_ep_free_request(), when
176  * they are no longer needed.
177  *
178  * Returns the request, or null if one could not be allocated.
179  */
180 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
181                                                        gfp_t gfp_flags)
182 {
183         struct usb_request *req = NULL;
184
185         req = ep->ops->alloc_request(ep, gfp_flags);
186
187         trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
188
189         return req;
190 }
191 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
192
193 /**
194  * usb_ep_free_request - frees a request object
195  * @ep:the endpoint associated with the request
196  * @req:the request being freed
197  *
198  * Reverses the effect of usb_ep_alloc_request().
199  * Caller guarantees the request is not queued, and that it will
200  * no longer be requeued (or otherwise used).
201  */
202 void usb_ep_free_request(struct usb_ep *ep,
203                                        struct usb_request *req)
204 {
205         trace_usb_ep_free_request(ep, req, 0);
206         ep->ops->free_request(ep, req);
207 }
208 EXPORT_SYMBOL_GPL(usb_ep_free_request);
209
210 /**
211  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
212  * @ep:the endpoint associated with the request
213  * @req:the request being submitted
214  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
215  *      pre-allocate all necessary memory with the request.
216  *
217  * This tells the device controller to perform the specified request through
218  * that endpoint (reading or writing a buffer).  When the request completes,
219  * including being canceled by usb_ep_dequeue(), the request's completion
220  * routine is called to return the request to the driver.  Any endpoint
221  * (except control endpoints like ep0) may have more than one transfer
222  * request queued; they complete in FIFO order.  Once a gadget driver
223  * submits a request, that request may not be examined or modified until it
224  * is given back to that driver through the completion callback.
225  *
226  * Each request is turned into one or more packets.  The controller driver
227  * never merges adjacent requests into the same packet.  OUT transfers
228  * will sometimes use data that's already buffered in the hardware.
229  * Drivers can rely on the fact that the first byte of the request's buffer
230  * always corresponds to the first byte of some USB packet, for both
231  * IN and OUT transfers.
232  *
233  * Bulk endpoints can queue any amount of data; the transfer is packetized
234  * automatically.  The last packet will be short if the request doesn't fill it
235  * out completely.  Zero length packets (ZLPs) should be avoided in portable
236  * protocols since not all usb hardware can successfully handle zero length
237  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
238  * the request 'zero' flag is set.)  Bulk endpoints may also be used
239  * for interrupt transfers; but the reverse is not true, and some endpoints
240  * won't support every interrupt transfer.  (Such as 768 byte packets.)
241  *
242  * Interrupt-only endpoints are less functional than bulk endpoints, for
243  * example by not supporting queueing or not handling buffers that are
244  * larger than the endpoint's maxpacket size.  They may also treat data
245  * toggle differently.
246  *
247  * Control endpoints ... after getting a setup() callback, the driver queues
248  * one response (even if it would be zero length).  That enables the
249  * status ack, after transferring data as specified in the response.  Setup
250  * functions may return negative error codes to generate protocol stalls.
251  * (Note that some USB device controllers disallow protocol stall responses
252  * in some cases.)  When control responses are deferred (the response is
253  * written after the setup callback returns), then usb_ep_set_halt() may be
254  * used on ep0 to trigger protocol stalls.  Depending on the controller,
255  * it may not be possible to trigger a status-stage protocol stall when the
256  * data stage is over, that is, from within the response's completion
257  * routine.
258  *
259  * For periodic endpoints, like interrupt or isochronous ones, the usb host
260  * arranges to poll once per interval, and the gadget driver usually will
261  * have queued some data to transfer at that time.
262  *
263  * Note that @req's ->complete() callback must never be called from
264  * within usb_ep_queue() as that can create deadlock situations.
265  *
266  * This routine may be called in interrupt context.
267  *
268  * Returns zero, or a negative error code.  Endpoints that are not enabled
269  * report errors; errors will also be
270  * reported when the usb peripheral is disconnected.
271  *
272  * If and only if @req is successfully queued (the return value is zero),
273  * @req->complete() will be called exactly once, when the Gadget core and
274  * UDC are finished with the request.  When the completion function is called,
275  * control of the request is returned to the device driver which submitted it.
276  * The completion handler may then immediately free or reuse @req.
277  */
278 int usb_ep_queue(struct usb_ep *ep,
279                                struct usb_request *req, gfp_t gfp_flags)
280 {
281         int ret = 0;
282
283         if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
284                 ret = -ESHUTDOWN;
285                 goto out;
286         }
287
288         ret = ep->ops->queue(ep, req, gfp_flags);
289
290 out:
291         trace_usb_ep_queue(ep, req, ret);
292
293         return ret;
294 }
295 EXPORT_SYMBOL_GPL(usb_ep_queue);
296
297 /**
298  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
299  * @ep:the endpoint associated with the request
300  * @req:the request being canceled
301  *
302  * If the request is still active on the endpoint, it is dequeued and
303  * eventually its completion routine is called (with status -ECONNRESET);
304  * else a negative error code is returned.  This routine is asynchronous,
305  * that is, it may return before the completion routine runs.
306  *
307  * Note that some hardware can't clear out write fifos (to unlink the request
308  * at the head of the queue) except as part of disconnecting from usb. Such
309  * restrictions prevent drivers from supporting configuration changes,
310  * even to configuration zero (a "chapter 9" requirement).
311  *
312  * This routine may be called in interrupt context.
313  */
314 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
315 {
316         int ret;
317
318         ret = ep->ops->dequeue(ep, req);
319         trace_usb_ep_dequeue(ep, req, ret);
320
321         return ret;
322 }
323 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
324
325 /**
326  * usb_ep_set_halt - sets the endpoint halt feature.
327  * @ep: the non-isochronous endpoint being stalled
328  *
329  * Use this to stall an endpoint, perhaps as an error report.
330  * Except for control endpoints,
331  * the endpoint stays halted (will not stream any data) until the host
332  * clears this feature; drivers may need to empty the endpoint's request
333  * queue first, to make sure no inappropriate transfers happen.
334  *
335  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
336  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
337  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
338  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
339  *
340  * This routine may be called in interrupt context.
341  *
342  * Returns zero, or a negative error code.  On success, this call sets
343  * underlying hardware state that blocks data transfers.
344  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
345  * transfer requests are still queued, or if the controller hardware
346  * (usually a FIFO) still holds bytes that the host hasn't collected.
347  */
348 int usb_ep_set_halt(struct usb_ep *ep)
349 {
350         int ret;
351
352         ret = ep->ops->set_halt(ep, 1);
353         trace_usb_ep_set_halt(ep, ret);
354
355         return ret;
356 }
357 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
358
359 /**
360  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
361  * @ep:the bulk or interrupt endpoint being reset
362  *
363  * Use this when responding to the standard usb "set interface" request,
364  * for endpoints that aren't reconfigured, after clearing any other state
365  * in the endpoint's i/o queue.
366  *
367  * This routine may be called in interrupt context.
368  *
369  * Returns zero, or a negative error code.  On success, this call clears
370  * the underlying hardware state reflecting endpoint halt and data toggle.
371  * Note that some hardware can't support this request (like pxa2xx_udc),
372  * and accordingly can't correctly implement interface altsettings.
373  */
374 int usb_ep_clear_halt(struct usb_ep *ep)
375 {
376         int ret;
377
378         ret = ep->ops->set_halt(ep, 0);
379         trace_usb_ep_clear_halt(ep, ret);
380
381         return ret;
382 }
383 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
384
385 /**
386  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
387  * @ep: the endpoint being wedged
388  *
389  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
390  * requests. If the gadget driver clears the halt status, it will
391  * automatically unwedge the endpoint.
392  *
393  * This routine may be called in interrupt context.
394  *
395  * Returns zero on success, else negative errno.
396  */
397 int usb_ep_set_wedge(struct usb_ep *ep)
398 {
399         int ret;
400
401         if (ep->ops->set_wedge)
402                 ret = ep->ops->set_wedge(ep);
403         else
404                 ret = ep->ops->set_halt(ep, 1);
405
406         trace_usb_ep_set_wedge(ep, ret);
407
408         return ret;
409 }
410 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
411
412 /**
413  * usb_ep_fifo_status - returns number of bytes in fifo, or error
414  * @ep: the endpoint whose fifo status is being checked.
415  *
416  * FIFO endpoints may have "unclaimed data" in them in certain cases,
417  * such as after aborted transfers.  Hosts may not have collected all
418  * the IN data written by the gadget driver (and reported by a request
419  * completion).  The gadget driver may not have collected all the data
420  * written OUT to it by the host.  Drivers that need precise handling for
421  * fault reporting or recovery may need to use this call.
422  *
423  * This routine may be called in interrupt context.
424  *
425  * This returns the number of such bytes in the fifo, or a negative
426  * errno if the endpoint doesn't use a FIFO or doesn't support such
427  * precise handling.
428  */
429 int usb_ep_fifo_status(struct usb_ep *ep)
430 {
431         int ret;
432
433         if (ep->ops->fifo_status)
434                 ret = ep->ops->fifo_status(ep);
435         else
436                 ret = -EOPNOTSUPP;
437
438         trace_usb_ep_fifo_status(ep, ret);
439
440         return ret;
441 }
442 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
443
444 /**
445  * usb_ep_fifo_flush - flushes contents of a fifo
446  * @ep: the endpoint whose fifo is being flushed.
447  *
448  * This call may be used to flush the "unclaimed data" that may exist in
449  * an endpoint fifo after abnormal transaction terminations.  The call
450  * must never be used except when endpoint is not being used for any
451  * protocol translation.
452  *
453  * This routine may be called in interrupt context.
454  */
455 void usb_ep_fifo_flush(struct usb_ep *ep)
456 {
457         if (ep->ops->fifo_flush)
458                 ep->ops->fifo_flush(ep);
459
460         trace_usb_ep_fifo_flush(ep, 0);
461 }
462 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
463
464 /* ------------------------------------------------------------------------- */
465
466 /**
467  * usb_gadget_frame_number - returns the current frame number
468  * @gadget: controller that reports the frame number
469  *
470  * Returns the usb frame number, normally eleven bits from a SOF packet,
471  * or negative errno if this device doesn't support this capability.
472  */
473 int usb_gadget_frame_number(struct usb_gadget *gadget)
474 {
475         int ret;
476
477         ret = gadget->ops->get_frame(gadget);
478
479         trace_usb_gadget_frame_number(gadget, ret);
480
481         return ret;
482 }
483 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
484
485 /**
486  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
487  * @gadget: controller used to wake up the host
488  *
489  * Returns zero on success, else negative error code if the hardware
490  * doesn't support such attempts, or its support has not been enabled
491  * by the usb host.  Drivers must return device descriptors that report
492  * their ability to support this, or hosts won't enable it.
493  *
494  * This may also try to use SRP to wake the host and start enumeration,
495  * even if OTG isn't otherwise in use.  OTG devices may also start
496  * remote wakeup even when hosts don't explicitly enable it.
497  */
498 int usb_gadget_wakeup(struct usb_gadget *gadget)
499 {
500         int ret = 0;
501
502         if (!gadget->ops->wakeup) {
503                 ret = -EOPNOTSUPP;
504                 goto out;
505         }
506
507         ret = gadget->ops->wakeup(gadget);
508
509 out:
510         trace_usb_gadget_wakeup(gadget, ret);
511
512         return ret;
513 }
514 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
515
516 /**
517  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
518  * @gadget:the device being declared as self-powered
519  *
520  * this affects the device status reported by the hardware driver
521  * to reflect that it now has a local power supply.
522  *
523  * returns zero on success, else negative errno.
524  */
525 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
526 {
527         int ret = 0;
528
529         if (!gadget->ops->set_selfpowered) {
530                 ret = -EOPNOTSUPP;
531                 goto out;
532         }
533
534         ret = gadget->ops->set_selfpowered(gadget, 1);
535
536 out:
537         trace_usb_gadget_set_selfpowered(gadget, ret);
538
539         return ret;
540 }
541 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
542
543 /**
544  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
545  * @gadget:the device being declared as bus-powered
546  *
547  * this affects the device status reported by the hardware driver.
548  * some hardware may not support bus-powered operation, in which
549  * case this feature's value can never change.
550  *
551  * returns zero on success, else negative errno.
552  */
553 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
554 {
555         int ret = 0;
556
557         if (!gadget->ops->set_selfpowered) {
558                 ret = -EOPNOTSUPP;
559                 goto out;
560         }
561
562         ret = gadget->ops->set_selfpowered(gadget, 0);
563
564 out:
565         trace_usb_gadget_clear_selfpowered(gadget, ret);
566
567         return ret;
568 }
569 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
570
571 /**
572  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
573  * @gadget:The device which now has VBUS power.
574  * Context: can sleep
575  *
576  * This call is used by a driver for an external transceiver (or GPIO)
577  * that detects a VBUS power session starting.  Common responses include
578  * resuming the controller, activating the D+ (or D-) pullup to let the
579  * host detect that a USB device is attached, and starting to draw power
580  * (8mA or possibly more, especially after SET_CONFIGURATION).
581  *
582  * Returns zero on success, else negative errno.
583  */
584 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
585 {
586         int ret = 0;
587
588         if (!gadget->ops->vbus_session) {
589                 ret = -EOPNOTSUPP;
590                 goto out;
591         }
592
593         ret = gadget->ops->vbus_session(gadget, 1);
594
595 out:
596         trace_usb_gadget_vbus_connect(gadget, ret);
597
598         return ret;
599 }
600 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
601
602 /**
603  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
604  * @gadget:The device whose VBUS usage is being described
605  * @mA:How much current to draw, in milliAmperes.  This should be twice
606  *      the value listed in the configuration descriptor bMaxPower field.
607  *
608  * This call is used by gadget drivers during SET_CONFIGURATION calls,
609  * reporting how much power the device may consume.  For example, this
610  * could affect how quickly batteries are recharged.
611  *
612  * Returns zero on success, else negative errno.
613  */
614 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
615 {
616         int ret = 0;
617
618         if (!gadget->ops->vbus_draw) {
619                 ret = -EOPNOTSUPP;
620                 goto out;
621         }
622
623         ret = gadget->ops->vbus_draw(gadget, mA);
624         if (!ret)
625                 gadget->mA = mA;
626
627 out:
628         trace_usb_gadget_vbus_draw(gadget, ret);
629
630         return ret;
631 }
632 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
633
634 /**
635  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
636  * @gadget:the device whose VBUS supply is being described
637  * Context: can sleep
638  *
639  * This call is used by a driver for an external transceiver (or GPIO)
640  * that detects a VBUS power session ending.  Common responses include
641  * reversing everything done in usb_gadget_vbus_connect().
642  *
643  * Returns zero on success, else negative errno.
644  */
645 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
646 {
647         int ret = 0;
648
649         if (!gadget->ops->vbus_session) {
650                 ret = -EOPNOTSUPP;
651                 goto out;
652         }
653
654         ret = gadget->ops->vbus_session(gadget, 0);
655
656 out:
657         trace_usb_gadget_vbus_disconnect(gadget, ret);
658
659         return ret;
660 }
661 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
662
663 /**
664  * usb_gadget_connect - software-controlled connect to USB host
665  * @gadget:the peripheral being connected
666  *
667  * Enables the D+ (or potentially D-) pullup.  The host will start
668  * enumerating this gadget when the pullup is active and a VBUS session
669  * is active (the link is powered).
670  *
671  * Returns zero on success, else negative errno.
672  */
673 int usb_gadget_connect(struct usb_gadget *gadget)
674 {
675         int ret = 0;
676
677         if (!gadget->ops->pullup) {
678                 ret = -EOPNOTSUPP;
679                 goto out;
680         }
681
682         if (gadget->deactivated) {
683                 /*
684                  * If gadget is deactivated we only save new state.
685                  * Gadget will be connected automatically after activation.
686                  */
687                 gadget->connected = true;
688                 goto out;
689         }
690
691         ret = gadget->ops->pullup(gadget, 1);
692         if (!ret)
693                 gadget->connected = 1;
694
695 out:
696         trace_usb_gadget_connect(gadget, ret);
697
698         return ret;
699 }
700 EXPORT_SYMBOL_GPL(usb_gadget_connect);
701
702 /**
703  * usb_gadget_disconnect - software-controlled disconnect from USB host
704  * @gadget:the peripheral being disconnected
705  *
706  * Disables the D+ (or potentially D-) pullup, which the host may see
707  * as a disconnect (when a VBUS session is active).  Not all systems
708  * support software pullup controls.
709  *
710  * Following a successful disconnect, invoke the ->disconnect() callback
711  * for the current gadget driver so that UDC drivers don't need to.
712  *
713  * Returns zero on success, else negative errno.
714  */
715 int usb_gadget_disconnect(struct usb_gadget *gadget)
716 {
717         int ret = 0;
718
719         if (!gadget->ops->pullup) {
720                 ret = -EOPNOTSUPP;
721                 goto out;
722         }
723
724         if (!gadget->connected)
725                 goto out;
726
727         if (gadget->deactivated) {
728                 /*
729                  * If gadget is deactivated we only save new state.
730                  * Gadget will stay disconnected after activation.
731                  */
732                 gadget->connected = false;
733                 goto out;
734         }
735
736         ret = gadget->ops->pullup(gadget, 0);
737         if (!ret)
738                 gadget->connected = 0;
739
740         mutex_lock(&udc_lock);
741         if (gadget->udc->driver)
742                 gadget->udc->driver->disconnect(gadget);
743         mutex_unlock(&udc_lock);
744
745 out:
746         trace_usb_gadget_disconnect(gadget, ret);
747
748         return ret;
749 }
750 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
751
752 /**
753  * usb_gadget_deactivate - deactivate function which is not ready to work
754  * @gadget: the peripheral being deactivated
755  *
756  * This routine may be used during the gadget driver bind() call to prevent
757  * the peripheral from ever being visible to the USB host, unless later
758  * usb_gadget_activate() is called.  For example, user mode components may
759  * need to be activated before the system can talk to hosts.
760  *
761  * Returns zero on success, else negative errno.
762  */
763 int usb_gadget_deactivate(struct usb_gadget *gadget)
764 {
765         int ret = 0;
766
767         if (gadget->deactivated)
768                 goto out;
769
770         if (gadget->connected) {
771                 ret = usb_gadget_disconnect(gadget);
772                 if (ret)
773                         goto out;
774
775                 /*
776                  * If gadget was being connected before deactivation, we want
777                  * to reconnect it in usb_gadget_activate().
778                  */
779                 gadget->connected = true;
780         }
781         gadget->deactivated = true;
782
783 out:
784         trace_usb_gadget_deactivate(gadget, ret);
785
786         return ret;
787 }
788 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
789
790 /**
791  * usb_gadget_activate - activate function which is not ready to work
792  * @gadget: the peripheral being activated
793  *
794  * This routine activates gadget which was previously deactivated with
795  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
796  *
797  * Returns zero on success, else negative errno.
798  */
799 int usb_gadget_activate(struct usb_gadget *gadget)
800 {
801         int ret = 0;
802
803         if (!gadget->deactivated)
804                 goto out;
805
806         gadget->deactivated = false;
807
808         /*
809          * If gadget has been connected before deactivation, or became connected
810          * while it was being deactivated, we call usb_gadget_connect().
811          */
812         if (gadget->connected)
813                 ret = usb_gadget_connect(gadget);
814
815 out:
816         trace_usb_gadget_activate(gadget, ret);
817
818         return ret;
819 }
820 EXPORT_SYMBOL_GPL(usb_gadget_activate);
821
822 /* ------------------------------------------------------------------------- */
823
824 #ifdef  CONFIG_HAS_DMA
825
826 int usb_gadget_map_request_by_dev(struct device *dev,
827                 struct usb_request *req, int is_in)
828 {
829         if (req->length == 0)
830                 return 0;
831
832         if (req->num_sgs) {
833                 int     mapped;
834
835                 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
836                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
837                 if (mapped == 0) {
838                         dev_err(dev, "failed to map SGs\n");
839                         return -EFAULT;
840                 }
841
842                 req->num_mapped_sgs = mapped;
843         } else {
844                 if (is_vmalloc_addr(req->buf)) {
845                         dev_err(dev, "buffer is not dma capable\n");
846                         return -EFAULT;
847                 } else if (object_is_on_stack(req->buf)) {
848                         dev_err(dev, "buffer is on stack\n");
849                         return -EFAULT;
850                 }
851
852                 req->dma = dma_map_single(dev, req->buf, req->length,
853                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
854
855                 if (dma_mapping_error(dev, req->dma)) {
856                         dev_err(dev, "failed to map buffer\n");
857                         return -EFAULT;
858                 }
859
860                 req->dma_mapped = 1;
861         }
862
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
866
867 int usb_gadget_map_request(struct usb_gadget *gadget,
868                 struct usb_request *req, int is_in)
869 {
870         return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
871 }
872 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
873
874 void usb_gadget_unmap_request_by_dev(struct device *dev,
875                 struct usb_request *req, int is_in)
876 {
877         if (req->length == 0)
878                 return;
879
880         if (req->num_mapped_sgs) {
881                 dma_unmap_sg(dev, req->sg, req->num_sgs,
882                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
883
884                 req->num_mapped_sgs = 0;
885         } else if (req->dma_mapped) {
886                 dma_unmap_single(dev, req->dma, req->length,
887                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
888                 req->dma_mapped = 0;
889         }
890 }
891 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
892
893 void usb_gadget_unmap_request(struct usb_gadget *gadget,
894                 struct usb_request *req, int is_in)
895 {
896         usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
897 }
898 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
899
900 #endif  /* CONFIG_HAS_DMA */
901
902 /* ------------------------------------------------------------------------- */
903
904 /**
905  * usb_gadget_giveback_request - give the request back to the gadget layer
906  * @ep: the endpoint to be used with with the request
907  * @req: the request being given back
908  *
909  * This is called by device controller drivers in order to return the
910  * completed request back to the gadget layer.
911  */
912 void usb_gadget_giveback_request(struct usb_ep *ep,
913                 struct usb_request *req)
914 {
915         if (likely(req->status == 0))
916                 usb_led_activity(USB_LED_EVENT_GADGET);
917
918         trace_usb_gadget_giveback_request(ep, req, 0);
919
920         req->complete(ep, req);
921 }
922 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
923
924 /* ------------------------------------------------------------------------- */
925
926 /**
927  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
928  *      in second parameter or NULL if searched endpoint not found
929  * @g: controller to check for quirk
930  * @name: name of searched endpoint
931  */
932 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
933 {
934         struct usb_ep *ep;
935
936         gadget_for_each_ep(ep, g) {
937                 if (!strcmp(ep->name, name))
938                         return ep;
939         }
940
941         return NULL;
942 }
943 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
944
945 /* ------------------------------------------------------------------------- */
946
947 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
948                 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
949                 struct usb_ss_ep_comp_descriptor *ep_comp)
950 {
951         u8              type;
952         u16             max;
953         int             num_req_streams = 0;
954
955         /* endpoint already claimed? */
956         if (ep->claimed)
957                 return 0;
958
959         type = usb_endpoint_type(desc);
960         max = usb_endpoint_maxp(desc);
961
962         if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
963                 return 0;
964         if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
965                 return 0;
966
967         if (max > ep->maxpacket_limit)
968                 return 0;
969
970         /* "high bandwidth" works only at high speed */
971         if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
972                 return 0;
973
974         switch (type) {
975         case USB_ENDPOINT_XFER_CONTROL:
976                 /* only support ep0 for portable CONTROL traffic */
977                 return 0;
978         case USB_ENDPOINT_XFER_ISOC:
979                 if (!ep->caps.type_iso)
980                         return 0;
981                 /* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
982                 if (!gadget_is_dualspeed(gadget) && max > 1023)
983                         return 0;
984                 break;
985         case USB_ENDPOINT_XFER_BULK:
986                 if (!ep->caps.type_bulk)
987                         return 0;
988                 if (ep_comp && gadget_is_superspeed(gadget)) {
989                         /* Get the number of required streams from the
990                          * EP companion descriptor and see if the EP
991                          * matches it
992                          */
993                         num_req_streams = ep_comp->bmAttributes & 0x1f;
994                         if (num_req_streams > ep->max_streams)
995                                 return 0;
996                 }
997                 break;
998         case USB_ENDPOINT_XFER_INT:
999                 /* Bulk endpoints handle interrupt transfers,
1000                  * except the toggle-quirky iso-synch kind
1001                  */
1002                 if (!ep->caps.type_int && !ep->caps.type_bulk)
1003                         return 0;
1004                 /* INT:  limit 64 bytes full speed, 1024 high/super speed */
1005                 if (!gadget_is_dualspeed(gadget) && max > 64)
1006                         return 0;
1007                 break;
1008         }
1009
1010         return 1;
1011 }
1012 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1013
1014 /**
1015  * usb_gadget_check_config - checks if the UDC can support the binded
1016  *      configuration
1017  * @gadget: controller to check the USB configuration
1018  *
1019  * Ensure that a UDC is able to support the requested resources by a
1020  * configuration, and that there are no resource limitations, such as
1021  * internal memory allocated to all requested endpoints.
1022  *
1023  * Returns zero on success, else a negative errno.
1024  */
1025 int usb_gadget_check_config(struct usb_gadget *gadget)
1026 {
1027         if (gadget->ops->check_config)
1028                 return gadget->ops->check_config(gadget);
1029         return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1032
1033 /* ------------------------------------------------------------------------- */
1034
1035 static void usb_gadget_state_work(struct work_struct *work)
1036 {
1037         struct usb_gadget *gadget = work_to_gadget(work);
1038         struct usb_udc *udc = gadget->udc;
1039
1040         if (udc)
1041                 sysfs_notify(&udc->dev.kobj, NULL, "state");
1042 }
1043
1044 void usb_gadget_set_state(struct usb_gadget *gadget,
1045                 enum usb_device_state state)
1046 {
1047         gadget->state = state;
1048         schedule_work(&gadget->work);
1049 }
1050 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1051
1052 /* ------------------------------------------------------------------------- */
1053
1054 static void usb_udc_connect_control(struct usb_udc *udc)
1055 {
1056         if (udc->vbus)
1057                 usb_gadget_connect(udc->gadget);
1058         else
1059                 usb_gadget_disconnect(udc->gadget);
1060 }
1061
1062 /**
1063  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1064  * connect or disconnect gadget
1065  * @gadget: The gadget which vbus change occurs
1066  * @status: The vbus status
1067  *
1068  * The udc driver calls it when it wants to connect or disconnect gadget
1069  * according to vbus status.
1070  */
1071 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1072 {
1073         struct usb_udc *udc = gadget->udc;
1074
1075         if (udc) {
1076                 udc->vbus = status;
1077                 usb_udc_connect_control(udc);
1078         }
1079 }
1080 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1081
1082 /**
1083  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1084  * @gadget: The gadget which bus reset occurs
1085  * @driver: The gadget driver we want to notify
1086  *
1087  * If the udc driver has bus reset handler, it needs to call this when the bus
1088  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1089  * well as updates gadget state.
1090  */
1091 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1092                 struct usb_gadget_driver *driver)
1093 {
1094         driver->reset(gadget);
1095         usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1096 }
1097 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1098
1099 /**
1100  * usb_gadget_udc_start - tells usb device controller to start up
1101  * @udc: The UDC to be started
1102  *
1103  * This call is issued by the UDC Class driver when it's about
1104  * to register a gadget driver to the device controller, before
1105  * calling gadget driver's bind() method.
1106  *
1107  * It allows the controller to be powered off until strictly
1108  * necessary to have it powered on.
1109  *
1110  * Returns zero on success, else negative errno.
1111  */
1112 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1113 {
1114         int ret;
1115
1116         if (udc->started) {
1117                 dev_err(&udc->dev, "UDC had already started\n");
1118                 return -EBUSY;
1119         }
1120
1121         ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1122         if (!ret)
1123                 udc->started = true;
1124
1125         return ret;
1126 }
1127
1128 /**
1129  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1130  * @udc: The UDC to be stopped
1131  *
1132  * This call is issued by the UDC Class driver after calling
1133  * gadget driver's unbind() method.
1134  *
1135  * The details are implementation specific, but it can go as
1136  * far as powering off UDC completely and disable its data
1137  * line pullups.
1138  */
1139 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1140 {
1141         if (!udc->started) {
1142                 dev_err(&udc->dev, "UDC had already stopped\n");
1143                 return;
1144         }
1145
1146         udc->gadget->ops->udc_stop(udc->gadget);
1147         udc->started = false;
1148 }
1149
1150 /**
1151  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1152  *    current driver
1153  * @udc: The device we want to set maximum speed
1154  * @speed: The maximum speed to allowed to run
1155  *
1156  * This call is issued by the UDC Class driver before calling
1157  * usb_gadget_udc_start() in order to make sure that we don't try to
1158  * connect on speeds the gadget driver doesn't support.
1159  */
1160 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1161                                             enum usb_device_speed speed)
1162 {
1163         struct usb_gadget *gadget = udc->gadget;
1164         enum usb_device_speed s;
1165
1166         if (speed == USB_SPEED_UNKNOWN)
1167                 s = gadget->max_speed;
1168         else
1169                 s = min(speed, gadget->max_speed);
1170
1171         if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1172                 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1173         else if (gadget->ops->udc_set_speed)
1174                 gadget->ops->udc_set_speed(gadget, s);
1175 }
1176
1177 /**
1178  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1179  * @udc: The UDC which should enable async callbacks
1180  *
1181  * This routine is used when binding gadget drivers.  It undoes the effect
1182  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1183  * (if necessary) and resume issuing callbacks.
1184  *
1185  * This routine will always be called in process context.
1186  */
1187 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1188 {
1189         struct usb_gadget *gadget = udc->gadget;
1190
1191         if (gadget->ops->udc_async_callbacks)
1192                 gadget->ops->udc_async_callbacks(gadget, true);
1193 }
1194
1195 /**
1196  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1197  * @udc: The UDC which should disable async callbacks
1198  *
1199  * This routine is used when unbinding gadget drivers.  It prevents a race:
1200  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1201  * runs, so unless it is told to disable asynchronous callbacks, it might
1202  * issue a callback (such as ->disconnect) after the unbind has completed.
1203  *
1204  * After this function runs, the UDC driver must suppress all ->suspend,
1205  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1206  * until async callbacks are again enabled.  A simple-minded but effective
1207  * way to accomplish this is to tell the UDC hardware not to generate any
1208  * more IRQs.
1209  *
1210  * Request completion callbacks must still be issued.  However, it's okay
1211  * to defer them until the request is cancelled, since the pull-up will be
1212  * turned off during the time period when async callbacks are disabled.
1213  *
1214  * This routine will always be called in process context.
1215  */
1216 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1217 {
1218         struct usb_gadget *gadget = udc->gadget;
1219
1220         if (gadget->ops->udc_async_callbacks)
1221                 gadget->ops->udc_async_callbacks(gadget, false);
1222 }
1223
1224 /**
1225  * usb_udc_release - release the usb_udc struct
1226  * @dev: the dev member within usb_udc
1227  *
1228  * This is called by driver's core in order to free memory once the last
1229  * reference is released.
1230  */
1231 static void usb_udc_release(struct device *dev)
1232 {
1233         struct usb_udc *udc;
1234
1235         udc = container_of(dev, struct usb_udc, dev);
1236         dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1237         kfree(udc);
1238 }
1239
1240 static const struct attribute_group *usb_udc_attr_groups[];
1241
1242 static void usb_udc_nop_release(struct device *dev)
1243 {
1244         dev_vdbg(dev, "%s\n", __func__);
1245 }
1246
1247 /**
1248  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1249  * @parent: the parent device to this udc. Usually the controller driver's
1250  * device.
1251  * @gadget: the gadget to be initialized.
1252  * @release: a gadget release function.
1253  */
1254 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1255                 void (*release)(struct device *dev))
1256 {
1257         INIT_WORK(&gadget->work, usb_gadget_state_work);
1258         gadget->dev.parent = parent;
1259
1260         if (release)
1261                 gadget->dev.release = release;
1262         else
1263                 gadget->dev.release = usb_udc_nop_release;
1264
1265         device_initialize(&gadget->dev);
1266         gadget->dev.bus = &gadget_bus_type;
1267 }
1268 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1269
1270 /**
1271  * usb_add_gadget - adds a new gadget to the udc class driver list
1272  * @gadget: the gadget to be added to the list.
1273  *
1274  * Returns zero on success, negative errno otherwise.
1275  * Does not do a final usb_put_gadget() if an error occurs.
1276  */
1277 int usb_add_gadget(struct usb_gadget *gadget)
1278 {
1279         struct usb_udc          *udc;
1280         int                     ret = -ENOMEM;
1281
1282         udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1283         if (!udc)
1284                 goto error;
1285
1286         device_initialize(&udc->dev);
1287         udc->dev.release = usb_udc_release;
1288         udc->dev.class = udc_class;
1289         udc->dev.groups = usb_udc_attr_groups;
1290         udc->dev.parent = gadget->dev.parent;
1291         ret = dev_set_name(&udc->dev, "%s",
1292                         kobject_name(&gadget->dev.parent->kobj));
1293         if (ret)
1294                 goto err_put_udc;
1295
1296         udc->gadget = gadget;
1297         gadget->udc = udc;
1298
1299         udc->started = false;
1300
1301         mutex_lock(&udc_lock);
1302         list_add_tail(&udc->list, &udc_list);
1303         mutex_unlock(&udc_lock);
1304
1305         ret = device_add(&udc->dev);
1306         if (ret)
1307                 goto err_unlist_udc;
1308
1309         usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1310         udc->vbus = true;
1311
1312         ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL);
1313         if (ret < 0)
1314                 goto err_del_udc;
1315         gadget->id_number = ret;
1316         dev_set_name(&gadget->dev, "gadget.%d", ret);
1317
1318         ret = device_add(&gadget->dev);
1319         if (ret)
1320                 goto err_free_id;
1321
1322         return 0;
1323
1324  err_free_id:
1325         ida_free(&gadget_id_numbers, gadget->id_number);
1326
1327  err_del_udc:
1328         flush_work(&gadget->work);
1329         device_del(&udc->dev);
1330
1331  err_unlist_udc:
1332         mutex_lock(&udc_lock);
1333         list_del(&udc->list);
1334         mutex_unlock(&udc_lock);
1335
1336  err_put_udc:
1337         put_device(&udc->dev);
1338
1339  error:
1340         return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(usb_add_gadget);
1343
1344 /**
1345  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1346  * @parent: the parent device to this udc. Usually the controller driver's
1347  * device.
1348  * @gadget: the gadget to be added to the list.
1349  * @release: a gadget release function.
1350  *
1351  * Returns zero on success, negative errno otherwise.
1352  * Calls the gadget release function in the latter case.
1353  */
1354 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1355                 void (*release)(struct device *dev))
1356 {
1357         int     ret;
1358
1359         usb_initialize_gadget(parent, gadget, release);
1360         ret = usb_add_gadget(gadget);
1361         if (ret)
1362                 usb_put_gadget(gadget);
1363         return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1366
1367 /**
1368  * usb_get_gadget_udc_name - get the name of the first UDC controller
1369  * This functions returns the name of the first UDC controller in the system.
1370  * Please note that this interface is usefull only for legacy drivers which
1371  * assume that there is only one UDC controller in the system and they need to
1372  * get its name before initialization. There is no guarantee that the UDC
1373  * of the returned name will be still available, when gadget driver registers
1374  * itself.
1375  *
1376  * Returns pointer to string with UDC controller name on success, NULL
1377  * otherwise. Caller should kfree() returned string.
1378  */
1379 char *usb_get_gadget_udc_name(void)
1380 {
1381         struct usb_udc *udc;
1382         char *name = NULL;
1383
1384         /* For now we take the first available UDC */
1385         mutex_lock(&udc_lock);
1386         list_for_each_entry(udc, &udc_list, list) {
1387                 if (!udc->driver) {
1388                         name = kstrdup(udc->gadget->name, GFP_KERNEL);
1389                         break;
1390                 }
1391         }
1392         mutex_unlock(&udc_lock);
1393         return name;
1394 }
1395 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1396
1397 /**
1398  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1399  * @parent: the parent device to this udc. Usually the controller
1400  * driver's device.
1401  * @gadget: the gadget to be added to the list
1402  *
1403  * Returns zero on success, negative errno otherwise.
1404  */
1405 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1406 {
1407         return usb_add_gadget_udc_release(parent, gadget, NULL);
1408 }
1409 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1410
1411 /**
1412  * usb_del_gadget - deletes a gadget and unregisters its udc
1413  * @gadget: the gadget to be deleted.
1414  *
1415  * This will unbind @gadget, if it is bound.
1416  * It will not do a final usb_put_gadget().
1417  */
1418 void usb_del_gadget(struct usb_gadget *gadget)
1419 {
1420         struct usb_udc *udc = gadget->udc;
1421
1422         if (!udc)
1423                 return;
1424
1425         dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1426
1427         mutex_lock(&udc_lock);
1428         list_del(&udc->list);
1429         mutex_unlock(&udc_lock);
1430
1431         kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1432         flush_work(&gadget->work);
1433         device_del(&gadget->dev);
1434         ida_free(&gadget_id_numbers, gadget->id_number);
1435         device_unregister(&udc->dev);
1436 }
1437 EXPORT_SYMBOL_GPL(usb_del_gadget);
1438
1439 /**
1440  * usb_del_gadget_udc - unregisters a gadget
1441  * @gadget: the gadget to be unregistered.
1442  *
1443  * Calls usb_del_gadget() and does a final usb_put_gadget().
1444  */
1445 void usb_del_gadget_udc(struct usb_gadget *gadget)
1446 {
1447         usb_del_gadget(gadget);
1448         usb_put_gadget(gadget);
1449 }
1450 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1451
1452 /* ------------------------------------------------------------------------- */
1453
1454 static int gadget_match_driver(struct device *dev, struct device_driver *drv)
1455 {
1456         struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1457         struct usb_udc *udc = gadget->udc;
1458         struct usb_gadget_driver *driver = container_of(drv,
1459                         struct usb_gadget_driver, driver);
1460
1461         /* If the driver specifies a udc_name, it must match the UDC's name */
1462         if (driver->udc_name &&
1463                         strcmp(driver->udc_name, dev_name(&udc->dev)) != 0)
1464                 return 0;
1465
1466         /* If the driver is already bound to a gadget, it doesn't match */
1467         if (driver->is_bound)
1468                 return 0;
1469
1470         /* Otherwise any gadget driver matches any UDC */
1471         return 1;
1472 }
1473
1474 static int gadget_bind_driver(struct device *dev)
1475 {
1476         struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1477         struct usb_udc *udc = gadget->udc;
1478         struct usb_gadget_driver *driver = container_of(dev->driver,
1479                         struct usb_gadget_driver, driver);
1480         int ret = 0;
1481
1482         mutex_lock(&udc_lock);
1483         if (driver->is_bound) {
1484                 mutex_unlock(&udc_lock);
1485                 return -ENXIO;          /* Driver binds to only one gadget */
1486         }
1487         driver->is_bound = true;
1488         udc->driver = driver;
1489         mutex_unlock(&udc_lock);
1490
1491         dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function);
1492
1493         usb_gadget_udc_set_speed(udc, driver->max_speed);
1494
1495         ret = driver->bind(udc->gadget, driver);
1496         if (ret)
1497                 goto err_bind;
1498
1499         ret = usb_gadget_udc_start(udc);
1500         if (ret)
1501                 goto err_start;
1502         usb_gadget_enable_async_callbacks(udc);
1503         usb_udc_connect_control(udc);
1504
1505         kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1506         return 0;
1507
1508  err_start:
1509         driver->unbind(udc->gadget);
1510
1511  err_bind:
1512         if (ret != -EISNAM)
1513                 dev_err(&udc->dev, "failed to start %s: %d\n",
1514                         driver->function, ret);
1515
1516         mutex_lock(&udc_lock);
1517         udc->driver = NULL;
1518         driver->is_bound = false;
1519         mutex_unlock(&udc_lock);
1520
1521         return ret;
1522 }
1523
1524 static void gadget_unbind_driver(struct device *dev)
1525 {
1526         struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1527         struct usb_udc *udc = gadget->udc;
1528         struct usb_gadget_driver *driver = udc->driver;
1529
1530         dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function);
1531
1532         kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1533
1534         usb_gadget_disconnect(gadget);
1535         usb_gadget_disable_async_callbacks(udc);
1536         if (gadget->irq)
1537                 synchronize_irq(gadget->irq);
1538         udc->driver->unbind(gadget);
1539         usb_gadget_udc_stop(udc);
1540
1541         mutex_lock(&udc_lock);
1542         driver->is_bound = false;
1543         udc->driver = NULL;
1544         mutex_unlock(&udc_lock);
1545 }
1546
1547 /* ------------------------------------------------------------------------- */
1548
1549 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
1550                 struct module *owner, const char *mod_name)
1551 {
1552         int ret;
1553
1554         if (!driver || !driver->bind || !driver->setup)
1555                 return -EINVAL;
1556
1557         driver->driver.bus = &gadget_bus_type;
1558         driver->driver.owner = owner;
1559         driver->driver.mod_name = mod_name;
1560         ret = driver_register(&driver->driver);
1561         if (ret) {
1562                 pr_warn("%s: driver registration failed: %d\n",
1563                                 driver->function, ret);
1564                 return ret;
1565         }
1566
1567         mutex_lock(&udc_lock);
1568         if (!driver->is_bound) {
1569                 if (driver->match_existing_only) {
1570                         pr_warn("%s: couldn't find an available UDC or it's busy\n",
1571                                         driver->function);
1572                         ret = -EBUSY;
1573                 } else {
1574                         pr_info("%s: couldn't find an available UDC\n",
1575                                         driver->function);
1576                         ret = 0;
1577                 }
1578         }
1579         mutex_unlock(&udc_lock);
1580
1581         if (ret)
1582                 driver_unregister(&driver->driver);
1583         return ret;
1584 }
1585 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner);
1586
1587 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1588 {
1589         if (!driver || !driver->unbind)
1590                 return -EINVAL;
1591
1592         driver_unregister(&driver->driver);
1593         return 0;
1594 }
1595 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1596
1597 /* ------------------------------------------------------------------------- */
1598
1599 static ssize_t srp_store(struct device *dev,
1600                 struct device_attribute *attr, const char *buf, size_t n)
1601 {
1602         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1603
1604         if (sysfs_streq(buf, "1"))
1605                 usb_gadget_wakeup(udc->gadget);
1606
1607         return n;
1608 }
1609 static DEVICE_ATTR_WO(srp);
1610
1611 static ssize_t soft_connect_store(struct device *dev,
1612                 struct device_attribute *attr, const char *buf, size_t n)
1613 {
1614         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1615         ssize_t                 ret;
1616
1617         device_lock(&udc->gadget->dev);
1618         if (!udc->driver) {
1619                 dev_err(dev, "soft-connect without a gadget driver\n");
1620                 ret = -EOPNOTSUPP;
1621                 goto out;
1622         }
1623
1624         if (sysfs_streq(buf, "connect")) {
1625                 usb_gadget_udc_start(udc);
1626                 usb_gadget_connect(udc->gadget);
1627         } else if (sysfs_streq(buf, "disconnect")) {
1628                 usb_gadget_disconnect(udc->gadget);
1629                 usb_gadget_udc_stop(udc);
1630         } else {
1631                 dev_err(dev, "unsupported command '%s'\n", buf);
1632                 ret = -EINVAL;
1633                 goto out;
1634         }
1635
1636         ret = n;
1637 out:
1638         device_unlock(&udc->gadget->dev);
1639         return ret;
1640 }
1641 static DEVICE_ATTR_WO(soft_connect);
1642
1643 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1644                           char *buf)
1645 {
1646         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1647         struct usb_gadget       *gadget = udc->gadget;
1648
1649         return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1650 }
1651 static DEVICE_ATTR_RO(state);
1652
1653 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1654                              char *buf)
1655 {
1656         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1657         struct usb_gadget_driver *drv;
1658         int                     rc = 0;
1659
1660         mutex_lock(&udc_lock);
1661         drv = udc->driver;
1662         if (drv && drv->function)
1663                 rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1664         mutex_unlock(&udc_lock);
1665         return rc;
1666 }
1667 static DEVICE_ATTR_RO(function);
1668
1669 #define USB_UDC_SPEED_ATTR(name, param)                                 \
1670 ssize_t name##_show(struct device *dev,                                 \
1671                 struct device_attribute *attr, char *buf)               \
1672 {                                                                       \
1673         struct usb_udc *udc = container_of(dev, struct usb_udc, dev);   \
1674         return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1675                         usb_speed_string(udc->gadget->param));          \
1676 }                                                                       \
1677 static DEVICE_ATTR_RO(name)
1678
1679 static USB_UDC_SPEED_ATTR(current_speed, speed);
1680 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1681
1682 #define USB_UDC_ATTR(name)                                      \
1683 ssize_t name##_show(struct device *dev,                         \
1684                 struct device_attribute *attr, char *buf)       \
1685 {                                                               \
1686         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev); \
1687         struct usb_gadget       *gadget = udc->gadget;          \
1688                                                                 \
1689         return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1690 }                                                               \
1691 static DEVICE_ATTR_RO(name)
1692
1693 static USB_UDC_ATTR(is_otg);
1694 static USB_UDC_ATTR(is_a_peripheral);
1695 static USB_UDC_ATTR(b_hnp_enable);
1696 static USB_UDC_ATTR(a_hnp_support);
1697 static USB_UDC_ATTR(a_alt_hnp_support);
1698 static USB_UDC_ATTR(is_selfpowered);
1699
1700 static struct attribute *usb_udc_attrs[] = {
1701         &dev_attr_srp.attr,
1702         &dev_attr_soft_connect.attr,
1703         &dev_attr_state.attr,
1704         &dev_attr_function.attr,
1705         &dev_attr_current_speed.attr,
1706         &dev_attr_maximum_speed.attr,
1707
1708         &dev_attr_is_otg.attr,
1709         &dev_attr_is_a_peripheral.attr,
1710         &dev_attr_b_hnp_enable.attr,
1711         &dev_attr_a_hnp_support.attr,
1712         &dev_attr_a_alt_hnp_support.attr,
1713         &dev_attr_is_selfpowered.attr,
1714         NULL,
1715 };
1716
1717 static const struct attribute_group usb_udc_attr_group = {
1718         .attrs = usb_udc_attrs,
1719 };
1720
1721 static const struct attribute_group *usb_udc_attr_groups[] = {
1722         &usb_udc_attr_group,
1723         NULL,
1724 };
1725
1726 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1727 {
1728         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1729         int                     ret;
1730
1731         ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1732         if (ret) {
1733                 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1734                 return ret;
1735         }
1736
1737         mutex_lock(&udc_lock);
1738         if (udc->driver)
1739                 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1740                                 udc->driver->function);
1741         mutex_unlock(&udc_lock);
1742         if (ret) {
1743                 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1744                 return ret;
1745         }
1746
1747         return 0;
1748 }
1749
1750 static struct bus_type gadget_bus_type = {
1751         .name = "gadget",
1752         .probe = gadget_bind_driver,
1753         .remove = gadget_unbind_driver,
1754         .match = gadget_match_driver,
1755 };
1756
1757 static int __init usb_udc_init(void)
1758 {
1759         int rc;
1760
1761         udc_class = class_create(THIS_MODULE, "udc");
1762         if (IS_ERR(udc_class)) {
1763                 pr_err("failed to create udc class --> %ld\n",
1764                                 PTR_ERR(udc_class));
1765                 return PTR_ERR(udc_class);
1766         }
1767
1768         udc_class->dev_uevent = usb_udc_uevent;
1769
1770         rc = bus_register(&gadget_bus_type);
1771         if (rc)
1772                 class_destroy(udc_class);
1773         return rc;
1774 }
1775 subsys_initcall(usb_udc_init);
1776
1777 static void __exit usb_udc_exit(void)
1778 {
1779         bus_unregister(&gadget_bus_type);
1780         class_destroy(udc_class);
1781 }
1782 module_exit(usb_udc_exit);
1783
1784 MODULE_DESCRIPTION("UDC Framework");
1785 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1786 MODULE_LICENSE("GPL v2");