Merge tag 'io_uring-6.7-2023-11-10' of git://git.kernel.dk/linux
[sfrench/cifs-2.6.git] / drivers / usb / cdns3 / cdnsp-gadget.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  */
10
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/pci.h>
19 #include <linux/irq.h>
20 #include <linux/dmi.h>
21
22 #include "core.h"
23 #include "gadget-export.h"
24 #include "drd.h"
25 #include "cdnsp-gadget.h"
26 #include "cdnsp-trace.h"
27
28 unsigned int cdnsp_port_speed(unsigned int port_status)
29 {
30         /*Detect gadget speed based on PORTSC register*/
31         if (DEV_SUPERSPEEDPLUS(port_status))
32                 return USB_SPEED_SUPER_PLUS;
33         else if (DEV_SUPERSPEED(port_status))
34                 return USB_SPEED_SUPER;
35         else if (DEV_HIGHSPEED(port_status))
36                 return USB_SPEED_HIGH;
37         else if (DEV_FULLSPEED(port_status))
38                 return USB_SPEED_FULL;
39
40         /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
41         return USB_SPEED_UNKNOWN;
42 }
43
44 /*
45  * Given a port state, this function returns a value that would result in the
46  * port being in the same state, if the value was written to the port status
47  * control register.
48  * Save Read Only (RO) bits and save read/write bits where
49  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
50  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
51  */
52 u32 cdnsp_port_state_to_neutral(u32 state)
53 {
54         /* Save read-only status and port state. */
55         return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
56 }
57
58 /**
59  * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
60  *                           with capability ID id.
61  * @base: PCI MMIO registers base address.
62  * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
63  *         beginning of list)
64  * @id: Extended capability ID to search for.
65  *
66  * Returns the offset of the next matching extended capability structure.
67  * Some capabilities can occur several times,
68  * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
69  */
70 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
71 {
72         u32 offset = start;
73         u32 next;
74         u32 val;
75
76         if (!start || start == HCC_PARAMS_OFFSET) {
77                 val = readl(base + HCC_PARAMS_OFFSET);
78                 if (val == ~0)
79                         return 0;
80
81                 offset = HCC_EXT_CAPS(val) << 2;
82                 if (!offset)
83                         return 0;
84         }
85
86         do {
87                 val = readl(base + offset);
88                 if (val == ~0)
89                         return 0;
90
91                 if (EXT_CAPS_ID(val) == id && offset != start)
92                         return offset;
93
94                 next = EXT_CAPS_NEXT(val);
95                 offset += next << 2;
96         } while (next);
97
98         return 0;
99 }
100
101 void cdnsp_set_link_state(struct cdnsp_device *pdev,
102                           __le32 __iomem *port_regs,
103                           u32 link_state)
104 {
105         int port_num = 0xFF;
106         u32 temp;
107
108         temp = readl(port_regs);
109         temp = cdnsp_port_state_to_neutral(temp);
110         temp |= PORT_WKCONN_E | PORT_WKDISC_E;
111         writel(temp, port_regs);
112
113         temp &= ~PORT_PLS_MASK;
114         temp |= PORT_LINK_STROBE | link_state;
115
116         if (pdev->active_port)
117                 port_num = pdev->active_port->port_num;
118
119         trace_cdnsp_handle_port_status(port_num, readl(port_regs));
120         writel(temp, port_regs);
121         trace_cdnsp_link_state_changed(port_num, readl(port_regs));
122 }
123
124 static void cdnsp_disable_port(struct cdnsp_device *pdev,
125                                __le32 __iomem *port_regs)
126 {
127         u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
128
129         writel(temp | PORT_PED, port_regs);
130 }
131
132 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
133                                         __le32 __iomem *port_regs)
134 {
135         u32 portsc = readl(port_regs);
136
137         writel(cdnsp_port_state_to_neutral(portsc) |
138                (portsc & PORT_CHANGE_BITS), port_regs);
139 }
140
141 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
142 {
143         __le32 __iomem *reg;
144         void __iomem *base;
145         u32 offset = 0;
146
147         base = &pdev->cap_regs->hc_capbase;
148         offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
149         reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
150
151         bit = readl(reg) | bit;
152         writel(bit, reg);
153 }
154
155 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
156 {
157         __le32 __iomem *reg;
158         void __iomem *base;
159         u32 offset = 0;
160
161         base = &pdev->cap_regs->hc_capbase;
162         offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
163         reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
164
165         bit = readl(reg) & ~bit;
166         writel(bit, reg);
167 }
168
169 /*
170  * Disable interrupts and begin the controller halting process.
171  */
172 static void cdnsp_quiesce(struct cdnsp_device *pdev)
173 {
174         u32 halted;
175         u32 mask;
176         u32 cmd;
177
178         mask = ~(u32)(CDNSP_IRQS);
179
180         halted = readl(&pdev->op_regs->status) & STS_HALT;
181         if (!halted)
182                 mask &= ~(CMD_R_S | CMD_DEVEN);
183
184         cmd = readl(&pdev->op_regs->command);
185         cmd &= mask;
186         writel(cmd, &pdev->op_regs->command);
187 }
188
189 /*
190  * Force controller into halt state.
191  *
192  * Disable any IRQs and clear the run/stop bit.
193  * Controller will complete any current and actively pipelined transactions, and
194  * should halt within 16 ms of the run/stop bit being cleared.
195  * Read controller Halted bit in the status register to see when the
196  * controller is finished.
197  */
198 int cdnsp_halt(struct cdnsp_device *pdev)
199 {
200         int ret;
201         u32 val;
202
203         cdnsp_quiesce(pdev);
204
205         ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
206                                         val & STS_HALT, 1,
207                                         CDNSP_MAX_HALT_USEC);
208         if (ret) {
209                 dev_err(pdev->dev, "ERROR: Device halt failed\n");
210                 return ret;
211         }
212
213         pdev->cdnsp_state |= CDNSP_STATE_HALTED;
214
215         return 0;
216 }
217
218 /*
219  * device controller died, register read returns 0xffffffff, or command never
220  * ends.
221  */
222 void cdnsp_died(struct cdnsp_device *pdev)
223 {
224         dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
225         pdev->cdnsp_state |= CDNSP_STATE_DYING;
226         cdnsp_halt(pdev);
227 }
228
229 /*
230  * Set the run bit and wait for the device to be running.
231  */
232 static int cdnsp_start(struct cdnsp_device *pdev)
233 {
234         u32 temp;
235         int ret;
236
237         temp = readl(&pdev->op_regs->command);
238         temp |= (CMD_R_S | CMD_DEVEN);
239         writel(temp, &pdev->op_regs->command);
240
241         pdev->cdnsp_state = 0;
242
243         /*
244          * Wait for the STS_HALT Status bit to be 0 to indicate the device is
245          * running.
246          */
247         ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
248                                         !(temp & STS_HALT), 1,
249                                         CDNSP_MAX_HALT_USEC);
250         if (ret) {
251                 pdev->cdnsp_state = CDNSP_STATE_DYING;
252                 dev_err(pdev->dev, "ERROR: Controller run failed\n");
253         }
254
255         return ret;
256 }
257
258 /*
259  * Reset a halted controller.
260  *
261  * This resets pipelines, timers, counters, state machines, etc.
262  * Transactions will be terminated immediately, and operational registers
263  * will be set to their defaults.
264  */
265 int cdnsp_reset(struct cdnsp_device *pdev)
266 {
267         u32 command;
268         u32 temp;
269         int ret;
270
271         temp = readl(&pdev->op_regs->status);
272
273         if (temp == ~(u32)0) {
274                 dev_err(pdev->dev, "Device not accessible, reset failed.\n");
275                 return -ENODEV;
276         }
277
278         if ((temp & STS_HALT) == 0) {
279                 dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
280                 return -EINVAL;
281         }
282
283         command = readl(&pdev->op_regs->command);
284         command |= CMD_RESET;
285         writel(command, &pdev->op_regs->command);
286
287         ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
288                                         !(temp & CMD_RESET), 1,
289                                         10 * 1000);
290         if (ret) {
291                 dev_err(pdev->dev, "ERROR: Controller reset failed\n");
292                 return ret;
293         }
294
295         /*
296          * CDNSP cannot write any doorbells or operational registers other
297          * than status until the "Controller Not Ready" flag is cleared.
298          */
299         ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
300                                         !(temp & STS_CNR), 1,
301                                         10 * 1000);
302
303         if (ret) {
304                 dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
305                 return ret;
306         }
307
308         dev_dbg(pdev->dev, "Controller ready to work");
309
310         return ret;
311 }
312
313 /*
314  * cdnsp_get_endpoint_index - Find the index for an endpoint given its
315  * descriptor.Use the return value to right shift 1 for the bitmask.
316  *
317  * Index = (epnum * 2) + direction - 1,
318  * where direction = 0 for OUT, 1 for IN.
319  * For control endpoints, the IN index is used (OUT index is unused), so
320  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
321  */
322 static unsigned int
323         cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
324 {
325         unsigned int index = (unsigned int)usb_endpoint_num(desc);
326
327         if (usb_endpoint_xfer_control(desc))
328                 return index * 2;
329
330         return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
331 }
332
333 /*
334  * Find the flag for this endpoint (for use in the control context). Use the
335  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
336  * bit 1, etc.
337  */
338 static unsigned int
339         cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
340 {
341         return 1 << (cdnsp_get_endpoint_index(desc) + 1);
342 }
343
344 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
345 {
346         struct cdnsp_device *pdev = pep->pdev;
347         struct usb_request *request;
348         int ret;
349
350         if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
351                 trace_cdnsp_request_enqueue_busy(preq);
352                 return -EBUSY;
353         }
354
355         request = &preq->request;
356         request->actual = 0;
357         request->status = -EINPROGRESS;
358         preq->direction = pep->direction;
359         preq->epnum = pep->number;
360         preq->td.drbl = 0;
361
362         ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
363         if (ret) {
364                 trace_cdnsp_request_enqueue_error(preq);
365                 return ret;
366         }
367
368         list_add_tail(&preq->list, &pep->pending_list);
369
370         trace_cdnsp_request_enqueue(preq);
371
372         switch (usb_endpoint_type(pep->endpoint.desc)) {
373         case USB_ENDPOINT_XFER_CONTROL:
374                 ret = cdnsp_queue_ctrl_tx(pdev, preq);
375                 break;
376         case USB_ENDPOINT_XFER_BULK:
377         case USB_ENDPOINT_XFER_INT:
378                 ret = cdnsp_queue_bulk_tx(pdev, preq);
379                 break;
380         case USB_ENDPOINT_XFER_ISOC:
381                 ret = cdnsp_queue_isoc_tx(pdev, preq);
382         }
383
384         if (ret)
385                 goto unmap;
386
387         return 0;
388
389 unmap:
390         usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
391                                         pep->direction);
392         list_del(&preq->list);
393         trace_cdnsp_request_enqueue_error(preq);
394
395         return ret;
396 }
397
398 /*
399  * Remove the request's TD from the endpoint ring. This may cause the
400  * controller to stop USB transfers, potentially stopping in the middle of a
401  * TRB buffer. The controller should pick up where it left off in the TD,
402  * unless a Set Transfer Ring Dequeue Pointer is issued.
403  *
404  * The TRBs that make up the buffers for the canceled request will be "removed"
405  * from the ring. Since the ring is a contiguous structure, they can't be
406  * physically removed. Instead, there are two options:
407  *
408  *  1) If the controller is in the middle of processing the request to be
409  *     canceled, we simply move the ring's dequeue pointer past those TRBs
410  *     using the Set Transfer Ring Dequeue Pointer command. This will be
411  *     the common case, when drivers timeout on the last submitted request
412  *     and attempt to cancel.
413  *
414  *  2) If the controller is in the middle of a different TD, we turn the TRBs
415  *     into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
416  *     The controller will need to invalidate the any TRBs it has cached after
417  *     the stop endpoint command.
418  *
419  *  3) The TD may have completed by the time the Stop Endpoint Command
420  *     completes, so software needs to handle that case too.
421  *
422  */
423 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
424 {
425         struct cdnsp_device *pdev = pep->pdev;
426         int ret_stop = 0;
427         int ret_rem;
428
429         trace_cdnsp_request_dequeue(preq);
430
431         if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
432                 ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
433
434         ret_rem = cdnsp_remove_request(pdev, preq, pep);
435
436         return ret_rem ? ret_rem : ret_stop;
437 }
438
439 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
440 {
441         struct cdnsp_input_control_ctx *ctrl_ctx;
442         struct cdnsp_slot_ctx *slot_ctx;
443         struct cdnsp_ep_ctx *ep_ctx;
444         int i;
445
446         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
447
448         /*
449          * When a device's add flag and drop flag are zero, any subsequent
450          * configure endpoint command will leave that endpoint's state
451          * untouched. Make sure we don't leave any old state in the input
452          * endpoint contexts.
453          */
454         ctrl_ctx->drop_flags = 0;
455         ctrl_ctx->add_flags = 0;
456         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
457         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
458
459         /* Endpoint 0 is always valid */
460         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
461         for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
462                 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
463                 ep_ctx->ep_info = 0;
464                 ep_ctx->ep_info2 = 0;
465                 ep_ctx->deq = 0;
466                 ep_ctx->tx_info = 0;
467         }
468 }
469
470 /* Issue a configure endpoint command and wait for it to finish. */
471 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
472 {
473         int ret;
474
475         cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
476         cdnsp_ring_cmd_db(pdev);
477         ret = cdnsp_wait_for_cmd_compl(pdev);
478         if (ret) {
479                 dev_err(pdev->dev,
480                         "ERR: unexpected command completion code 0x%x.\n", ret);
481                 return -EINVAL;
482         }
483
484         return ret;
485 }
486
487 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
488                                        struct cdnsp_ep *pep)
489 {
490         struct cdnsp_segment *segment;
491         union cdnsp_trb *event;
492         u32 cycle_state;
493         u32  data;
494
495         event = pdev->event_ring->dequeue;
496         segment = pdev->event_ring->deq_seg;
497         cycle_state = pdev->event_ring->cycle_state;
498
499         while (1) {
500                 data = le32_to_cpu(event->trans_event.flags);
501
502                 /* Check the owner of the TRB. */
503                 if ((data & TRB_CYCLE) != cycle_state)
504                         break;
505
506                 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
507                     TRB_TO_EP_ID(data) == (pep->idx + 1)) {
508                         data |= TRB_EVENT_INVALIDATE;
509                         event->trans_event.flags = cpu_to_le32(data);
510                 }
511
512                 if (cdnsp_last_trb_on_seg(segment, event)) {
513                         cycle_state ^= 1;
514                         segment = pdev->event_ring->deq_seg->next;
515                         event = segment->trbs;
516                 } else {
517                         event++;
518                 }
519         }
520 }
521
522 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
523 {
524         struct cdnsp_segment *event_deq_seg;
525         union cdnsp_trb *cmd_trb;
526         dma_addr_t cmd_deq_dma;
527         union cdnsp_trb *event;
528         u32 cycle_state;
529         int ret, val;
530         u64 cmd_dma;
531         u32  flags;
532
533         cmd_trb = pdev->cmd.command_trb;
534         pdev->cmd.status = 0;
535
536         trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
537
538         ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
539                                         !CMD_RING_BUSY(val), 1,
540                                         CDNSP_CMD_TIMEOUT);
541         if (ret) {
542                 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
543                 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
544                 pdev->cdnsp_state = CDNSP_STATE_DYING;
545                 return -ETIMEDOUT;
546         }
547
548         event = pdev->event_ring->dequeue;
549         event_deq_seg = pdev->event_ring->deq_seg;
550         cycle_state = pdev->event_ring->cycle_state;
551
552         cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
553         if (!cmd_deq_dma)
554                 return -EINVAL;
555
556         while (1) {
557                 flags = le32_to_cpu(event->event_cmd.flags);
558
559                 /* Check the owner of the TRB. */
560                 if ((flags & TRB_CYCLE) != cycle_state)
561                         return -EINVAL;
562
563                 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
564
565                 /*
566                  * Check whether the completion event is for last queued
567                  * command.
568                  */
569                 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
570                     cmd_dma != (u64)cmd_deq_dma) {
571                         if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
572                                 event++;
573                                 continue;
574                         }
575
576                         if (cdnsp_last_trb_on_ring(pdev->event_ring,
577                                                    event_deq_seg, event))
578                                 cycle_state ^= 1;
579
580                         event_deq_seg = event_deq_seg->next;
581                         event = event_deq_seg->trbs;
582                         continue;
583                 }
584
585                 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
586
587                 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
588                 if (pdev->cmd.status == COMP_SUCCESS)
589                         return 0;
590
591                 return -pdev->cmd.status;
592         }
593 }
594
595 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
596                         struct cdnsp_ep *pep,
597                         int value)
598 {
599         int ret;
600
601         trace_cdnsp_ep_halt(value ? "Set" : "Clear");
602
603         ret = cdnsp_cmd_stop_ep(pdev, pep);
604         if (ret)
605                 return ret;
606
607         if (value) {
608                 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
609                         cdnsp_queue_halt_endpoint(pdev, pep->idx);
610                         cdnsp_ring_cmd_db(pdev);
611                         ret = cdnsp_wait_for_cmd_compl(pdev);
612                 }
613
614                 pep->ep_state |= EP_HALTED;
615         } else {
616                 cdnsp_queue_reset_ep(pdev, pep->idx);
617                 cdnsp_ring_cmd_db(pdev);
618                 ret = cdnsp_wait_for_cmd_compl(pdev);
619                 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
620
621                 if (ret)
622                         return ret;
623
624                 pep->ep_state &= ~EP_HALTED;
625
626                 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
627                         cdnsp_ring_doorbell_for_active_rings(pdev, pep);
628
629                 pep->ep_state &= ~EP_WEDGE;
630         }
631
632         return 0;
633 }
634
635 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
636                                           struct cdnsp_ep *pep)
637 {
638         struct cdnsp_input_control_ctx *ctrl_ctx;
639         struct cdnsp_slot_ctx *slot_ctx;
640         int ret = 0;
641         u32 ep_sts;
642         int i;
643
644         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
645
646         /* Don't issue the command if there's no endpoints to update. */
647         if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
648                 return 0;
649
650         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
651         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
652         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
653
654         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
655         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
656         for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
657                 __le32 le32 = cpu_to_le32(BIT(i));
658
659                 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
660                     (ctrl_ctx->add_flags & le32) || i == 1) {
661                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
662                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
663                         break;
664                 }
665         }
666
667         ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
668
669         if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
670              ep_sts == EP_STATE_DISABLED) ||
671             (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
672                 ret = cdnsp_configure_endpoint(pdev);
673
674         trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
675         trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
676
677         cdnsp_zero_in_ctx(pdev);
678
679         return ret;
680 }
681
682 /*
683  * This submits a Reset Device Command, which will set the device state to 0,
684  * set the device address to 0, and disable all the endpoints except the default
685  * control endpoint. The USB core should come back and call
686  * cdnsp_setup_device(), and then re-set up the configuration.
687  */
688 int cdnsp_reset_device(struct cdnsp_device *pdev)
689 {
690         struct cdnsp_slot_ctx *slot_ctx;
691         int slot_state;
692         int ret, i;
693
694         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
695         slot_ctx->dev_info = 0;
696         pdev->device_address = 0;
697
698         /* If device is not setup, there is no point in resetting it. */
699         slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
700         slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
701         trace_cdnsp_reset_device(slot_ctx);
702
703         if (slot_state <= SLOT_STATE_DEFAULT &&
704             pdev->eps[0].ep_state & EP_HALTED) {
705                 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
706         }
707
708         /*
709          * During Reset Device command controller shall transition the
710          * endpoint ep0 to the Running State.
711          */
712         pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
713         pdev->eps[0].ep_state |= EP_ENABLED;
714
715         if (slot_state <= SLOT_STATE_DEFAULT)
716                 return 0;
717
718         cdnsp_queue_reset_device(pdev);
719         cdnsp_ring_cmd_db(pdev);
720         ret = cdnsp_wait_for_cmd_compl(pdev);
721
722         /*
723          * After Reset Device command all not default endpoints
724          * are in Disabled state.
725          */
726         for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
727                 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
728
729         trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
730
731         if (ret)
732                 dev_err(pdev->dev, "Reset device failed with error code %d",
733                         ret);
734
735         return ret;
736 }
737
738 /*
739  * Sets the MaxPStreams field and the Linear Stream Array field.
740  * Sets the dequeue pointer to the stream context array.
741  */
742 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
743                                              struct cdnsp_ep_ctx *ep_ctx,
744                                              struct cdnsp_stream_info *stream_info)
745 {
746         u32 max_primary_streams;
747
748         /* MaxPStreams is the number of stream context array entries, not the
749          * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
750          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
751          */
752         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
753         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
754         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
755                                        | EP_HAS_LSA);
756         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
757 }
758
759 /*
760  * The drivers use this function to prepare a bulk endpoints to use streams.
761  *
762  * Don't allow the call to succeed if endpoint only supports one stream
763  * (which means it doesn't support streams at all).
764  */
765 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
766 {
767         unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
768         unsigned int num_stream_ctxs;
769         int ret;
770
771         if (num_streams ==  0)
772                 return 0;
773
774         if (num_streams > STREAM_NUM_STREAMS)
775                 return -EINVAL;
776
777         /*
778          * Add two to the number of streams requested to account for
779          * stream 0 that is reserved for controller usage and one additional
780          * for TASK SET FULL response.
781          */
782         num_streams += 2;
783
784         /* The stream context array size must be a power of two */
785         num_stream_ctxs = roundup_pow_of_two(num_streams);
786
787         trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
788
789         ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
790         if (ret)
791                 return ret;
792
793         cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
794
795         pep->ep_state |= EP_HAS_STREAMS;
796         pep->stream_info.td_count = 0;
797         pep->stream_info.first_prime_det = 0;
798
799         /* Subtract 1 for stream 0, which drivers can't use. */
800         return num_streams - 1;
801 }
802
803 int cdnsp_disable_slot(struct cdnsp_device *pdev)
804 {
805         int ret;
806
807         cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
808         cdnsp_ring_cmd_db(pdev);
809         ret = cdnsp_wait_for_cmd_compl(pdev);
810
811         pdev->slot_id = 0;
812         pdev->active_port = NULL;
813
814         trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
815
816         memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
817         memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
818
819         return ret;
820 }
821
822 int cdnsp_enable_slot(struct cdnsp_device *pdev)
823 {
824         struct cdnsp_slot_ctx *slot_ctx;
825         int slot_state;
826         int ret;
827
828         /* If device is not setup, there is no point in resetting it */
829         slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
830         slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
831
832         if (slot_state != SLOT_STATE_DISABLED)
833                 return 0;
834
835         cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
836         cdnsp_ring_cmd_db(pdev);
837         ret = cdnsp_wait_for_cmd_compl(pdev);
838         if (ret)
839                 goto show_trace;
840
841         pdev->slot_id = 1;
842
843 show_trace:
844         trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
845
846         return ret;
847 }
848
849 /*
850  * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
851  * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
852  */
853 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
854 {
855         struct cdnsp_input_control_ctx *ctrl_ctx;
856         struct cdnsp_slot_ctx *slot_ctx;
857         int dev_state = 0;
858         int ret;
859
860         if (!pdev->slot_id) {
861                 trace_cdnsp_slot_id("incorrect");
862                 return -EINVAL;
863         }
864
865         if (!pdev->active_port->port_num)
866                 return -EINVAL;
867
868         slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
869         dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
870
871         if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
872                 trace_cdnsp_slot_already_in_default(slot_ctx);
873                 return 0;
874         }
875
876         slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
877         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
878
879         if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
880                 ret = cdnsp_setup_addressable_priv_dev(pdev);
881                 if (ret)
882                         return ret;
883         }
884
885         cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
886
887         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
888         ctrl_ctx->drop_flags = 0;
889
890         trace_cdnsp_setup_device_slot(slot_ctx);
891
892         cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
893         cdnsp_ring_cmd_db(pdev);
894         ret = cdnsp_wait_for_cmd_compl(pdev);
895
896         trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
897
898         /* Zero the input context control for later use. */
899         ctrl_ctx->add_flags = 0;
900         ctrl_ctx->drop_flags = 0;
901
902         return ret;
903 }
904
905 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
906                                  struct usb_request *req,
907                                  int enable)
908 {
909         if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
910                 return;
911
912         trace_cdnsp_lpm(enable);
913
914         if (enable)
915                 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
916                        &pdev->active_port->regs->portpmsc);
917         else
918                 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
919 }
920
921 static int cdnsp_get_frame(struct cdnsp_device *pdev)
922 {
923         return readl(&pdev->run_regs->microframe_index) >> 3;
924 }
925
926 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
927                                   const struct usb_endpoint_descriptor *desc)
928 {
929         struct cdnsp_input_control_ctx *ctrl_ctx;
930         struct cdnsp_device *pdev;
931         struct cdnsp_ep *pep;
932         unsigned long flags;
933         u32 added_ctxs;
934         int ret;
935
936         if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
937             !desc->wMaxPacketSize)
938                 return -EINVAL;
939
940         pep = to_cdnsp_ep(ep);
941         pdev = pep->pdev;
942         pep->ep_state &= ~EP_UNCONFIGURED;
943
944         if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
945                           "%s is already enabled\n", pep->name))
946                 return 0;
947
948         spin_lock_irqsave(&pdev->lock, flags);
949
950         added_ctxs = cdnsp_get_endpoint_flag(desc);
951         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
952                 dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
953                 ret = -EINVAL;
954                 goto unlock;
955         }
956
957         pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
958
959         if (pdev->gadget.speed == USB_SPEED_FULL) {
960                 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
961                         pep->interval = desc->bInterval << 3;
962                 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
963                         pep->interval = BIT(desc->bInterval - 1) << 3;
964         }
965
966         if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
967                 if (pep->interval > BIT(12)) {
968                         dev_err(pdev->dev, "bInterval %d not supported\n",
969                                 desc->bInterval);
970                         ret = -EINVAL;
971                         goto unlock;
972                 }
973                 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
974         }
975
976         ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
977         if (ret)
978                 goto unlock;
979
980         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
981         ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
982         ctrl_ctx->drop_flags = 0;
983
984         ret = cdnsp_update_eps_configuration(pdev, pep);
985         if (ret) {
986                 cdnsp_free_endpoint_rings(pdev, pep);
987                 goto unlock;
988         }
989
990         pep->ep_state |= EP_ENABLED;
991         pep->ep_state &= ~EP_STOPPED;
992
993 unlock:
994         trace_cdnsp_ep_enable_end(pep, 0);
995         spin_unlock_irqrestore(&pdev->lock, flags);
996
997         return ret;
998 }
999
1000 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1001 {
1002         struct cdnsp_input_control_ctx *ctrl_ctx;
1003         struct cdnsp_request *preq;
1004         struct cdnsp_device *pdev;
1005         struct cdnsp_ep *pep;
1006         unsigned long flags;
1007         u32 drop_flag;
1008         int ret = 0;
1009
1010         if (!ep)
1011                 return -EINVAL;
1012
1013         pep = to_cdnsp_ep(ep);
1014         pdev = pep->pdev;
1015
1016         spin_lock_irqsave(&pdev->lock, flags);
1017
1018         if (!(pep->ep_state & EP_ENABLED)) {
1019                 dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1020                 ret = -EINVAL;
1021                 goto finish;
1022         }
1023
1024         pep->ep_state |= EP_DIS_IN_RROGRESS;
1025
1026         /* Endpoint was unconfigured by Reset Device command. */
1027         if (!(pep->ep_state & EP_UNCONFIGURED))
1028                 cdnsp_cmd_stop_ep(pdev, pep);
1029
1030         /* Remove all queued USB requests. */
1031         while (!list_empty(&pep->pending_list)) {
1032                 preq = next_request(&pep->pending_list);
1033                 cdnsp_ep_dequeue(pep, preq);
1034         }
1035
1036         cdnsp_invalidate_ep_events(pdev, pep);
1037
1038         pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1039         drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1040         ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1041         ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1042         ctrl_ctx->add_flags = 0;
1043
1044         cdnsp_endpoint_zero(pdev, pep);
1045
1046         if (!(pep->ep_state & EP_UNCONFIGURED))
1047                 ret = cdnsp_update_eps_configuration(pdev, pep);
1048
1049         cdnsp_free_endpoint_rings(pdev, pep);
1050
1051         pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1052         pep->ep_state |= EP_STOPPED;
1053
1054 finish:
1055         trace_cdnsp_ep_disable_end(pep, 0);
1056         spin_unlock_irqrestore(&pdev->lock, flags);
1057
1058         return ret;
1059 }
1060
1061 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1062                                                          gfp_t gfp_flags)
1063 {
1064         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1065         struct cdnsp_request *preq;
1066
1067         preq = kzalloc(sizeof(*preq), gfp_flags);
1068         if (!preq)
1069                 return NULL;
1070
1071         preq->epnum = pep->number;
1072         preq->pep = pep;
1073
1074         trace_cdnsp_alloc_request(preq);
1075
1076         return &preq->request;
1077 }
1078
1079 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1080                                          struct usb_request *request)
1081 {
1082         struct cdnsp_request *preq = to_cdnsp_request(request);
1083
1084         trace_cdnsp_free_request(preq);
1085         kfree(preq);
1086 }
1087
1088 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1089                                  struct usb_request *request,
1090                                  gfp_t gfp_flags)
1091 {
1092         struct cdnsp_request *preq;
1093         struct cdnsp_device *pdev;
1094         struct cdnsp_ep *pep;
1095         unsigned long flags;
1096         int ret;
1097
1098         if (!request || !ep)
1099                 return -EINVAL;
1100
1101         pep = to_cdnsp_ep(ep);
1102         pdev = pep->pdev;
1103
1104         if (!(pep->ep_state & EP_ENABLED)) {
1105                 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1106                         pep->name);
1107                 return -EINVAL;
1108         }
1109
1110         preq = to_cdnsp_request(request);
1111         spin_lock_irqsave(&pdev->lock, flags);
1112         ret = cdnsp_ep_enqueue(pep, preq);
1113         spin_unlock_irqrestore(&pdev->lock, flags);
1114
1115         return ret;
1116 }
1117
1118 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1119                                    struct usb_request *request)
1120 {
1121         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1122         struct cdnsp_device *pdev = pep->pdev;
1123         unsigned long flags;
1124         int ret;
1125
1126         if (request->status != -EINPROGRESS)
1127                 return 0;
1128
1129         if (!pep->endpoint.desc) {
1130                 dev_err(pdev->dev,
1131                         "%s: can't dequeue to disabled endpoint\n",
1132                         pep->name);
1133                 return -ESHUTDOWN;
1134         }
1135
1136         /* Requests has been dequeued during disabling endpoint. */
1137         if (!(pep->ep_state & EP_ENABLED))
1138                 return 0;
1139
1140         spin_lock_irqsave(&pdev->lock, flags);
1141         ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1142         spin_unlock_irqrestore(&pdev->lock, flags);
1143
1144         return ret;
1145 }
1146
1147 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1148 {
1149         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1150         struct cdnsp_device *pdev = pep->pdev;
1151         struct cdnsp_request *preq;
1152         unsigned long flags;
1153         int ret;
1154
1155         spin_lock_irqsave(&pdev->lock, flags);
1156
1157         preq = next_request(&pep->pending_list);
1158         if (value) {
1159                 if (preq) {
1160                         trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1161                         ret = -EAGAIN;
1162                         goto done;
1163                 }
1164         }
1165
1166         ret = cdnsp_halt_endpoint(pdev, pep, value);
1167
1168 done:
1169         spin_unlock_irqrestore(&pdev->lock, flags);
1170         return ret;
1171 }
1172
1173 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1174 {
1175         struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1176         struct cdnsp_device *pdev = pep->pdev;
1177         unsigned long flags;
1178         int ret;
1179
1180         spin_lock_irqsave(&pdev->lock, flags);
1181         pep->ep_state |= EP_WEDGE;
1182         ret = cdnsp_halt_endpoint(pdev, pep, 1);
1183         spin_unlock_irqrestore(&pdev->lock, flags);
1184
1185         return ret;
1186 }
1187
1188 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1189         .enable         = cdnsp_gadget_ep_enable,
1190         .disable        = cdnsp_gadget_ep_disable,
1191         .alloc_request  = cdnsp_gadget_ep_alloc_request,
1192         .free_request   = cdnsp_gadget_ep_free_request,
1193         .queue          = cdnsp_gadget_ep_queue,
1194         .dequeue        = cdnsp_gadget_ep_dequeue,
1195         .set_halt       = cdnsp_gadget_ep_set_halt,
1196         .set_wedge      = cdnsp_gadget_ep_set_wedge,
1197 };
1198
1199 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1200         .enable         = cdnsp_gadget_ep_enable,
1201         .disable        = cdnsp_gadget_ep_disable,
1202         .alloc_request  = cdnsp_gadget_ep_alloc_request,
1203         .free_request   = cdnsp_gadget_ep_free_request,
1204         .queue          = cdnsp_gadget_ep_queue,
1205         .dequeue        = cdnsp_gadget_ep_dequeue,
1206         .set_halt       = cdnsp_gadget_ep_set_halt,
1207         .set_wedge      = cdnsp_gadget_ep_set_wedge,
1208 };
1209
1210 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1211                            struct cdnsp_request *preq,
1212                            int status)
1213 {
1214         struct cdnsp_device *pdev = pep->pdev;
1215
1216         list_del(&preq->list);
1217
1218         if (preq->request.status == -EINPROGRESS)
1219                 preq->request.status = status;
1220
1221         usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1222                                         preq->direction);
1223
1224         trace_cdnsp_request_giveback(preq);
1225
1226         if (preq != &pdev->ep0_preq) {
1227                 spin_unlock(&pdev->lock);
1228                 usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1229                 spin_lock(&pdev->lock);
1230         }
1231 }
1232
1233 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1234         .bLength =              USB_DT_ENDPOINT_SIZE,
1235         .bDescriptorType =      USB_DT_ENDPOINT,
1236         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
1237 };
1238
1239 static int cdnsp_run(struct cdnsp_device *pdev,
1240                      enum usb_device_speed speed)
1241 {
1242         u32 fs_speed = 0;
1243         u32 temp;
1244         int ret;
1245
1246         temp = readl(&pdev->ir_set->irq_control);
1247         temp &= ~IMOD_INTERVAL_MASK;
1248         temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1249         writel(temp, &pdev->ir_set->irq_control);
1250
1251         temp = readl(&pdev->port3x_regs->mode_addr);
1252
1253         switch (speed) {
1254         case USB_SPEED_SUPER_PLUS:
1255                 temp |= CFG_3XPORT_SSP_SUPPORT;
1256                 break;
1257         case USB_SPEED_SUPER:
1258                 temp &= ~CFG_3XPORT_SSP_SUPPORT;
1259                 break;
1260         case USB_SPEED_HIGH:
1261                 break;
1262         case USB_SPEED_FULL:
1263                 fs_speed = PORT_REG6_FORCE_FS;
1264                 break;
1265         default:
1266                 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1267                         speed);
1268                 fallthrough;
1269         case USB_SPEED_UNKNOWN:
1270                 /* Default to superspeed. */
1271                 speed = USB_SPEED_SUPER;
1272                 break;
1273         }
1274
1275         if (speed >= USB_SPEED_SUPER) {
1276                 writel(temp, &pdev->port3x_regs->mode_addr);
1277                 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1278                                      XDEV_RXDETECT);
1279         } else {
1280                 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1281         }
1282
1283         cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1284                              XDEV_RXDETECT);
1285
1286         cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1287
1288         writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1289
1290         ret = cdnsp_start(pdev);
1291         if (ret) {
1292                 ret = -ENODEV;
1293                 goto err;
1294         }
1295
1296         temp = readl(&pdev->op_regs->command);
1297         temp |= (CMD_INTE);
1298         writel(temp, &pdev->op_regs->command);
1299
1300         temp = readl(&pdev->ir_set->irq_pending);
1301         writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1302
1303         trace_cdnsp_init("Controller ready to work");
1304         return 0;
1305 err:
1306         cdnsp_halt(pdev);
1307         return ret;
1308 }
1309
1310 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1311                                   struct usb_gadget_driver *driver)
1312 {
1313         enum usb_device_speed max_speed = driver->max_speed;
1314         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1315         unsigned long flags;
1316         int ret;
1317
1318         spin_lock_irqsave(&pdev->lock, flags);
1319         pdev->gadget_driver = driver;
1320
1321         /* limit speed if necessary */
1322         max_speed = min(driver->max_speed, g->max_speed);
1323         ret = cdnsp_run(pdev, max_speed);
1324
1325         spin_unlock_irqrestore(&pdev->lock, flags);
1326
1327         return ret;
1328 }
1329
1330 /*
1331  * Update Event Ring Dequeue Pointer:
1332  * - When all events have finished
1333  * - To avoid "Event Ring Full Error" condition
1334  */
1335 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1336                                union cdnsp_trb *event_ring_deq,
1337                                u8 clear_ehb)
1338 {
1339         u64 temp_64;
1340         dma_addr_t deq;
1341
1342         temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1343
1344         /* If necessary, update the HW's version of the event ring deq ptr. */
1345         if (event_ring_deq != pdev->event_ring->dequeue) {
1346                 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1347                                             pdev->event_ring->dequeue);
1348                 temp_64 &= ERST_PTR_MASK;
1349                 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1350         }
1351
1352         /* Clear the event handler busy flag (RW1C). */
1353         if (clear_ehb)
1354                 temp_64 |= ERST_EHB;
1355         else
1356                 temp_64 &= ~ERST_EHB;
1357
1358         cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1359 }
1360
1361 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1362 {
1363         struct cdnsp_segment *seg;
1364         u64 val_64;
1365         int i;
1366
1367         cdnsp_initialize_ring_info(pdev->cmd_ring);
1368
1369         seg = pdev->cmd_ring->first_seg;
1370         for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1371                 memset(seg->trbs, 0,
1372                        sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1373                 seg = seg->next;
1374         }
1375
1376         /* Set the address in the Command Ring Control register. */
1377         val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1378         val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1379                  (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1380                  pdev->cmd_ring->cycle_state;
1381         cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1382 }
1383
1384 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1385 {
1386         struct cdnsp_segment *event_deq_seg;
1387         union cdnsp_trb *event_ring_deq;
1388         union cdnsp_trb *event;
1389         u32 cycle_bit;
1390
1391         event_ring_deq = pdev->event_ring->dequeue;
1392         event_deq_seg = pdev->event_ring->deq_seg;
1393         event = pdev->event_ring->dequeue;
1394
1395         /* Update ring dequeue pointer. */
1396         while (1) {
1397                 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1398
1399                 /* Does the controller or driver own the TRB? */
1400                 if (cycle_bit != pdev->event_ring->cycle_state)
1401                         break;
1402
1403                 cdnsp_inc_deq(pdev, pdev->event_ring);
1404
1405                 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1406                         event++;
1407                         continue;
1408                 }
1409
1410                 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1411                                            event))
1412                         cycle_bit ^= 1;
1413
1414                 event_deq_seg = event_deq_seg->next;
1415                 event = event_deq_seg->trbs;
1416         }
1417
1418         cdnsp_update_erst_dequeue(pdev,  event_ring_deq, 1);
1419 }
1420
1421 static void cdnsp_stop(struct cdnsp_device *pdev)
1422 {
1423         u32 temp;
1424
1425         /* Remove internally queued request for ep0. */
1426         if (!list_empty(&pdev->eps[0].pending_list)) {
1427                 struct cdnsp_request *req;
1428
1429                 req = next_request(&pdev->eps[0].pending_list);
1430                 if (req == &pdev->ep0_preq)
1431                         cdnsp_ep_dequeue(&pdev->eps[0], req);
1432         }
1433
1434         cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1435         cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1436         cdnsp_disable_slot(pdev);
1437         cdnsp_halt(pdev);
1438
1439         temp = readl(&pdev->op_regs->status);
1440         writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1441         temp = readl(&pdev->ir_set->irq_pending);
1442         writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1443
1444         cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1445         cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1446
1447         /* Clear interrupt line */
1448         temp = readl(&pdev->ir_set->irq_pending);
1449         temp |= IMAN_IP;
1450         writel(temp, &pdev->ir_set->irq_pending);
1451
1452         cdnsp_consume_all_events(pdev);
1453         cdnsp_clear_cmd_ring(pdev);
1454
1455         trace_cdnsp_exit("Controller stopped.");
1456 }
1457
1458 /*
1459  * Stop controller.
1460  * This function is called by the gadget core when the driver is removed.
1461  * Disable slot, disable IRQs, and quiesce the controller.
1462  */
1463 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1464 {
1465         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1466         unsigned long flags;
1467
1468         spin_lock_irqsave(&pdev->lock, flags);
1469         cdnsp_stop(pdev);
1470         pdev->gadget_driver = NULL;
1471         spin_unlock_irqrestore(&pdev->lock, flags);
1472
1473         return 0;
1474 }
1475
1476 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1477 {
1478         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1479
1480         return cdnsp_get_frame(pdev);
1481 }
1482
1483 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1484 {
1485         struct cdnsp_port_regs __iomem *port_regs;
1486         u32 portpm, portsc;
1487
1488         port_regs = pdev->active_port->regs;
1489         portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1490
1491         /* Remote wakeup feature is not enabled by host. */
1492         if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1493                 portpm = readl(&port_regs->portpmsc);
1494
1495                 if (!(portpm & PORT_RWE))
1496                         return;
1497         }
1498
1499         if (portsc == XDEV_U3 && !pdev->may_wakeup)
1500                 return;
1501
1502         cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1503
1504         pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1505 }
1506
1507 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1508 {
1509         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1510         unsigned long flags;
1511
1512         spin_lock_irqsave(&pdev->lock, flags);
1513         __cdnsp_gadget_wakeup(pdev);
1514         spin_unlock_irqrestore(&pdev->lock, flags);
1515
1516         return 0;
1517 }
1518
1519 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1520                                         int is_selfpowered)
1521 {
1522         struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1523         unsigned long flags;
1524
1525         spin_lock_irqsave(&pdev->lock, flags);
1526         g->is_selfpowered = !!is_selfpowered;
1527         spin_unlock_irqrestore(&pdev->lock, flags);
1528
1529         return 0;
1530 }
1531
1532 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1533 {
1534         struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1535         struct cdns *cdns = dev_get_drvdata(pdev->dev);
1536         unsigned long flags;
1537
1538         trace_cdnsp_pullup(is_on);
1539
1540         /*
1541          * Disable events handling while controller is being
1542          * enabled/disabled.
1543          */
1544         disable_irq(cdns->dev_irq);
1545         spin_lock_irqsave(&pdev->lock, flags);
1546
1547         if (!is_on) {
1548                 cdnsp_reset_device(pdev);
1549                 cdns_clear_vbus(cdns);
1550         } else {
1551                 cdns_set_vbus(cdns);
1552         }
1553
1554         spin_unlock_irqrestore(&pdev->lock, flags);
1555         enable_irq(cdns->dev_irq);
1556
1557         return 0;
1558 }
1559
1560 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1561         .get_frame              = cdnsp_gadget_get_frame,
1562         .wakeup                 = cdnsp_gadget_wakeup,
1563         .set_selfpowered        = cdnsp_gadget_set_selfpowered,
1564         .pullup                 = cdnsp_gadget_pullup,
1565         .udc_start              = cdnsp_gadget_udc_start,
1566         .udc_stop               = cdnsp_gadget_udc_stop,
1567 };
1568
1569 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1570                                    struct cdnsp_ep *pep)
1571 {
1572         void __iomem *reg = &pdev->cap_regs->hc_capbase;
1573         int endpoints;
1574
1575         reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1576
1577         if (!pep->direction) {
1578                 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1579                 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1580                 pep->buffering = (pep->buffering + 1) / 2;
1581                 pep->buffering_period = (pep->buffering_period + 1) / 2;
1582                 return;
1583         }
1584
1585         endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1586
1587         /* Set to XBUF_TX_TAG_MASK_0 register. */
1588         reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1589         /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1590         reg += pep->number * sizeof(u32) * 2;
1591
1592         pep->buffering = (readl(reg) + 1) / 2;
1593         pep->buffering_period = pep->buffering;
1594 }
1595
1596 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1597 {
1598         int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1599         struct cdnsp_ep *pep;
1600         int i;
1601
1602         INIT_LIST_HEAD(&pdev->gadget.ep_list);
1603
1604         if (max_streams < STREAM_LOG_STREAMS) {
1605                 dev_err(pdev->dev, "Stream size %d not supported\n",
1606                         max_streams);
1607                 return -EINVAL;
1608         }
1609
1610         max_streams = STREAM_LOG_STREAMS;
1611
1612         for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1613                 bool direction = !(i & 1); /* Start from OUT endpoint. */
1614                 u8 epnum = ((i + 1) >> 1);
1615
1616                 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1617                         continue;
1618
1619                 pep = &pdev->eps[i];
1620                 pep->pdev = pdev;
1621                 pep->number = epnum;
1622                 pep->direction = direction; /* 0 for OUT, 1 for IN. */
1623
1624                 /*
1625                  * Ep0 is bidirectional, so ep0in and ep0out are represented by
1626                  * pdev->eps[0]
1627                  */
1628                 if (epnum == 0) {
1629                         snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1630                                  epnum, "BiDir");
1631
1632                         pep->idx = 0;
1633                         usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1634                         pep->endpoint.maxburst = 1;
1635                         pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1636                         pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1637                         pep->endpoint.comp_desc = NULL;
1638                         pep->endpoint.caps.type_control = true;
1639                         pep->endpoint.caps.dir_in = true;
1640                         pep->endpoint.caps.dir_out = true;
1641
1642                         pdev->ep0_preq.epnum = pep->number;
1643                         pdev->ep0_preq.pep = pep;
1644                         pdev->gadget.ep0 = &pep->endpoint;
1645                 } else {
1646                         snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1647                                  epnum, (pep->direction) ? "in" : "out");
1648
1649                         pep->idx =  (epnum * 2 + (direction ? 1 : 0)) - 1;
1650                         usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1651
1652                         pep->endpoint.max_streams = max_streams;
1653                         pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1654                         list_add_tail(&pep->endpoint.ep_list,
1655                                       &pdev->gadget.ep_list);
1656
1657                         pep->endpoint.caps.type_iso = true;
1658                         pep->endpoint.caps.type_bulk = true;
1659                         pep->endpoint.caps.type_int = true;
1660
1661                         pep->endpoint.caps.dir_in = direction;
1662                         pep->endpoint.caps.dir_out = !direction;
1663                 }
1664
1665                 pep->endpoint.name = pep->name;
1666                 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1667                 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1668                 cdnsp_get_ep_buffering(pdev, pep);
1669
1670                 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1671                         "CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1672                         "SupDir IN: %s, OUT: %s\n",
1673                         pep->name, 1024,
1674                         (pep->endpoint.caps.type_control) ? "yes" : "no",
1675                         (pep->endpoint.caps.type_int) ? "yes" : "no",
1676                         (pep->endpoint.caps.type_bulk) ? "yes" : "no",
1677                         (pep->endpoint.caps.type_iso) ? "yes" : "no",
1678                         (pep->endpoint.caps.dir_in) ? "yes" : "no",
1679                         (pep->endpoint.caps.dir_out) ? "yes" : "no");
1680
1681                 INIT_LIST_HEAD(&pep->pending_list);
1682         }
1683
1684         return 0;
1685 }
1686
1687 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1688 {
1689         struct cdnsp_ep *pep;
1690         int i;
1691
1692         for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1693                 pep = &pdev->eps[i];
1694                 if (pep->number != 0 && pep->out_ctx)
1695                         list_del(&pep->endpoint.ep_list);
1696         }
1697 }
1698
1699 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1700 {
1701         pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1702
1703         if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1704                 spin_unlock(&pdev->lock);
1705                 pdev->gadget_driver->disconnect(&pdev->gadget);
1706                 spin_lock(&pdev->lock);
1707         }
1708
1709         pdev->gadget.speed = USB_SPEED_UNKNOWN;
1710         usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1711
1712         pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1713 }
1714
1715 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1716 {
1717         if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1718                 spin_unlock(&pdev->lock);
1719                 pdev->gadget_driver->suspend(&pdev->gadget);
1720                 spin_lock(&pdev->lock);
1721         }
1722 }
1723
1724 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1725 {
1726         if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1727                 spin_unlock(&pdev->lock);
1728                 pdev->gadget_driver->resume(&pdev->gadget);
1729                 spin_lock(&pdev->lock);
1730         }
1731 }
1732
1733 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1734 {
1735         struct cdnsp_port_regs __iomem *port_regs;
1736
1737         cdnsp_reset_device(pdev);
1738
1739         port_regs = pdev->active_port->regs;
1740         pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1741
1742         spin_unlock(&pdev->lock);
1743         usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1744         spin_lock(&pdev->lock);
1745
1746         switch (pdev->gadget.speed) {
1747         case USB_SPEED_SUPER_PLUS:
1748         case USB_SPEED_SUPER:
1749                 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1750                 pdev->gadget.ep0->maxpacket = 512;
1751                 break;
1752         case USB_SPEED_HIGH:
1753         case USB_SPEED_FULL:
1754                 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1755                 pdev->gadget.ep0->maxpacket = 64;
1756                 break;
1757         default:
1758                 /* Low speed is not supported. */
1759                 dev_err(pdev->dev, "Unknown device speed\n");
1760                 break;
1761         }
1762
1763         cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1764         cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1765         usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1766 }
1767
1768 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1769 {
1770         void __iomem *reg = &pdev->cap_regs->hc_capbase;
1771
1772         reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1773         pdev->rev_cap  = reg;
1774
1775         dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1776                  readl(&pdev->rev_cap->ctrl_revision),
1777                  readl(&pdev->rev_cap->rtl_revision),
1778                  readl(&pdev->rev_cap->ep_supported),
1779                  readl(&pdev->rev_cap->rx_buff_size),
1780                  readl(&pdev->rev_cap->tx_buff_size));
1781 }
1782
1783 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1784 {
1785         int ret;
1786         u32 reg;
1787
1788         pdev->cap_regs = pdev->regs;
1789         pdev->op_regs = pdev->regs +
1790                 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1791         pdev->run_regs = pdev->regs +
1792                 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1793
1794         /* Cache read-only capability registers */
1795         pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1796         pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1797         pdev->hci_version = HC_VERSION(pdev->hcc_params);
1798         pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1799
1800         cdnsp_get_rev_cap(pdev);
1801
1802         /* Make sure the Device Controller is halted. */
1803         ret = cdnsp_halt(pdev);
1804         if (ret)
1805                 return ret;
1806
1807         /* Reset the internal controller memory state and registers. */
1808         ret = cdnsp_reset(pdev);
1809         if (ret)
1810                 return ret;
1811
1812         /*
1813          * Set dma_mask and coherent_dma_mask to 64-bits,
1814          * if controller supports 64-bit addressing.
1815          */
1816         if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1817             !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1818                 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1819                 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1820         } else {
1821                 /*
1822                  * This is to avoid error in cases where a 32-bit USB
1823                  * controller is used on a 64-bit capable system.
1824                  */
1825                 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1826                 if (ret)
1827                         return ret;
1828
1829                 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1830                 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1831         }
1832
1833         spin_lock_init(&pdev->lock);
1834
1835         ret = cdnsp_mem_init(pdev);
1836         if (ret)
1837                 return ret;
1838
1839         /*
1840          * Software workaround for U1: after transition
1841          * to U1 the controller starts gating clock, and in some cases,
1842          * it causes that controller stack.
1843          */
1844         reg = readl(&pdev->port3x_regs->mode_2);
1845         reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1846         writel(reg, &pdev->port3x_regs->mode_2);
1847
1848         return 0;
1849 }
1850
1851 static int __cdnsp_gadget_init(struct cdns *cdns)
1852 {
1853         struct cdnsp_device *pdev;
1854         u32 max_speed;
1855         int ret = -ENOMEM;
1856
1857         cdns_drd_gadget_on(cdns);
1858
1859         pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1860         if (!pdev)
1861                 return -ENOMEM;
1862
1863         pm_runtime_get_sync(cdns->dev);
1864
1865         cdns->gadget_dev = pdev;
1866         pdev->dev = cdns->dev;
1867         pdev->regs = cdns->dev_regs;
1868         max_speed = usb_get_maximum_speed(cdns->dev);
1869
1870         switch (max_speed) {
1871         case USB_SPEED_FULL:
1872         case USB_SPEED_HIGH:
1873         case USB_SPEED_SUPER:
1874         case USB_SPEED_SUPER_PLUS:
1875                 break;
1876         default:
1877                 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1878                 fallthrough;
1879         case USB_SPEED_UNKNOWN:
1880                 /* Default to SSP */
1881                 max_speed = USB_SPEED_SUPER_PLUS;
1882                 break;
1883         }
1884
1885         pdev->gadget.ops = &cdnsp_gadget_ops;
1886         pdev->gadget.name = "cdnsp-gadget";
1887         pdev->gadget.speed = USB_SPEED_UNKNOWN;
1888         pdev->gadget.sg_supported = 1;
1889         pdev->gadget.max_speed = max_speed;
1890         pdev->gadget.lpm_capable = 1;
1891
1892         pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1893         if (!pdev->setup_buf)
1894                 goto free_pdev;
1895
1896         /*
1897          * Controller supports not aligned buffer but it should improve
1898          * performance.
1899          */
1900         pdev->gadget.quirk_ep_out_aligned_size = true;
1901
1902         ret = cdnsp_gen_setup(pdev);
1903         if (ret) {
1904                 dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1905                 goto free_setup;
1906         }
1907
1908         ret = cdnsp_gadget_init_endpoints(pdev);
1909         if (ret) {
1910                 dev_err(pdev->dev, "failed to initialize endpoints\n");
1911                 goto halt_pdev;
1912         }
1913
1914         ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1915         if (ret) {
1916                 dev_err(pdev->dev, "failed to register udc\n");
1917                 goto free_endpoints;
1918         }
1919
1920         ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1921                                         cdnsp_irq_handler,
1922                                         cdnsp_thread_irq_handler, IRQF_SHARED,
1923                                         dev_name(pdev->dev), pdev);
1924         if (ret)
1925                 goto del_gadget;
1926
1927         return 0;
1928
1929 del_gadget:
1930         usb_del_gadget_udc(&pdev->gadget);
1931 free_endpoints:
1932         cdnsp_gadget_free_endpoints(pdev);
1933 halt_pdev:
1934         cdnsp_halt(pdev);
1935         cdnsp_reset(pdev);
1936         cdnsp_mem_cleanup(pdev);
1937 free_setup:
1938         kfree(pdev->setup_buf);
1939 free_pdev:
1940         kfree(pdev);
1941
1942         return ret;
1943 }
1944
1945 static void cdnsp_gadget_exit(struct cdns *cdns)
1946 {
1947         struct cdnsp_device *pdev = cdns->gadget_dev;
1948
1949         devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1950         pm_runtime_mark_last_busy(cdns->dev);
1951         pm_runtime_put_autosuspend(cdns->dev);
1952         usb_del_gadget_udc(&pdev->gadget);
1953         cdnsp_gadget_free_endpoints(pdev);
1954         cdnsp_mem_cleanup(pdev);
1955         kfree(pdev);
1956         cdns->gadget_dev = NULL;
1957         cdns_drd_gadget_off(cdns);
1958 }
1959
1960 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
1961 {
1962         struct cdnsp_device *pdev = cdns->gadget_dev;
1963         unsigned long flags;
1964
1965         if (pdev->link_state == XDEV_U3)
1966                 return 0;
1967
1968         spin_lock_irqsave(&pdev->lock, flags);
1969         cdnsp_disconnect_gadget(pdev);
1970         cdnsp_stop(pdev);
1971         spin_unlock_irqrestore(&pdev->lock, flags);
1972
1973         return 0;
1974 }
1975
1976 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated)
1977 {
1978         struct cdnsp_device *pdev = cdns->gadget_dev;
1979         enum usb_device_speed max_speed;
1980         unsigned long flags;
1981         int ret;
1982
1983         if (!pdev->gadget_driver)
1984                 return 0;
1985
1986         spin_lock_irqsave(&pdev->lock, flags);
1987         max_speed = pdev->gadget_driver->max_speed;
1988
1989         /* Limit speed if necessary. */
1990         max_speed = min(max_speed, pdev->gadget.max_speed);
1991
1992         ret = cdnsp_run(pdev, max_speed);
1993
1994         if (pdev->link_state == XDEV_U3)
1995                 __cdnsp_gadget_wakeup(pdev);
1996
1997         spin_unlock_irqrestore(&pdev->lock, flags);
1998
1999         return ret;
2000 }
2001
2002 /**
2003  * cdnsp_gadget_init - initialize device structure
2004  * @cdns: cdnsp instance
2005  *
2006  * This function initializes the gadget.
2007  */
2008 int cdnsp_gadget_init(struct cdns *cdns)
2009 {
2010         struct cdns_role_driver *rdrv;
2011
2012         rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2013         if (!rdrv)
2014                 return -ENOMEM;
2015
2016         rdrv->start     = __cdnsp_gadget_init;
2017         rdrv->stop      = cdnsp_gadget_exit;
2018         rdrv->suspend   = cdnsp_gadget_suspend;
2019         rdrv->resume    = cdnsp_gadget_resume;
2020         rdrv->state     = CDNS_ROLE_STATE_INACTIVE;
2021         rdrv->name      = "gadget";
2022         cdns->roles[USB_ROLE_DEVICE] = rdrv;
2023
2024         return 0;
2025 }