Merge branch 'remotes/lorenzo/pci/vmd'
[sfrench/cifs-2.6.git] / drivers / thermal / devfreq_cooling.c
1 /*
2  * devfreq_cooling: Thermal cooling device implementation for devices using
3  *                  devfreq
4  *
5  * Copyright (C) 2014-2015 ARM Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * TODO:
17  *    - If OPPs are added or removed after devfreq cooling has
18  *      registered, the devfreq cooling won't react to it.
19  */
20
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/idr.h>
25 #include <linux/slab.h>
26 #include <linux/pm_opp.h>
27 #include <linux/thermal.h>
28
29 #include <trace/events/thermal.h>
30
31 #define SCALE_ERROR_MITIGATION 100
32
33 static DEFINE_IDA(devfreq_ida);
34
35 /**
36  * struct devfreq_cooling_device - Devfreq cooling device
37  * @id:         unique integer value corresponding to each
38  *              devfreq_cooling_device registered.
39  * @cdev:       Pointer to associated thermal cooling device.
40  * @devfreq:    Pointer to associated devfreq device.
41  * @cooling_state:      Current cooling state.
42  * @power_table:        Pointer to table with maximum power draw for each
43  *                      cooling state. State is the index into the table, and
44  *                      the power is in mW.
45  * @freq_table: Pointer to a table with the frequencies sorted in descending
46  *              order.  You can index the table by cooling device state
47  * @freq_table_size:    Size of the @freq_table and @power_table
48  * @power_ops:  Pointer to devfreq_cooling_power, used to generate the
49  *              @power_table.
50  * @res_util:   Resource utilization scaling factor for the power.
51  *              It is multiplied by 100 to minimize the error. It is used
52  *              for estimation of the power budget instead of using
53  *              'utilization' (which is 'busy_time / 'total_time').
54  *              The 'res_util' range is from 100 to (power_table[state] * 100)
55  *              for the corresponding 'state'.
56  * @capped_state:       index to cooling state with in dynamic power budget
57  */
58 struct devfreq_cooling_device {
59         int id;
60         struct thermal_cooling_device *cdev;
61         struct devfreq *devfreq;
62         unsigned long cooling_state;
63         u32 *power_table;
64         u32 *freq_table;
65         size_t freq_table_size;
66         struct devfreq_cooling_power *power_ops;
67         u32 res_util;
68         int capped_state;
69 };
70
71 /**
72  * partition_enable_opps() - disable all opps above a given state
73  * @dfc:        Pointer to devfreq we are operating on
74  * @cdev_state: cooling device state we're setting
75  *
76  * Go through the OPPs of the device, enabling all OPPs until
77  * @cdev_state and disabling those frequencies above it.
78  */
79 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
80                                  unsigned long cdev_state)
81 {
82         int i;
83         struct device *dev = dfc->devfreq->dev.parent;
84
85         for (i = 0; i < dfc->freq_table_size; i++) {
86                 struct dev_pm_opp *opp;
87                 int ret = 0;
88                 unsigned int freq = dfc->freq_table[i];
89                 bool want_enable = i >= cdev_state ? true : false;
90
91                 opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
92
93                 if (PTR_ERR(opp) == -ERANGE)
94                         continue;
95                 else if (IS_ERR(opp))
96                         return PTR_ERR(opp);
97
98                 dev_pm_opp_put(opp);
99
100                 if (want_enable)
101                         ret = dev_pm_opp_enable(dev, freq);
102                 else
103                         ret = dev_pm_opp_disable(dev, freq);
104
105                 if (ret)
106                         return ret;
107         }
108
109         return 0;
110 }
111
112 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
113                                          unsigned long *state)
114 {
115         struct devfreq_cooling_device *dfc = cdev->devdata;
116
117         *state = dfc->freq_table_size - 1;
118
119         return 0;
120 }
121
122 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
123                                          unsigned long *state)
124 {
125         struct devfreq_cooling_device *dfc = cdev->devdata;
126
127         *state = dfc->cooling_state;
128
129         return 0;
130 }
131
132 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
133                                          unsigned long state)
134 {
135         struct devfreq_cooling_device *dfc = cdev->devdata;
136         struct devfreq *df = dfc->devfreq;
137         struct device *dev = df->dev.parent;
138         int ret;
139
140         if (state == dfc->cooling_state)
141                 return 0;
142
143         dev_dbg(dev, "Setting cooling state %lu\n", state);
144
145         if (state >= dfc->freq_table_size)
146                 return -EINVAL;
147
148         ret = partition_enable_opps(dfc, state);
149         if (ret)
150                 return ret;
151
152         dfc->cooling_state = state;
153
154         return 0;
155 }
156
157 /**
158  * freq_get_state() - get the cooling state corresponding to a frequency
159  * @dfc:        Pointer to devfreq cooling device
160  * @freq:       frequency in Hz
161  *
162  * Return: the cooling state associated with the @freq, or
163  * THERMAL_CSTATE_INVALID if it wasn't found.
164  */
165 static unsigned long
166 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
167 {
168         int i;
169
170         for (i = 0; i < dfc->freq_table_size; i++) {
171                 if (dfc->freq_table[i] == freq)
172                         return i;
173         }
174
175         return THERMAL_CSTATE_INVALID;
176 }
177
178 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
179 {
180         struct device *dev = df->dev.parent;
181         unsigned long voltage;
182         struct dev_pm_opp *opp;
183
184         opp = dev_pm_opp_find_freq_exact(dev, freq, true);
185         if (PTR_ERR(opp) == -ERANGE)
186                 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
187
188         if (IS_ERR(opp)) {
189                 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
190                                     freq, PTR_ERR(opp));
191                 return 0;
192         }
193
194         voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
195         dev_pm_opp_put(opp);
196
197         if (voltage == 0) {
198                 dev_err_ratelimited(dev,
199                                     "Failed to get voltage for frequency %lu\n",
200                                     freq);
201         }
202
203         return voltage;
204 }
205
206 /**
207  * get_static_power() - calculate the static power
208  * @dfc:        Pointer to devfreq cooling device
209  * @freq:       Frequency in Hz
210  *
211  * Calculate the static power in milliwatts using the supplied
212  * get_static_power().  The current voltage is calculated using the
213  * OPP library.  If no get_static_power() was supplied, assume the
214  * static power is negligible.
215  */
216 static unsigned long
217 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
218 {
219         struct devfreq *df = dfc->devfreq;
220         unsigned long voltage;
221
222         if (!dfc->power_ops->get_static_power)
223                 return 0;
224
225         voltage = get_voltage(df, freq);
226
227         if (voltage == 0)
228                 return 0;
229
230         return dfc->power_ops->get_static_power(df, voltage);
231 }
232
233 /**
234  * get_dynamic_power - calculate the dynamic power
235  * @dfc:        Pointer to devfreq cooling device
236  * @freq:       Frequency in Hz
237  * @voltage:    Voltage in millivolts
238  *
239  * Calculate the dynamic power in milliwatts consumed by the device at
240  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
241  * was supplied as part of the devfreq_cooling_power struct, then that
242  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
243  * Voltage^2 * Frequency) is used.
244  */
245 static unsigned long
246 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
247                   unsigned long voltage)
248 {
249         u64 power;
250         u32 freq_mhz;
251         struct devfreq_cooling_power *dfc_power = dfc->power_ops;
252
253         if (dfc_power->get_dynamic_power)
254                 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
255                                                     voltage);
256
257         freq_mhz = freq / 1000000;
258         power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
259         do_div(power, 1000000000);
260
261         return power;
262 }
263
264
265 static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
266                                             unsigned long freq,
267                                             unsigned long voltage)
268 {
269         return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
270                                                                voltage);
271 }
272
273
274 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
275                                                struct thermal_zone_device *tz,
276                                                u32 *power)
277 {
278         struct devfreq_cooling_device *dfc = cdev->devdata;
279         struct devfreq *df = dfc->devfreq;
280         struct devfreq_dev_status *status = &df->last_status;
281         unsigned long state;
282         unsigned long freq = status->current_frequency;
283         unsigned long voltage;
284         u32 dyn_power = 0;
285         u32 static_power = 0;
286         int res;
287
288         state = freq_get_state(dfc, freq);
289         if (state == THERMAL_CSTATE_INVALID) {
290                 res = -EAGAIN;
291                 goto fail;
292         }
293
294         if (dfc->power_ops->get_real_power) {
295                 voltage = get_voltage(df, freq);
296                 if (voltage == 0) {
297                         res = -EINVAL;
298                         goto fail;
299                 }
300
301                 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
302                 if (!res) {
303                         state = dfc->capped_state;
304                         dfc->res_util = dfc->power_table[state];
305                         dfc->res_util *= SCALE_ERROR_MITIGATION;
306
307                         if (*power > 1)
308                                 dfc->res_util /= *power;
309                 } else {
310                         goto fail;
311                 }
312         } else {
313                 dyn_power = dfc->power_table[state];
314
315                 /* Scale dynamic power for utilization */
316                 dyn_power *= status->busy_time;
317                 dyn_power /= status->total_time;
318                 /* Get static power */
319                 static_power = get_static_power(dfc, freq);
320
321                 *power = dyn_power + static_power;
322         }
323
324         trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
325                                               static_power, *power);
326
327         return 0;
328 fail:
329         /* It is safe to set max in this case */
330         dfc->res_util = SCALE_ERROR_MITIGATION;
331         return res;
332 }
333
334 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
335                                        struct thermal_zone_device *tz,
336                                        unsigned long state,
337                                        u32 *power)
338 {
339         struct devfreq_cooling_device *dfc = cdev->devdata;
340         unsigned long freq;
341         u32 static_power;
342
343         if (state >= dfc->freq_table_size)
344                 return -EINVAL;
345
346         freq = dfc->freq_table[state];
347         static_power = get_static_power(dfc, freq);
348
349         *power = dfc->power_table[state] + static_power;
350         return 0;
351 }
352
353 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
354                                        struct thermal_zone_device *tz,
355                                        u32 power, unsigned long *state)
356 {
357         struct devfreq_cooling_device *dfc = cdev->devdata;
358         struct devfreq *df = dfc->devfreq;
359         struct devfreq_dev_status *status = &df->last_status;
360         unsigned long freq = status->current_frequency;
361         unsigned long busy_time;
362         s32 dyn_power;
363         u32 static_power;
364         s32 est_power;
365         int i;
366
367         if (dfc->power_ops->get_real_power) {
368                 /* Scale for resource utilization */
369                 est_power = power * dfc->res_util;
370                 est_power /= SCALE_ERROR_MITIGATION;
371         } else {
372                 static_power = get_static_power(dfc, freq);
373
374                 dyn_power = power - static_power;
375                 dyn_power = dyn_power > 0 ? dyn_power : 0;
376
377                 /* Scale dynamic power for utilization */
378                 busy_time = status->busy_time ?: 1;
379                 est_power = (dyn_power * status->total_time) / busy_time;
380         }
381
382         /*
383          * Find the first cooling state that is within the power
384          * budget for dynamic power.
385          */
386         for (i = 0; i < dfc->freq_table_size - 1; i++)
387                 if (est_power >= dfc->power_table[i])
388                         break;
389
390         *state = i;
391         dfc->capped_state = i;
392         trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
393         return 0;
394 }
395
396 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
397         .get_max_state = devfreq_cooling_get_max_state,
398         .get_cur_state = devfreq_cooling_get_cur_state,
399         .set_cur_state = devfreq_cooling_set_cur_state,
400 };
401
402 /**
403  * devfreq_cooling_gen_tables() - Generate power and freq tables.
404  * @dfc: Pointer to devfreq cooling device.
405  *
406  * Generate power and frequency tables: the power table hold the
407  * device's maximum power usage at each cooling state (OPP).  The
408  * static and dynamic power using the appropriate voltage and
409  * frequency for the state, is acquired from the struct
410  * devfreq_cooling_power, and summed to make the maximum power draw.
411  *
412  * The frequency table holds the frequencies in descending order.
413  * That way its indexed by cooling device state.
414  *
415  * The tables are malloced, and pointers put in dfc.  They must be
416  * freed when unregistering the devfreq cooling device.
417  *
418  * Return: 0 on success, negative error code on failure.
419  */
420 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
421 {
422         struct devfreq *df = dfc->devfreq;
423         struct device *dev = df->dev.parent;
424         int ret, num_opps;
425         unsigned long freq;
426         u32 *power_table = NULL;
427         u32 *freq_table;
428         int i;
429
430         num_opps = dev_pm_opp_get_opp_count(dev);
431
432         if (dfc->power_ops) {
433                 power_table = kcalloc(num_opps, sizeof(*power_table),
434                                       GFP_KERNEL);
435                 if (!power_table)
436                         return -ENOMEM;
437         }
438
439         freq_table = kcalloc(num_opps, sizeof(*freq_table),
440                              GFP_KERNEL);
441         if (!freq_table) {
442                 ret = -ENOMEM;
443                 goto free_power_table;
444         }
445
446         for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
447                 unsigned long power, voltage;
448                 struct dev_pm_opp *opp;
449
450                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
451                 if (IS_ERR(opp)) {
452                         ret = PTR_ERR(opp);
453                         goto free_tables;
454                 }
455
456                 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
457                 dev_pm_opp_put(opp);
458
459                 if (dfc->power_ops) {
460                         if (dfc->power_ops->get_real_power)
461                                 power = get_total_power(dfc, freq, voltage);
462                         else
463                                 power = get_dynamic_power(dfc, freq, voltage);
464
465                         dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
466                                 freq / 1000000, voltage, power, power);
467
468                         power_table[i] = power;
469                 }
470
471                 freq_table[i] = freq;
472         }
473
474         if (dfc->power_ops)
475                 dfc->power_table = power_table;
476
477         dfc->freq_table = freq_table;
478         dfc->freq_table_size = num_opps;
479
480         return 0;
481
482 free_tables:
483         kfree(freq_table);
484 free_power_table:
485         kfree(power_table);
486
487         return ret;
488 }
489
490 /**
491  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
492  *                                      with OF and power information.
493  * @np: Pointer to OF device_node.
494  * @df: Pointer to devfreq device.
495  * @dfc_power:  Pointer to devfreq_cooling_power.
496  *
497  * Register a devfreq cooling device.  The available OPPs must be
498  * registered on the device.
499  *
500  * If @dfc_power is provided, the cooling device is registered with the
501  * power extensions.  For the power extensions to work correctly,
502  * devfreq should use the simple_ondemand governor, other governors
503  * are not currently supported.
504  */
505 struct thermal_cooling_device *
506 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
507                                   struct devfreq_cooling_power *dfc_power)
508 {
509         struct thermal_cooling_device *cdev;
510         struct devfreq_cooling_device *dfc;
511         char dev_name[THERMAL_NAME_LENGTH];
512         int err;
513
514         dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
515         if (!dfc)
516                 return ERR_PTR(-ENOMEM);
517
518         dfc->devfreq = df;
519
520         if (dfc_power) {
521                 dfc->power_ops = dfc_power;
522
523                 devfreq_cooling_ops.get_requested_power =
524                         devfreq_cooling_get_requested_power;
525                 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
526                 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
527         }
528
529         err = devfreq_cooling_gen_tables(dfc);
530         if (err)
531                 goto free_dfc;
532
533         err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
534         if (err < 0)
535                 goto free_tables;
536         dfc->id = err;
537
538         snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
539
540         cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
541                                                   &devfreq_cooling_ops);
542         if (IS_ERR(cdev)) {
543                 err = PTR_ERR(cdev);
544                 dev_err(df->dev.parent,
545                         "Failed to register devfreq cooling device (%d)\n",
546                         err);
547                 goto release_ida;
548         }
549
550         dfc->cdev = cdev;
551
552         return cdev;
553
554 release_ida:
555         ida_simple_remove(&devfreq_ida, dfc->id);
556 free_tables:
557         kfree(dfc->power_table);
558         kfree(dfc->freq_table);
559 free_dfc:
560         kfree(dfc);
561
562         return ERR_PTR(err);
563 }
564 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
565
566 /**
567  * of_devfreq_cooling_register() - Register devfreq cooling device,
568  *                                with OF information.
569  * @np: Pointer to OF device_node.
570  * @df: Pointer to devfreq device.
571  */
572 struct thermal_cooling_device *
573 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
574 {
575         return of_devfreq_cooling_register_power(np, df, NULL);
576 }
577 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
578
579 /**
580  * devfreq_cooling_register() - Register devfreq cooling device.
581  * @df: Pointer to devfreq device.
582  */
583 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
584 {
585         return of_devfreq_cooling_register(NULL, df);
586 }
587 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
588
589 /**
590  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
591  * @cdev: Pointer to devfreq cooling device to unregister.
592  */
593 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
594 {
595         struct devfreq_cooling_device *dfc;
596
597         if (!cdev)
598                 return;
599
600         dfc = cdev->devdata;
601
602         thermal_cooling_device_unregister(dfc->cdev);
603         ida_simple_remove(&devfreq_ida, dfc->id);
604         kfree(dfc->power_table);
605         kfree(dfc->freq_table);
606
607         kfree(dfc);
608 }
609 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);