Merge tag 'for-linus' of git://github.com/openrisc/linux
[sfrench/cifs-2.6.git] / drivers / thermal / devfreq_cooling.c
1 /*
2  * devfreq_cooling: Thermal cooling device implementation for devices using
3  *                  devfreq
4  *
5  * Copyright (C) 2014-2015 ARM Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * TODO:
17  *    - If OPPs are added or removed after devfreq cooling has
18  *      registered, the devfreq cooling won't react to it.
19  */
20
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/idr.h>
25 #include <linux/slab.h>
26 #include <linux/pm_opp.h>
27 #include <linux/pm_qos.h>
28 #include <linux/thermal.h>
29
30 #include <trace/events/thermal.h>
31
32 #define HZ_PER_KHZ              1000
33 #define SCALE_ERROR_MITIGATION  100
34
35 static DEFINE_IDA(devfreq_ida);
36
37 /**
38  * struct devfreq_cooling_device - Devfreq cooling device
39  * @id:         unique integer value corresponding to each
40  *              devfreq_cooling_device registered.
41  * @cdev:       Pointer to associated thermal cooling device.
42  * @devfreq:    Pointer to associated devfreq device.
43  * @cooling_state:      Current cooling state.
44  * @power_table:        Pointer to table with maximum power draw for each
45  *                      cooling state. State is the index into the table, and
46  *                      the power is in mW.
47  * @freq_table: Pointer to a table with the frequencies sorted in descending
48  *              order.  You can index the table by cooling device state
49  * @freq_table_size:    Size of the @freq_table and @power_table
50  * @power_ops:  Pointer to devfreq_cooling_power, used to generate the
51  *              @power_table.
52  * @res_util:   Resource utilization scaling factor for the power.
53  *              It is multiplied by 100 to minimize the error. It is used
54  *              for estimation of the power budget instead of using
55  *              'utilization' (which is 'busy_time / 'total_time').
56  *              The 'res_util' range is from 100 to (power_table[state] * 100)
57  *              for the corresponding 'state'.
58  * @capped_state:       index to cooling state with in dynamic power budget
59  * @req_max_freq:       PM QoS request for limiting the maximum frequency
60  *                      of the devfreq device.
61  */
62 struct devfreq_cooling_device {
63         int id;
64         struct thermal_cooling_device *cdev;
65         struct devfreq *devfreq;
66         unsigned long cooling_state;
67         u32 *power_table;
68         u32 *freq_table;
69         size_t freq_table_size;
70         struct devfreq_cooling_power *power_ops;
71         u32 res_util;
72         int capped_state;
73         struct dev_pm_qos_request req_max_freq;
74 };
75
76 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
77                                          unsigned long *state)
78 {
79         struct devfreq_cooling_device *dfc = cdev->devdata;
80
81         *state = dfc->freq_table_size - 1;
82
83         return 0;
84 }
85
86 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
87                                          unsigned long *state)
88 {
89         struct devfreq_cooling_device *dfc = cdev->devdata;
90
91         *state = dfc->cooling_state;
92
93         return 0;
94 }
95
96 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
97                                          unsigned long state)
98 {
99         struct devfreq_cooling_device *dfc = cdev->devdata;
100         struct devfreq *df = dfc->devfreq;
101         struct device *dev = df->dev.parent;
102         unsigned long freq;
103
104         if (state == dfc->cooling_state)
105                 return 0;
106
107         dev_dbg(dev, "Setting cooling state %lu\n", state);
108
109         if (state >= dfc->freq_table_size)
110                 return -EINVAL;
111
112         freq = dfc->freq_table[state];
113
114         dev_pm_qos_update_request(&dfc->req_max_freq,
115                                   DIV_ROUND_UP(freq, HZ_PER_KHZ));
116
117         dfc->cooling_state = state;
118
119         return 0;
120 }
121
122 /**
123  * freq_get_state() - get the cooling state corresponding to a frequency
124  * @dfc:        Pointer to devfreq cooling device
125  * @freq:       frequency in Hz
126  *
127  * Return: the cooling state associated with the @freq, or
128  * THERMAL_CSTATE_INVALID if it wasn't found.
129  */
130 static unsigned long
131 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
132 {
133         int i;
134
135         for (i = 0; i < dfc->freq_table_size; i++) {
136                 if (dfc->freq_table[i] == freq)
137                         return i;
138         }
139
140         return THERMAL_CSTATE_INVALID;
141 }
142
143 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
144 {
145         struct device *dev = df->dev.parent;
146         unsigned long voltage;
147         struct dev_pm_opp *opp;
148
149         opp = dev_pm_opp_find_freq_exact(dev, freq, true);
150         if (PTR_ERR(opp) == -ERANGE)
151                 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
152
153         if (IS_ERR(opp)) {
154                 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
155                                     freq, PTR_ERR(opp));
156                 return 0;
157         }
158
159         voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
160         dev_pm_opp_put(opp);
161
162         if (voltage == 0) {
163                 dev_err_ratelimited(dev,
164                                     "Failed to get voltage for frequency %lu\n",
165                                     freq);
166         }
167
168         return voltage;
169 }
170
171 /**
172  * get_static_power() - calculate the static power
173  * @dfc:        Pointer to devfreq cooling device
174  * @freq:       Frequency in Hz
175  *
176  * Calculate the static power in milliwatts using the supplied
177  * get_static_power().  The current voltage is calculated using the
178  * OPP library.  If no get_static_power() was supplied, assume the
179  * static power is negligible.
180  */
181 static unsigned long
182 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
183 {
184         struct devfreq *df = dfc->devfreq;
185         unsigned long voltage;
186
187         if (!dfc->power_ops->get_static_power)
188                 return 0;
189
190         voltage = get_voltage(df, freq);
191
192         if (voltage == 0)
193                 return 0;
194
195         return dfc->power_ops->get_static_power(df, voltage);
196 }
197
198 /**
199  * get_dynamic_power - calculate the dynamic power
200  * @dfc:        Pointer to devfreq cooling device
201  * @freq:       Frequency in Hz
202  * @voltage:    Voltage in millivolts
203  *
204  * Calculate the dynamic power in milliwatts consumed by the device at
205  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
206  * was supplied as part of the devfreq_cooling_power struct, then that
207  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
208  * Voltage^2 * Frequency) is used.
209  */
210 static unsigned long
211 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
212                   unsigned long voltage)
213 {
214         u64 power;
215         u32 freq_mhz;
216         struct devfreq_cooling_power *dfc_power = dfc->power_ops;
217
218         if (dfc_power->get_dynamic_power)
219                 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
220                                                     voltage);
221
222         freq_mhz = freq / 1000000;
223         power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
224         do_div(power, 1000000000);
225
226         return power;
227 }
228
229
230 static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
231                                             unsigned long freq,
232                                             unsigned long voltage)
233 {
234         return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
235                                                                voltage);
236 }
237
238
239 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
240                                                struct thermal_zone_device *tz,
241                                                u32 *power)
242 {
243         struct devfreq_cooling_device *dfc = cdev->devdata;
244         struct devfreq *df = dfc->devfreq;
245         struct devfreq_dev_status *status = &df->last_status;
246         unsigned long state;
247         unsigned long freq = status->current_frequency;
248         unsigned long voltage;
249         u32 dyn_power = 0;
250         u32 static_power = 0;
251         int res;
252
253         state = freq_get_state(dfc, freq);
254         if (state == THERMAL_CSTATE_INVALID) {
255                 res = -EAGAIN;
256                 goto fail;
257         }
258
259         if (dfc->power_ops->get_real_power) {
260                 voltage = get_voltage(df, freq);
261                 if (voltage == 0) {
262                         res = -EINVAL;
263                         goto fail;
264                 }
265
266                 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
267                 if (!res) {
268                         state = dfc->capped_state;
269                         dfc->res_util = dfc->power_table[state];
270                         dfc->res_util *= SCALE_ERROR_MITIGATION;
271
272                         if (*power > 1)
273                                 dfc->res_util /= *power;
274                 } else {
275                         goto fail;
276                 }
277         } else {
278                 dyn_power = dfc->power_table[state];
279
280                 /* Scale dynamic power for utilization */
281                 dyn_power *= status->busy_time;
282                 dyn_power /= status->total_time;
283                 /* Get static power */
284                 static_power = get_static_power(dfc, freq);
285
286                 *power = dyn_power + static_power;
287         }
288
289         trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
290                                               static_power, *power);
291
292         return 0;
293 fail:
294         /* It is safe to set max in this case */
295         dfc->res_util = SCALE_ERROR_MITIGATION;
296         return res;
297 }
298
299 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
300                                        struct thermal_zone_device *tz,
301                                        unsigned long state,
302                                        u32 *power)
303 {
304         struct devfreq_cooling_device *dfc = cdev->devdata;
305         unsigned long freq;
306         u32 static_power;
307
308         if (state >= dfc->freq_table_size)
309                 return -EINVAL;
310
311         freq = dfc->freq_table[state];
312         static_power = get_static_power(dfc, freq);
313
314         *power = dfc->power_table[state] + static_power;
315         return 0;
316 }
317
318 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
319                                        struct thermal_zone_device *tz,
320                                        u32 power, unsigned long *state)
321 {
322         struct devfreq_cooling_device *dfc = cdev->devdata;
323         struct devfreq *df = dfc->devfreq;
324         struct devfreq_dev_status *status = &df->last_status;
325         unsigned long freq = status->current_frequency;
326         unsigned long busy_time;
327         s32 dyn_power;
328         u32 static_power;
329         s32 est_power;
330         int i;
331
332         if (dfc->power_ops->get_real_power) {
333                 /* Scale for resource utilization */
334                 est_power = power * dfc->res_util;
335                 est_power /= SCALE_ERROR_MITIGATION;
336         } else {
337                 static_power = get_static_power(dfc, freq);
338
339                 dyn_power = power - static_power;
340                 dyn_power = dyn_power > 0 ? dyn_power : 0;
341
342                 /* Scale dynamic power for utilization */
343                 busy_time = status->busy_time ?: 1;
344                 est_power = (dyn_power * status->total_time) / busy_time;
345         }
346
347         /*
348          * Find the first cooling state that is within the power
349          * budget for dynamic power.
350          */
351         for (i = 0; i < dfc->freq_table_size - 1; i++)
352                 if (est_power >= dfc->power_table[i])
353                         break;
354
355         *state = i;
356         dfc->capped_state = i;
357         trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
358         return 0;
359 }
360
361 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
362         .get_max_state = devfreq_cooling_get_max_state,
363         .get_cur_state = devfreq_cooling_get_cur_state,
364         .set_cur_state = devfreq_cooling_set_cur_state,
365 };
366
367 /**
368  * devfreq_cooling_gen_tables() - Generate power and freq tables.
369  * @dfc: Pointer to devfreq cooling device.
370  *
371  * Generate power and frequency tables: the power table hold the
372  * device's maximum power usage at each cooling state (OPP).  The
373  * static and dynamic power using the appropriate voltage and
374  * frequency for the state, is acquired from the struct
375  * devfreq_cooling_power, and summed to make the maximum power draw.
376  *
377  * The frequency table holds the frequencies in descending order.
378  * That way its indexed by cooling device state.
379  *
380  * The tables are malloced, and pointers put in dfc.  They must be
381  * freed when unregistering the devfreq cooling device.
382  *
383  * Return: 0 on success, negative error code on failure.
384  */
385 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
386 {
387         struct devfreq *df = dfc->devfreq;
388         struct device *dev = df->dev.parent;
389         int ret, num_opps;
390         unsigned long freq;
391         u32 *power_table = NULL;
392         u32 *freq_table;
393         int i;
394
395         num_opps = dev_pm_opp_get_opp_count(dev);
396
397         if (dfc->power_ops) {
398                 power_table = kcalloc(num_opps, sizeof(*power_table),
399                                       GFP_KERNEL);
400                 if (!power_table)
401                         return -ENOMEM;
402         }
403
404         freq_table = kcalloc(num_opps, sizeof(*freq_table),
405                              GFP_KERNEL);
406         if (!freq_table) {
407                 ret = -ENOMEM;
408                 goto free_power_table;
409         }
410
411         for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
412                 unsigned long power, voltage;
413                 struct dev_pm_opp *opp;
414
415                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
416                 if (IS_ERR(opp)) {
417                         ret = PTR_ERR(opp);
418                         goto free_tables;
419                 }
420
421                 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
422                 dev_pm_opp_put(opp);
423
424                 if (dfc->power_ops) {
425                         if (dfc->power_ops->get_real_power)
426                                 power = get_total_power(dfc, freq, voltage);
427                         else
428                                 power = get_dynamic_power(dfc, freq, voltage);
429
430                         dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
431                                 freq / 1000000, voltage, power, power);
432
433                         power_table[i] = power;
434                 }
435
436                 freq_table[i] = freq;
437         }
438
439         if (dfc->power_ops)
440                 dfc->power_table = power_table;
441
442         dfc->freq_table = freq_table;
443         dfc->freq_table_size = num_opps;
444
445         return 0;
446
447 free_tables:
448         kfree(freq_table);
449 free_power_table:
450         kfree(power_table);
451
452         return ret;
453 }
454
455 /**
456  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
457  *                                      with OF and power information.
458  * @np: Pointer to OF device_node.
459  * @df: Pointer to devfreq device.
460  * @dfc_power:  Pointer to devfreq_cooling_power.
461  *
462  * Register a devfreq cooling device.  The available OPPs must be
463  * registered on the device.
464  *
465  * If @dfc_power is provided, the cooling device is registered with the
466  * power extensions.  For the power extensions to work correctly,
467  * devfreq should use the simple_ondemand governor, other governors
468  * are not currently supported.
469  */
470 struct thermal_cooling_device *
471 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
472                                   struct devfreq_cooling_power *dfc_power)
473 {
474         struct thermal_cooling_device *cdev;
475         struct devfreq_cooling_device *dfc;
476         char dev_name[THERMAL_NAME_LENGTH];
477         int err;
478
479         dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
480         if (!dfc)
481                 return ERR_PTR(-ENOMEM);
482
483         dfc->devfreq = df;
484
485         if (dfc_power) {
486                 dfc->power_ops = dfc_power;
487
488                 devfreq_cooling_ops.get_requested_power =
489                         devfreq_cooling_get_requested_power;
490                 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
491                 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
492         }
493
494         err = devfreq_cooling_gen_tables(dfc);
495         if (err)
496                 goto free_dfc;
497
498         err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
499                                      DEV_PM_QOS_MAX_FREQUENCY,
500                                      PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
501         if (err < 0)
502                 goto free_tables;
503
504         err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
505         if (err < 0)
506                 goto remove_qos_req;
507         dfc->id = err;
508
509         snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
510
511         cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
512                                                   &devfreq_cooling_ops);
513         if (IS_ERR(cdev)) {
514                 err = PTR_ERR(cdev);
515                 dev_err(df->dev.parent,
516                         "Failed to register devfreq cooling device (%d)\n",
517                         err);
518                 goto release_ida;
519         }
520
521         dfc->cdev = cdev;
522
523         return cdev;
524
525 release_ida:
526         ida_simple_remove(&devfreq_ida, dfc->id);
527
528 remove_qos_req:
529         dev_pm_qos_remove_request(&dfc->req_max_freq);
530
531 free_tables:
532         kfree(dfc->power_table);
533         kfree(dfc->freq_table);
534 free_dfc:
535         kfree(dfc);
536
537         return ERR_PTR(err);
538 }
539 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
540
541 /**
542  * of_devfreq_cooling_register() - Register devfreq cooling device,
543  *                                with OF information.
544  * @np: Pointer to OF device_node.
545  * @df: Pointer to devfreq device.
546  */
547 struct thermal_cooling_device *
548 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
549 {
550         return of_devfreq_cooling_register_power(np, df, NULL);
551 }
552 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
553
554 /**
555  * devfreq_cooling_register() - Register devfreq cooling device.
556  * @df: Pointer to devfreq device.
557  */
558 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
559 {
560         return of_devfreq_cooling_register(NULL, df);
561 }
562 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
563
564 /**
565  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
566  * @cdev: Pointer to devfreq cooling device to unregister.
567  */
568 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
569 {
570         struct devfreq_cooling_device *dfc;
571
572         if (!cdev)
573                 return;
574
575         dfc = cdev->devdata;
576
577         thermal_cooling_device_unregister(dfc->cdev);
578         ida_simple_remove(&devfreq_ida, dfc->id);
579         dev_pm_qos_remove_request(&dfc->req_max_freq);
580         kfree(dfc->power_table);
581         kfree(dfc->freq_table);
582
583         kfree(dfc);
584 }
585 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);