Merge tag 'reset-for-v5.3' of git://git.pengutronix.de/git/pza/linux into arm/drivers
[sfrench/cifs-2.6.git] / drivers / tee / optee / call.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
16
17 struct optee_call_waiter {
18         struct list_head list_node;
19         struct completion c;
20 };
21
22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23                                struct optee_call_waiter *w)
24 {
25         /*
26          * We're preparing to make a call to secure world. In case we can't
27          * allocate a thread in secure world we'll end up waiting in
28          * optee_cq_wait_for_completion().
29          *
30          * Normally if there's no contention in secure world the call will
31          * complete and we can cleanup directly with optee_cq_wait_final().
32          */
33         mutex_lock(&cq->mutex);
34
35         /*
36          * We add ourselves to the queue, but we don't wait. This
37          * guarantees that we don't lose a completion if secure world
38          * returns busy and another thread just exited and try to complete
39          * someone.
40          */
41         init_completion(&w->c);
42         list_add_tail(&w->list_node, &cq->waiters);
43
44         mutex_unlock(&cq->mutex);
45 }
46
47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48                                          struct optee_call_waiter *w)
49 {
50         wait_for_completion(&w->c);
51
52         mutex_lock(&cq->mutex);
53
54         /* Move to end of list to get out of the way for other waiters */
55         list_del(&w->list_node);
56         reinit_completion(&w->c);
57         list_add_tail(&w->list_node, &cq->waiters);
58
59         mutex_unlock(&cq->mutex);
60 }
61
62 static void optee_cq_complete_one(struct optee_call_queue *cq)
63 {
64         struct optee_call_waiter *w;
65
66         list_for_each_entry(w, &cq->waiters, list_node) {
67                 if (!completion_done(&w->c)) {
68                         complete(&w->c);
69                         break;
70                 }
71         }
72 }
73
74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75                                 struct optee_call_waiter *w)
76 {
77         /*
78          * We're done with the call to secure world. The thread in secure
79          * world that was used for this call is now available for some
80          * other task to use.
81          */
82         mutex_lock(&cq->mutex);
83
84         /* Get out of the list */
85         list_del(&w->list_node);
86
87         /* Wake up one eventual waiting task */
88         optee_cq_complete_one(cq);
89
90         /*
91          * If we're completed we've got a completion from another task that
92          * was just done with its call to secure world. Since yet another
93          * thread now is available in secure world wake up another eventual
94          * waiting task.
95          */
96         if (completion_done(&w->c))
97                 optee_cq_complete_one(cq);
98
99         mutex_unlock(&cq->mutex);
100 }
101
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104                                           u32 session_id)
105 {
106         struct optee_session *sess;
107
108         list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109                 if (sess->session_id == session_id)
110                         return sess;
111
112         return NULL;
113 }
114
115 /**
116  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117  * @ctx:        calling context
118  * @parg:       physical address of message to pass to secure world
119  *
120  * Does and SMC to OP-TEE in secure world and handles eventual resulting
121  * Remote Procedure Calls (RPC) from OP-TEE.
122  *
123  * Returns return code from secure world, 0 is OK
124  */
125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
126 {
127         struct optee *optee = tee_get_drvdata(ctx->teedev);
128         struct optee_call_waiter w;
129         struct optee_rpc_param param = { };
130         struct optee_call_ctx call_ctx = { };
131         u32 ret;
132
133         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134         reg_pair_from_64(&param.a1, &param.a2, parg);
135         /* Initialize waiter */
136         optee_cq_wait_init(&optee->call_queue, &w);
137         while (true) {
138                 struct arm_smccc_res res;
139
140                 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141                                  param.a4, param.a5, param.a6, param.a7,
142                                  &res);
143
144                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145                         /*
146                          * Out of threads in secure world, wait for a thread
147                          * become available.
148                          */
149                         optee_cq_wait_for_completion(&optee->call_queue, &w);
150                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151                         param.a0 = res.a0;
152                         param.a1 = res.a1;
153                         param.a2 = res.a2;
154                         param.a3 = res.a3;
155                         optee_handle_rpc(ctx, &param, &call_ctx);
156                 } else {
157                         ret = res.a0;
158                         break;
159                 }
160         }
161
162         optee_rpc_finalize_call(&call_ctx);
163         /*
164          * We're done with our thread in secure world, if there's any
165          * thread waiters wake up one.
166          */
167         optee_cq_wait_final(&optee->call_queue, &w);
168
169         return ret;
170 }
171
172 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
173                                    struct optee_msg_arg **msg_arg,
174                                    phys_addr_t *msg_parg)
175 {
176         int rc;
177         struct tee_shm *shm;
178         struct optee_msg_arg *ma;
179
180         shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
181                             TEE_SHM_MAPPED);
182         if (IS_ERR(shm))
183                 return shm;
184
185         ma = tee_shm_get_va(shm, 0);
186         if (IS_ERR(ma)) {
187                 rc = PTR_ERR(ma);
188                 goto out;
189         }
190
191         rc = tee_shm_get_pa(shm, 0, msg_parg);
192         if (rc)
193                 goto out;
194
195         memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
196         ma->num_params = num_params;
197         *msg_arg = ma;
198 out:
199         if (rc) {
200                 tee_shm_free(shm);
201                 return ERR_PTR(rc);
202         }
203
204         return shm;
205 }
206
207 int optee_open_session(struct tee_context *ctx,
208                        struct tee_ioctl_open_session_arg *arg,
209                        struct tee_param *param)
210 {
211         struct optee_context_data *ctxdata = ctx->data;
212         int rc;
213         struct tee_shm *shm;
214         struct optee_msg_arg *msg_arg;
215         phys_addr_t msg_parg;
216         struct optee_session *sess = NULL;
217
218         /* +2 for the meta parameters added below */
219         shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
220         if (IS_ERR(shm))
221                 return PTR_ERR(shm);
222
223         msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
224         msg_arg->cancel_id = arg->cancel_id;
225
226         /*
227          * Initialize and add the meta parameters needed when opening a
228          * session.
229          */
230         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
231                                   OPTEE_MSG_ATTR_META;
232         msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
233                                   OPTEE_MSG_ATTR_META;
234         memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
235         memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
236         msg_arg->params[1].u.value.c = arg->clnt_login;
237
238         rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
239         if (rc)
240                 goto out;
241
242         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
243         if (!sess) {
244                 rc = -ENOMEM;
245                 goto out;
246         }
247
248         if (optee_do_call_with_arg(ctx, msg_parg)) {
249                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
250                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
251         }
252
253         if (msg_arg->ret == TEEC_SUCCESS) {
254                 /* A new session has been created, add it to the list. */
255                 sess->session_id = msg_arg->session;
256                 mutex_lock(&ctxdata->mutex);
257                 list_add(&sess->list_node, &ctxdata->sess_list);
258                 mutex_unlock(&ctxdata->mutex);
259         } else {
260                 kfree(sess);
261         }
262
263         if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
264                 arg->ret = TEEC_ERROR_COMMUNICATION;
265                 arg->ret_origin = TEEC_ORIGIN_COMMS;
266                 /* Close session again to avoid leakage */
267                 optee_close_session(ctx, msg_arg->session);
268         } else {
269                 arg->session = msg_arg->session;
270                 arg->ret = msg_arg->ret;
271                 arg->ret_origin = msg_arg->ret_origin;
272         }
273 out:
274         tee_shm_free(shm);
275
276         return rc;
277 }
278
279 int optee_close_session(struct tee_context *ctx, u32 session)
280 {
281         struct optee_context_data *ctxdata = ctx->data;
282         struct tee_shm *shm;
283         struct optee_msg_arg *msg_arg;
284         phys_addr_t msg_parg;
285         struct optee_session *sess;
286
287         /* Check that the session is valid and remove it from the list */
288         mutex_lock(&ctxdata->mutex);
289         sess = find_session(ctxdata, session);
290         if (sess)
291                 list_del(&sess->list_node);
292         mutex_unlock(&ctxdata->mutex);
293         if (!sess)
294                 return -EINVAL;
295         kfree(sess);
296
297         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
298         if (IS_ERR(shm))
299                 return PTR_ERR(shm);
300
301         msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
302         msg_arg->session = session;
303         optee_do_call_with_arg(ctx, msg_parg);
304
305         tee_shm_free(shm);
306         return 0;
307 }
308
309 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
310                       struct tee_param *param)
311 {
312         struct optee_context_data *ctxdata = ctx->data;
313         struct tee_shm *shm;
314         struct optee_msg_arg *msg_arg;
315         phys_addr_t msg_parg;
316         struct optee_session *sess;
317         int rc;
318
319         /* Check that the session is valid */
320         mutex_lock(&ctxdata->mutex);
321         sess = find_session(ctxdata, arg->session);
322         mutex_unlock(&ctxdata->mutex);
323         if (!sess)
324                 return -EINVAL;
325
326         shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
327         if (IS_ERR(shm))
328                 return PTR_ERR(shm);
329         msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
330         msg_arg->func = arg->func;
331         msg_arg->session = arg->session;
332         msg_arg->cancel_id = arg->cancel_id;
333
334         rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
335         if (rc)
336                 goto out;
337
338         if (optee_do_call_with_arg(ctx, msg_parg)) {
339                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
340                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
341         }
342
343         if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
344                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
345                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
346         }
347
348         arg->ret = msg_arg->ret;
349         arg->ret_origin = msg_arg->ret_origin;
350 out:
351         tee_shm_free(shm);
352         return rc;
353 }
354
355 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
356 {
357         struct optee_context_data *ctxdata = ctx->data;
358         struct tee_shm *shm;
359         struct optee_msg_arg *msg_arg;
360         phys_addr_t msg_parg;
361         struct optee_session *sess;
362
363         /* Check that the session is valid */
364         mutex_lock(&ctxdata->mutex);
365         sess = find_session(ctxdata, session);
366         mutex_unlock(&ctxdata->mutex);
367         if (!sess)
368                 return -EINVAL;
369
370         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
371         if (IS_ERR(shm))
372                 return PTR_ERR(shm);
373
374         msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
375         msg_arg->session = session;
376         msg_arg->cancel_id = cancel_id;
377         optee_do_call_with_arg(ctx, msg_parg);
378
379         tee_shm_free(shm);
380         return 0;
381 }
382
383 /**
384  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
385  *                            in OP-TEE
386  * @optee:      main service struct
387  */
388 void optee_enable_shm_cache(struct optee *optee)
389 {
390         struct optee_call_waiter w;
391
392         /* We need to retry until secure world isn't busy. */
393         optee_cq_wait_init(&optee->call_queue, &w);
394         while (true) {
395                 struct arm_smccc_res res;
396
397                 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
398                                  0, &res);
399                 if (res.a0 == OPTEE_SMC_RETURN_OK)
400                         break;
401                 optee_cq_wait_for_completion(&optee->call_queue, &w);
402         }
403         optee_cq_wait_final(&optee->call_queue, &w);
404 }
405
406 /**
407  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
408  *                            in OP-TEE
409  * @optee:      main service struct
410  */
411 void optee_disable_shm_cache(struct optee *optee)
412 {
413         struct optee_call_waiter w;
414
415         /* We need to retry until secure world isn't busy. */
416         optee_cq_wait_init(&optee->call_queue, &w);
417         while (true) {
418                 union {
419                         struct arm_smccc_res smccc;
420                         struct optee_smc_disable_shm_cache_result result;
421                 } res;
422
423                 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
424                                  0, &res.smccc);
425                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
426                         break; /* All shm's freed */
427                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
428                         struct tee_shm *shm;
429
430                         shm = reg_pair_to_ptr(res.result.shm_upper32,
431                                               res.result.shm_lower32);
432                         tee_shm_free(shm);
433                 } else {
434                         optee_cq_wait_for_completion(&optee->call_queue, &w);
435                 }
436         }
437         optee_cq_wait_final(&optee->call_queue, &w);
438 }
439
440 #define PAGELIST_ENTRIES_PER_PAGE                               \
441         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
442
443 /**
444  * optee_fill_pages_list() - write list of user pages to given shared
445  * buffer.
446  *
447  * @dst: page-aligned buffer where list of pages will be stored
448  * @pages: array of pages that represents shared buffer
449  * @num_pages: number of entries in @pages
450  * @page_offset: offset of user buffer from page start
451  *
452  * @dst should be big enough to hold list of user page addresses and
453  *      links to the next pages of buffer
454  */
455 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
456                            size_t page_offset)
457 {
458         int n = 0;
459         phys_addr_t optee_page;
460         /*
461          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
462          * for details.
463          */
464         struct {
465                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
466                 u64 next_page_data;
467         } *pages_data;
468
469         /*
470          * Currently OP-TEE uses 4k page size and it does not looks
471          * like this will change in the future.  On other hand, there are
472          * no know ARM architectures with page size < 4k.
473          * Thus the next built assert looks redundant. But the following
474          * code heavily relies on this assumption, so it is better be
475          * safe than sorry.
476          */
477         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
478
479         pages_data = (void *)dst;
480         /*
481          * If linux page is bigger than 4k, and user buffer offset is
482          * larger than 4k/8k/12k/etc this will skip first 4k pages,
483          * because they bear no value data for OP-TEE.
484          */
485         optee_page = page_to_phys(*pages) +
486                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
487
488         while (true) {
489                 pages_data->pages_list[n++] = optee_page;
490
491                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
492                         pages_data->next_page_data =
493                                 virt_to_phys(pages_data + 1);
494                         pages_data++;
495                         n = 0;
496                 }
497
498                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
499                 if (!(optee_page & ~PAGE_MASK)) {
500                         if (!--num_pages)
501                                 break;
502                         pages++;
503                         optee_page = page_to_phys(*pages);
504                 }
505         }
506 }
507
508 /*
509  * The final entry in each pagelist page is a pointer to the next
510  * pagelist page.
511  */
512 static size_t get_pages_list_size(size_t num_entries)
513 {
514         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
515
516         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
517 }
518
519 u64 *optee_allocate_pages_list(size_t num_entries)
520 {
521         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
522 }
523
524 void optee_free_pages_list(void *list, size_t num_entries)
525 {
526         free_pages_exact(list, get_pages_list_size(num_entries));
527 }
528
529 static bool is_normal_memory(pgprot_t p)
530 {
531 #if defined(CONFIG_ARM)
532         return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
533 #elif defined(CONFIG_ARM64)
534         return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
535 #else
536 #error "Unuspported architecture"
537 #endif
538 }
539
540 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
541 {
542         while (vma && is_normal_memory(vma->vm_page_prot)) {
543                 if (vma->vm_end >= end)
544                         return 0;
545                 vma = vma->vm_next;
546         }
547
548         return -EINVAL;
549 }
550
551 static int check_mem_type(unsigned long start, size_t num_pages)
552 {
553         struct mm_struct *mm = current->mm;
554         int rc;
555
556         down_read(&mm->mmap_sem);
557         rc = __check_mem_type(find_vma(mm, start),
558                               start + num_pages * PAGE_SIZE);
559         up_read(&mm->mmap_sem);
560
561         return rc;
562 }
563
564 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
565                        struct page **pages, size_t num_pages,
566                        unsigned long start)
567 {
568         struct tee_shm *shm_arg = NULL;
569         struct optee_msg_arg *msg_arg;
570         u64 *pages_list;
571         phys_addr_t msg_parg;
572         int rc;
573
574         if (!num_pages)
575                 return -EINVAL;
576
577         rc = check_mem_type(start, num_pages);
578         if (rc)
579                 return rc;
580
581         pages_list = optee_allocate_pages_list(num_pages);
582         if (!pages_list)
583                 return -ENOMEM;
584
585         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
586         if (IS_ERR(shm_arg)) {
587                 rc = PTR_ERR(shm_arg);
588                 goto out;
589         }
590
591         optee_fill_pages_list(pages_list, pages, num_pages,
592                               tee_shm_get_page_offset(shm));
593
594         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
595         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
596                                 OPTEE_MSG_ATTR_NONCONTIG;
597         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
598         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
599         /*
600          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
601          * store buffer offset from 4k page, as described in OP-TEE ABI.
602          */
603         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
604           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
605
606         if (optee_do_call_with_arg(ctx, msg_parg) ||
607             msg_arg->ret != TEEC_SUCCESS)
608                 rc = -EINVAL;
609
610         tee_shm_free(shm_arg);
611 out:
612         optee_free_pages_list(pages_list, num_pages);
613         return rc;
614 }
615
616 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
617 {
618         struct tee_shm *shm_arg;
619         struct optee_msg_arg *msg_arg;
620         phys_addr_t msg_parg;
621         int rc = 0;
622
623         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
624         if (IS_ERR(shm_arg))
625                 return PTR_ERR(shm_arg);
626
627         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
628
629         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
630         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
631
632         if (optee_do_call_with_arg(ctx, msg_parg) ||
633             msg_arg->ret != TEEC_SUCCESS)
634                 rc = -EINVAL;
635         tee_shm_free(shm_arg);
636         return rc;
637 }
638
639 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
640                             struct page **pages, size_t num_pages,
641                             unsigned long start)
642 {
643         /*
644          * We don't want to register supplicant memory in OP-TEE.
645          * Instead information about it will be passed in RPC code.
646          */
647         return check_mem_type(start, num_pages);
648 }
649
650 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
651 {
652         return 0;
653 }