dt-bindings: reset: imx7: Fix the spelling of 'indices'
[sfrench/cifs-2.6.git] / drivers / tee / optee / call.c
1 /*
2  * Copyright (c) 2015, Linaro Limited
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14 #include <linux/arm-smccc.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/tee_drv.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include "optee_private.h"
24 #include "optee_smc.h"
25
26 struct optee_call_waiter {
27         struct list_head list_node;
28         struct completion c;
29 };
30
31 static void optee_cq_wait_init(struct optee_call_queue *cq,
32                                struct optee_call_waiter *w)
33 {
34         /*
35          * We're preparing to make a call to secure world. In case we can't
36          * allocate a thread in secure world we'll end up waiting in
37          * optee_cq_wait_for_completion().
38          *
39          * Normally if there's no contention in secure world the call will
40          * complete and we can cleanup directly with optee_cq_wait_final().
41          */
42         mutex_lock(&cq->mutex);
43
44         /*
45          * We add ourselves to the queue, but we don't wait. This
46          * guarantees that we don't lose a completion if secure world
47          * returns busy and another thread just exited and try to complete
48          * someone.
49          */
50         init_completion(&w->c);
51         list_add_tail(&w->list_node, &cq->waiters);
52
53         mutex_unlock(&cq->mutex);
54 }
55
56 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
57                                          struct optee_call_waiter *w)
58 {
59         wait_for_completion(&w->c);
60
61         mutex_lock(&cq->mutex);
62
63         /* Move to end of list to get out of the way for other waiters */
64         list_del(&w->list_node);
65         reinit_completion(&w->c);
66         list_add_tail(&w->list_node, &cq->waiters);
67
68         mutex_unlock(&cq->mutex);
69 }
70
71 static void optee_cq_complete_one(struct optee_call_queue *cq)
72 {
73         struct optee_call_waiter *w;
74
75         list_for_each_entry(w, &cq->waiters, list_node) {
76                 if (!completion_done(&w->c)) {
77                         complete(&w->c);
78                         break;
79                 }
80         }
81 }
82
83 static void optee_cq_wait_final(struct optee_call_queue *cq,
84                                 struct optee_call_waiter *w)
85 {
86         /*
87          * We're done with the call to secure world. The thread in secure
88          * world that was used for this call is now available for some
89          * other task to use.
90          */
91         mutex_lock(&cq->mutex);
92
93         /* Get out of the list */
94         list_del(&w->list_node);
95
96         /* Wake up one eventual waiting task */
97         optee_cq_complete_one(cq);
98
99         /*
100          * If we're completed we've got a completion from another task that
101          * was just done with its call to secure world. Since yet another
102          * thread now is available in secure world wake up another eventual
103          * waiting task.
104          */
105         if (completion_done(&w->c))
106                 optee_cq_complete_one(cq);
107
108         mutex_unlock(&cq->mutex);
109 }
110
111 /* Requires the filpstate mutex to be held */
112 static struct optee_session *find_session(struct optee_context_data *ctxdata,
113                                           u32 session_id)
114 {
115         struct optee_session *sess;
116
117         list_for_each_entry(sess, &ctxdata->sess_list, list_node)
118                 if (sess->session_id == session_id)
119                         return sess;
120
121         return NULL;
122 }
123
124 /**
125  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
126  * @ctx:        calling context
127  * @parg:       physical address of message to pass to secure world
128  *
129  * Does and SMC to OP-TEE in secure world and handles eventual resulting
130  * Remote Procedure Calls (RPC) from OP-TEE.
131  *
132  * Returns return code from secure world, 0 is OK
133  */
134 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
135 {
136         struct optee *optee = tee_get_drvdata(ctx->teedev);
137         struct optee_call_waiter w;
138         struct optee_rpc_param param = { };
139         struct optee_call_ctx call_ctx = { };
140         u32 ret;
141
142         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
143         reg_pair_from_64(&param.a1, &param.a2, parg);
144         /* Initialize waiter */
145         optee_cq_wait_init(&optee->call_queue, &w);
146         while (true) {
147                 struct arm_smccc_res res;
148
149                 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
150                                  param.a4, param.a5, param.a6, param.a7,
151                                  &res);
152
153                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
154                         /*
155                          * Out of threads in secure world, wait for a thread
156                          * become available.
157                          */
158                         optee_cq_wait_for_completion(&optee->call_queue, &w);
159                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
160                         param.a0 = res.a0;
161                         param.a1 = res.a1;
162                         param.a2 = res.a2;
163                         param.a3 = res.a3;
164                         optee_handle_rpc(ctx, &param, &call_ctx);
165                 } else {
166                         ret = res.a0;
167                         break;
168                 }
169         }
170
171         optee_rpc_finalize_call(&call_ctx);
172         /*
173          * We're done with our thread in secure world, if there's any
174          * thread waiters wake up one.
175          */
176         optee_cq_wait_final(&optee->call_queue, &w);
177
178         return ret;
179 }
180
181 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
182                                    struct optee_msg_arg **msg_arg,
183                                    phys_addr_t *msg_parg)
184 {
185         int rc;
186         struct tee_shm *shm;
187         struct optee_msg_arg *ma;
188
189         shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
190                             TEE_SHM_MAPPED);
191         if (IS_ERR(shm))
192                 return shm;
193
194         ma = tee_shm_get_va(shm, 0);
195         if (IS_ERR(ma)) {
196                 rc = PTR_ERR(ma);
197                 goto out;
198         }
199
200         rc = tee_shm_get_pa(shm, 0, msg_parg);
201         if (rc)
202                 goto out;
203
204         memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
205         ma->num_params = num_params;
206         *msg_arg = ma;
207 out:
208         if (rc) {
209                 tee_shm_free(shm);
210                 return ERR_PTR(rc);
211         }
212
213         return shm;
214 }
215
216 int optee_open_session(struct tee_context *ctx,
217                        struct tee_ioctl_open_session_arg *arg,
218                        struct tee_param *param)
219 {
220         struct optee_context_data *ctxdata = ctx->data;
221         int rc;
222         struct tee_shm *shm;
223         struct optee_msg_arg *msg_arg;
224         phys_addr_t msg_parg;
225         struct optee_session *sess = NULL;
226
227         /* +2 for the meta parameters added below */
228         shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
229         if (IS_ERR(shm))
230                 return PTR_ERR(shm);
231
232         msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
233         msg_arg->cancel_id = arg->cancel_id;
234
235         /*
236          * Initialize and add the meta parameters needed when opening a
237          * session.
238          */
239         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
240                                   OPTEE_MSG_ATTR_META;
241         msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
242                                   OPTEE_MSG_ATTR_META;
243         memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
244         memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
245         msg_arg->params[1].u.value.c = arg->clnt_login;
246
247         rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
248         if (rc)
249                 goto out;
250
251         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
252         if (!sess) {
253                 rc = -ENOMEM;
254                 goto out;
255         }
256
257         if (optee_do_call_with_arg(ctx, msg_parg)) {
258                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
259                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
260         }
261
262         if (msg_arg->ret == TEEC_SUCCESS) {
263                 /* A new session has been created, add it to the list. */
264                 sess->session_id = msg_arg->session;
265                 mutex_lock(&ctxdata->mutex);
266                 list_add(&sess->list_node, &ctxdata->sess_list);
267                 mutex_unlock(&ctxdata->mutex);
268         } else {
269                 kfree(sess);
270         }
271
272         if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
273                 arg->ret = TEEC_ERROR_COMMUNICATION;
274                 arg->ret_origin = TEEC_ORIGIN_COMMS;
275                 /* Close session again to avoid leakage */
276                 optee_close_session(ctx, msg_arg->session);
277         } else {
278                 arg->session = msg_arg->session;
279                 arg->ret = msg_arg->ret;
280                 arg->ret_origin = msg_arg->ret_origin;
281         }
282 out:
283         tee_shm_free(shm);
284
285         return rc;
286 }
287
288 int optee_close_session(struct tee_context *ctx, u32 session)
289 {
290         struct optee_context_data *ctxdata = ctx->data;
291         struct tee_shm *shm;
292         struct optee_msg_arg *msg_arg;
293         phys_addr_t msg_parg;
294         struct optee_session *sess;
295
296         /* Check that the session is valid and remove it from the list */
297         mutex_lock(&ctxdata->mutex);
298         sess = find_session(ctxdata, session);
299         if (sess)
300                 list_del(&sess->list_node);
301         mutex_unlock(&ctxdata->mutex);
302         if (!sess)
303                 return -EINVAL;
304         kfree(sess);
305
306         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
307         if (IS_ERR(shm))
308                 return PTR_ERR(shm);
309
310         msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
311         msg_arg->session = session;
312         optee_do_call_with_arg(ctx, msg_parg);
313
314         tee_shm_free(shm);
315         return 0;
316 }
317
318 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
319                       struct tee_param *param)
320 {
321         struct optee_context_data *ctxdata = ctx->data;
322         struct tee_shm *shm;
323         struct optee_msg_arg *msg_arg;
324         phys_addr_t msg_parg;
325         struct optee_session *sess;
326         int rc;
327
328         /* Check that the session is valid */
329         mutex_lock(&ctxdata->mutex);
330         sess = find_session(ctxdata, arg->session);
331         mutex_unlock(&ctxdata->mutex);
332         if (!sess)
333                 return -EINVAL;
334
335         shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
336         if (IS_ERR(shm))
337                 return PTR_ERR(shm);
338         msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
339         msg_arg->func = arg->func;
340         msg_arg->session = arg->session;
341         msg_arg->cancel_id = arg->cancel_id;
342
343         rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
344         if (rc)
345                 goto out;
346
347         if (optee_do_call_with_arg(ctx, msg_parg)) {
348                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
349                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
350         }
351
352         if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
353                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
354                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
355         }
356
357         arg->ret = msg_arg->ret;
358         arg->ret_origin = msg_arg->ret_origin;
359 out:
360         tee_shm_free(shm);
361         return rc;
362 }
363
364 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
365 {
366         struct optee_context_data *ctxdata = ctx->data;
367         struct tee_shm *shm;
368         struct optee_msg_arg *msg_arg;
369         phys_addr_t msg_parg;
370         struct optee_session *sess;
371
372         /* Check that the session is valid */
373         mutex_lock(&ctxdata->mutex);
374         sess = find_session(ctxdata, session);
375         mutex_unlock(&ctxdata->mutex);
376         if (!sess)
377                 return -EINVAL;
378
379         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
380         if (IS_ERR(shm))
381                 return PTR_ERR(shm);
382
383         msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
384         msg_arg->session = session;
385         msg_arg->cancel_id = cancel_id;
386         optee_do_call_with_arg(ctx, msg_parg);
387
388         tee_shm_free(shm);
389         return 0;
390 }
391
392 /**
393  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
394  *                            in OP-TEE
395  * @optee:      main service struct
396  */
397 void optee_enable_shm_cache(struct optee *optee)
398 {
399         struct optee_call_waiter w;
400
401         /* We need to retry until secure world isn't busy. */
402         optee_cq_wait_init(&optee->call_queue, &w);
403         while (true) {
404                 struct arm_smccc_res res;
405
406                 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
407                                  0, &res);
408                 if (res.a0 == OPTEE_SMC_RETURN_OK)
409                         break;
410                 optee_cq_wait_for_completion(&optee->call_queue, &w);
411         }
412         optee_cq_wait_final(&optee->call_queue, &w);
413 }
414
415 /**
416  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
417  *                            in OP-TEE
418  * @optee:      main service struct
419  */
420 void optee_disable_shm_cache(struct optee *optee)
421 {
422         struct optee_call_waiter w;
423
424         /* We need to retry until secure world isn't busy. */
425         optee_cq_wait_init(&optee->call_queue, &w);
426         while (true) {
427                 union {
428                         struct arm_smccc_res smccc;
429                         struct optee_smc_disable_shm_cache_result result;
430                 } res;
431
432                 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
433                                  0, &res.smccc);
434                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
435                         break; /* All shm's freed */
436                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
437                         struct tee_shm *shm;
438
439                         shm = reg_pair_to_ptr(res.result.shm_upper32,
440                                               res.result.shm_lower32);
441                         tee_shm_free(shm);
442                 } else {
443                         optee_cq_wait_for_completion(&optee->call_queue, &w);
444                 }
445         }
446         optee_cq_wait_final(&optee->call_queue, &w);
447 }
448
449 #define PAGELIST_ENTRIES_PER_PAGE                               \
450         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
451
452 /**
453  * optee_fill_pages_list() - write list of user pages to given shared
454  * buffer.
455  *
456  * @dst: page-aligned buffer where list of pages will be stored
457  * @pages: array of pages that represents shared buffer
458  * @num_pages: number of entries in @pages
459  * @page_offset: offset of user buffer from page start
460  *
461  * @dst should be big enough to hold list of user page addresses and
462  *      links to the next pages of buffer
463  */
464 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
465                            size_t page_offset)
466 {
467         int n = 0;
468         phys_addr_t optee_page;
469         /*
470          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
471          * for details.
472          */
473         struct {
474                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
475                 u64 next_page_data;
476         } *pages_data;
477
478         /*
479          * Currently OP-TEE uses 4k page size and it does not looks
480          * like this will change in the future.  On other hand, there are
481          * no know ARM architectures with page size < 4k.
482          * Thus the next built assert looks redundant. But the following
483          * code heavily relies on this assumption, so it is better be
484          * safe than sorry.
485          */
486         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
487
488         pages_data = (void *)dst;
489         /*
490          * If linux page is bigger than 4k, and user buffer offset is
491          * larger than 4k/8k/12k/etc this will skip first 4k pages,
492          * because they bear no value data for OP-TEE.
493          */
494         optee_page = page_to_phys(*pages) +
495                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
496
497         while (true) {
498                 pages_data->pages_list[n++] = optee_page;
499
500                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
501                         pages_data->next_page_data =
502                                 virt_to_phys(pages_data + 1);
503                         pages_data++;
504                         n = 0;
505                 }
506
507                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
508                 if (!(optee_page & ~PAGE_MASK)) {
509                         if (!--num_pages)
510                                 break;
511                         pages++;
512                         optee_page = page_to_phys(*pages);
513                 }
514         }
515 }
516
517 /*
518  * The final entry in each pagelist page is a pointer to the next
519  * pagelist page.
520  */
521 static size_t get_pages_list_size(size_t num_entries)
522 {
523         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
524
525         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
526 }
527
528 u64 *optee_allocate_pages_list(size_t num_entries)
529 {
530         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
531 }
532
533 void optee_free_pages_list(void *list, size_t num_entries)
534 {
535         free_pages_exact(list, get_pages_list_size(num_entries));
536 }
537
538 static bool is_normal_memory(pgprot_t p)
539 {
540 #if defined(CONFIG_ARM)
541         return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
542 #elif defined(CONFIG_ARM64)
543         return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
544 #else
545 #error "Unuspported architecture"
546 #endif
547 }
548
549 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
550 {
551         while (vma && is_normal_memory(vma->vm_page_prot)) {
552                 if (vma->vm_end >= end)
553                         return 0;
554                 vma = vma->vm_next;
555         }
556
557         return -EINVAL;
558 }
559
560 static int check_mem_type(unsigned long start, size_t num_pages)
561 {
562         struct mm_struct *mm = current->mm;
563         int rc;
564
565         down_read(&mm->mmap_sem);
566         rc = __check_mem_type(find_vma(mm, start),
567                               start + num_pages * PAGE_SIZE);
568         up_read(&mm->mmap_sem);
569
570         return rc;
571 }
572
573 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
574                        struct page **pages, size_t num_pages,
575                        unsigned long start)
576 {
577         struct tee_shm *shm_arg = NULL;
578         struct optee_msg_arg *msg_arg;
579         u64 *pages_list;
580         phys_addr_t msg_parg;
581         int rc;
582
583         if (!num_pages)
584                 return -EINVAL;
585
586         rc = check_mem_type(start, num_pages);
587         if (rc)
588                 return rc;
589
590         pages_list = optee_allocate_pages_list(num_pages);
591         if (!pages_list)
592                 return -ENOMEM;
593
594         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
595         if (IS_ERR(shm_arg)) {
596                 rc = PTR_ERR(shm_arg);
597                 goto out;
598         }
599
600         optee_fill_pages_list(pages_list, pages, num_pages,
601                               tee_shm_get_page_offset(shm));
602
603         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
604         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
605                                 OPTEE_MSG_ATTR_NONCONTIG;
606         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
607         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
608         /*
609          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
610          * store buffer offset from 4k page, as described in OP-TEE ABI.
611          */
612         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
613           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
614
615         if (optee_do_call_with_arg(ctx, msg_parg) ||
616             msg_arg->ret != TEEC_SUCCESS)
617                 rc = -EINVAL;
618
619         tee_shm_free(shm_arg);
620 out:
621         optee_free_pages_list(pages_list, num_pages);
622         return rc;
623 }
624
625 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
626 {
627         struct tee_shm *shm_arg;
628         struct optee_msg_arg *msg_arg;
629         phys_addr_t msg_parg;
630         int rc = 0;
631
632         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
633         if (IS_ERR(shm_arg))
634                 return PTR_ERR(shm_arg);
635
636         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
637
638         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
639         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
640
641         if (optee_do_call_with_arg(ctx, msg_parg) ||
642             msg_arg->ret != TEEC_SUCCESS)
643                 rc = -EINVAL;
644         tee_shm_free(shm_arg);
645         return rc;
646 }
647
648 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
649                             struct page **pages, size_t num_pages,
650                             unsigned long start)
651 {
652         /*
653          * We don't want to register supplicant memory in OP-TEE.
654          * Instead information about it will be passed in RPC code.
655          */
656         return check_mem_type(start, num_pages);
657 }
658
659 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
660 {
661         return 0;
662 }