ACPI: clean up white space in a few places for consistency
[sfrench/cifs-2.6.git] / drivers / spi / spi-intel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016 - 2022, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19 #include "spi-intel.h"
20
21 /* Offsets are from @ispi->base */
22 #define BFPREG                          0x00
23
24 #define HSFSTS_CTL                      0x04
25 #define HSFSTS_CTL_FSMIE                BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT           24
27 #define HSFSTS_CTL_FDBC_MASK            (0x3f << HSFSTS_CTL_FDBC_SHIFT)
28
29 #define HSFSTS_CTL_FCYCLE_SHIFT         17
30 #define HSFSTS_CTL_FCYCLE_MASK          (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ          (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE         (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE         (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K     (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDID          (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_WRSR          (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_RDSR          (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
39
40 #define HSFSTS_CTL_FGO                  BIT(16)
41 #define HSFSTS_CTL_FLOCKDN              BIT(15)
42 #define HSFSTS_CTL_FDV                  BIT(14)
43 #define HSFSTS_CTL_SCIP                 BIT(5)
44 #define HSFSTS_CTL_AEL                  BIT(2)
45 #define HSFSTS_CTL_FCERR                BIT(1)
46 #define HSFSTS_CTL_FDONE                BIT(0)
47
48 #define FADDR                           0x08
49 #define DLOCK                           0x0c
50 #define FDATA(n)                        (0x10 + ((n) * 4))
51
52 #define FRACC                           0x50
53
54 #define FREG(n)                         (0x54 + ((n) * 4))
55 #define FREG_BASE_MASK                  0x3fff
56 #define FREG_LIMIT_SHIFT                16
57 #define FREG_LIMIT_MASK                 (0x03fff << FREG_LIMIT_SHIFT)
58
59 /* Offset is from @ispi->pregs */
60 #define PR(n)                           ((n) * 4)
61 #define PR_WPE                          BIT(31)
62 #define PR_LIMIT_SHIFT                  16
63 #define PR_LIMIT_MASK                   (0x3fff << PR_LIMIT_SHIFT)
64 #define PR_RPE                          BIT(15)
65 #define PR_BASE_MASK                    0x3fff
66
67 /* Offsets are from @ispi->sregs */
68 #define SSFSTS_CTL                      0x00
69 #define SSFSTS_CTL_FSMIE                BIT(23)
70 #define SSFSTS_CTL_DS                   BIT(22)
71 #define SSFSTS_CTL_DBC_SHIFT            16
72 #define SSFSTS_CTL_SPOP                 BIT(11)
73 #define SSFSTS_CTL_ACS                  BIT(10)
74 #define SSFSTS_CTL_SCGO                 BIT(9)
75 #define SSFSTS_CTL_COP_SHIFT            12
76 #define SSFSTS_CTL_FRS                  BIT(7)
77 #define SSFSTS_CTL_DOFRS                BIT(6)
78 #define SSFSTS_CTL_AEL                  BIT(4)
79 #define SSFSTS_CTL_FCERR                BIT(3)
80 #define SSFSTS_CTL_FDONE                BIT(2)
81 #define SSFSTS_CTL_SCIP                 BIT(0)
82
83 #define PREOP_OPTYPE                    0x04
84 #define OPMENU0                         0x08
85 #define OPMENU1                         0x0c
86
87 #define OPTYPE_READ_NO_ADDR             0
88 #define OPTYPE_WRITE_NO_ADDR            1
89 #define OPTYPE_READ_WITH_ADDR           2
90 #define OPTYPE_WRITE_WITH_ADDR          3
91
92 /* CPU specifics */
93 #define BYT_PR                          0x74
94 #define BYT_SSFSTS_CTL                  0x90
95 #define BYT_FREG_NUM                    5
96 #define BYT_PR_NUM                      5
97
98 #define LPT_PR                          0x74
99 #define LPT_SSFSTS_CTL                  0x90
100 #define LPT_FREG_NUM                    5
101 #define LPT_PR_NUM                      5
102
103 #define BXT_PR                          0x84
104 #define BXT_SSFSTS_CTL                  0xa0
105 #define BXT_FREG_NUM                    12
106 #define BXT_PR_NUM                      6
107
108 #define CNL_PR                          0x84
109 #define CNL_FREG_NUM                    6
110 #define CNL_PR_NUM                      5
111
112 #define LVSCC                           0xc4
113 #define UVSCC                           0xc8
114 #define ERASE_OPCODE_SHIFT              8
115 #define ERASE_OPCODE_MASK               (0xff << ERASE_OPCODE_SHIFT)
116 #define ERASE_64K_OPCODE_SHIFT          16
117 #define ERASE_64K_OPCODE_MASK           (0xff << ERASE_OPCODE_SHIFT)
118
119 #define INTEL_SPI_TIMEOUT               5000 /* ms */
120 #define INTEL_SPI_FIFO_SZ               64
121
122 /**
123  * struct intel_spi - Driver private data
124  * @dev: Device pointer
125  * @info: Pointer to board specific info
126  * @base: Beginning of MMIO space
127  * @pregs: Start of protection registers
128  * @sregs: Start of software sequencer registers
129  * @master: Pointer to the SPI controller structure
130  * @nregions: Maximum number of regions
131  * @pr_num: Maximum number of protected range registers
132  * @locked: Is SPI setting locked
133  * @swseq_reg: Use SW sequencer in register reads/writes
134  * @swseq_erase: Use SW sequencer in erase operation
135  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
136  * @opcodes: Opcodes which are supported. This are programmed by BIOS
137  *           before it locks down the controller.
138  * @mem_ops: Pointer to SPI MEM ops supported by the controller
139  */
140 struct intel_spi {
141         struct device *dev;
142         const struct intel_spi_boardinfo *info;
143         void __iomem *base;
144         void __iomem *pregs;
145         void __iomem *sregs;
146         struct spi_controller *master;
147         size_t nregions;
148         size_t pr_num;
149         bool locked;
150         bool swseq_reg;
151         bool swseq_erase;
152         u8 atomic_preopcode;
153         u8 opcodes[8];
154         const struct intel_spi_mem_op *mem_ops;
155 };
156
157 struct intel_spi_mem_op {
158         struct spi_mem_op mem_op;
159         u32 replacement_op;
160         int (*exec_op)(struct intel_spi *ispi,
161                        const struct intel_spi_mem_op *iop,
162                        const struct spi_mem_op *op);
163 };
164
165 static bool writeable;
166 module_param(writeable, bool, 0);
167 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
168
169 static void intel_spi_dump_regs(struct intel_spi *ispi)
170 {
171         u32 value;
172         int i;
173
174         dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
175
176         value = readl(ispi->base + HSFSTS_CTL);
177         dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
178         if (value & HSFSTS_CTL_FLOCKDN)
179                 dev_dbg(ispi->dev, "-> Locked\n");
180
181         dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
182         dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
183
184         for (i = 0; i < 16; i++)
185                 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
186                         i, readl(ispi->base + FDATA(i)));
187
188         dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
189
190         for (i = 0; i < ispi->nregions; i++)
191                 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
192                         readl(ispi->base + FREG(i)));
193         for (i = 0; i < ispi->pr_num; i++)
194                 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
195                         readl(ispi->pregs + PR(i)));
196
197         if (ispi->sregs) {
198                 value = readl(ispi->sregs + SSFSTS_CTL);
199                 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
200                 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
201                         readl(ispi->sregs + PREOP_OPTYPE));
202                 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
203                         readl(ispi->sregs + OPMENU0));
204                 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
205                         readl(ispi->sregs + OPMENU1));
206         }
207
208         dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
209         dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
210
211         dev_dbg(ispi->dev, "Protected regions:\n");
212         for (i = 0; i < ispi->pr_num; i++) {
213                 u32 base, limit;
214
215                 value = readl(ispi->pregs + PR(i));
216                 if (!(value & (PR_WPE | PR_RPE)))
217                         continue;
218
219                 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
220                 base = value & PR_BASE_MASK;
221
222                 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
223                         i, base << 12, (limit << 12) | 0xfff,
224                         value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
225         }
226
227         dev_dbg(ispi->dev, "Flash regions:\n");
228         for (i = 0; i < ispi->nregions; i++) {
229                 u32 region, base, limit;
230
231                 region = readl(ispi->base + FREG(i));
232                 base = region & FREG_BASE_MASK;
233                 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
234
235                 if (base >= limit || (i > 0 && limit == 0))
236                         dev_dbg(ispi->dev, " %02d disabled\n", i);
237                 else
238                         dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
239                                 i, base << 12, (limit << 12) | 0xfff);
240         }
241
242         dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
243                 ispi->swseq_reg ? 'S' : 'H');
244         dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
245                 ispi->swseq_erase ? 'S' : 'H');
246 }
247
248 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
249 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
250 {
251         size_t bytes;
252         int i = 0;
253
254         if (size > INTEL_SPI_FIFO_SZ)
255                 return -EINVAL;
256
257         while (size > 0) {
258                 bytes = min_t(size_t, size, 4);
259                 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
260                 size -= bytes;
261                 buf += bytes;
262                 i++;
263         }
264
265         return 0;
266 }
267
268 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
269 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
270                                  size_t size)
271 {
272         size_t bytes;
273         int i = 0;
274
275         if (size > INTEL_SPI_FIFO_SZ)
276                 return -EINVAL;
277
278         while (size > 0) {
279                 bytes = min_t(size_t, size, 4);
280                 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
281                 size -= bytes;
282                 buf += bytes;
283                 i++;
284         }
285
286         return 0;
287 }
288
289 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
290 {
291         u32 val;
292
293         return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
294                                   !(val & HSFSTS_CTL_SCIP), 0,
295                                   INTEL_SPI_TIMEOUT * 1000);
296 }
297
298 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
299 {
300         u32 val;
301
302         return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
303                                   !(val & SSFSTS_CTL_SCIP), 0,
304                                   INTEL_SPI_TIMEOUT * 1000);
305 }
306
307 static bool intel_spi_set_writeable(struct intel_spi *ispi)
308 {
309         if (!ispi->info->set_writeable)
310                 return false;
311
312         return ispi->info->set_writeable(ispi->base, ispi->info->data);
313 }
314
315 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
316 {
317         int i;
318         int preop;
319
320         if (ispi->locked) {
321                 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
322                         if (ispi->opcodes[i] == opcode)
323                                 return i;
324
325                 return -EINVAL;
326         }
327
328         /* The lock is off, so just use index 0 */
329         writel(opcode, ispi->sregs + OPMENU0);
330         preop = readw(ispi->sregs + PREOP_OPTYPE);
331         writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
332
333         return 0;
334 }
335
336 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
337 {
338         u32 val, status;
339         int ret;
340
341         val = readl(ispi->base + HSFSTS_CTL);
342         val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
343
344         switch (opcode) {
345         case SPINOR_OP_RDID:
346                 val |= HSFSTS_CTL_FCYCLE_RDID;
347                 break;
348         case SPINOR_OP_WRSR:
349                 val |= HSFSTS_CTL_FCYCLE_WRSR;
350                 break;
351         case SPINOR_OP_RDSR:
352                 val |= HSFSTS_CTL_FCYCLE_RDSR;
353                 break;
354         default:
355                 return -EINVAL;
356         }
357
358         if (len > INTEL_SPI_FIFO_SZ)
359                 return -EINVAL;
360
361         val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
362         val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
363         val |= HSFSTS_CTL_FGO;
364         writel(val, ispi->base + HSFSTS_CTL);
365
366         ret = intel_spi_wait_hw_busy(ispi);
367         if (ret)
368                 return ret;
369
370         status = readl(ispi->base + HSFSTS_CTL);
371         if (status & HSFSTS_CTL_FCERR)
372                 return -EIO;
373         else if (status & HSFSTS_CTL_AEL)
374                 return -EACCES;
375
376         return 0;
377 }
378
379 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
380                               int optype)
381 {
382         u32 val = 0, status;
383         u8 atomic_preopcode;
384         int ret;
385
386         ret = intel_spi_opcode_index(ispi, opcode, optype);
387         if (ret < 0)
388                 return ret;
389
390         if (len > INTEL_SPI_FIFO_SZ)
391                 return -EINVAL;
392
393         /*
394          * Always clear it after each SW sequencer operation regardless
395          * of whether it is successful or not.
396          */
397         atomic_preopcode = ispi->atomic_preopcode;
398         ispi->atomic_preopcode = 0;
399
400         /* Only mark 'Data Cycle' bit when there is data to be transferred */
401         if (len > 0)
402                 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
403         val |= ret << SSFSTS_CTL_COP_SHIFT;
404         val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
405         val |= SSFSTS_CTL_SCGO;
406         if (atomic_preopcode) {
407                 u16 preop;
408
409                 switch (optype) {
410                 case OPTYPE_WRITE_NO_ADDR:
411                 case OPTYPE_WRITE_WITH_ADDR:
412                         /* Pick matching preopcode for the atomic sequence */
413                         preop = readw(ispi->sregs + PREOP_OPTYPE);
414                         if ((preop & 0xff) == atomic_preopcode)
415                                 ; /* Do nothing */
416                         else if ((preop >> 8) == atomic_preopcode)
417                                 val |= SSFSTS_CTL_SPOP;
418                         else
419                                 return -EINVAL;
420
421                         /* Enable atomic sequence */
422                         val |= SSFSTS_CTL_ACS;
423                         break;
424
425                 default:
426                         return -EINVAL;
427                 }
428         }
429         writel(val, ispi->sregs + SSFSTS_CTL);
430
431         ret = intel_spi_wait_sw_busy(ispi);
432         if (ret)
433                 return ret;
434
435         status = readl(ispi->sregs + SSFSTS_CTL);
436         if (status & SSFSTS_CTL_FCERR)
437                 return -EIO;
438         else if (status & SSFSTS_CTL_AEL)
439                 return -EACCES;
440
441         return 0;
442 }
443
444 static int intel_spi_read_reg(struct intel_spi *ispi,
445                               const struct intel_spi_mem_op *iop,
446                               const struct spi_mem_op *op)
447 {
448         size_t nbytes = op->data.nbytes;
449         u8 opcode = op->cmd.opcode;
450         int ret;
451
452         /* Address of the first chip */
453         writel(0, ispi->base + FADDR);
454
455         if (ispi->swseq_reg)
456                 ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
457                                          OPTYPE_READ_NO_ADDR);
458         else
459                 ret = intel_spi_hw_cycle(ispi, opcode, nbytes);
460
461         if (ret)
462                 return ret;
463
464         return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
465 }
466
467 static int intel_spi_write_reg(struct intel_spi *ispi,
468                                const struct intel_spi_mem_op *iop,
469                                const struct spi_mem_op *op)
470 {
471         size_t nbytes = op->data.nbytes;
472         u8 opcode = op->cmd.opcode;
473         int ret;
474
475         /*
476          * This is handled with atomic operation and preop code in Intel
477          * controller so we only verify that it is available. If the
478          * controller is not locked, program the opcode to the PREOP
479          * register for later use.
480          *
481          * When hardware sequencer is used there is no need to program
482          * any opcodes (it handles them automatically as part of a command).
483          */
484         if (opcode == SPINOR_OP_WREN) {
485                 u16 preop;
486
487                 if (!ispi->swseq_reg)
488                         return 0;
489
490                 preop = readw(ispi->sregs + PREOP_OPTYPE);
491                 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
492                         if (ispi->locked)
493                                 return -EINVAL;
494                         writel(opcode, ispi->sregs + PREOP_OPTYPE);
495                 }
496
497                 /*
498                  * This enables atomic sequence on next SW sycle. Will
499                  * be cleared after next operation.
500                  */
501                 ispi->atomic_preopcode = opcode;
502                 return 0;
503         }
504
505         /*
506          * We hope that HW sequencer will do the right thing automatically and
507          * with the SW sequencer we cannot use preopcode anyway, so just ignore
508          * the Write Disable operation and pretend it was completed
509          * successfully.
510          */
511         if (opcode == SPINOR_OP_WRDI)
512                 return 0;
513
514         writel(0, ispi->base + FADDR);
515
516         /* Write the value beforehand */
517         ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
518         if (ret)
519                 return ret;
520
521         if (ispi->swseq_reg)
522                 return intel_spi_sw_cycle(ispi, opcode, nbytes,
523                                           OPTYPE_WRITE_NO_ADDR);
524         return intel_spi_hw_cycle(ispi, opcode, nbytes);
525 }
526
527 static int intel_spi_read(struct intel_spi *ispi,
528                           const struct intel_spi_mem_op *iop,
529                           const struct spi_mem_op *op)
530 {
531         void *read_buf = op->data.buf.in;
532         size_t block_size, nbytes = op->data.nbytes;
533         u32 addr = op->addr.val;
534         u32 val, status;
535         int ret;
536
537         /*
538          * Atomic sequence is not expected with HW sequencer reads. Make
539          * sure it is cleared regardless.
540          */
541         if (WARN_ON_ONCE(ispi->atomic_preopcode))
542                 ispi->atomic_preopcode = 0;
543
544         while (nbytes > 0) {
545                 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
546
547                 /* Read cannot cross 4K boundary */
548                 block_size = min_t(loff_t, addr + block_size,
549                                    round_up(addr + 1, SZ_4K)) - addr;
550
551                 writel(addr, ispi->base + FADDR);
552
553                 val = readl(ispi->base + HSFSTS_CTL);
554                 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
555                 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
556                 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
557                 val |= HSFSTS_CTL_FCYCLE_READ;
558                 val |= HSFSTS_CTL_FGO;
559                 writel(val, ispi->base + HSFSTS_CTL);
560
561                 ret = intel_spi_wait_hw_busy(ispi);
562                 if (ret)
563                         return ret;
564
565                 status = readl(ispi->base + HSFSTS_CTL);
566                 if (status & HSFSTS_CTL_FCERR)
567                         ret = -EIO;
568                 else if (status & HSFSTS_CTL_AEL)
569                         ret = -EACCES;
570
571                 if (ret < 0) {
572                         dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
573                         return ret;
574                 }
575
576                 ret = intel_spi_read_block(ispi, read_buf, block_size);
577                 if (ret)
578                         return ret;
579
580                 nbytes -= block_size;
581                 addr += block_size;
582                 read_buf += block_size;
583         }
584
585         return 0;
586 }
587
588 static int intel_spi_write(struct intel_spi *ispi,
589                            const struct intel_spi_mem_op *iop,
590                            const struct spi_mem_op *op)
591 {
592         size_t block_size, nbytes = op->data.nbytes;
593         const void *write_buf = op->data.buf.out;
594         u32 addr = op->addr.val;
595         u32 val, status;
596         int ret;
597
598         /* Not needed with HW sequencer write, make sure it is cleared */
599         ispi->atomic_preopcode = 0;
600
601         while (nbytes > 0) {
602                 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
603
604                 /* Write cannot cross 4K boundary */
605                 block_size = min_t(loff_t, addr + block_size,
606                                    round_up(addr + 1, SZ_4K)) - addr;
607
608                 writel(addr, ispi->base + FADDR);
609
610                 val = readl(ispi->base + HSFSTS_CTL);
611                 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
612                 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
613                 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
614                 val |= HSFSTS_CTL_FCYCLE_WRITE;
615
616                 ret = intel_spi_write_block(ispi, write_buf, block_size);
617                 if (ret) {
618                         dev_err(ispi->dev, "failed to write block\n");
619                         return ret;
620                 }
621
622                 /* Start the write now */
623                 val |= HSFSTS_CTL_FGO;
624                 writel(val, ispi->base + HSFSTS_CTL);
625
626                 ret = intel_spi_wait_hw_busy(ispi);
627                 if (ret) {
628                         dev_err(ispi->dev, "timeout\n");
629                         return ret;
630                 }
631
632                 status = readl(ispi->base + HSFSTS_CTL);
633                 if (status & HSFSTS_CTL_FCERR)
634                         ret = -EIO;
635                 else if (status & HSFSTS_CTL_AEL)
636                         ret = -EACCES;
637
638                 if (ret < 0) {
639                         dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
640                         return ret;
641                 }
642
643                 nbytes -= block_size;
644                 addr += block_size;
645                 write_buf += block_size;
646         }
647
648         return 0;
649 }
650
651 static int intel_spi_erase(struct intel_spi *ispi,
652                            const struct intel_spi_mem_op *iop,
653                            const struct spi_mem_op *op)
654 {
655         u8 opcode = op->cmd.opcode;
656         u32 addr = op->addr.val;
657         u32 val, status;
658         int ret;
659
660         writel(addr, ispi->base + FADDR);
661
662         if (ispi->swseq_erase)
663                 return intel_spi_sw_cycle(ispi, opcode, 0,
664                                           OPTYPE_WRITE_WITH_ADDR);
665
666         /* Not needed with HW sequencer erase, make sure it is cleared */
667         ispi->atomic_preopcode = 0;
668
669         val = readl(ispi->base + HSFSTS_CTL);
670         val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
671         val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
672         val |= HSFSTS_CTL_FGO;
673         val |= iop->replacement_op;
674         writel(val, ispi->base + HSFSTS_CTL);
675
676         ret = intel_spi_wait_hw_busy(ispi);
677         if (ret)
678                 return ret;
679
680         status = readl(ispi->base + HSFSTS_CTL);
681         if (status & HSFSTS_CTL_FCERR)
682                 return -EIO;
683         if (status & HSFSTS_CTL_AEL)
684                 return -EACCES;
685
686         return 0;
687 }
688
689 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
690                                  const struct spi_mem_op *op)
691 {
692         if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
693             iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
694             iop->mem_op.cmd.dtr != op->cmd.dtr ||
695             iop->mem_op.cmd.opcode != op->cmd.opcode)
696                 return false;
697
698         if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
699             iop->mem_op.addr.dtr != op->addr.dtr)
700                 return false;
701
702         if (iop->mem_op.data.dir != op->data.dir ||
703             iop->mem_op.data.dtr != op->data.dtr)
704                 return false;
705
706         if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
707                 if (iop->mem_op.data.buswidth != op->data.buswidth)
708                         return false;
709         }
710
711         return true;
712 }
713
714 static const struct intel_spi_mem_op *
715 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
716 {
717         const struct intel_spi_mem_op *iop;
718
719         for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
720                 if (intel_spi_cmp_mem_op(iop, op))
721                         break;
722         }
723
724         return iop->mem_op.cmd.opcode ? iop : NULL;
725 }
726
727 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
728                                       const struct spi_mem_op *op)
729 {
730         struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
731         const struct intel_spi_mem_op *iop;
732
733         iop = intel_spi_match_mem_op(ispi, op);
734         if (!iop) {
735                 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
736                 return false;
737         }
738
739         /*
740          * For software sequencer check that the opcode is actually
741          * present in the opmenu if it is locked.
742          */
743         if (ispi->swseq_reg && ispi->locked) {
744                 int i;
745
746                 /* Check if it is in the locked opcodes list */
747                 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
748                         if (ispi->opcodes[i] == op->cmd.opcode)
749                                 return true;
750                 }
751
752                 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
753                 return false;
754         }
755
756         return true;
757 }
758
759 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
760 {
761         struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
762         const struct intel_spi_mem_op *iop;
763
764         iop = intel_spi_match_mem_op(ispi, op);
765         if (!iop)
766                 return -EOPNOTSUPP;
767
768         return iop->exec_op(ispi, iop, op);
769 }
770
771 static const char *intel_spi_get_name(struct spi_mem *mem)
772 {
773         const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
774
775         /*
776          * Return name of the flash controller device to be compatible
777          * with the MTD version.
778          */
779         return dev_name(ispi->dev);
780 }
781
782 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
783         .supports_op = intel_spi_supports_mem_op,
784         .exec_op = intel_spi_exec_mem_op,
785         .get_name = intel_spi_get_name,
786 };
787
788 #define INTEL_SPI_OP_ADDR(__nbytes)                                     \
789         {                                                               \
790                 .nbytes = __nbytes,                                     \
791         }
792
793 #define INTEL_SPI_OP_NO_DATA                                            \
794         {                                                               \
795                 .dir = SPI_MEM_NO_DATA,                                 \
796         }
797
798 #define INTEL_SPI_OP_DATA_IN(__buswidth)                                \
799         {                                                               \
800                 .dir = SPI_MEM_DATA_IN,                                 \
801                 .buswidth = __buswidth,                                 \
802         }
803
804 #define INTEL_SPI_OP_DATA_OUT(__buswidth)                               \
805         {                                                               \
806                 .dir = SPI_MEM_DATA_OUT,                                \
807                 .buswidth = __buswidth,                                 \
808         }
809
810 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)              \
811         {                                                               \
812                 .mem_op = {                                             \
813                         .cmd = __cmd,                                   \
814                         .addr = __addr,                                 \
815                         .data = __data,                                 \
816                 },                                                      \
817                 .exec_op = __exec_op,                                   \
818         }
819
820 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \
821         {                                                               \
822                 .mem_op = {                                             \
823                         .cmd = __cmd,                                   \
824                         .addr = __addr,                                 \
825                         .data = __data,                                 \
826                 },                                                      \
827                 .exec_op = __exec_op,                                   \
828                 .replacement_op = __repl,                               \
829         }
830
831 /*
832  * The controller handles pretty much everything internally based on the
833  * SFDP data but we want to make sure we only support the operations
834  * actually possible. Only check buswidth and transfer direction, the
835  * core validates data.
836  */
837 #define INTEL_SPI_GENERIC_OPS                                           \
838         /* Status register operations */                                \
839         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),             \
840                          SPI_MEM_OP_NO_ADDR,                            \
841                          INTEL_SPI_OP_DATA_IN(1),                       \
842                          intel_spi_read_reg),                           \
843         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),             \
844                          SPI_MEM_OP_NO_ADDR,                            \
845                          INTEL_SPI_OP_DATA_IN(1),                       \
846                          intel_spi_read_reg),                           \
847         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),             \
848                          SPI_MEM_OP_NO_ADDR,                            \
849                          INTEL_SPI_OP_DATA_OUT(1),                      \
850                          intel_spi_write_reg),                          \
851         /* Normal read */                                               \
852         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),             \
853                          INTEL_SPI_OP_ADDR(3),                          \
854                          INTEL_SPI_OP_DATA_IN(1),                       \
855                          intel_spi_read),                               \
856         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),             \
857                          INTEL_SPI_OP_ADDR(3),                          \
858                          INTEL_SPI_OP_DATA_IN(2),                       \
859                          intel_spi_read),                               \
860         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),             \
861                          INTEL_SPI_OP_ADDR(3),                          \
862                          INTEL_SPI_OP_DATA_IN(4),                       \
863                          intel_spi_read),                               \
864         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),             \
865                          INTEL_SPI_OP_ADDR(4),                          \
866                          INTEL_SPI_OP_DATA_IN(1),                       \
867                          intel_spi_read),                               \
868         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),             \
869                          INTEL_SPI_OP_ADDR(4),                          \
870                          INTEL_SPI_OP_DATA_IN(2),                       \
871                          intel_spi_read),                               \
872         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),             \
873                          INTEL_SPI_OP_ADDR(4),                          \
874                          INTEL_SPI_OP_DATA_IN(4),                       \
875                          intel_spi_read),                               \
876         /* Fast read */                                                 \
877         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),        \
878                          INTEL_SPI_OP_ADDR(3),                          \
879                          INTEL_SPI_OP_DATA_IN(1),                       \
880                          intel_spi_read),                               \
881         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),        \
882                          INTEL_SPI_OP_ADDR(3),                          \
883                          INTEL_SPI_OP_DATA_IN(2),                       \
884                          intel_spi_read),                               \
885         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),        \
886                          INTEL_SPI_OP_ADDR(3),                          \
887                          INTEL_SPI_OP_DATA_IN(4),                       \
888                          intel_spi_read),                               \
889         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),        \
890                          INTEL_SPI_OP_ADDR(4),                          \
891                          INTEL_SPI_OP_DATA_IN(1),                       \
892                          intel_spi_read),                               \
893         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),        \
894                          INTEL_SPI_OP_ADDR(4),                          \
895                          INTEL_SPI_OP_DATA_IN(2),                       \
896                          intel_spi_read),                               \
897         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),        \
898                          INTEL_SPI_OP_ADDR(4),                          \
899                          INTEL_SPI_OP_DATA_IN(4),                       \
900                          intel_spi_read),                               \
901         /* Read with 4-byte address opcode */                           \
902         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),          \
903                          INTEL_SPI_OP_ADDR(4),                          \
904                          INTEL_SPI_OP_DATA_IN(1),                       \
905                          intel_spi_read),                               \
906         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),          \
907                          INTEL_SPI_OP_ADDR(4),                          \
908                          INTEL_SPI_OP_DATA_IN(2),                       \
909                          intel_spi_read),                               \
910         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),          \
911                          INTEL_SPI_OP_ADDR(4),                          \
912                          INTEL_SPI_OP_DATA_IN(4),                       \
913                          intel_spi_read),                               \
914         /* Fast read with 4-byte address opcode */                      \
915         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),     \
916                          INTEL_SPI_OP_ADDR(4),                          \
917                          INTEL_SPI_OP_DATA_IN(1),                       \
918                          intel_spi_read),                               \
919         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),     \
920                          INTEL_SPI_OP_ADDR(4),                          \
921                          INTEL_SPI_OP_DATA_IN(2),                       \
922                          intel_spi_read),                               \
923         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),     \
924                          INTEL_SPI_OP_ADDR(4),                          \
925                          INTEL_SPI_OP_DATA_IN(4),                       \
926                          intel_spi_read),                               \
927         /* Write operations */                                          \
928         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),               \
929                          INTEL_SPI_OP_ADDR(3),                          \
930                          INTEL_SPI_OP_DATA_OUT(1),                      \
931                          intel_spi_write),                              \
932         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),               \
933                          INTEL_SPI_OP_ADDR(4),                          \
934                          INTEL_SPI_OP_DATA_OUT(1),                      \
935                          intel_spi_write),                              \
936         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),            \
937                          INTEL_SPI_OP_ADDR(4),                          \
938                          INTEL_SPI_OP_DATA_OUT(1),                      \
939                          intel_spi_write),                              \
940         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),             \
941                          SPI_MEM_OP_NO_ADDR,                            \
942                          SPI_MEM_OP_NO_DATA,                            \
943                          intel_spi_write_reg),                          \
944         INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),             \
945                          SPI_MEM_OP_NO_ADDR,                            \
946                          SPI_MEM_OP_NO_DATA,                            \
947                          intel_spi_write_reg),                          \
948         /* Erase operations */                                          \
949         INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),       \
950                               INTEL_SPI_OP_ADDR(3),                     \
951                               SPI_MEM_OP_NO_DATA,                       \
952                               intel_spi_erase,                          \
953                               HSFSTS_CTL_FCYCLE_ERASE),                 \
954         INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),       \
955                               INTEL_SPI_OP_ADDR(4),                     \
956                               SPI_MEM_OP_NO_DATA,                       \
957                               intel_spi_erase,                          \
958                               HSFSTS_CTL_FCYCLE_ERASE),                 \
959         INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),    \
960                               INTEL_SPI_OP_ADDR(4),                     \
961                               SPI_MEM_OP_NO_DATA,                       \
962                               intel_spi_erase,                          \
963                               HSFSTS_CTL_FCYCLE_ERASE)                  \
964
965 static const struct intel_spi_mem_op generic_mem_ops[] = {
966         INTEL_SPI_GENERIC_OPS,
967         { },
968 };
969
970 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
971         INTEL_SPI_GENERIC_OPS,
972         /* 64k sector erase operations */
973         INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
974                               INTEL_SPI_OP_ADDR(3),
975                               SPI_MEM_OP_NO_DATA,
976                               intel_spi_erase,
977                               HSFSTS_CTL_FCYCLE_ERASE_64K),
978         INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
979                               INTEL_SPI_OP_ADDR(4),
980                               SPI_MEM_OP_NO_DATA,
981                               intel_spi_erase,
982                               HSFSTS_CTL_FCYCLE_ERASE_64K),
983         INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
984                               INTEL_SPI_OP_ADDR(4),
985                               SPI_MEM_OP_NO_DATA,
986                               intel_spi_erase,
987                               HSFSTS_CTL_FCYCLE_ERASE_64K),
988         { },
989 };
990
991 static int intel_spi_init(struct intel_spi *ispi)
992 {
993         u32 opmenu0, opmenu1, lvscc, uvscc, val;
994         bool erase_64k = false;
995         int i;
996
997         switch (ispi->info->type) {
998         case INTEL_SPI_BYT:
999                 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1000                 ispi->pregs = ispi->base + BYT_PR;
1001                 ispi->nregions = BYT_FREG_NUM;
1002                 ispi->pr_num = BYT_PR_NUM;
1003                 ispi->swseq_reg = true;
1004                 break;
1005
1006         case INTEL_SPI_LPT:
1007                 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1008                 ispi->pregs = ispi->base + LPT_PR;
1009                 ispi->nregions = LPT_FREG_NUM;
1010                 ispi->pr_num = LPT_PR_NUM;
1011                 ispi->swseq_reg = true;
1012                 break;
1013
1014         case INTEL_SPI_BXT:
1015                 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1016                 ispi->pregs = ispi->base + BXT_PR;
1017                 ispi->nregions = BXT_FREG_NUM;
1018                 ispi->pr_num = BXT_PR_NUM;
1019                 erase_64k = true;
1020                 break;
1021
1022         case INTEL_SPI_CNL:
1023                 ispi->sregs = NULL;
1024                 ispi->pregs = ispi->base + CNL_PR;
1025                 ispi->nregions = CNL_FREG_NUM;
1026                 ispi->pr_num = CNL_PR_NUM;
1027                 break;
1028
1029         default:
1030                 return -EINVAL;
1031         }
1032
1033         /* Try to disable write protection if user asked to do so */
1034         if (writeable && !intel_spi_set_writeable(ispi)) {
1035                 dev_warn(ispi->dev, "can't disable chip write protection\n");
1036                 writeable = false;
1037         }
1038
1039         /* Disable #SMI generation from HW sequencer */
1040         val = readl(ispi->base + HSFSTS_CTL);
1041         val &= ~HSFSTS_CTL_FSMIE;
1042         writel(val, ispi->base + HSFSTS_CTL);
1043
1044         /*
1045          * Determine whether erase operation should use HW or SW sequencer.
1046          *
1047          * The HW sequencer has a predefined list of opcodes, with only the
1048          * erase opcode being programmable in LVSCC and UVSCC registers.
1049          * If these registers don't contain a valid erase opcode, erase
1050          * cannot be done using HW sequencer.
1051          */
1052         lvscc = readl(ispi->base + LVSCC);
1053         uvscc = readl(ispi->base + UVSCC);
1054         if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1055                 ispi->swseq_erase = true;
1056         /* SPI controller on Intel BXT supports 64K erase opcode */
1057         if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1058                 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1059                     !(uvscc & ERASE_64K_OPCODE_MASK))
1060                         erase_64k = false;
1061
1062         if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1063                 dev_err(ispi->dev, "software sequencer not supported, but required\n");
1064                 return -EINVAL;
1065         }
1066
1067         /*
1068          * Some controllers can only do basic operations using hardware
1069          * sequencer. All other operations are supposed to be carried out
1070          * using software sequencer.
1071          */
1072         if (ispi->swseq_reg) {
1073                 /* Disable #SMI generation from SW sequencer */
1074                 val = readl(ispi->sregs + SSFSTS_CTL);
1075                 val &= ~SSFSTS_CTL_FSMIE;
1076                 writel(val, ispi->sregs + SSFSTS_CTL);
1077         }
1078
1079         /* Check controller's lock status */
1080         val = readl(ispi->base + HSFSTS_CTL);
1081         ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1082
1083         if (ispi->locked && ispi->sregs) {
1084                 /*
1085                  * BIOS programs allowed opcodes and then locks down the
1086                  * register. So read back what opcodes it decided to support.
1087                  * That's the set we are going to support as well.
1088                  */
1089                 opmenu0 = readl(ispi->sregs + OPMENU0);
1090                 opmenu1 = readl(ispi->sregs + OPMENU1);
1091
1092                 if (opmenu0 && opmenu1) {
1093                         for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1094                                 ispi->opcodes[i] = opmenu0 >> i * 8;
1095                                 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1096                         }
1097                 }
1098         }
1099
1100         if (erase_64k) {
1101                 dev_dbg(ispi->dev, "Using erase_64k memory operations");
1102                 ispi->mem_ops = erase_64k_mem_ops;
1103         } else {
1104                 dev_dbg(ispi->dev, "Using generic memory operations");
1105                 ispi->mem_ops = generic_mem_ops;
1106         }
1107
1108         intel_spi_dump_regs(ispi);
1109         return 0;
1110 }
1111
1112 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1113                                    unsigned int base, unsigned int limit)
1114 {
1115         int i;
1116
1117         for (i = 0; i < ispi->pr_num; i++) {
1118                 u32 pr_base, pr_limit, pr_value;
1119
1120                 pr_value = readl(ispi->pregs + PR(i));
1121                 if (!(pr_value & (PR_WPE | PR_RPE)))
1122                         continue;
1123
1124                 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1125                 pr_base = pr_value & PR_BASE_MASK;
1126
1127                 if (pr_base >= base && pr_limit <= limit)
1128                         return true;
1129         }
1130
1131         return false;
1132 }
1133
1134 /*
1135  * There will be a single partition holding all enabled flash regions. We
1136  * call this "BIOS".
1137  */
1138 static void intel_spi_fill_partition(struct intel_spi *ispi,
1139                                      struct mtd_partition *part)
1140 {
1141         u64 end;
1142         int i;
1143
1144         memset(part, 0, sizeof(*part));
1145
1146         /* Start from the mandatory descriptor region */
1147         part->size = 4096;
1148         part->name = "BIOS";
1149
1150         /*
1151          * Now try to find where this partition ends based on the flash
1152          * region registers.
1153          */
1154         for (i = 1; i < ispi->nregions; i++) {
1155                 u32 region, base, limit;
1156
1157                 region = readl(ispi->base + FREG(i));
1158                 base = region & FREG_BASE_MASK;
1159                 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1160
1161                 if (base >= limit || limit == 0)
1162                         continue;
1163
1164                 /*
1165                  * If any of the regions have protection bits set, make the
1166                  * whole partition read-only to be on the safe side.
1167                  *
1168                  * Also if the user did not ask the chip to be writeable
1169                  * mask the bit too.
1170                  */
1171                 if (!writeable || intel_spi_is_protected(ispi, base, limit))
1172                         part->mask_flags |= MTD_WRITEABLE;
1173
1174                 end = (limit << 12) + 4096;
1175                 if (end > part->size)
1176                         part->size = end;
1177         }
1178 }
1179
1180 static int intel_spi_populate_chip(struct intel_spi *ispi)
1181 {
1182         struct flash_platform_data *pdata;
1183         struct spi_board_info chip;
1184
1185         pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1186         if (!pdata)
1187                 return -ENOMEM;
1188
1189         pdata->nr_parts = 1;
1190         pdata->parts = devm_kcalloc(ispi->dev, sizeof(*pdata->parts),
1191                                     pdata->nr_parts, GFP_KERNEL);
1192         if (!pdata->parts)
1193                 return -ENOMEM;
1194
1195         intel_spi_fill_partition(ispi, pdata->parts);
1196
1197         memset(&chip, 0, sizeof(chip));
1198         snprintf(chip.modalias, 8, "spi-nor");
1199         chip.platform_data = pdata;
1200
1201         return spi_new_device(ispi->master, &chip) ? 0 : -ENODEV;
1202 }
1203
1204 /**
1205  * intel_spi_probe() - Probe the Intel SPI flash controller
1206  * @dev: Pointer to the parent device
1207  * @mem: MMIO resource
1208  * @info: Platform spefific information
1209  *
1210  * Probes Intel SPI flash controller and creates the flash chip device.
1211  * Returns %0 on success and negative errno in case of failure.
1212  */
1213 int intel_spi_probe(struct device *dev, struct resource *mem,
1214                     const struct intel_spi_boardinfo *info)
1215 {
1216         struct spi_controller *master;
1217         struct intel_spi *ispi;
1218         int ret;
1219
1220         master = devm_spi_alloc_master(dev, sizeof(*ispi));
1221         if (!master)
1222                 return -ENOMEM;
1223
1224         master->mem_ops = &intel_spi_mem_ops;
1225
1226         ispi = spi_master_get_devdata(master);
1227
1228         ispi->base = devm_ioremap_resource(dev, mem);
1229         if (IS_ERR(ispi->base))
1230                 return PTR_ERR(ispi->base);
1231
1232         ispi->dev = dev;
1233         ispi->master = master;
1234         ispi->info = info;
1235
1236         ret = intel_spi_init(ispi);
1237         if (ret)
1238                 return ret;
1239
1240         ret = devm_spi_register_master(dev, master);
1241         if (ret)
1242                 return ret;
1243
1244         return intel_spi_populate_chip(ispi);
1245 }
1246 EXPORT_SYMBOL_GPL(intel_spi_probe);
1247
1248 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1249 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1250 MODULE_LICENSE("GPL v2");