Merge tag 'pull-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR                                  0x0000
29 #define SPI_MR                                  0x0004
30 #define SPI_RDR                                 0x0008
31 #define SPI_TDR                                 0x000c
32 #define SPI_SR                                  0x0010
33 #define SPI_IER                                 0x0014
34 #define SPI_IDR                                 0x0018
35 #define SPI_IMR                                 0x001c
36 #define SPI_CSR0                                0x0030
37 #define SPI_CSR1                                0x0034
38 #define SPI_CSR2                                0x0038
39 #define SPI_CSR3                                0x003c
40 #define SPI_FMR                                 0x0040
41 #define SPI_FLR                                 0x0044
42 #define SPI_VERSION                             0x00fc
43 #define SPI_RPR                                 0x0100
44 #define SPI_RCR                                 0x0104
45 #define SPI_TPR                                 0x0108
46 #define SPI_TCR                                 0x010c
47 #define SPI_RNPR                                0x0110
48 #define SPI_RNCR                                0x0114
49 #define SPI_TNPR                                0x0118
50 #define SPI_TNCR                                0x011c
51 #define SPI_PTCR                                0x0120
52 #define SPI_PTSR                                0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET                        0
56 #define SPI_SPIEN_SIZE                          1
57 #define SPI_SPIDIS_OFFSET                       1
58 #define SPI_SPIDIS_SIZE                         1
59 #define SPI_SWRST_OFFSET                        7
60 #define SPI_SWRST_SIZE                          1
61 #define SPI_LASTXFER_OFFSET                     24
62 #define SPI_LASTXFER_SIZE                       1
63 #define SPI_TXFCLR_OFFSET                       16
64 #define SPI_TXFCLR_SIZE                         1
65 #define SPI_RXFCLR_OFFSET                       17
66 #define SPI_RXFCLR_SIZE                         1
67 #define SPI_FIFOEN_OFFSET                       30
68 #define SPI_FIFOEN_SIZE                         1
69 #define SPI_FIFODIS_OFFSET                      31
70 #define SPI_FIFODIS_SIZE                        1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET                         0
74 #define SPI_MSTR_SIZE                           1
75 #define SPI_PS_OFFSET                           1
76 #define SPI_PS_SIZE                             1
77 #define SPI_PCSDEC_OFFSET                       2
78 #define SPI_PCSDEC_SIZE                         1
79 #define SPI_FDIV_OFFSET                         3
80 #define SPI_FDIV_SIZE                           1
81 #define SPI_MODFDIS_OFFSET                      4
82 #define SPI_MODFDIS_SIZE                        1
83 #define SPI_WDRBT_OFFSET                        5
84 #define SPI_WDRBT_SIZE                          1
85 #define SPI_LLB_OFFSET                          7
86 #define SPI_LLB_SIZE                            1
87 #define SPI_PCS_OFFSET                          16
88 #define SPI_PCS_SIZE                            4
89 #define SPI_DLYBCS_OFFSET                       24
90 #define SPI_DLYBCS_SIZE                         8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET                           0
94 #define SPI_RD_SIZE                             16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET                           0
98 #define SPI_TD_SIZE                             16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET                         0
102 #define SPI_RDRF_SIZE                           1
103 #define SPI_TDRE_OFFSET                         1
104 #define SPI_TDRE_SIZE                           1
105 #define SPI_MODF_OFFSET                         2
106 #define SPI_MODF_SIZE                           1
107 #define SPI_OVRES_OFFSET                        3
108 #define SPI_OVRES_SIZE                          1
109 #define SPI_ENDRX_OFFSET                        4
110 #define SPI_ENDRX_SIZE                          1
111 #define SPI_ENDTX_OFFSET                        5
112 #define SPI_ENDTX_SIZE                          1
113 #define SPI_RXBUFF_OFFSET                       6
114 #define SPI_RXBUFF_SIZE                         1
115 #define SPI_TXBUFE_OFFSET                       7
116 #define SPI_TXBUFE_SIZE                         1
117 #define SPI_NSSR_OFFSET                         8
118 #define SPI_NSSR_SIZE                           1
119 #define SPI_TXEMPTY_OFFSET                      9
120 #define SPI_TXEMPTY_SIZE                        1
121 #define SPI_SPIENS_OFFSET                       16
122 #define SPI_SPIENS_SIZE                         1
123 #define SPI_TXFEF_OFFSET                        24
124 #define SPI_TXFEF_SIZE                          1
125 #define SPI_TXFFF_OFFSET                        25
126 #define SPI_TXFFF_SIZE                          1
127 #define SPI_TXFTHF_OFFSET                       26
128 #define SPI_TXFTHF_SIZE                         1
129 #define SPI_RXFEF_OFFSET                        27
130 #define SPI_RXFEF_SIZE                          1
131 #define SPI_RXFFF_OFFSET                        28
132 #define SPI_RXFFF_SIZE                          1
133 #define SPI_RXFTHF_OFFSET                       29
134 #define SPI_RXFTHF_SIZE                         1
135 #define SPI_TXFPTEF_OFFSET                      30
136 #define SPI_TXFPTEF_SIZE                        1
137 #define SPI_RXFPTEF_OFFSET                      31
138 #define SPI_RXFPTEF_SIZE                        1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET                         0
142 #define SPI_CPOL_SIZE                           1
143 #define SPI_NCPHA_OFFSET                        1
144 #define SPI_NCPHA_SIZE                          1
145 #define SPI_CSAAT_OFFSET                        3
146 #define SPI_CSAAT_SIZE                          1
147 #define SPI_BITS_OFFSET                         4
148 #define SPI_BITS_SIZE                           4
149 #define SPI_SCBR_OFFSET                         8
150 #define SPI_SCBR_SIZE                           8
151 #define SPI_DLYBS_OFFSET                        16
152 #define SPI_DLYBS_SIZE                          8
153 #define SPI_DLYBCT_OFFSET                       24
154 #define SPI_DLYBCT_SIZE                         8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET                        0
158 #define SPI_RXCTR_SIZE                          16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET                        0
162 #define SPI_TXCTR_SIZE                          16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET                        0
166 #define SPI_RXNCR_SIZE                          16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET                        0
170 #define SPI_TXNCR_SIZE                          16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET                        0
174 #define SPI_RXTEN_SIZE                          1
175 #define SPI_RXTDIS_OFFSET                       1
176 #define SPI_RXTDIS_SIZE                         1
177 #define SPI_TXTEN_OFFSET                        8
178 #define SPI_TXTEN_SIZE                          1
179 #define SPI_TXTDIS_OFFSET                       9
180 #define SPI_TXTDIS_SIZE                         1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET                       0
184 #define SPI_TXRDYM_SIZE                         2
185 #define SPI_RXRDYM_OFFSET                       4
186 #define SPI_RXRDYM_SIZE                         2
187 #define SPI_TXFTHRES_OFFSET                     16
188 #define SPI_TXFTHRES_SIZE                       6
189 #define SPI_RXFTHRES_OFFSET                     24
190 #define SPI_RXFTHRES_SIZE                       6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET                         0
194 #define SPI_TXFL_SIZE                           6
195 #define SPI_RXFL_OFFSET                         16
196 #define SPI_RXFL_SIZE                           6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT                          0
200 #define SPI_BITS_9_BPT                          1
201 #define SPI_BITS_10_BPT                         2
202 #define SPI_BITS_11_BPT                         3
203 #define SPI_BITS_12_BPT                         4
204 #define SPI_BITS_13_BPT                         5
205 #define SPI_BITS_14_BPT                         6
206 #define SPI_BITS_15_BPT                         7
207 #define SPI_BITS_16_BPT                         8
208 #define SPI_ONE_DATA                            0
209 #define SPI_TWO_DATA                            1
210 #define SPI_FOUR_DATA                           2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214         (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221           | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225         readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227         writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229         writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES   16
235
236 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT     2000
239
240 struct atmel_spi_caps {
241         bool    is_spi2;
242         bool    has_wdrbt;
243         bool    has_dma_support;
244         bool    has_pdc_support;
245 };
246
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253         spinlock_t              lock;
254         unsigned long           flags;
255
256         phys_addr_t             phybase;
257         void __iomem            *regs;
258         int                     irq;
259         struct clk              *clk;
260         struct platform_device  *pdev;
261         unsigned long           spi_clk;
262
263         struct spi_transfer     *current_transfer;
264         int                     current_remaining_bytes;
265         int                     done_status;
266         dma_addr_t              dma_addr_rx_bbuf;
267         dma_addr_t              dma_addr_tx_bbuf;
268         void                    *addr_rx_bbuf;
269         void                    *addr_tx_bbuf;
270
271         struct completion       xfer_completion;
272
273         struct atmel_spi_caps   caps;
274
275         bool                    use_dma;
276         bool                    use_pdc;
277
278         bool                    keep_cs;
279
280         u32                     fifo_size;
281         u8                      native_cs_free;
282         u8                      native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287         u32                     csr;
288 };
289
290 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS     0xffffffff
292
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303         return as->caps.is_spi2;
304 }
305
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326         struct atmel_spi_device *asd = spi->controller_state;
327         int chip_select;
328         u32 mr;
329
330         if (spi->cs_gpiod)
331                 chip_select = as->native_cs_for_gpio;
332         else
333                 chip_select = spi->chip_select;
334
335         if (atmel_spi_is_v2(as)) {
336                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337                 /* For the low SPI version, there is a issue that PDC transfer
338                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339                  */
340                 spi_writel(as, CSR0, asd->csr);
341                 if (as->caps.has_wdrbt) {
342                         spi_writel(as, MR,
343                                         SPI_BF(PCS, ~(0x01 << chip_select))
344                                         | SPI_BIT(WDRBT)
345                                         | SPI_BIT(MODFDIS)
346                                         | SPI_BIT(MSTR));
347                 } else {
348                         spi_writel(as, MR,
349                                         SPI_BF(PCS, ~(0x01 << chip_select))
350                                         | SPI_BIT(MODFDIS)
351                                         | SPI_BIT(MSTR));
352                 }
353
354                 mr = spi_readl(as, MR);
355         } else {
356                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357                 int i;
358                 u32 csr;
359
360                 /* Make sure clock polarity is correct */
361                 for (i = 0; i < spi->master->num_chipselect; i++) {
362                         csr = spi_readl(as, CSR0 + 4 * i);
363                         if ((csr ^ cpol) & SPI_BIT(CPOL))
364                                 spi_writel(as, CSR0 + 4 * i,
365                                                 csr ^ SPI_BIT(CPOL));
366                 }
367
368                 mr = spi_readl(as, MR);
369                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370                 spi_writel(as, MR, mr);
371         }
372
373         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374 }
375
376 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377 {
378         int chip_select;
379         u32 mr;
380
381         if (spi->cs_gpiod)
382                 chip_select = as->native_cs_for_gpio;
383         else
384                 chip_select = spi->chip_select;
385
386         /* only deactivate *this* device; sometimes transfers to
387          * another device may be active when this routine is called.
388          */
389         mr = spi_readl(as, MR);
390         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391                 mr = SPI_BFINS(PCS, 0xf, mr);
392                 spi_writel(as, MR, mr);
393         }
394
395         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397         if (!spi->cs_gpiod)
398                 spi_writel(as, CR, SPI_BIT(LASTXFER));
399 }
400
401 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402 {
403         spin_lock_irqsave(&as->lock, as->flags);
404 }
405
406 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407 {
408         spin_unlock_irqrestore(&as->lock, as->flags);
409 }
410
411 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412 {
413         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414 }
415
416 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417                                 struct spi_transfer *xfer)
418 {
419         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420 }
421
422 static bool atmel_spi_can_dma(struct spi_master *master,
423                               struct spi_device *spi,
424                               struct spi_transfer *xfer)
425 {
426         struct atmel_spi *as = spi_master_get_devdata(master);
427
428         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429                 return atmel_spi_use_dma(as, xfer) &&
430                         !atmel_spi_is_vmalloc_xfer(xfer);
431         else
432                 return atmel_spi_use_dma(as, xfer);
433
434 }
435
436 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
437 {
438         struct spi_master *master = platform_get_drvdata(as->pdev);
439         struct dma_slave_config slave_config;
440         int err = 0;
441
442         if (bits_per_word > 8) {
443                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
444                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445         } else {
446                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
447                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448         }
449
450         slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
451         slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
452         slave_config.src_maxburst = 1;
453         slave_config.dst_maxburst = 1;
454         slave_config.device_fc = false;
455
456         /*
457          * This driver uses fixed peripheral select mode (PS bit set to '0' in
458          * the Mode Register).
459          * So according to the datasheet, when FIFOs are available (and
460          * enabled), the Transmit FIFO operates in Multiple Data Mode.
461          * In this mode, up to 2 data, not 4, can be written into the Transmit
462          * Data Register in a single access.
463          * However, the first data has to be written into the lowest 16 bits and
464          * the second data into the highest 16 bits of the Transmit
465          * Data Register. For 8bit data (the most frequent case), it would
466          * require to rework tx_buf so each data would actually fit 16 bits.
467          * So we'd rather write only one data at the time. Hence the transmit
468          * path works the same whether FIFOs are available (and enabled) or not.
469          */
470         if (dmaengine_slave_config(master->dma_tx, &slave_config)) {
471                 dev_err(&as->pdev->dev,
472                         "failed to configure tx dma channel\n");
473                 err = -EINVAL;
474         }
475
476         /*
477          * This driver configures the spi controller for master mode (MSTR bit
478          * set to '1' in the Mode Register).
479          * So according to the datasheet, when FIFOs are available (and
480          * enabled), the Receive FIFO operates in Single Data Mode.
481          * So the receive path works the same whether FIFOs are available (and
482          * enabled) or not.
483          */
484         if (dmaengine_slave_config(master->dma_rx, &slave_config)) {
485                 dev_err(&as->pdev->dev,
486                         "failed to configure rx dma channel\n");
487                 err = -EINVAL;
488         }
489
490         return err;
491 }
492
493 static int atmel_spi_configure_dma(struct spi_master *master,
494                                    struct atmel_spi *as)
495 {
496         struct device *dev = &as->pdev->dev;
497         int err;
498
499         master->dma_tx = dma_request_chan(dev, "tx");
500         if (IS_ERR(master->dma_tx)) {
501                 err = PTR_ERR(master->dma_tx);
502                 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
503                 goto error_clear;
504         }
505
506         master->dma_rx = dma_request_chan(dev, "rx");
507         if (IS_ERR(master->dma_rx)) {
508                 err = PTR_ERR(master->dma_rx);
509                 /*
510                  * No reason to check EPROBE_DEFER here since we have already
511                  * requested tx channel.
512                  */
513                 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
514                 goto error;
515         }
516
517         err = atmel_spi_dma_slave_config(as, 8);
518         if (err)
519                 goto error;
520
521         dev_info(&as->pdev->dev,
522                         "Using %s (tx) and %s (rx) for DMA transfers\n",
523                         dma_chan_name(master->dma_tx),
524                         dma_chan_name(master->dma_rx));
525
526         return 0;
527 error:
528         if (!IS_ERR(master->dma_rx))
529                 dma_release_channel(master->dma_rx);
530         if (!IS_ERR(master->dma_tx))
531                 dma_release_channel(master->dma_tx);
532 error_clear:
533         master->dma_tx = master->dma_rx = NULL;
534         return err;
535 }
536
537 static void atmel_spi_stop_dma(struct spi_master *master)
538 {
539         if (master->dma_rx)
540                 dmaengine_terminate_all(master->dma_rx);
541         if (master->dma_tx)
542                 dmaengine_terminate_all(master->dma_tx);
543 }
544
545 static void atmel_spi_release_dma(struct spi_master *master)
546 {
547         if (master->dma_rx) {
548                 dma_release_channel(master->dma_rx);
549                 master->dma_rx = NULL;
550         }
551         if (master->dma_tx) {
552                 dma_release_channel(master->dma_tx);
553                 master->dma_tx = NULL;
554         }
555 }
556
557 /* This function is called by the DMA driver from tasklet context */
558 static void dma_callback(void *data)
559 {
560         struct spi_master       *master = data;
561         struct atmel_spi        *as = spi_master_get_devdata(master);
562
563         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
564             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
565                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
566                        as->current_transfer->len);
567         }
568         complete(&as->xfer_completion);
569 }
570
571 /*
572  * Next transfer using PIO without FIFO.
573  */
574 static void atmel_spi_next_xfer_single(struct spi_master *master,
575                                        struct spi_transfer *xfer)
576 {
577         struct atmel_spi        *as = spi_master_get_devdata(master);
578         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
579
580         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
581
582         /* Make sure data is not remaining in RDR */
583         spi_readl(as, RDR);
584         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
585                 spi_readl(as, RDR);
586                 cpu_relax();
587         }
588
589         if (xfer->bits_per_word > 8)
590                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
591         else
592                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
593
594         dev_dbg(master->dev.parent,
595                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
596                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
597                 xfer->bits_per_word);
598
599         /* Enable relevant interrupts */
600         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
601 }
602
603 /*
604  * Next transfer using PIO with FIFO.
605  */
606 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
607                                      struct spi_transfer *xfer)
608 {
609         struct atmel_spi *as = spi_master_get_devdata(master);
610         u32 current_remaining_data, num_data;
611         u32 offset = xfer->len - as->current_remaining_bytes;
612         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
613         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
614         u16 td0, td1;
615         u32 fifomr;
616
617         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
618
619         /* Compute the number of data to transfer in the current iteration */
620         current_remaining_data = ((xfer->bits_per_word > 8) ?
621                                   ((u32)as->current_remaining_bytes >> 1) :
622                                   (u32)as->current_remaining_bytes);
623         num_data = min(current_remaining_data, as->fifo_size);
624
625         /* Flush RX and TX FIFOs */
626         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
627         while (spi_readl(as, FLR))
628                 cpu_relax();
629
630         /* Set RX FIFO Threshold to the number of data to transfer */
631         fifomr = spi_readl(as, FMR);
632         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
633
634         /* Clear FIFO flags in the Status Register, especially RXFTHF */
635         (void)spi_readl(as, SR);
636
637         /* Fill TX FIFO */
638         while (num_data >= 2) {
639                 if (xfer->bits_per_word > 8) {
640                         td0 = *words++;
641                         td1 = *words++;
642                 } else {
643                         td0 = *bytes++;
644                         td1 = *bytes++;
645                 }
646
647                 spi_writel(as, TDR, (td1 << 16) | td0);
648                 num_data -= 2;
649         }
650
651         if (num_data) {
652                 if (xfer->bits_per_word > 8)
653                         td0 = *words++;
654                 else
655                         td0 = *bytes++;
656
657                 spi_writew(as, TDR, td0);
658                 num_data--;
659         }
660
661         dev_dbg(master->dev.parent,
662                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
663                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
664                 xfer->bits_per_word);
665
666         /*
667          * Enable RX FIFO Threshold Flag interrupt to be notified about
668          * transfer completion.
669          */
670         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
671 }
672
673 /*
674  * Next transfer using PIO.
675  */
676 static void atmel_spi_next_xfer_pio(struct spi_master *master,
677                                     struct spi_transfer *xfer)
678 {
679         struct atmel_spi *as = spi_master_get_devdata(master);
680
681         if (as->fifo_size)
682                 atmel_spi_next_xfer_fifo(master, xfer);
683         else
684                 atmel_spi_next_xfer_single(master, xfer);
685 }
686
687 /*
688  * Submit next transfer for DMA.
689  */
690 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
691                                 struct spi_transfer *xfer,
692                                 u32 *plen)
693 {
694         struct atmel_spi        *as = spi_master_get_devdata(master);
695         struct dma_chan         *rxchan = master->dma_rx;
696         struct dma_chan         *txchan = master->dma_tx;
697         struct dma_async_tx_descriptor *rxdesc;
698         struct dma_async_tx_descriptor *txdesc;
699         dma_cookie_t            cookie;
700
701         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
702
703         /* Check that the channels are available */
704         if (!rxchan || !txchan)
705                 return -ENODEV;
706
707
708         *plen = xfer->len;
709
710         if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
711                 goto err_exit;
712
713         /* Send both scatterlists */
714         if (atmel_spi_is_vmalloc_xfer(xfer) &&
715             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
716                 rxdesc = dmaengine_prep_slave_single(rxchan,
717                                                      as->dma_addr_rx_bbuf,
718                                                      xfer->len,
719                                                      DMA_DEV_TO_MEM,
720                                                      DMA_PREP_INTERRUPT |
721                                                      DMA_CTRL_ACK);
722         } else {
723                 rxdesc = dmaengine_prep_slave_sg(rxchan,
724                                                  xfer->rx_sg.sgl,
725                                                  xfer->rx_sg.nents,
726                                                  DMA_DEV_TO_MEM,
727                                                  DMA_PREP_INTERRUPT |
728                                                  DMA_CTRL_ACK);
729         }
730         if (!rxdesc)
731                 goto err_dma;
732
733         if (atmel_spi_is_vmalloc_xfer(xfer) &&
734             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
735                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
736                 txdesc = dmaengine_prep_slave_single(txchan,
737                                                      as->dma_addr_tx_bbuf,
738                                                      xfer->len, DMA_MEM_TO_DEV,
739                                                      DMA_PREP_INTERRUPT |
740                                                      DMA_CTRL_ACK);
741         } else {
742                 txdesc = dmaengine_prep_slave_sg(txchan,
743                                                  xfer->tx_sg.sgl,
744                                                  xfer->tx_sg.nents,
745                                                  DMA_MEM_TO_DEV,
746                                                  DMA_PREP_INTERRUPT |
747                                                  DMA_CTRL_ACK);
748         }
749         if (!txdesc)
750                 goto err_dma;
751
752         dev_dbg(master->dev.parent,
753                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
754                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
755                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
756
757         /* Enable relevant interrupts */
758         spi_writel(as, IER, SPI_BIT(OVRES));
759
760         /* Put the callback on the RX transfer only, that should finish last */
761         rxdesc->callback = dma_callback;
762         rxdesc->callback_param = master;
763
764         /* Submit and fire RX and TX with TX last so we're ready to read! */
765         cookie = rxdesc->tx_submit(rxdesc);
766         if (dma_submit_error(cookie))
767                 goto err_dma;
768         cookie = txdesc->tx_submit(txdesc);
769         if (dma_submit_error(cookie))
770                 goto err_dma;
771         rxchan->device->device_issue_pending(rxchan);
772         txchan->device->device_issue_pending(txchan);
773
774         return 0;
775
776 err_dma:
777         spi_writel(as, IDR, SPI_BIT(OVRES));
778         atmel_spi_stop_dma(master);
779 err_exit:
780         return -ENOMEM;
781 }
782
783 static void atmel_spi_next_xfer_data(struct spi_master *master,
784                                 struct spi_transfer *xfer,
785                                 dma_addr_t *tx_dma,
786                                 dma_addr_t *rx_dma,
787                                 u32 *plen)
788 {
789         *rx_dma = xfer->rx_dma + xfer->len - *plen;
790         *tx_dma = xfer->tx_dma + xfer->len - *plen;
791         if (*plen > master->max_dma_len)
792                 *plen = master->max_dma_len;
793 }
794
795 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
796                                     struct spi_device *spi,
797                                     struct spi_transfer *xfer)
798 {
799         u32                     scbr, csr;
800         unsigned long           bus_hz;
801         int chip_select;
802
803         if (spi->cs_gpiod)
804                 chip_select = as->native_cs_for_gpio;
805         else
806                 chip_select = spi->chip_select;
807
808         /* v1 chips start out at half the peripheral bus speed. */
809         bus_hz = as->spi_clk;
810         if (!atmel_spi_is_v2(as))
811                 bus_hz /= 2;
812
813         /*
814          * Calculate the lowest divider that satisfies the
815          * constraint, assuming div32/fdiv/mbz == 0.
816          */
817         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
818
819         /*
820          * If the resulting divider doesn't fit into the
821          * register bitfield, we can't satisfy the constraint.
822          */
823         if (scbr >= (1 << SPI_SCBR_SIZE)) {
824                 dev_err(&spi->dev,
825                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
826                         xfer->speed_hz, scbr, bus_hz/255);
827                 return -EINVAL;
828         }
829         if (scbr == 0) {
830                 dev_err(&spi->dev,
831                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
832                         xfer->speed_hz, scbr, bus_hz);
833                 return -EINVAL;
834         }
835         csr = spi_readl(as, CSR0 + 4 * chip_select);
836         csr = SPI_BFINS(SCBR, scbr, csr);
837         spi_writel(as, CSR0 + 4 * chip_select, csr);
838         xfer->effective_speed_hz = bus_hz / scbr;
839
840         return 0;
841 }
842
843 /*
844  * Submit next transfer for PDC.
845  * lock is held, spi irq is blocked
846  */
847 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
848                                         struct spi_transfer *xfer)
849 {
850         struct atmel_spi        *as = spi_master_get_devdata(master);
851         u32                     len;
852         dma_addr_t              tx_dma, rx_dma;
853
854         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
855
856         len = as->current_remaining_bytes;
857         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
858         as->current_remaining_bytes -= len;
859
860         spi_writel(as, RPR, rx_dma);
861         spi_writel(as, TPR, tx_dma);
862
863         if (xfer->bits_per_word > 8)
864                 len >>= 1;
865         spi_writel(as, RCR, len);
866         spi_writel(as, TCR, len);
867
868         dev_dbg(&master->dev,
869                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
870                 xfer, xfer->len, xfer->tx_buf,
871                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
872                 (unsigned long long)xfer->rx_dma);
873
874         if (as->current_remaining_bytes) {
875                 len = as->current_remaining_bytes;
876                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
877                 as->current_remaining_bytes -= len;
878
879                 spi_writel(as, RNPR, rx_dma);
880                 spi_writel(as, TNPR, tx_dma);
881
882                 if (xfer->bits_per_word > 8)
883                         len >>= 1;
884                 spi_writel(as, RNCR, len);
885                 spi_writel(as, TNCR, len);
886
887                 dev_dbg(&master->dev,
888                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
889                         xfer, xfer->len, xfer->tx_buf,
890                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
891                         (unsigned long long)xfer->rx_dma);
892         }
893
894         /* REVISIT: We're waiting for RXBUFF before we start the next
895          * transfer because we need to handle some difficult timing
896          * issues otherwise. If we wait for TXBUFE in one transfer and
897          * then starts waiting for RXBUFF in the next, it's difficult
898          * to tell the difference between the RXBUFF interrupt we're
899          * actually waiting for and the RXBUFF interrupt of the
900          * previous transfer.
901          *
902          * It should be doable, though. Just not now...
903          */
904         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
905         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
906 }
907
908 /*
909  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
910  *  - The buffer is either valid for CPU access, else NULL
911  *  - If the buffer is valid, so is its DMA address
912  *
913  * This driver manages the dma address unless message->is_dma_mapped.
914  */
915 static int
916 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
917 {
918         struct device   *dev = &as->pdev->dev;
919
920         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
921         if (xfer->tx_buf) {
922                 /* tx_buf is a const void* where we need a void * for the dma
923                  * mapping */
924                 void *nonconst_tx = (void *)xfer->tx_buf;
925
926                 xfer->tx_dma = dma_map_single(dev,
927                                 nonconst_tx, xfer->len,
928                                 DMA_TO_DEVICE);
929                 if (dma_mapping_error(dev, xfer->tx_dma))
930                         return -ENOMEM;
931         }
932         if (xfer->rx_buf) {
933                 xfer->rx_dma = dma_map_single(dev,
934                                 xfer->rx_buf, xfer->len,
935                                 DMA_FROM_DEVICE);
936                 if (dma_mapping_error(dev, xfer->rx_dma)) {
937                         if (xfer->tx_buf)
938                                 dma_unmap_single(dev,
939                                                 xfer->tx_dma, xfer->len,
940                                                 DMA_TO_DEVICE);
941                         return -ENOMEM;
942                 }
943         }
944         return 0;
945 }
946
947 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
948                                      struct spi_transfer *xfer)
949 {
950         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
951                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
952                                  xfer->len, DMA_TO_DEVICE);
953         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
954                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
955                                  xfer->len, DMA_FROM_DEVICE);
956 }
957
958 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
959 {
960         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
961 }
962
963 static void
964 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
965 {
966         u8              *rxp;
967         u16             *rxp16;
968         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
969
970         if (xfer->bits_per_word > 8) {
971                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
972                 *rxp16 = spi_readl(as, RDR);
973         } else {
974                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
975                 *rxp = spi_readl(as, RDR);
976         }
977         if (xfer->bits_per_word > 8) {
978                 if (as->current_remaining_bytes > 2)
979                         as->current_remaining_bytes -= 2;
980                 else
981                         as->current_remaining_bytes = 0;
982         } else {
983                 as->current_remaining_bytes--;
984         }
985 }
986
987 static void
988 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
989 {
990         u32 fifolr = spi_readl(as, FLR);
991         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
992         u32 offset = xfer->len - as->current_remaining_bytes;
993         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
994         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
995         u16 rd; /* RD field is the lowest 16 bits of RDR */
996
997         /* Update the number of remaining bytes to transfer */
998         num_bytes = ((xfer->bits_per_word > 8) ?
999                      (num_data << 1) :
1000                      num_data);
1001
1002         if (as->current_remaining_bytes > num_bytes)
1003                 as->current_remaining_bytes -= num_bytes;
1004         else
1005                 as->current_remaining_bytes = 0;
1006
1007         /* Handle odd number of bytes when data are more than 8bit width */
1008         if (xfer->bits_per_word > 8)
1009                 as->current_remaining_bytes &= ~0x1;
1010
1011         /* Read data */
1012         while (num_data) {
1013                 rd = spi_readl(as, RDR);
1014                 if (xfer->bits_per_word > 8)
1015                         *words++ = rd;
1016                 else
1017                         *bytes++ = rd;
1018                 num_data--;
1019         }
1020 }
1021
1022 /* Called from IRQ
1023  *
1024  * Must update "current_remaining_bytes" to keep track of data
1025  * to transfer.
1026  */
1027 static void
1028 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029 {
1030         if (as->fifo_size)
1031                 atmel_spi_pump_fifo_data(as, xfer);
1032         else
1033                 atmel_spi_pump_single_data(as, xfer);
1034 }
1035
1036 /* Interrupt
1037  *
1038  */
1039 static irqreturn_t
1040 atmel_spi_pio_interrupt(int irq, void *dev_id)
1041 {
1042         struct spi_master       *master = dev_id;
1043         struct atmel_spi        *as = spi_master_get_devdata(master);
1044         u32                     status, pending, imr;
1045         struct spi_transfer     *xfer;
1046         int                     ret = IRQ_NONE;
1047
1048         imr = spi_readl(as, IMR);
1049         status = spi_readl(as, SR);
1050         pending = status & imr;
1051
1052         if (pending & SPI_BIT(OVRES)) {
1053                 ret = IRQ_HANDLED;
1054                 spi_writel(as, IDR, SPI_BIT(OVRES));
1055                 dev_warn(master->dev.parent, "overrun\n");
1056
1057                 /*
1058                  * When we get an overrun, we disregard the current
1059                  * transfer. Data will not be copied back from any
1060                  * bounce buffer and msg->actual_len will not be
1061                  * updated with the last xfer.
1062                  *
1063                  * We will also not process any remaning transfers in
1064                  * the message.
1065                  */
1066                 as->done_status = -EIO;
1067                 smp_wmb();
1068
1069                 /* Clear any overrun happening while cleaning up */
1070                 spi_readl(as, SR);
1071
1072                 complete(&as->xfer_completion);
1073
1074         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1075                 atmel_spi_lock(as);
1076
1077                 if (as->current_remaining_bytes) {
1078                         ret = IRQ_HANDLED;
1079                         xfer = as->current_transfer;
1080                         atmel_spi_pump_pio_data(as, xfer);
1081                         if (!as->current_remaining_bytes)
1082                                 spi_writel(as, IDR, pending);
1083
1084                         complete(&as->xfer_completion);
1085                 }
1086
1087                 atmel_spi_unlock(as);
1088         } else {
1089                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1090                 ret = IRQ_HANDLED;
1091                 spi_writel(as, IDR, pending);
1092         }
1093
1094         return ret;
1095 }
1096
1097 static irqreturn_t
1098 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1099 {
1100         struct spi_master       *master = dev_id;
1101         struct atmel_spi        *as = spi_master_get_devdata(master);
1102         u32                     status, pending, imr;
1103         int                     ret = IRQ_NONE;
1104
1105         imr = spi_readl(as, IMR);
1106         status = spi_readl(as, SR);
1107         pending = status & imr;
1108
1109         if (pending & SPI_BIT(OVRES)) {
1110
1111                 ret = IRQ_HANDLED;
1112
1113                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1114                                      | SPI_BIT(OVRES)));
1115
1116                 /* Clear any overrun happening while cleaning up */
1117                 spi_readl(as, SR);
1118
1119                 as->done_status = -EIO;
1120
1121                 complete(&as->xfer_completion);
1122
1123         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1124                 ret = IRQ_HANDLED;
1125
1126                 spi_writel(as, IDR, pending);
1127
1128                 complete(&as->xfer_completion);
1129         }
1130
1131         return ret;
1132 }
1133
1134 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1135 {
1136         struct spi_delay *delay = &spi->word_delay;
1137         u32 value = delay->value;
1138
1139         switch (delay->unit) {
1140         case SPI_DELAY_UNIT_NSECS:
1141                 value /= 1000;
1142                 break;
1143         case SPI_DELAY_UNIT_USECS:
1144                 break;
1145         default:
1146                 return -EINVAL;
1147         }
1148
1149         return (as->spi_clk / 1000000 * value) >> 5;
1150 }
1151
1152 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1153 {
1154         int i;
1155         struct spi_master *master = platform_get_drvdata(as->pdev);
1156
1157         if (!as->native_cs_free)
1158                 return; /* already initialized */
1159
1160         if (!master->cs_gpiods)
1161                 return; /* No CS GPIO */
1162
1163         /*
1164          * On the first version of the controller (AT91RM9200), CS0
1165          * can't be used associated with GPIO
1166          */
1167         if (atmel_spi_is_v2(as))
1168                 i = 0;
1169         else
1170                 i = 1;
1171
1172         for (; i < 4; i++)
1173                 if (master->cs_gpiods[i])
1174                         as->native_cs_free |= BIT(i);
1175
1176         if (as->native_cs_free)
1177                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1178 }
1179
1180 static int atmel_spi_setup(struct spi_device *spi)
1181 {
1182         struct atmel_spi        *as;
1183         struct atmel_spi_device *asd;
1184         u32                     csr;
1185         unsigned int            bits = spi->bits_per_word;
1186         int chip_select;
1187         int                     word_delay_csr;
1188
1189         as = spi_master_get_devdata(spi->master);
1190
1191         /* see notes above re chipselect */
1192         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1193                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1194                 return -EINVAL;
1195         }
1196
1197         /* Setup() is called during spi_register_controller(aka
1198          * spi_register_master) but after all membmers of the cs_gpiod
1199          * array have been filled, so we can looked for which native
1200          * CS will be free for using with GPIO
1201          */
1202         initialize_native_cs_for_gpio(as);
1203
1204         if (spi->cs_gpiod && as->native_cs_free) {
1205                 dev_err(&spi->dev,
1206                         "No native CS available to support this GPIO CS\n");
1207                 return -EBUSY;
1208         }
1209
1210         if (spi->cs_gpiod)
1211                 chip_select = as->native_cs_for_gpio;
1212         else
1213                 chip_select = spi->chip_select;
1214
1215         csr = SPI_BF(BITS, bits - 8);
1216         if (spi->mode & SPI_CPOL)
1217                 csr |= SPI_BIT(CPOL);
1218         if (!(spi->mode & SPI_CPHA))
1219                 csr |= SPI_BIT(NCPHA);
1220
1221         if (!spi->cs_gpiod)
1222                 csr |= SPI_BIT(CSAAT);
1223         csr |= SPI_BF(DLYBS, 0);
1224
1225         word_delay_csr = atmel_word_delay_csr(spi, as);
1226         if (word_delay_csr < 0)
1227                 return word_delay_csr;
1228
1229         /* DLYBCT adds delays between words.  This is useful for slow devices
1230          * that need a bit of time to setup the next transfer.
1231          */
1232         csr |= SPI_BF(DLYBCT, word_delay_csr);
1233
1234         asd = spi->controller_state;
1235         if (!asd) {
1236                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1237                 if (!asd)
1238                         return -ENOMEM;
1239
1240                 spi->controller_state = asd;
1241         }
1242
1243         asd->csr = csr;
1244
1245         dev_dbg(&spi->dev,
1246                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1247                 bits, spi->mode, spi->chip_select, csr);
1248
1249         if (!atmel_spi_is_v2(as))
1250                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1251
1252         return 0;
1253 }
1254
1255 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1256 {
1257         struct atmel_spi *as = spi_master_get_devdata(spi->master);
1258         /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1259          * since we already have routines for activate/deactivate translate
1260          * high/low to active/inactive
1261          */
1262         enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1263
1264         if (enable) {
1265                 cs_activate(as, spi);
1266         } else {
1267                 cs_deactivate(as, spi);
1268         }
1269
1270 }
1271
1272 static int atmel_spi_one_transfer(struct spi_master *master,
1273                                         struct spi_device *spi,
1274                                         struct spi_transfer *xfer)
1275 {
1276         struct atmel_spi        *as;
1277         u8                      bits;
1278         u32                     len;
1279         struct atmel_spi_device *asd;
1280         int                     timeout;
1281         int                     ret;
1282         unsigned long           dma_timeout;
1283
1284         as = spi_master_get_devdata(master);
1285
1286         asd = spi->controller_state;
1287         bits = (asd->csr >> 4) & 0xf;
1288         if (bits != xfer->bits_per_word - 8) {
1289                 dev_dbg(&spi->dev,
1290                         "you can't yet change bits_per_word in transfers\n");
1291                 return -ENOPROTOOPT;
1292         }
1293
1294         /*
1295          * DMA map early, for performance (empties dcache ASAP) and
1296          * better fault reporting.
1297          */
1298         if ((!master->cur_msg->is_dma_mapped)
1299                 && as->use_pdc) {
1300                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1301                         return -ENOMEM;
1302         }
1303
1304         atmel_spi_set_xfer_speed(as, spi, xfer);
1305
1306         as->done_status = 0;
1307         as->current_transfer = xfer;
1308         as->current_remaining_bytes = xfer->len;
1309         while (as->current_remaining_bytes) {
1310                 reinit_completion(&as->xfer_completion);
1311
1312                 if (as->use_pdc) {
1313                         atmel_spi_lock(as);
1314                         atmel_spi_pdc_next_xfer(master, xfer);
1315                         atmel_spi_unlock(as);
1316                 } else if (atmel_spi_use_dma(as, xfer)) {
1317                         len = as->current_remaining_bytes;
1318                         ret = atmel_spi_next_xfer_dma_submit(master,
1319                                                                 xfer, &len);
1320                         if (ret) {
1321                                 dev_err(&spi->dev,
1322                                         "unable to use DMA, fallback to PIO\n");
1323                                 as->done_status = ret;
1324                                 break;
1325                         } else {
1326                                 as->current_remaining_bytes -= len;
1327                                 if (as->current_remaining_bytes < 0)
1328                                         as->current_remaining_bytes = 0;
1329                         }
1330                 } else {
1331                         atmel_spi_lock(as);
1332                         atmel_spi_next_xfer_pio(master, xfer);
1333                         atmel_spi_unlock(as);
1334                 }
1335
1336                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1337                                                           SPI_DMA_TIMEOUT);
1338                 if (WARN_ON(dma_timeout == 0)) {
1339                         dev_err(&spi->dev, "spi transfer timeout\n");
1340                         as->done_status = -EIO;
1341                 }
1342
1343                 if (as->done_status)
1344                         break;
1345         }
1346
1347         if (as->done_status) {
1348                 if (as->use_pdc) {
1349                         dev_warn(master->dev.parent,
1350                                 "overrun (%u/%u remaining)\n",
1351                                 spi_readl(as, TCR), spi_readl(as, RCR));
1352
1353                         /*
1354                          * Clean up DMA registers and make sure the data
1355                          * registers are empty.
1356                          */
1357                         spi_writel(as, RNCR, 0);
1358                         spi_writel(as, TNCR, 0);
1359                         spi_writel(as, RCR, 0);
1360                         spi_writel(as, TCR, 0);
1361                         for (timeout = 1000; timeout; timeout--)
1362                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1363                                         break;
1364                         if (!timeout)
1365                                 dev_warn(master->dev.parent,
1366                                          "timeout waiting for TXEMPTY");
1367                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1368                                 spi_readl(as, RDR);
1369
1370                         /* Clear any overrun happening while cleaning up */
1371                         spi_readl(as, SR);
1372
1373                 } else if (atmel_spi_use_dma(as, xfer)) {
1374                         atmel_spi_stop_dma(master);
1375                 }
1376         }
1377
1378         if (!master->cur_msg->is_dma_mapped
1379                 && as->use_pdc)
1380                 atmel_spi_dma_unmap_xfer(master, xfer);
1381
1382         if (as->use_pdc)
1383                 atmel_spi_disable_pdc_transfer(as);
1384
1385         return as->done_status;
1386 }
1387
1388 static void atmel_spi_cleanup(struct spi_device *spi)
1389 {
1390         struct atmel_spi_device *asd = spi->controller_state;
1391
1392         if (!asd)
1393                 return;
1394
1395         spi->controller_state = NULL;
1396         kfree(asd);
1397 }
1398
1399 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1400 {
1401         return spi_readl(as, VERSION) & 0x00000fff;
1402 }
1403
1404 static void atmel_get_caps(struct atmel_spi *as)
1405 {
1406         unsigned int version;
1407
1408         version = atmel_get_version(as);
1409
1410         as->caps.is_spi2 = version > 0x121;
1411         as->caps.has_wdrbt = version >= 0x210;
1412         as->caps.has_dma_support = version >= 0x212;
1413         as->caps.has_pdc_support = version < 0x212;
1414 }
1415
1416 static void atmel_spi_init(struct atmel_spi *as)
1417 {
1418         spi_writel(as, CR, SPI_BIT(SWRST));
1419         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1420
1421         /* It is recommended to enable FIFOs first thing after reset */
1422         if (as->fifo_size)
1423                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1424
1425         if (as->caps.has_wdrbt) {
1426                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1427                                 | SPI_BIT(MSTR));
1428         } else {
1429                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1430         }
1431
1432         if (as->use_pdc)
1433                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1434         spi_writel(as, CR, SPI_BIT(SPIEN));
1435 }
1436
1437 static int atmel_spi_probe(struct platform_device *pdev)
1438 {
1439         struct resource         *regs;
1440         int                     irq;
1441         struct clk              *clk;
1442         int                     ret;
1443         struct spi_master       *master;
1444         struct atmel_spi        *as;
1445
1446         /* Select default pin state */
1447         pinctrl_pm_select_default_state(&pdev->dev);
1448
1449         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1450         if (!regs)
1451                 return -ENXIO;
1452
1453         irq = platform_get_irq(pdev, 0);
1454         if (irq < 0)
1455                 return irq;
1456
1457         clk = devm_clk_get(&pdev->dev, "spi_clk");
1458         if (IS_ERR(clk))
1459                 return PTR_ERR(clk);
1460
1461         /* setup spi core then atmel-specific driver state */
1462         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1463         if (!master)
1464                 return -ENOMEM;
1465
1466         /* the spi->mode bits understood by this driver: */
1467         master->use_gpio_descriptors = true;
1468         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1469         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1470         master->dev.of_node = pdev->dev.of_node;
1471         master->bus_num = pdev->id;
1472         master->num_chipselect = 4;
1473         master->setup = atmel_spi_setup;
1474         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1475                         SPI_MASTER_GPIO_SS);
1476         master->transfer_one = atmel_spi_one_transfer;
1477         master->set_cs = atmel_spi_set_cs;
1478         master->cleanup = atmel_spi_cleanup;
1479         master->auto_runtime_pm = true;
1480         master->max_dma_len = SPI_MAX_DMA_XFER;
1481         master->can_dma = atmel_spi_can_dma;
1482         platform_set_drvdata(pdev, master);
1483
1484         as = spi_master_get_devdata(master);
1485
1486         spin_lock_init(&as->lock);
1487
1488         as->pdev = pdev;
1489         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1490         if (IS_ERR(as->regs)) {
1491                 ret = PTR_ERR(as->regs);
1492                 goto out_unmap_regs;
1493         }
1494         as->phybase = regs->start;
1495         as->irq = irq;
1496         as->clk = clk;
1497
1498         init_completion(&as->xfer_completion);
1499
1500         atmel_get_caps(as);
1501
1502         as->use_dma = false;
1503         as->use_pdc = false;
1504         if (as->caps.has_dma_support) {
1505                 ret = atmel_spi_configure_dma(master, as);
1506                 if (ret == 0) {
1507                         as->use_dma = true;
1508                 } else if (ret == -EPROBE_DEFER) {
1509                         goto out_unmap_regs;
1510                 }
1511         } else if (as->caps.has_pdc_support) {
1512                 as->use_pdc = true;
1513         }
1514
1515         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1516                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1517                                                       SPI_MAX_DMA_XFER,
1518                                                       &as->dma_addr_rx_bbuf,
1519                                                       GFP_KERNEL | GFP_DMA);
1520                 if (!as->addr_rx_bbuf) {
1521                         as->use_dma = false;
1522                 } else {
1523                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1524                                         SPI_MAX_DMA_XFER,
1525                                         &as->dma_addr_tx_bbuf,
1526                                         GFP_KERNEL | GFP_DMA);
1527                         if (!as->addr_tx_bbuf) {
1528                                 as->use_dma = false;
1529                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1530                                                   as->addr_rx_bbuf,
1531                                                   as->dma_addr_rx_bbuf);
1532                         }
1533                 }
1534                 if (!as->use_dma)
1535                         dev_info(master->dev.parent,
1536                                  "  can not allocate dma coherent memory\n");
1537         }
1538
1539         if (as->caps.has_dma_support && !as->use_dma)
1540                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1541
1542         if (as->use_pdc) {
1543                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1544                                         0, dev_name(&pdev->dev), master);
1545         } else {
1546                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1547                                         0, dev_name(&pdev->dev), master);
1548         }
1549         if (ret)
1550                 goto out_unmap_regs;
1551
1552         /* Initialize the hardware */
1553         ret = clk_prepare_enable(clk);
1554         if (ret)
1555                 goto out_free_irq;
1556
1557         as->spi_clk = clk_get_rate(clk);
1558
1559         as->fifo_size = 0;
1560         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1561                                   &as->fifo_size)) {
1562                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1563         }
1564
1565         atmel_spi_init(as);
1566
1567         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1568         pm_runtime_use_autosuspend(&pdev->dev);
1569         pm_runtime_set_active(&pdev->dev);
1570         pm_runtime_enable(&pdev->dev);
1571
1572         ret = devm_spi_register_master(&pdev->dev, master);
1573         if (ret)
1574                 goto out_free_dma;
1575
1576         /* go! */
1577         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1578                         atmel_get_version(as), (unsigned long)regs->start,
1579                         irq);
1580
1581         return 0;
1582
1583 out_free_dma:
1584         pm_runtime_disable(&pdev->dev);
1585         pm_runtime_set_suspended(&pdev->dev);
1586
1587         if (as->use_dma)
1588                 atmel_spi_release_dma(master);
1589
1590         spi_writel(as, CR, SPI_BIT(SWRST));
1591         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1592         clk_disable_unprepare(clk);
1593 out_free_irq:
1594 out_unmap_regs:
1595         spi_master_put(master);
1596         return ret;
1597 }
1598
1599 static int atmel_spi_remove(struct platform_device *pdev)
1600 {
1601         struct spi_master       *master = platform_get_drvdata(pdev);
1602         struct atmel_spi        *as = spi_master_get_devdata(master);
1603
1604         pm_runtime_get_sync(&pdev->dev);
1605
1606         /* reset the hardware and block queue progress */
1607         if (as->use_dma) {
1608                 atmel_spi_stop_dma(master);
1609                 atmel_spi_release_dma(master);
1610                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1611                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1612                                           as->addr_tx_bbuf,
1613                                           as->dma_addr_tx_bbuf);
1614                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615                                           as->addr_rx_bbuf,
1616                                           as->dma_addr_rx_bbuf);
1617                 }
1618         }
1619
1620         spin_lock_irq(&as->lock);
1621         spi_writel(as, CR, SPI_BIT(SWRST));
1622         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1623         spi_readl(as, SR);
1624         spin_unlock_irq(&as->lock);
1625
1626         clk_disable_unprepare(as->clk);
1627
1628         pm_runtime_put_noidle(&pdev->dev);
1629         pm_runtime_disable(&pdev->dev);
1630
1631         return 0;
1632 }
1633
1634 static int atmel_spi_runtime_suspend(struct device *dev)
1635 {
1636         struct spi_master *master = dev_get_drvdata(dev);
1637         struct atmel_spi *as = spi_master_get_devdata(master);
1638
1639         clk_disable_unprepare(as->clk);
1640         pinctrl_pm_select_sleep_state(dev);
1641
1642         return 0;
1643 }
1644
1645 static int atmel_spi_runtime_resume(struct device *dev)
1646 {
1647         struct spi_master *master = dev_get_drvdata(dev);
1648         struct atmel_spi *as = spi_master_get_devdata(master);
1649
1650         pinctrl_pm_select_default_state(dev);
1651
1652         return clk_prepare_enable(as->clk);
1653 }
1654
1655 static int atmel_spi_suspend(struct device *dev)
1656 {
1657         struct spi_master *master = dev_get_drvdata(dev);
1658         int ret;
1659
1660         /* Stop the queue running */
1661         ret = spi_master_suspend(master);
1662         if (ret)
1663                 return ret;
1664
1665         if (!pm_runtime_suspended(dev))
1666                 atmel_spi_runtime_suspend(dev);
1667
1668         return 0;
1669 }
1670
1671 static int atmel_spi_resume(struct device *dev)
1672 {
1673         struct spi_master *master = dev_get_drvdata(dev);
1674         struct atmel_spi *as = spi_master_get_devdata(master);
1675         int ret;
1676
1677         ret = clk_prepare_enable(as->clk);
1678         if (ret)
1679                 return ret;
1680
1681         atmel_spi_init(as);
1682
1683         clk_disable_unprepare(as->clk);
1684
1685         if (!pm_runtime_suspended(dev)) {
1686                 ret = atmel_spi_runtime_resume(dev);
1687                 if (ret)
1688                         return ret;
1689         }
1690
1691         /* Start the queue running */
1692         return spi_master_resume(master);
1693 }
1694
1695 static const struct dev_pm_ops atmel_spi_pm_ops = {
1696         SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1697         RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1698                        atmel_spi_runtime_resume, NULL)
1699 };
1700
1701 static const struct of_device_id atmel_spi_dt_ids[] = {
1702         { .compatible = "atmel,at91rm9200-spi" },
1703         { /* sentinel */ }
1704 };
1705
1706 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1707
1708 static struct platform_driver atmel_spi_driver = {
1709         .driver         = {
1710                 .name   = "atmel_spi",
1711                 .pm     = pm_ptr(&atmel_spi_pm_ops),
1712                 .of_match_table = atmel_spi_dt_ids,
1713         },
1714         .probe          = atmel_spi_probe,
1715         .remove         = atmel_spi_remove,
1716 };
1717 module_platform_driver(atmel_spi_driver);
1718
1719 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1720 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1721 MODULE_LICENSE("GPL");
1722 MODULE_ALIAS("platform:atmel_spi");