Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117         "write through", "none", "write back",
118         "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123         bool wc = false, fua = false;
124
125         if (sdkp->WCE) {
126                 wc = true;
127                 if (sdkp->DPOFUA)
128                         fua = true;
129         }
130
131         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136                  const char *buf, size_t count)
137 {
138         int ct, rcd, wce, sp;
139         struct scsi_disk *sdkp = to_scsi_disk(dev);
140         struct scsi_device *sdp = sdkp->device;
141         char buffer[64];
142         char *buffer_data;
143         struct scsi_mode_data data;
144         struct scsi_sense_hdr sshdr;
145         static const char temp[] = "temporary ";
146         int len;
147
148         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149                 /* no cache control on RBC devices; theoretically they
150                  * can do it, but there's probably so many exceptions
151                  * it's not worth the risk */
152                 return -EINVAL;
153
154         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155                 buf += sizeof(temp) - 1;
156                 sdkp->cache_override = 1;
157         } else {
158                 sdkp->cache_override = 0;
159         }
160
161         ct = sysfs_match_string(sd_cache_types, buf);
162         if (ct < 0)
163                 return -EINVAL;
164
165         rcd = ct & 0x01 ? 1 : 0;
166         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168         if (sdkp->cache_override) {
169                 sdkp->WCE = wce;
170                 sdkp->RCD = rcd;
171                 sd_set_flush_flag(sdkp);
172                 return count;
173         }
174
175         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176                             sdkp->max_retries, &data, NULL))
177                 return -EINVAL;
178         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179                   data.block_descriptor_length);
180         buffer_data = buffer + data.header_length +
181                 data.block_descriptor_length;
182         buffer_data[2] &= ~0x05;
183         buffer_data[2] |= wce << 2 | rcd;
184         sp = buffer_data[0] & 0x80 ? 1 : 0;
185         buffer_data[0] &= ~0x80;
186
187         /*
188          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189          * received mode parameter buffer before doing MODE SELECT.
190          */
191         data.device_specific = 0;
192
193         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194                              sdkp->max_retries, &data, &sshdr)) {
195                 if (scsi_sense_valid(&sshdr))
196                         sd_print_sense_hdr(sdkp, &sshdr);
197                 return -EINVAL;
198         }
199         sd_revalidate_disk(sdkp->disk);
200         return count;
201 }
202
203 static ssize_t
204 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
205                        char *buf)
206 {
207         struct scsi_disk *sdkp = to_scsi_disk(dev);
208         struct scsi_device *sdp = sdkp->device;
209
210         return sprintf(buf, "%u\n", sdp->manage_start_stop);
211 }
212
213 static ssize_t
214 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
215                         const char *buf, size_t count)
216 {
217         struct scsi_disk *sdkp = to_scsi_disk(dev);
218         struct scsi_device *sdp = sdkp->device;
219         bool v;
220
221         if (!capable(CAP_SYS_ADMIN))
222                 return -EACCES;
223
224         if (kstrtobool(buf, &v))
225                 return -EINVAL;
226
227         sdp->manage_start_stop = v;
228
229         return count;
230 }
231 static DEVICE_ATTR_RW(manage_start_stop);
232
233 static ssize_t
234 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
235 {
236         struct scsi_disk *sdkp = to_scsi_disk(dev);
237
238         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
239 }
240
241 static ssize_t
242 allow_restart_store(struct device *dev, struct device_attribute *attr,
243                     const char *buf, size_t count)
244 {
245         bool v;
246         struct scsi_disk *sdkp = to_scsi_disk(dev);
247         struct scsi_device *sdp = sdkp->device;
248
249         if (!capable(CAP_SYS_ADMIN))
250                 return -EACCES;
251
252         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
253                 return -EINVAL;
254
255         if (kstrtobool(buf, &v))
256                 return -EINVAL;
257
258         sdp->allow_restart = v;
259
260         return count;
261 }
262 static DEVICE_ATTR_RW(allow_restart);
263
264 static ssize_t
265 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
266 {
267         struct scsi_disk *sdkp = to_scsi_disk(dev);
268         int ct = sdkp->RCD + 2*sdkp->WCE;
269
270         return sprintf(buf, "%s\n", sd_cache_types[ct]);
271 }
272 static DEVICE_ATTR_RW(cache_type);
273
274 static ssize_t
275 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
276 {
277         struct scsi_disk *sdkp = to_scsi_disk(dev);
278
279         return sprintf(buf, "%u\n", sdkp->DPOFUA);
280 }
281 static DEVICE_ATTR_RO(FUA);
282
283 static ssize_t
284 protection_type_show(struct device *dev, struct device_attribute *attr,
285                      char *buf)
286 {
287         struct scsi_disk *sdkp = to_scsi_disk(dev);
288
289         return sprintf(buf, "%u\n", sdkp->protection_type);
290 }
291
292 static ssize_t
293 protection_type_store(struct device *dev, struct device_attribute *attr,
294                       const char *buf, size_t count)
295 {
296         struct scsi_disk *sdkp = to_scsi_disk(dev);
297         unsigned int val;
298         int err;
299
300         if (!capable(CAP_SYS_ADMIN))
301                 return -EACCES;
302
303         err = kstrtouint(buf, 10, &val);
304
305         if (err)
306                 return err;
307
308         if (val <= T10_PI_TYPE3_PROTECTION)
309                 sdkp->protection_type = val;
310
311         return count;
312 }
313 static DEVICE_ATTR_RW(protection_type);
314
315 static ssize_t
316 protection_mode_show(struct device *dev, struct device_attribute *attr,
317                      char *buf)
318 {
319         struct scsi_disk *sdkp = to_scsi_disk(dev);
320         struct scsi_device *sdp = sdkp->device;
321         unsigned int dif, dix;
322
323         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
324         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
325
326         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
327                 dif = 0;
328                 dix = 1;
329         }
330
331         if (!dif && !dix)
332                 return sprintf(buf, "none\n");
333
334         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
335 }
336 static DEVICE_ATTR_RO(protection_mode);
337
338 static ssize_t
339 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
340 {
341         struct scsi_disk *sdkp = to_scsi_disk(dev);
342
343         return sprintf(buf, "%u\n", sdkp->ATO);
344 }
345 static DEVICE_ATTR_RO(app_tag_own);
346
347 static ssize_t
348 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
349                        char *buf)
350 {
351         struct scsi_disk *sdkp = to_scsi_disk(dev);
352
353         return sprintf(buf, "%u\n", sdkp->lbpme);
354 }
355 static DEVICE_ATTR_RO(thin_provisioning);
356
357 /* sysfs_match_string() requires dense arrays */
358 static const char *lbp_mode[] = {
359         [SD_LBP_FULL]           = "full",
360         [SD_LBP_UNMAP]          = "unmap",
361         [SD_LBP_WS16]           = "writesame_16",
362         [SD_LBP_WS10]           = "writesame_10",
363         [SD_LBP_ZERO]           = "writesame_zero",
364         [SD_LBP_DISABLE]        = "disabled",
365 };
366
367 static ssize_t
368 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
369                        char *buf)
370 {
371         struct scsi_disk *sdkp = to_scsi_disk(dev);
372
373         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
374 }
375
376 static ssize_t
377 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
378                         const char *buf, size_t count)
379 {
380         struct scsi_disk *sdkp = to_scsi_disk(dev);
381         struct scsi_device *sdp = sdkp->device;
382         int mode;
383
384         if (!capable(CAP_SYS_ADMIN))
385                 return -EACCES;
386
387         if (sd_is_zoned(sdkp)) {
388                 sd_config_discard(sdkp, SD_LBP_DISABLE);
389                 return count;
390         }
391
392         if (sdp->type != TYPE_DISK)
393                 return -EINVAL;
394
395         mode = sysfs_match_string(lbp_mode, buf);
396         if (mode < 0)
397                 return -EINVAL;
398
399         sd_config_discard(sdkp, mode);
400
401         return count;
402 }
403 static DEVICE_ATTR_RW(provisioning_mode);
404
405 /* sysfs_match_string() requires dense arrays */
406 static const char *zeroing_mode[] = {
407         [SD_ZERO_WRITE]         = "write",
408         [SD_ZERO_WS]            = "writesame",
409         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
410         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
411 };
412
413 static ssize_t
414 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
415                   char *buf)
416 {
417         struct scsi_disk *sdkp = to_scsi_disk(dev);
418
419         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
420 }
421
422 static ssize_t
423 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
424                    const char *buf, size_t count)
425 {
426         struct scsi_disk *sdkp = to_scsi_disk(dev);
427         int mode;
428
429         if (!capable(CAP_SYS_ADMIN))
430                 return -EACCES;
431
432         mode = sysfs_match_string(zeroing_mode, buf);
433         if (mode < 0)
434                 return -EINVAL;
435
436         sdkp->zeroing_mode = mode;
437
438         return count;
439 }
440 static DEVICE_ATTR_RW(zeroing_mode);
441
442 static ssize_t
443 max_medium_access_timeouts_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct scsi_disk *sdkp = to_scsi_disk(dev);
447
448         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
449 }
450
451 static ssize_t
452 max_medium_access_timeouts_store(struct device *dev,
453                                  struct device_attribute *attr, const char *buf,
454                                  size_t count)
455 {
456         struct scsi_disk *sdkp = to_scsi_disk(dev);
457         int err;
458
459         if (!capable(CAP_SYS_ADMIN))
460                 return -EACCES;
461
462         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
463
464         return err ? err : count;
465 }
466 static DEVICE_ATTR_RW(max_medium_access_timeouts);
467
468 static ssize_t
469 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
470                            char *buf)
471 {
472         struct scsi_disk *sdkp = to_scsi_disk(dev);
473
474         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
475 }
476
477 static ssize_t
478 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
479                             const char *buf, size_t count)
480 {
481         struct scsi_disk *sdkp = to_scsi_disk(dev);
482         struct scsi_device *sdp = sdkp->device;
483         unsigned long max;
484         int err;
485
486         if (!capable(CAP_SYS_ADMIN))
487                 return -EACCES;
488
489         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
490                 return -EINVAL;
491
492         err = kstrtoul(buf, 10, &max);
493
494         if (err)
495                 return err;
496
497         if (max == 0)
498                 sdp->no_write_same = 1;
499         else if (max <= SD_MAX_WS16_BLOCKS) {
500                 sdp->no_write_same = 0;
501                 sdkp->max_ws_blocks = max;
502         }
503
504         sd_config_write_same(sdkp);
505
506         return count;
507 }
508 static DEVICE_ATTR_RW(max_write_same_blocks);
509
510 static ssize_t
511 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
512 {
513         struct scsi_disk *sdkp = to_scsi_disk(dev);
514
515         if (sdkp->device->type == TYPE_ZBC)
516                 return sprintf(buf, "host-managed\n");
517         if (sdkp->zoned == 1)
518                 return sprintf(buf, "host-aware\n");
519         if (sdkp->zoned == 2)
520                 return sprintf(buf, "drive-managed\n");
521         return sprintf(buf, "none\n");
522 }
523 static DEVICE_ATTR_RO(zoned_cap);
524
525 static ssize_t
526 max_retries_store(struct device *dev, struct device_attribute *attr,
527                   const char *buf, size_t count)
528 {
529         struct scsi_disk *sdkp = to_scsi_disk(dev);
530         struct scsi_device *sdev = sdkp->device;
531         int retries, err;
532
533         err = kstrtoint(buf, 10, &retries);
534         if (err)
535                 return err;
536
537         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
538                 sdkp->max_retries = retries;
539                 return count;
540         }
541
542         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
543                     SD_MAX_RETRIES);
544         return -EINVAL;
545 }
546
547 static ssize_t
548 max_retries_show(struct device *dev, struct device_attribute *attr,
549                  char *buf)
550 {
551         struct scsi_disk *sdkp = to_scsi_disk(dev);
552
553         return sprintf(buf, "%d\n", sdkp->max_retries);
554 }
555
556 static DEVICE_ATTR_RW(max_retries);
557
558 static struct attribute *sd_disk_attrs[] = {
559         &dev_attr_cache_type.attr,
560         &dev_attr_FUA.attr,
561         &dev_attr_allow_restart.attr,
562         &dev_attr_manage_start_stop.attr,
563         &dev_attr_protection_type.attr,
564         &dev_attr_protection_mode.attr,
565         &dev_attr_app_tag_own.attr,
566         &dev_attr_thin_provisioning.attr,
567         &dev_attr_provisioning_mode.attr,
568         &dev_attr_zeroing_mode.attr,
569         &dev_attr_max_write_same_blocks.attr,
570         &dev_attr_max_medium_access_timeouts.attr,
571         &dev_attr_zoned_cap.attr,
572         &dev_attr_max_retries.attr,
573         NULL,
574 };
575 ATTRIBUTE_GROUPS(sd_disk);
576
577 static struct class sd_disk_class = {
578         .name           = "scsi_disk",
579         .dev_release    = scsi_disk_release,
580         .dev_groups     = sd_disk_groups,
581 };
582
583 /*
584  * Don't request a new module, as that could deadlock in multipath
585  * environment.
586  */
587 static void sd_default_probe(dev_t devt)
588 {
589 }
590
591 /*
592  * Device no to disk mapping:
593  * 
594  *       major         disc2     disc  p1
595  *   |............|.............|....|....| <- dev_t
596  *    31        20 19          8 7  4 3  0
597  * 
598  * Inside a major, we have 16k disks, however mapped non-
599  * contiguously. The first 16 disks are for major0, the next
600  * ones with major1, ... Disk 256 is for major0 again, disk 272 
601  * for major1, ... 
602  * As we stay compatible with our numbering scheme, we can reuse 
603  * the well-know SCSI majors 8, 65--71, 136--143.
604  */
605 static int sd_major(int major_idx)
606 {
607         switch (major_idx) {
608         case 0:
609                 return SCSI_DISK0_MAJOR;
610         case 1 ... 7:
611                 return SCSI_DISK1_MAJOR + major_idx - 1;
612         case 8 ... 15:
613                 return SCSI_DISK8_MAJOR + major_idx - 8;
614         default:
615                 BUG();
616                 return 0;       /* shut up gcc */
617         }
618 }
619
620 #ifdef CONFIG_BLK_SED_OPAL
621 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
622                 size_t len, bool send)
623 {
624         struct scsi_disk *sdkp = data;
625         struct scsi_device *sdev = sdkp->device;
626         u8 cdb[12] = { 0, };
627         const struct scsi_exec_args exec_args = {
628                 .req_flags = BLK_MQ_REQ_PM,
629         };
630         int ret;
631
632         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
633         cdb[1] = secp;
634         put_unaligned_be16(spsp, &cdb[2]);
635         put_unaligned_be32(len, &cdb[6]);
636
637         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
638                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
639                                &exec_args);
640         return ret <= 0 ? ret : -EIO;
641 }
642 #endif /* CONFIG_BLK_SED_OPAL */
643
644 /*
645  * Look up the DIX operation based on whether the command is read or
646  * write and whether dix and dif are enabled.
647  */
648 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
649 {
650         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
651         static const unsigned int ops[] = {     /* wrt dix dif */
652                 SCSI_PROT_NORMAL,               /*  0   0   0  */
653                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
654                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
655                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
656                 SCSI_PROT_NORMAL,               /*  1   0   0  */
657                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
658                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
659                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
660         };
661
662         return ops[write << 2 | dix << 1 | dif];
663 }
664
665 /*
666  * Returns a mask of the protection flags that are valid for a given DIX
667  * operation.
668  */
669 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
670 {
671         static const unsigned int flag_mask[] = {
672                 [SCSI_PROT_NORMAL]              = 0,
673
674                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
675                                                   SCSI_PROT_GUARD_CHECK |
676                                                   SCSI_PROT_REF_CHECK |
677                                                   SCSI_PROT_REF_INCREMENT,
678
679                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
680                                                   SCSI_PROT_IP_CHECKSUM,
681
682                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
683                                                   SCSI_PROT_GUARD_CHECK |
684                                                   SCSI_PROT_REF_CHECK |
685                                                   SCSI_PROT_REF_INCREMENT |
686                                                   SCSI_PROT_IP_CHECKSUM,
687
688                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
689                                                   SCSI_PROT_REF_INCREMENT,
690
691                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
692                                                   SCSI_PROT_REF_CHECK |
693                                                   SCSI_PROT_REF_INCREMENT |
694                                                   SCSI_PROT_IP_CHECKSUM,
695
696                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
697                                                   SCSI_PROT_GUARD_CHECK |
698                                                   SCSI_PROT_REF_CHECK |
699                                                   SCSI_PROT_REF_INCREMENT |
700                                                   SCSI_PROT_IP_CHECKSUM,
701         };
702
703         return flag_mask[prot_op];
704 }
705
706 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
707                                            unsigned int dix, unsigned int dif)
708 {
709         struct request *rq = scsi_cmd_to_rq(scmd);
710         struct bio *bio = rq->bio;
711         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
712         unsigned int protect = 0;
713
714         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
715                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
716                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
717
718                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
719                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
720         }
721
722         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
723                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
724
725                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
726                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
727         }
728
729         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
730                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
731
732                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
733                         protect = 3 << 5;       /* Disable target PI checking */
734                 else
735                         protect = 1 << 5;       /* Enable target PI checking */
736         }
737
738         scsi_set_prot_op(scmd, prot_op);
739         scsi_set_prot_type(scmd, dif);
740         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
741
742         return protect;
743 }
744
745 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
746 {
747         struct request_queue *q = sdkp->disk->queue;
748         unsigned int logical_block_size = sdkp->device->sector_size;
749         unsigned int max_blocks = 0;
750
751         q->limits.discard_alignment =
752                 sdkp->unmap_alignment * logical_block_size;
753         q->limits.discard_granularity =
754                 max(sdkp->physical_block_size,
755                     sdkp->unmap_granularity * logical_block_size);
756         sdkp->provisioning_mode = mode;
757
758         switch (mode) {
759
760         case SD_LBP_FULL:
761         case SD_LBP_DISABLE:
762                 blk_queue_max_discard_sectors(q, 0);
763                 return;
764
765         case SD_LBP_UNMAP:
766                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
767                                           (u32)SD_MAX_WS16_BLOCKS);
768                 break;
769
770         case SD_LBP_WS16:
771                 if (sdkp->device->unmap_limit_for_ws)
772                         max_blocks = sdkp->max_unmap_blocks;
773                 else
774                         max_blocks = sdkp->max_ws_blocks;
775
776                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
777                 break;
778
779         case SD_LBP_WS10:
780                 if (sdkp->device->unmap_limit_for_ws)
781                         max_blocks = sdkp->max_unmap_blocks;
782                 else
783                         max_blocks = sdkp->max_ws_blocks;
784
785                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
786                 break;
787
788         case SD_LBP_ZERO:
789                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
790                                           (u32)SD_MAX_WS10_BLOCKS);
791                 break;
792         }
793
794         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
795 }
796
797 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
798 {
799         struct page *page;
800
801         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
802         if (!page)
803                 return NULL;
804         clear_highpage(page);
805         bvec_set_page(&rq->special_vec, page, data_len, 0);
806         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
807         return bvec_virt(&rq->special_vec);
808 }
809
810 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
811 {
812         struct scsi_device *sdp = cmd->device;
813         struct request *rq = scsi_cmd_to_rq(cmd);
814         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
815         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
816         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
817         unsigned int data_len = 24;
818         char *buf;
819
820         buf = sd_set_special_bvec(rq, data_len);
821         if (!buf)
822                 return BLK_STS_RESOURCE;
823
824         cmd->cmd_len = 10;
825         cmd->cmnd[0] = UNMAP;
826         cmd->cmnd[8] = 24;
827
828         put_unaligned_be16(6 + 16, &buf[0]);
829         put_unaligned_be16(16, &buf[2]);
830         put_unaligned_be64(lba, &buf[8]);
831         put_unaligned_be32(nr_blocks, &buf[16]);
832
833         cmd->allowed = sdkp->max_retries;
834         cmd->transfersize = data_len;
835         rq->timeout = SD_TIMEOUT;
836
837         return scsi_alloc_sgtables(cmd);
838 }
839
840 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
841                 bool unmap)
842 {
843         struct scsi_device *sdp = cmd->device;
844         struct request *rq = scsi_cmd_to_rq(cmd);
845         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
846         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
847         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
848         u32 data_len = sdp->sector_size;
849
850         if (!sd_set_special_bvec(rq, data_len))
851                 return BLK_STS_RESOURCE;
852
853         cmd->cmd_len = 16;
854         cmd->cmnd[0] = WRITE_SAME_16;
855         if (unmap)
856                 cmd->cmnd[1] = 0x8; /* UNMAP */
857         put_unaligned_be64(lba, &cmd->cmnd[2]);
858         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
859
860         cmd->allowed = sdkp->max_retries;
861         cmd->transfersize = data_len;
862         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
863
864         return scsi_alloc_sgtables(cmd);
865 }
866
867 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
868                 bool unmap)
869 {
870         struct scsi_device *sdp = cmd->device;
871         struct request *rq = scsi_cmd_to_rq(cmd);
872         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
873         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
874         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
875         u32 data_len = sdp->sector_size;
876
877         if (!sd_set_special_bvec(rq, data_len))
878                 return BLK_STS_RESOURCE;
879
880         cmd->cmd_len = 10;
881         cmd->cmnd[0] = WRITE_SAME;
882         if (unmap)
883                 cmd->cmnd[1] = 0x8; /* UNMAP */
884         put_unaligned_be32(lba, &cmd->cmnd[2]);
885         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
886
887         cmd->allowed = sdkp->max_retries;
888         cmd->transfersize = data_len;
889         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
890
891         return scsi_alloc_sgtables(cmd);
892 }
893
894 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
895 {
896         struct request *rq = scsi_cmd_to_rq(cmd);
897         struct scsi_device *sdp = cmd->device;
898         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
899         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
900         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
901
902         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
903                 switch (sdkp->zeroing_mode) {
904                 case SD_ZERO_WS16_UNMAP:
905                         return sd_setup_write_same16_cmnd(cmd, true);
906                 case SD_ZERO_WS10_UNMAP:
907                         return sd_setup_write_same10_cmnd(cmd, true);
908                 }
909         }
910
911         if (sdp->no_write_same) {
912                 rq->rq_flags |= RQF_QUIET;
913                 return BLK_STS_TARGET;
914         }
915
916         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
917                 return sd_setup_write_same16_cmnd(cmd, false);
918
919         return sd_setup_write_same10_cmnd(cmd, false);
920 }
921
922 static void sd_config_write_same(struct scsi_disk *sdkp)
923 {
924         struct request_queue *q = sdkp->disk->queue;
925         unsigned int logical_block_size = sdkp->device->sector_size;
926
927         if (sdkp->device->no_write_same) {
928                 sdkp->max_ws_blocks = 0;
929                 goto out;
930         }
931
932         /* Some devices can not handle block counts above 0xffff despite
933          * supporting WRITE SAME(16). Consequently we default to 64k
934          * blocks per I/O unless the device explicitly advertises a
935          * bigger limit.
936          */
937         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
938                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
939                                                    (u32)SD_MAX_WS16_BLOCKS);
940         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
941                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
942                                                    (u32)SD_MAX_WS10_BLOCKS);
943         else {
944                 sdkp->device->no_write_same = 1;
945                 sdkp->max_ws_blocks = 0;
946         }
947
948         if (sdkp->lbprz && sdkp->lbpws)
949                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
950         else if (sdkp->lbprz && sdkp->lbpws10)
951                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
952         else if (sdkp->max_ws_blocks)
953                 sdkp->zeroing_mode = SD_ZERO_WS;
954         else
955                 sdkp->zeroing_mode = SD_ZERO_WRITE;
956
957         if (sdkp->max_ws_blocks &&
958             sdkp->physical_block_size > logical_block_size) {
959                 /*
960                  * Reporting a maximum number of blocks that is not aligned
961                  * on the device physical size would cause a large write same
962                  * request to be split into physically unaligned chunks by
963                  * __blkdev_issue_write_zeroes() even if the caller of this
964                  * functions took care to align the large request. So make sure
965                  * the maximum reported is aligned to the device physical block
966                  * size. This is only an optional optimization for regular
967                  * disks, but this is mandatory to avoid failure of large write
968                  * same requests directed at sequential write required zones of
969                  * host-managed ZBC disks.
970                  */
971                 sdkp->max_ws_blocks =
972                         round_down(sdkp->max_ws_blocks,
973                                    bytes_to_logical(sdkp->device,
974                                                     sdkp->physical_block_size));
975         }
976
977 out:
978         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
979                                          (logical_block_size >> 9));
980 }
981
982 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
983 {
984         struct request *rq = scsi_cmd_to_rq(cmd);
985         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
986
987         /* flush requests don't perform I/O, zero the S/G table */
988         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
989
990         if (cmd->device->use_16_for_sync) {
991                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
992                 cmd->cmd_len = 16;
993         } else {
994                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
995                 cmd->cmd_len = 10;
996         }
997         cmd->transfersize = 0;
998         cmd->allowed = sdkp->max_retries;
999
1000         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1001         return BLK_STS_OK;
1002 }
1003
1004 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1005                                        sector_t lba, unsigned int nr_blocks,
1006                                        unsigned char flags, unsigned int dld)
1007 {
1008         cmd->cmd_len = SD_EXT_CDB_SIZE;
1009         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1010         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1011         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1012         cmd->cmnd[10] = flags;
1013         cmd->cmnd[11] = dld & 0x07;
1014         put_unaligned_be64(lba, &cmd->cmnd[12]);
1015         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1016         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1017
1018         return BLK_STS_OK;
1019 }
1020
1021 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1022                                        sector_t lba, unsigned int nr_blocks,
1023                                        unsigned char flags, unsigned int dld)
1024 {
1025         cmd->cmd_len  = 16;
1026         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1027         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1028         cmd->cmnd[14] = (dld & 0x03) << 6;
1029         cmd->cmnd[15] = 0;
1030         put_unaligned_be64(lba, &cmd->cmnd[2]);
1031         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1032
1033         return BLK_STS_OK;
1034 }
1035
1036 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1037                                        sector_t lba, unsigned int nr_blocks,
1038                                        unsigned char flags)
1039 {
1040         cmd->cmd_len = 10;
1041         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1042         cmd->cmnd[1] = flags;
1043         cmd->cmnd[6] = 0;
1044         cmd->cmnd[9] = 0;
1045         put_unaligned_be32(lba, &cmd->cmnd[2]);
1046         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1047
1048         return BLK_STS_OK;
1049 }
1050
1051 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1052                                       sector_t lba, unsigned int nr_blocks,
1053                                       unsigned char flags)
1054 {
1055         /* Avoid that 0 blocks gets translated into 256 blocks. */
1056         if (WARN_ON_ONCE(nr_blocks == 0))
1057                 return BLK_STS_IOERR;
1058
1059         if (unlikely(flags & 0x8)) {
1060                 /*
1061                  * This happens only if this drive failed 10byte rw
1062                  * command with ILLEGAL_REQUEST during operation and
1063                  * thus turned off use_10_for_rw.
1064                  */
1065                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1066                 return BLK_STS_IOERR;
1067         }
1068
1069         cmd->cmd_len = 6;
1070         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1071         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1072         cmd->cmnd[2] = (lba >> 8) & 0xff;
1073         cmd->cmnd[3] = lba & 0xff;
1074         cmd->cmnd[4] = nr_blocks;
1075         cmd->cmnd[5] = 0;
1076
1077         return BLK_STS_OK;
1078 }
1079
1080 /*
1081  * Check if a command has a duration limit set. If it does, and the target
1082  * device supports CDL and the feature is enabled, return the limit
1083  * descriptor index to use. Return 0 (no limit) otherwise.
1084  */
1085 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1086 {
1087         struct scsi_device *sdp = sdkp->device;
1088         int hint;
1089
1090         if (!sdp->cdl_supported || !sdp->cdl_enable)
1091                 return 0;
1092
1093         /*
1094          * Use "no limit" if the request ioprio does not specify a duration
1095          * limit hint.
1096          */
1097         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1098         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1099             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1100                 return 0;
1101
1102         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1103 }
1104
1105 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1106 {
1107         struct request *rq = scsi_cmd_to_rq(cmd);
1108         struct scsi_device *sdp = cmd->device;
1109         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1110         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1111         sector_t threshold;
1112         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1113         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1114         bool write = rq_data_dir(rq) == WRITE;
1115         unsigned char protect, fua;
1116         unsigned int dld;
1117         blk_status_t ret;
1118         unsigned int dif;
1119         bool dix;
1120
1121         ret = scsi_alloc_sgtables(cmd);
1122         if (ret != BLK_STS_OK)
1123                 return ret;
1124
1125         ret = BLK_STS_IOERR;
1126         if (!scsi_device_online(sdp) || sdp->changed) {
1127                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1128                 goto fail;
1129         }
1130
1131         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1132                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1133                 goto fail;
1134         }
1135
1136         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1137                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1138                 goto fail;
1139         }
1140
1141         /*
1142          * Some SD card readers can't handle accesses which touch the
1143          * last one or two logical blocks. Split accesses as needed.
1144          */
1145         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1146
1147         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1148                 if (lba < threshold) {
1149                         /* Access up to the threshold but not beyond */
1150                         nr_blocks = threshold - lba;
1151                 } else {
1152                         /* Access only a single logical block */
1153                         nr_blocks = 1;
1154                 }
1155         }
1156
1157         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1158                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1159                 if (ret)
1160                         goto fail;
1161         }
1162
1163         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1164         dix = scsi_prot_sg_count(cmd);
1165         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1166         dld = sd_cdl_dld(sdkp, cmd);
1167
1168         if (dif || dix)
1169                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1170         else
1171                 protect = 0;
1172
1173         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1174                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1175                                          protect | fua, dld);
1176         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1177                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1178                                          protect | fua, dld);
1179         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1180                    sdp->use_10_for_rw || protect) {
1181                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1182                                          protect | fua);
1183         } else {
1184                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1185                                         protect | fua);
1186         }
1187
1188         if (unlikely(ret != BLK_STS_OK))
1189                 goto fail;
1190
1191         /*
1192          * We shouldn't disconnect in the middle of a sector, so with a dumb
1193          * host adapter, it's safe to assume that we can at least transfer
1194          * this many bytes between each connect / disconnect.
1195          */
1196         cmd->transfersize = sdp->sector_size;
1197         cmd->underflow = nr_blocks << 9;
1198         cmd->allowed = sdkp->max_retries;
1199         cmd->sdb.length = nr_blocks * sdp->sector_size;
1200
1201         SCSI_LOG_HLQUEUE(1,
1202                          scmd_printk(KERN_INFO, cmd,
1203                                      "%s: block=%llu, count=%d\n", __func__,
1204                                      (unsigned long long)blk_rq_pos(rq),
1205                                      blk_rq_sectors(rq)));
1206         SCSI_LOG_HLQUEUE(2,
1207                          scmd_printk(KERN_INFO, cmd,
1208                                      "%s %d/%u 512 byte blocks.\n",
1209                                      write ? "writing" : "reading", nr_blocks,
1210                                      blk_rq_sectors(rq)));
1211
1212         /*
1213          * This indicates that the command is ready from our end to be queued.
1214          */
1215         return BLK_STS_OK;
1216 fail:
1217         scsi_free_sgtables(cmd);
1218         return ret;
1219 }
1220
1221 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1222 {
1223         struct request *rq = scsi_cmd_to_rq(cmd);
1224
1225         switch (req_op(rq)) {
1226         case REQ_OP_DISCARD:
1227                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1228                 case SD_LBP_UNMAP:
1229                         return sd_setup_unmap_cmnd(cmd);
1230                 case SD_LBP_WS16:
1231                         return sd_setup_write_same16_cmnd(cmd, true);
1232                 case SD_LBP_WS10:
1233                         return sd_setup_write_same10_cmnd(cmd, true);
1234                 case SD_LBP_ZERO:
1235                         return sd_setup_write_same10_cmnd(cmd, false);
1236                 default:
1237                         return BLK_STS_TARGET;
1238                 }
1239         case REQ_OP_WRITE_ZEROES:
1240                 return sd_setup_write_zeroes_cmnd(cmd);
1241         case REQ_OP_FLUSH:
1242                 return sd_setup_flush_cmnd(cmd);
1243         case REQ_OP_READ:
1244         case REQ_OP_WRITE:
1245         case REQ_OP_ZONE_APPEND:
1246                 return sd_setup_read_write_cmnd(cmd);
1247         case REQ_OP_ZONE_RESET:
1248                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1249                                                    false);
1250         case REQ_OP_ZONE_RESET_ALL:
1251                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1252                                                    true);
1253         case REQ_OP_ZONE_OPEN:
1254                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1255         case REQ_OP_ZONE_CLOSE:
1256                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1257         case REQ_OP_ZONE_FINISH:
1258                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1259         default:
1260                 WARN_ON_ONCE(1);
1261                 return BLK_STS_NOTSUPP;
1262         }
1263 }
1264
1265 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1266 {
1267         struct request *rq = scsi_cmd_to_rq(SCpnt);
1268
1269         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1270                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1271 }
1272
1273 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1274 {
1275         if (sdkp->device->removable || sdkp->write_prot) {
1276                 if (disk_check_media_change(disk))
1277                         return true;
1278         }
1279
1280         /*
1281          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1282          * nothing to do with partitions, BLKRRPART is used to force a full
1283          * revalidate after things like a format for historical reasons.
1284          */
1285         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1286 }
1287
1288 /**
1289  *      sd_open - open a scsi disk device
1290  *      @disk: disk to open
1291  *      @mode: open mode
1292  *
1293  *      Returns 0 if successful. Returns a negated errno value in case 
1294  *      of error.
1295  *
1296  *      Note: This can be called from a user context (e.g. fsck(1) )
1297  *      or from within the kernel (e.g. as a result of a mount(1) ).
1298  *      In the latter case @inode and @filp carry an abridged amount
1299  *      of information as noted above.
1300  *
1301  *      Locking: called with disk->open_mutex held.
1302  **/
1303 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1304 {
1305         struct scsi_disk *sdkp = scsi_disk(disk);
1306         struct scsi_device *sdev = sdkp->device;
1307         int retval;
1308
1309         if (scsi_device_get(sdev))
1310                 return -ENXIO;
1311
1312         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1313
1314         /*
1315          * If the device is in error recovery, wait until it is done.
1316          * If the device is offline, then disallow any access to it.
1317          */
1318         retval = -ENXIO;
1319         if (!scsi_block_when_processing_errors(sdev))
1320                 goto error_out;
1321
1322         if (sd_need_revalidate(disk, sdkp))
1323                 sd_revalidate_disk(disk);
1324
1325         /*
1326          * If the drive is empty, just let the open fail.
1327          */
1328         retval = -ENOMEDIUM;
1329         if (sdev->removable && !sdkp->media_present &&
1330             !(mode & BLK_OPEN_NDELAY))
1331                 goto error_out;
1332
1333         /*
1334          * If the device has the write protect tab set, have the open fail
1335          * if the user expects to be able to write to the thing.
1336          */
1337         retval = -EROFS;
1338         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1339                 goto error_out;
1340
1341         /*
1342          * It is possible that the disk changing stuff resulted in
1343          * the device being taken offline.  If this is the case,
1344          * report this to the user, and don't pretend that the
1345          * open actually succeeded.
1346          */
1347         retval = -ENXIO;
1348         if (!scsi_device_online(sdev))
1349                 goto error_out;
1350
1351         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1352                 if (scsi_block_when_processing_errors(sdev))
1353                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1354         }
1355
1356         return 0;
1357
1358 error_out:
1359         scsi_device_put(sdev);
1360         return retval;  
1361 }
1362
1363 /**
1364  *      sd_release - invoked when the (last) close(2) is called on this
1365  *      scsi disk.
1366  *      @disk: disk to release
1367  *
1368  *      Returns 0. 
1369  *
1370  *      Note: may block (uninterruptible) if error recovery is underway
1371  *      on this disk.
1372  *
1373  *      Locking: called with disk->open_mutex held.
1374  **/
1375 static void sd_release(struct gendisk *disk)
1376 {
1377         struct scsi_disk *sdkp = scsi_disk(disk);
1378         struct scsi_device *sdev = sdkp->device;
1379
1380         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1381
1382         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1383                 if (scsi_block_when_processing_errors(sdev))
1384                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1385         }
1386
1387         scsi_device_put(sdev);
1388 }
1389
1390 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1391 {
1392         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1393         struct scsi_device *sdp = sdkp->device;
1394         struct Scsi_Host *host = sdp->host;
1395         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1396         int diskinfo[4];
1397
1398         /* default to most commonly used values */
1399         diskinfo[0] = 0x40;     /* 1 << 6 */
1400         diskinfo[1] = 0x20;     /* 1 << 5 */
1401         diskinfo[2] = capacity >> 11;
1402
1403         /* override with calculated, extended default, or driver values */
1404         if (host->hostt->bios_param)
1405                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1406         else
1407                 scsicam_bios_param(bdev, capacity, diskinfo);
1408
1409         geo->heads = diskinfo[0];
1410         geo->sectors = diskinfo[1];
1411         geo->cylinders = diskinfo[2];
1412         return 0;
1413 }
1414
1415 /**
1416  *      sd_ioctl - process an ioctl
1417  *      @bdev: target block device
1418  *      @mode: open mode
1419  *      @cmd: ioctl command number
1420  *      @arg: this is third argument given to ioctl(2) system call.
1421  *      Often contains a pointer.
1422  *
1423  *      Returns 0 if successful (some ioctls return positive numbers on
1424  *      success as well). Returns a negated errno value in case of error.
1425  *
1426  *      Note: most ioctls are forward onto the block subsystem or further
1427  *      down in the scsi subsystem.
1428  **/
1429 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1430                     unsigned int cmd, unsigned long arg)
1431 {
1432         struct gendisk *disk = bdev->bd_disk;
1433         struct scsi_disk *sdkp = scsi_disk(disk);
1434         struct scsi_device *sdp = sdkp->device;
1435         void __user *p = (void __user *)arg;
1436         int error;
1437     
1438         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1439                                     "cmd=0x%x\n", disk->disk_name, cmd));
1440
1441         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1442                 return -ENOIOCTLCMD;
1443
1444         /*
1445          * If we are in the middle of error recovery, don't let anyone
1446          * else try and use this device.  Also, if error recovery fails, it
1447          * may try and take the device offline, in which case all further
1448          * access to the device is prohibited.
1449          */
1450         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1451                         (mode & BLK_OPEN_NDELAY));
1452         if (error)
1453                 return error;
1454
1455         if (is_sed_ioctl(cmd))
1456                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1457         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1458 }
1459
1460 static void set_media_not_present(struct scsi_disk *sdkp)
1461 {
1462         if (sdkp->media_present)
1463                 sdkp->device->changed = 1;
1464
1465         if (sdkp->device->removable) {
1466                 sdkp->media_present = 0;
1467                 sdkp->capacity = 0;
1468         }
1469 }
1470
1471 static int media_not_present(struct scsi_disk *sdkp,
1472                              struct scsi_sense_hdr *sshdr)
1473 {
1474         if (!scsi_sense_valid(sshdr))
1475                 return 0;
1476
1477         /* not invoked for commands that could return deferred errors */
1478         switch (sshdr->sense_key) {
1479         case UNIT_ATTENTION:
1480         case NOT_READY:
1481                 /* medium not present */
1482                 if (sshdr->asc == 0x3A) {
1483                         set_media_not_present(sdkp);
1484                         return 1;
1485                 }
1486         }
1487         return 0;
1488 }
1489
1490 /**
1491  *      sd_check_events - check media events
1492  *      @disk: kernel device descriptor
1493  *      @clearing: disk events currently being cleared
1494  *
1495  *      Returns mask of DISK_EVENT_*.
1496  *
1497  *      Note: this function is invoked from the block subsystem.
1498  **/
1499 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1500 {
1501         struct scsi_disk *sdkp = disk->private_data;
1502         struct scsi_device *sdp;
1503         int retval;
1504         bool disk_changed;
1505
1506         if (!sdkp)
1507                 return 0;
1508
1509         sdp = sdkp->device;
1510         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1511
1512         /*
1513          * If the device is offline, don't send any commands - just pretend as
1514          * if the command failed.  If the device ever comes back online, we
1515          * can deal with it then.  It is only because of unrecoverable errors
1516          * that we would ever take a device offline in the first place.
1517          */
1518         if (!scsi_device_online(sdp)) {
1519                 set_media_not_present(sdkp);
1520                 goto out;
1521         }
1522
1523         /*
1524          * Using TEST_UNIT_READY enables differentiation between drive with
1525          * no cartridge loaded - NOT READY, drive with changed cartridge -
1526          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1527          *
1528          * Drives that auto spin down. eg iomega jaz 1G, will be started
1529          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1530          * sd_revalidate() is called.
1531          */
1532         if (scsi_block_when_processing_errors(sdp)) {
1533                 struct scsi_sense_hdr sshdr = { 0, };
1534
1535                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1536                                               &sshdr);
1537
1538                 /* failed to execute TUR, assume media not present */
1539                 if (retval < 0 || host_byte(retval)) {
1540                         set_media_not_present(sdkp);
1541                         goto out;
1542                 }
1543
1544                 if (media_not_present(sdkp, &sshdr))
1545                         goto out;
1546         }
1547
1548         /*
1549          * For removable scsi disk we have to recognise the presence
1550          * of a disk in the drive.
1551          */
1552         if (!sdkp->media_present)
1553                 sdp->changed = 1;
1554         sdkp->media_present = 1;
1555 out:
1556         /*
1557          * sdp->changed is set under the following conditions:
1558          *
1559          *      Medium present state has changed in either direction.
1560          *      Device has indicated UNIT_ATTENTION.
1561          */
1562         disk_changed = sdp->changed;
1563         sdp->changed = 0;
1564         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1565 }
1566
1567 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1568 {
1569         int retries, res;
1570         struct scsi_device *sdp = sdkp->device;
1571         const int timeout = sdp->request_queue->rq_timeout
1572                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1573         struct scsi_sense_hdr my_sshdr;
1574         const struct scsi_exec_args exec_args = {
1575                 .req_flags = BLK_MQ_REQ_PM,
1576                 /* caller might not be interested in sense, but we need it */
1577                 .sshdr = sshdr ? : &my_sshdr,
1578         };
1579
1580         if (!scsi_device_online(sdp))
1581                 return -ENODEV;
1582
1583         sshdr = exec_args.sshdr;
1584
1585         for (retries = 3; retries > 0; --retries) {
1586                 unsigned char cmd[16] = { 0 };
1587
1588                 if (sdp->use_16_for_sync)
1589                         cmd[0] = SYNCHRONIZE_CACHE_16;
1590                 else
1591                         cmd[0] = SYNCHRONIZE_CACHE;
1592                 /*
1593                  * Leave the rest of the command zero to indicate
1594                  * flush everything.
1595                  */
1596                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1597                                        timeout, sdkp->max_retries, &exec_args);
1598                 if (res == 0)
1599                         break;
1600         }
1601
1602         if (res) {
1603                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1604
1605                 if (res < 0)
1606                         return res;
1607
1608                 if (scsi_status_is_check_condition(res) &&
1609                     scsi_sense_valid(sshdr)) {
1610                         sd_print_sense_hdr(sdkp, sshdr);
1611
1612                         /* we need to evaluate the error return  */
1613                         if (sshdr->asc == 0x3a ||       /* medium not present */
1614                             sshdr->asc == 0x20 ||       /* invalid command */
1615                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1616                                 /* this is no error here */
1617                                 return 0;
1618                 }
1619
1620                 switch (host_byte(res)) {
1621                 /* ignore errors due to racing a disconnection */
1622                 case DID_BAD_TARGET:
1623                 case DID_NO_CONNECT:
1624                         return 0;
1625                 /* signal the upper layer it might try again */
1626                 case DID_BUS_BUSY:
1627                 case DID_IMM_RETRY:
1628                 case DID_REQUEUE:
1629                 case DID_SOFT_ERROR:
1630                         return -EBUSY;
1631                 default:
1632                         return -EIO;
1633                 }
1634         }
1635         return 0;
1636 }
1637
1638 static void sd_rescan(struct device *dev)
1639 {
1640         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1641
1642         sd_revalidate_disk(sdkp->disk);
1643 }
1644
1645 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1646                 enum blk_unique_id type)
1647 {
1648         struct scsi_device *sdev = scsi_disk(disk)->device;
1649         const struct scsi_vpd *vpd;
1650         const unsigned char *d;
1651         int ret = -ENXIO, len;
1652
1653         rcu_read_lock();
1654         vpd = rcu_dereference(sdev->vpd_pg83);
1655         if (!vpd)
1656                 goto out_unlock;
1657
1658         ret = -EINVAL;
1659         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1660                 /* we only care about designators with LU association */
1661                 if (((d[1] >> 4) & 0x3) != 0x00)
1662                         continue;
1663                 if ((d[1] & 0xf) != type)
1664                         continue;
1665
1666                 /*
1667                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1668                  * keep looking as one with more entropy might still show up.
1669                  */
1670                 len = d[3];
1671                 if (len != 8 && len != 12 && len != 16)
1672                         continue;
1673                 ret = len;
1674                 memcpy(id, d + 4, len);
1675                 if (len == 16)
1676                         break;
1677         }
1678 out_unlock:
1679         rcu_read_unlock();
1680         return ret;
1681 }
1682
1683 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1684 {
1685         switch (host_byte(result)) {
1686         case DID_TRANSPORT_MARGINAL:
1687         case DID_TRANSPORT_DISRUPTED:
1688         case DID_BUS_BUSY:
1689                 return PR_STS_RETRY_PATH_FAILURE;
1690         case DID_NO_CONNECT:
1691                 return PR_STS_PATH_FAILED;
1692         case DID_TRANSPORT_FAILFAST:
1693                 return PR_STS_PATH_FAST_FAILED;
1694         }
1695
1696         switch (status_byte(result)) {
1697         case SAM_STAT_RESERVATION_CONFLICT:
1698                 return PR_STS_RESERVATION_CONFLICT;
1699         case SAM_STAT_CHECK_CONDITION:
1700                 if (!scsi_sense_valid(sshdr))
1701                         return PR_STS_IOERR;
1702
1703                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1704                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1705                         return -EINVAL;
1706
1707                 fallthrough;
1708         default:
1709                 return PR_STS_IOERR;
1710         }
1711 }
1712
1713 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1714                             unsigned char *data, int data_len)
1715 {
1716         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1717         struct scsi_device *sdev = sdkp->device;
1718         struct scsi_sense_hdr sshdr;
1719         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1720         const struct scsi_exec_args exec_args = {
1721                 .sshdr = &sshdr,
1722         };
1723         int result;
1724
1725         put_unaligned_be16(data_len, &cmd[7]);
1726
1727         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1728                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1729         if (scsi_status_is_check_condition(result) &&
1730             scsi_sense_valid(&sshdr)) {
1731                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1732                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1733         }
1734
1735         if (result <= 0)
1736                 return result;
1737
1738         return sd_scsi_to_pr_err(&sshdr, result);
1739 }
1740
1741 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1742 {
1743         int result, i, data_offset, num_copy_keys;
1744         u32 num_keys = keys_info->num_keys;
1745         int data_len = num_keys * 8 + 8;
1746         u8 *data;
1747
1748         data = kzalloc(data_len, GFP_KERNEL);
1749         if (!data)
1750                 return -ENOMEM;
1751
1752         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1753         if (result)
1754                 goto free_data;
1755
1756         keys_info->generation = get_unaligned_be32(&data[0]);
1757         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1758
1759         data_offset = 8;
1760         num_copy_keys = min(num_keys, keys_info->num_keys);
1761
1762         for (i = 0; i < num_copy_keys; i++) {
1763                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1764                 data_offset += 8;
1765         }
1766
1767 free_data:
1768         kfree(data);
1769         return result;
1770 }
1771
1772 static int sd_pr_read_reservation(struct block_device *bdev,
1773                                   struct pr_held_reservation *rsv)
1774 {
1775         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1776         struct scsi_device *sdev = sdkp->device;
1777         u8 data[24] = { };
1778         int result, len;
1779
1780         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1781         if (result)
1782                 return result;
1783
1784         len = get_unaligned_be32(&data[4]);
1785         if (!len)
1786                 return 0;
1787
1788         /* Make sure we have at least the key and type */
1789         if (len < 14) {
1790                 sdev_printk(KERN_INFO, sdev,
1791                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1792                             len);
1793                 return -EINVAL;
1794         }
1795
1796         rsv->generation = get_unaligned_be32(&data[0]);
1797         rsv->key = get_unaligned_be64(&data[8]);
1798         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1799         return 0;
1800 }
1801
1802 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1803                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1804 {
1805         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1806         struct scsi_device *sdev = sdkp->device;
1807         struct scsi_sense_hdr sshdr;
1808         const struct scsi_exec_args exec_args = {
1809                 .sshdr = &sshdr,
1810         };
1811         int result;
1812         u8 cmd[16] = { 0, };
1813         u8 data[24] = { 0, };
1814
1815         cmd[0] = PERSISTENT_RESERVE_OUT;
1816         cmd[1] = sa;
1817         cmd[2] = type;
1818         put_unaligned_be32(sizeof(data), &cmd[5]);
1819
1820         put_unaligned_be64(key, &data[0]);
1821         put_unaligned_be64(sa_key, &data[8]);
1822         data[20] = flags;
1823
1824         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1825                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1826                                   &exec_args);
1827
1828         if (scsi_status_is_check_condition(result) &&
1829             scsi_sense_valid(&sshdr)) {
1830                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1831                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1832         }
1833
1834         if (result <= 0)
1835                 return result;
1836
1837         return sd_scsi_to_pr_err(&sshdr, result);
1838 }
1839
1840 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1841                 u32 flags)
1842 {
1843         if (flags & ~PR_FL_IGNORE_KEY)
1844                 return -EOPNOTSUPP;
1845         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1846                         old_key, new_key, 0,
1847                         (1 << 0) /* APTPL */);
1848 }
1849
1850 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1851                 u32 flags)
1852 {
1853         if (flags)
1854                 return -EOPNOTSUPP;
1855         return sd_pr_out_command(bdev, 0x01, key, 0,
1856                                  block_pr_type_to_scsi(type), 0);
1857 }
1858
1859 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1860 {
1861         return sd_pr_out_command(bdev, 0x02, key, 0,
1862                                  block_pr_type_to_scsi(type), 0);
1863 }
1864
1865 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1866                 enum pr_type type, bool abort)
1867 {
1868         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1869                                  block_pr_type_to_scsi(type), 0);
1870 }
1871
1872 static int sd_pr_clear(struct block_device *bdev, u64 key)
1873 {
1874         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1875 }
1876
1877 static const struct pr_ops sd_pr_ops = {
1878         .pr_register    = sd_pr_register,
1879         .pr_reserve     = sd_pr_reserve,
1880         .pr_release     = sd_pr_release,
1881         .pr_preempt     = sd_pr_preempt,
1882         .pr_clear       = sd_pr_clear,
1883         .pr_read_keys   = sd_pr_read_keys,
1884         .pr_read_reservation = sd_pr_read_reservation,
1885 };
1886
1887 static void scsi_disk_free_disk(struct gendisk *disk)
1888 {
1889         struct scsi_disk *sdkp = scsi_disk(disk);
1890
1891         put_device(&sdkp->disk_dev);
1892 }
1893
1894 static const struct block_device_operations sd_fops = {
1895         .owner                  = THIS_MODULE,
1896         .open                   = sd_open,
1897         .release                = sd_release,
1898         .ioctl                  = sd_ioctl,
1899         .getgeo                 = sd_getgeo,
1900         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1901         .check_events           = sd_check_events,
1902         .unlock_native_capacity = sd_unlock_native_capacity,
1903         .report_zones           = sd_zbc_report_zones,
1904         .get_unique_id          = sd_get_unique_id,
1905         .free_disk              = scsi_disk_free_disk,
1906         .pr_ops                 = &sd_pr_ops,
1907 };
1908
1909 /**
1910  *      sd_eh_reset - reset error handling callback
1911  *      @scmd:          sd-issued command that has failed
1912  *
1913  *      This function is called by the SCSI midlayer before starting
1914  *      SCSI EH. When counting medium access failures we have to be
1915  *      careful to register it only only once per device and SCSI EH run;
1916  *      there might be several timed out commands which will cause the
1917  *      'max_medium_access_timeouts' counter to trigger after the first
1918  *      SCSI EH run already and set the device to offline.
1919  *      So this function resets the internal counter before starting SCSI EH.
1920  **/
1921 static void sd_eh_reset(struct scsi_cmnd *scmd)
1922 {
1923         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1924
1925         /* New SCSI EH run, reset gate variable */
1926         sdkp->ignore_medium_access_errors = false;
1927 }
1928
1929 /**
1930  *      sd_eh_action - error handling callback
1931  *      @scmd:          sd-issued command that has failed
1932  *      @eh_disp:       The recovery disposition suggested by the midlayer
1933  *
1934  *      This function is called by the SCSI midlayer upon completion of an
1935  *      error test command (currently TEST UNIT READY). The result of sending
1936  *      the eh command is passed in eh_disp.  We're looking for devices that
1937  *      fail medium access commands but are OK with non access commands like
1938  *      test unit ready (so wrongly see the device as having a successful
1939  *      recovery)
1940  **/
1941 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1942 {
1943         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1944         struct scsi_device *sdev = scmd->device;
1945
1946         if (!scsi_device_online(sdev) ||
1947             !scsi_medium_access_command(scmd) ||
1948             host_byte(scmd->result) != DID_TIME_OUT ||
1949             eh_disp != SUCCESS)
1950                 return eh_disp;
1951
1952         /*
1953          * The device has timed out executing a medium access command.
1954          * However, the TEST UNIT READY command sent during error
1955          * handling completed successfully. Either the device is in the
1956          * process of recovering or has it suffered an internal failure
1957          * that prevents access to the storage medium.
1958          */
1959         if (!sdkp->ignore_medium_access_errors) {
1960                 sdkp->medium_access_timed_out++;
1961                 sdkp->ignore_medium_access_errors = true;
1962         }
1963
1964         /*
1965          * If the device keeps failing read/write commands but TEST UNIT
1966          * READY always completes successfully we assume that medium
1967          * access is no longer possible and take the device offline.
1968          */
1969         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1970                 scmd_printk(KERN_ERR, scmd,
1971                             "Medium access timeout failure. Offlining disk!\n");
1972                 mutex_lock(&sdev->state_mutex);
1973                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1974                 mutex_unlock(&sdev->state_mutex);
1975
1976                 return SUCCESS;
1977         }
1978
1979         return eh_disp;
1980 }
1981
1982 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1983 {
1984         struct request *req = scsi_cmd_to_rq(scmd);
1985         struct scsi_device *sdev = scmd->device;
1986         unsigned int transferred, good_bytes;
1987         u64 start_lba, end_lba, bad_lba;
1988
1989         /*
1990          * Some commands have a payload smaller than the device logical
1991          * block size (e.g. INQUIRY on a 4K disk).
1992          */
1993         if (scsi_bufflen(scmd) <= sdev->sector_size)
1994                 return 0;
1995
1996         /* Check if we have a 'bad_lba' information */
1997         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1998                                      SCSI_SENSE_BUFFERSIZE,
1999                                      &bad_lba))
2000                 return 0;
2001
2002         /*
2003          * If the bad lba was reported incorrectly, we have no idea where
2004          * the error is.
2005          */
2006         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2007         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2008         if (bad_lba < start_lba || bad_lba >= end_lba)
2009                 return 0;
2010
2011         /*
2012          * resid is optional but mostly filled in.  When it's unused,
2013          * its value is zero, so we assume the whole buffer transferred
2014          */
2015         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2016
2017         /* This computation should always be done in terms of the
2018          * resolution of the device's medium.
2019          */
2020         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2021
2022         return min(good_bytes, transferred);
2023 }
2024
2025 /**
2026  *      sd_done - bottom half handler: called when the lower level
2027  *      driver has completed (successfully or otherwise) a scsi command.
2028  *      @SCpnt: mid-level's per command structure.
2029  *
2030  *      Note: potentially run from within an ISR. Must not block.
2031  **/
2032 static int sd_done(struct scsi_cmnd *SCpnt)
2033 {
2034         int result = SCpnt->result;
2035         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2036         unsigned int sector_size = SCpnt->device->sector_size;
2037         unsigned int resid;
2038         struct scsi_sense_hdr sshdr;
2039         struct request *req = scsi_cmd_to_rq(SCpnt);
2040         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2041         int sense_valid = 0;
2042         int sense_deferred = 0;
2043
2044         switch (req_op(req)) {
2045         case REQ_OP_DISCARD:
2046         case REQ_OP_WRITE_ZEROES:
2047         case REQ_OP_ZONE_RESET:
2048         case REQ_OP_ZONE_RESET_ALL:
2049         case REQ_OP_ZONE_OPEN:
2050         case REQ_OP_ZONE_CLOSE:
2051         case REQ_OP_ZONE_FINISH:
2052                 if (!result) {
2053                         good_bytes = blk_rq_bytes(req);
2054                         scsi_set_resid(SCpnt, 0);
2055                 } else {
2056                         good_bytes = 0;
2057                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2058                 }
2059                 break;
2060         default:
2061                 /*
2062                  * In case of bogus fw or device, we could end up having
2063                  * an unaligned partial completion. Check this here and force
2064                  * alignment.
2065                  */
2066                 resid = scsi_get_resid(SCpnt);
2067                 if (resid & (sector_size - 1)) {
2068                         sd_printk(KERN_INFO, sdkp,
2069                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2070                                 resid, sector_size);
2071                         scsi_print_command(SCpnt);
2072                         resid = min(scsi_bufflen(SCpnt),
2073                                     round_up(resid, sector_size));
2074                         scsi_set_resid(SCpnt, resid);
2075                 }
2076         }
2077
2078         if (result) {
2079                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2080                 if (sense_valid)
2081                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2082         }
2083         sdkp->medium_access_timed_out = 0;
2084
2085         if (!scsi_status_is_check_condition(result) &&
2086             (!sense_valid || sense_deferred))
2087                 goto out;
2088
2089         switch (sshdr.sense_key) {
2090         case HARDWARE_ERROR:
2091         case MEDIUM_ERROR:
2092                 good_bytes = sd_completed_bytes(SCpnt);
2093                 break;
2094         case RECOVERED_ERROR:
2095                 good_bytes = scsi_bufflen(SCpnt);
2096                 break;
2097         case NO_SENSE:
2098                 /* This indicates a false check condition, so ignore it.  An
2099                  * unknown amount of data was transferred so treat it as an
2100                  * error.
2101                  */
2102                 SCpnt->result = 0;
2103                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2104                 break;
2105         case ABORTED_COMMAND:
2106                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2107                         good_bytes = sd_completed_bytes(SCpnt);
2108                 break;
2109         case ILLEGAL_REQUEST:
2110                 switch (sshdr.asc) {
2111                 case 0x10:      /* DIX: Host detected corruption */
2112                         good_bytes = sd_completed_bytes(SCpnt);
2113                         break;
2114                 case 0x20:      /* INVALID COMMAND OPCODE */
2115                 case 0x24:      /* INVALID FIELD IN CDB */
2116                         switch (SCpnt->cmnd[0]) {
2117                         case UNMAP:
2118                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2119                                 break;
2120                         case WRITE_SAME_16:
2121                         case WRITE_SAME:
2122                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2123                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2124                                 } else {
2125                                         sdkp->device->no_write_same = 1;
2126                                         sd_config_write_same(sdkp);
2127                                         req->rq_flags |= RQF_QUIET;
2128                                 }
2129                                 break;
2130                         }
2131                 }
2132                 break;
2133         default:
2134                 break;
2135         }
2136
2137  out:
2138         if (sd_is_zoned(sdkp))
2139                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2140
2141         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2142                                            "sd_done: completed %d of %d bytes\n",
2143                                            good_bytes, scsi_bufflen(SCpnt)));
2144
2145         return good_bytes;
2146 }
2147
2148 /*
2149  * spinup disk - called only in sd_revalidate_disk()
2150  */
2151 static void
2152 sd_spinup_disk(struct scsi_disk *sdkp)
2153 {
2154         unsigned char cmd[10];
2155         unsigned long spintime_expire = 0;
2156         int retries, spintime;
2157         unsigned int the_result;
2158         struct scsi_sense_hdr sshdr;
2159         const struct scsi_exec_args exec_args = {
2160                 .sshdr = &sshdr,
2161         };
2162         int sense_valid = 0;
2163
2164         spintime = 0;
2165
2166         /* Spin up drives, as required.  Only do this at boot time */
2167         /* Spinup needs to be done for module loads too. */
2168         do {
2169                 retries = 0;
2170
2171                 do {
2172                         bool media_was_present = sdkp->media_present;
2173
2174                         cmd[0] = TEST_UNIT_READY;
2175                         memset((void *) &cmd[1], 0, 9);
2176
2177                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2178                                                       REQ_OP_DRV_IN, NULL, 0,
2179                                                       SD_TIMEOUT,
2180                                                       sdkp->max_retries,
2181                                                       &exec_args);
2182
2183                         /*
2184                          * If the drive has indicated to us that it
2185                          * doesn't have any media in it, don't bother
2186                          * with any more polling.
2187                          */
2188                         if (media_not_present(sdkp, &sshdr)) {
2189                                 if (media_was_present)
2190                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2191                                 return;
2192                         }
2193
2194                         if (the_result)
2195                                 sense_valid = scsi_sense_valid(&sshdr);
2196                         retries++;
2197                 } while (retries < 3 &&
2198                          (!scsi_status_is_good(the_result) ||
2199                           (scsi_status_is_check_condition(the_result) &&
2200                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2201
2202                 if (!scsi_status_is_check_condition(the_result)) {
2203                         /* no sense, TUR either succeeded or failed
2204                          * with a status error */
2205                         if(!spintime && !scsi_status_is_good(the_result)) {
2206                                 sd_print_result(sdkp, "Test Unit Ready failed",
2207                                                 the_result);
2208                         }
2209                         break;
2210                 }
2211
2212                 /*
2213                  * The device does not want the automatic start to be issued.
2214                  */
2215                 if (sdkp->device->no_start_on_add)
2216                         break;
2217
2218                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2219                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2220                                 break;  /* manual intervention required */
2221                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2222                                 break;  /* standby */
2223                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2224                                 break;  /* unavailable */
2225                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2226                                 break;  /* sanitize in progress */
2227                         /*
2228                          * Issue command to spin up drive when not ready
2229                          */
2230                         if (!spintime) {
2231                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2232                                 cmd[0] = START_STOP;
2233                                 cmd[1] = 1;     /* Return immediately */
2234                                 memset((void *) &cmd[2], 0, 8);
2235                                 cmd[4] = 1;     /* Start spin cycle */
2236                                 if (sdkp->device->start_stop_pwr_cond)
2237                                         cmd[4] |= 1 << 4;
2238                                 scsi_execute_cmd(sdkp->device, cmd,
2239                                                  REQ_OP_DRV_IN, NULL, 0,
2240                                                  SD_TIMEOUT, sdkp->max_retries,
2241                                                  &exec_args);
2242                                 spintime_expire = jiffies + 100 * HZ;
2243                                 spintime = 1;
2244                         }
2245                         /* Wait 1 second for next try */
2246                         msleep(1000);
2247                         printk(KERN_CONT ".");
2248
2249                 /*
2250                  * Wait for USB flash devices with slow firmware.
2251                  * Yes, this sense key/ASC combination shouldn't
2252                  * occur here.  It's characteristic of these devices.
2253                  */
2254                 } else if (sense_valid &&
2255                                 sshdr.sense_key == UNIT_ATTENTION &&
2256                                 sshdr.asc == 0x28) {
2257                         if (!spintime) {
2258                                 spintime_expire = jiffies + 5 * HZ;
2259                                 spintime = 1;
2260                         }
2261                         /* Wait 1 second for next try */
2262                         msleep(1000);
2263                 } else {
2264                         /* we don't understand the sense code, so it's
2265                          * probably pointless to loop */
2266                         if(!spintime) {
2267                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2268                                 sd_print_sense_hdr(sdkp, &sshdr);
2269                         }
2270                         break;
2271                 }
2272                                 
2273         } while (spintime && time_before_eq(jiffies, spintime_expire));
2274
2275         if (spintime) {
2276                 if (scsi_status_is_good(the_result))
2277                         printk(KERN_CONT "ready\n");
2278                 else
2279                         printk(KERN_CONT "not responding...\n");
2280         }
2281 }
2282
2283 /*
2284  * Determine whether disk supports Data Integrity Field.
2285  */
2286 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2287 {
2288         struct scsi_device *sdp = sdkp->device;
2289         u8 type;
2290
2291         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2292                 sdkp->protection_type = 0;
2293                 return 0;
2294         }
2295
2296         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2297
2298         if (type > T10_PI_TYPE3_PROTECTION) {
2299                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2300                           " protection type %u. Disabling disk!\n",
2301                           type);
2302                 sdkp->protection_type = 0;
2303                 return -ENODEV;
2304         }
2305
2306         sdkp->protection_type = type;
2307
2308         return 0;
2309 }
2310
2311 static void sd_config_protection(struct scsi_disk *sdkp)
2312 {
2313         struct scsi_device *sdp = sdkp->device;
2314
2315         sd_dif_config_host(sdkp);
2316
2317         if (!sdkp->protection_type)
2318                 return;
2319
2320         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2321                 sd_first_printk(KERN_NOTICE, sdkp,
2322                                 "Disabling DIF Type %u protection\n",
2323                                 sdkp->protection_type);
2324                 sdkp->protection_type = 0;
2325         }
2326
2327         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2328                         sdkp->protection_type);
2329 }
2330
2331 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2332                         struct scsi_sense_hdr *sshdr, int sense_valid,
2333                         int the_result)
2334 {
2335         if (sense_valid)
2336                 sd_print_sense_hdr(sdkp, sshdr);
2337         else
2338                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2339
2340         /*
2341          * Set dirty bit for removable devices if not ready -
2342          * sometimes drives will not report this properly.
2343          */
2344         if (sdp->removable &&
2345             sense_valid && sshdr->sense_key == NOT_READY)
2346                 set_media_not_present(sdkp);
2347
2348         /*
2349          * We used to set media_present to 0 here to indicate no media
2350          * in the drive, but some drives fail read capacity even with
2351          * media present, so we can't do that.
2352          */
2353         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2354 }
2355
2356 #define RC16_LEN 32
2357 #if RC16_LEN > SD_BUF_SIZE
2358 #error RC16_LEN must not be more than SD_BUF_SIZE
2359 #endif
2360
2361 #define READ_CAPACITY_RETRIES_ON_RESET  10
2362
2363 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2364                                                 unsigned char *buffer)
2365 {
2366         unsigned char cmd[16];
2367         struct scsi_sense_hdr sshdr;
2368         const struct scsi_exec_args exec_args = {
2369                 .sshdr = &sshdr,
2370         };
2371         int sense_valid = 0;
2372         int the_result;
2373         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2374         unsigned int alignment;
2375         unsigned long long lba;
2376         unsigned sector_size;
2377
2378         if (sdp->no_read_capacity_16)
2379                 return -EINVAL;
2380
2381         do {
2382                 memset(cmd, 0, 16);
2383                 cmd[0] = SERVICE_ACTION_IN_16;
2384                 cmd[1] = SAI_READ_CAPACITY_16;
2385                 cmd[13] = RC16_LEN;
2386                 memset(buffer, 0, RC16_LEN);
2387
2388                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2389                                               buffer, RC16_LEN, SD_TIMEOUT,
2390                                               sdkp->max_retries, &exec_args);
2391
2392                 if (media_not_present(sdkp, &sshdr))
2393                         return -ENODEV;
2394
2395                 if (the_result > 0) {
2396                         sense_valid = scsi_sense_valid(&sshdr);
2397                         if (sense_valid &&
2398                             sshdr.sense_key == ILLEGAL_REQUEST &&
2399                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2400                             sshdr.ascq == 0x00)
2401                                 /* Invalid Command Operation Code or
2402                                  * Invalid Field in CDB, just retry
2403                                  * silently with RC10 */
2404                                 return -EINVAL;
2405                         if (sense_valid &&
2406                             sshdr.sense_key == UNIT_ATTENTION &&
2407                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2408                                 /* Device reset might occur several times,
2409                                  * give it one more chance */
2410                                 if (--reset_retries > 0)
2411                                         continue;
2412                 }
2413                 retries--;
2414
2415         } while (the_result && retries);
2416
2417         if (the_result) {
2418                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2419                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2420                 return -EINVAL;
2421         }
2422
2423         sector_size = get_unaligned_be32(&buffer[8]);
2424         lba = get_unaligned_be64(&buffer[0]);
2425
2426         if (sd_read_protection_type(sdkp, buffer) < 0) {
2427                 sdkp->capacity = 0;
2428                 return -ENODEV;
2429         }
2430
2431         /* Logical blocks per physical block exponent */
2432         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2433
2434         /* RC basis */
2435         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2436
2437         /* Lowest aligned logical block */
2438         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2439         blk_queue_alignment_offset(sdp->request_queue, alignment);
2440         if (alignment && sdkp->first_scan)
2441                 sd_printk(KERN_NOTICE, sdkp,
2442                           "physical block alignment offset: %u\n", alignment);
2443
2444         if (buffer[14] & 0x80) { /* LBPME */
2445                 sdkp->lbpme = 1;
2446
2447                 if (buffer[14] & 0x40) /* LBPRZ */
2448                         sdkp->lbprz = 1;
2449
2450                 sd_config_discard(sdkp, SD_LBP_WS16);
2451         }
2452
2453         sdkp->capacity = lba + 1;
2454         return sector_size;
2455 }
2456
2457 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2458                                                 unsigned char *buffer)
2459 {
2460         unsigned char cmd[16];
2461         struct scsi_sense_hdr sshdr;
2462         const struct scsi_exec_args exec_args = {
2463                 .sshdr = &sshdr,
2464         };
2465         int sense_valid = 0;
2466         int the_result;
2467         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2468         sector_t lba;
2469         unsigned sector_size;
2470
2471         do {
2472                 cmd[0] = READ_CAPACITY;
2473                 memset(&cmd[1], 0, 9);
2474                 memset(buffer, 0, 8);
2475
2476                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2477                                               8, SD_TIMEOUT, sdkp->max_retries,
2478                                               &exec_args);
2479
2480                 if (media_not_present(sdkp, &sshdr))
2481                         return -ENODEV;
2482
2483                 if (the_result > 0) {
2484                         sense_valid = scsi_sense_valid(&sshdr);
2485                         if (sense_valid &&
2486                             sshdr.sense_key == UNIT_ATTENTION &&
2487                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2488                                 /* Device reset might occur several times,
2489                                  * give it one more chance */
2490                                 if (--reset_retries > 0)
2491                                         continue;
2492                 }
2493                 retries--;
2494
2495         } while (the_result && retries);
2496
2497         if (the_result) {
2498                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2499                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2500                 return -EINVAL;
2501         }
2502
2503         sector_size = get_unaligned_be32(&buffer[4]);
2504         lba = get_unaligned_be32(&buffer[0]);
2505
2506         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2507                 /* Some buggy (usb cardreader) devices return an lba of
2508                    0xffffffff when the want to report a size of 0 (with
2509                    which they really mean no media is present) */
2510                 sdkp->capacity = 0;
2511                 sdkp->physical_block_size = sector_size;
2512                 return sector_size;
2513         }
2514
2515         sdkp->capacity = lba + 1;
2516         sdkp->physical_block_size = sector_size;
2517         return sector_size;
2518 }
2519
2520 static int sd_try_rc16_first(struct scsi_device *sdp)
2521 {
2522         if (sdp->host->max_cmd_len < 16)
2523                 return 0;
2524         if (sdp->try_rc_10_first)
2525                 return 0;
2526         if (sdp->scsi_level > SCSI_SPC_2)
2527                 return 1;
2528         if (scsi_device_protection(sdp))
2529                 return 1;
2530         return 0;
2531 }
2532
2533 /*
2534  * read disk capacity
2535  */
2536 static void
2537 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2538 {
2539         int sector_size;
2540         struct scsi_device *sdp = sdkp->device;
2541
2542         if (sd_try_rc16_first(sdp)) {
2543                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2544                 if (sector_size == -EOVERFLOW)
2545                         goto got_data;
2546                 if (sector_size == -ENODEV)
2547                         return;
2548                 if (sector_size < 0)
2549                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2550                 if (sector_size < 0)
2551                         return;
2552         } else {
2553                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2554                 if (sector_size == -EOVERFLOW)
2555                         goto got_data;
2556                 if (sector_size < 0)
2557                         return;
2558                 if ((sizeof(sdkp->capacity) > 4) &&
2559                     (sdkp->capacity > 0xffffffffULL)) {
2560                         int old_sector_size = sector_size;
2561                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2562                                         "Trying to use READ CAPACITY(16).\n");
2563                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2564                         if (sector_size < 0) {
2565                                 sd_printk(KERN_NOTICE, sdkp,
2566                                         "Using 0xffffffff as device size\n");
2567                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2568                                 sector_size = old_sector_size;
2569                                 goto got_data;
2570                         }
2571                         /* Remember that READ CAPACITY(16) succeeded */
2572                         sdp->try_rc_10_first = 0;
2573                 }
2574         }
2575
2576         /* Some devices are known to return the total number of blocks,
2577          * not the highest block number.  Some devices have versions
2578          * which do this and others which do not.  Some devices we might
2579          * suspect of doing this but we don't know for certain.
2580          *
2581          * If we know the reported capacity is wrong, decrement it.  If
2582          * we can only guess, then assume the number of blocks is even
2583          * (usually true but not always) and err on the side of lowering
2584          * the capacity.
2585          */
2586         if (sdp->fix_capacity ||
2587             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2588                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2589                                 "from its reported value: %llu\n",
2590                                 (unsigned long long) sdkp->capacity);
2591                 --sdkp->capacity;
2592         }
2593
2594 got_data:
2595         if (sector_size == 0) {
2596                 sector_size = 512;
2597                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2598                           "assuming 512.\n");
2599         }
2600
2601         if (sector_size != 512 &&
2602             sector_size != 1024 &&
2603             sector_size != 2048 &&
2604             sector_size != 4096) {
2605                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2606                           sector_size);
2607                 /*
2608                  * The user might want to re-format the drive with
2609                  * a supported sectorsize.  Once this happens, it
2610                  * would be relatively trivial to set the thing up.
2611                  * For this reason, we leave the thing in the table.
2612                  */
2613                 sdkp->capacity = 0;
2614                 /*
2615                  * set a bogus sector size so the normal read/write
2616                  * logic in the block layer will eventually refuse any
2617                  * request on this device without tripping over power
2618                  * of two sector size assumptions
2619                  */
2620                 sector_size = 512;
2621         }
2622         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2623         blk_queue_physical_block_size(sdp->request_queue,
2624                                       sdkp->physical_block_size);
2625         sdkp->device->sector_size = sector_size;
2626
2627         if (sdkp->capacity > 0xffffffff)
2628                 sdp->use_16_for_rw = 1;
2629
2630 }
2631
2632 /*
2633  * Print disk capacity
2634  */
2635 static void
2636 sd_print_capacity(struct scsi_disk *sdkp,
2637                   sector_t old_capacity)
2638 {
2639         int sector_size = sdkp->device->sector_size;
2640         char cap_str_2[10], cap_str_10[10];
2641
2642         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2643                 return;
2644
2645         string_get_size(sdkp->capacity, sector_size,
2646                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2647         string_get_size(sdkp->capacity, sector_size,
2648                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2649
2650         sd_printk(KERN_NOTICE, sdkp,
2651                   "%llu %d-byte logical blocks: (%s/%s)\n",
2652                   (unsigned long long)sdkp->capacity,
2653                   sector_size, cap_str_10, cap_str_2);
2654
2655         if (sdkp->physical_block_size != sector_size)
2656                 sd_printk(KERN_NOTICE, sdkp,
2657                           "%u-byte physical blocks\n",
2658                           sdkp->physical_block_size);
2659 }
2660
2661 /* called with buffer of length 512 */
2662 static inline int
2663 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2664                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2665                  struct scsi_sense_hdr *sshdr)
2666 {
2667         /*
2668          * If we must use MODE SENSE(10), make sure that the buffer length
2669          * is at least 8 bytes so that the mode sense header fits.
2670          */
2671         if (sdkp->device->use_10_for_ms && len < 8)
2672                 len = 8;
2673
2674         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2675                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2676 }
2677
2678 /*
2679  * read write protect setting, if possible - called only in sd_revalidate_disk()
2680  * called with buffer of length SD_BUF_SIZE
2681  */
2682 static void
2683 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2684 {
2685         int res;
2686         struct scsi_device *sdp = sdkp->device;
2687         struct scsi_mode_data data;
2688         int old_wp = sdkp->write_prot;
2689
2690         set_disk_ro(sdkp->disk, 0);
2691         if (sdp->skip_ms_page_3f) {
2692                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2693                 return;
2694         }
2695
2696         if (sdp->use_192_bytes_for_3f) {
2697                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2698         } else {
2699                 /*
2700                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2701                  * We have to start carefully: some devices hang if we ask
2702                  * for more than is available.
2703                  */
2704                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2705
2706                 /*
2707                  * Second attempt: ask for page 0 When only page 0 is
2708                  * implemented, a request for page 3F may return Sense Key
2709                  * 5: Illegal Request, Sense Code 24: Invalid field in
2710                  * CDB.
2711                  */
2712                 if (res < 0)
2713                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2714
2715                 /*
2716                  * Third attempt: ask 255 bytes, as we did earlier.
2717                  */
2718                 if (res < 0)
2719                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2720                                                &data, NULL);
2721         }
2722
2723         if (res < 0) {
2724                 sd_first_printk(KERN_WARNING, sdkp,
2725                           "Test WP failed, assume Write Enabled\n");
2726         } else {
2727                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2728                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2729                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2730                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2731                                   sdkp->write_prot ? "on" : "off");
2732                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2733                 }
2734         }
2735 }
2736
2737 /*
2738  * sd_read_cache_type - called only from sd_revalidate_disk()
2739  * called with buffer of length SD_BUF_SIZE
2740  */
2741 static void
2742 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2743 {
2744         int len = 0, res;
2745         struct scsi_device *sdp = sdkp->device;
2746
2747         int dbd;
2748         int modepage;
2749         int first_len;
2750         struct scsi_mode_data data;
2751         struct scsi_sense_hdr sshdr;
2752         int old_wce = sdkp->WCE;
2753         int old_rcd = sdkp->RCD;
2754         int old_dpofua = sdkp->DPOFUA;
2755
2756
2757         if (sdkp->cache_override)
2758                 return;
2759
2760         first_len = 4;
2761         if (sdp->skip_ms_page_8) {
2762                 if (sdp->type == TYPE_RBC)
2763                         goto defaults;
2764                 else {
2765                         if (sdp->skip_ms_page_3f)
2766                                 goto defaults;
2767                         modepage = 0x3F;
2768                         if (sdp->use_192_bytes_for_3f)
2769                                 first_len = 192;
2770                         dbd = 0;
2771                 }
2772         } else if (sdp->type == TYPE_RBC) {
2773                 modepage = 6;
2774                 dbd = 8;
2775         } else {
2776                 modepage = 8;
2777                 dbd = 0;
2778         }
2779
2780         /* cautiously ask */
2781         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2782                         &data, &sshdr);
2783
2784         if (res < 0)
2785                 goto bad_sense;
2786
2787         if (!data.header_length) {
2788                 modepage = 6;
2789                 first_len = 0;
2790                 sd_first_printk(KERN_ERR, sdkp,
2791                                 "Missing header in MODE_SENSE response\n");
2792         }
2793
2794         /* that went OK, now ask for the proper length */
2795         len = data.length;
2796
2797         /*
2798          * We're only interested in the first three bytes, actually.
2799          * But the data cache page is defined for the first 20.
2800          */
2801         if (len < 3)
2802                 goto bad_sense;
2803         else if (len > SD_BUF_SIZE) {
2804                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2805                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2806                 len = SD_BUF_SIZE;
2807         }
2808         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2809                 len = 192;
2810
2811         /* Get the data */
2812         if (len > first_len)
2813                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2814                                 &data, &sshdr);
2815
2816         if (!res) {
2817                 int offset = data.header_length + data.block_descriptor_length;
2818
2819                 while (offset < len) {
2820                         u8 page_code = buffer[offset] & 0x3F;
2821                         u8 spf       = buffer[offset] & 0x40;
2822
2823                         if (page_code == 8 || page_code == 6) {
2824                                 /* We're interested only in the first 3 bytes.
2825                                  */
2826                                 if (len - offset <= 2) {
2827                                         sd_first_printk(KERN_ERR, sdkp,
2828                                                 "Incomplete mode parameter "
2829                                                         "data\n");
2830                                         goto defaults;
2831                                 } else {
2832                                         modepage = page_code;
2833                                         goto Page_found;
2834                                 }
2835                         } else {
2836                                 /* Go to the next page */
2837                                 if (spf && len - offset > 3)
2838                                         offset += 4 + (buffer[offset+2] << 8) +
2839                                                 buffer[offset+3];
2840                                 else if (!spf && len - offset > 1)
2841                                         offset += 2 + buffer[offset+1];
2842                                 else {
2843                                         sd_first_printk(KERN_ERR, sdkp,
2844                                                         "Incomplete mode "
2845                                                         "parameter data\n");
2846                                         goto defaults;
2847                                 }
2848                         }
2849                 }
2850
2851                 sd_first_printk(KERN_WARNING, sdkp,
2852                                 "No Caching mode page found\n");
2853                 goto defaults;
2854
2855         Page_found:
2856                 if (modepage == 8) {
2857                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2858                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2859                 } else {
2860                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2861                         sdkp->RCD = 0;
2862                 }
2863
2864                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2865                 if (sdp->broken_fua) {
2866                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2867                         sdkp->DPOFUA = 0;
2868                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2869                            !sdkp->device->use_16_for_rw) {
2870                         sd_first_printk(KERN_NOTICE, sdkp,
2871                                   "Uses READ/WRITE(6), disabling FUA\n");
2872                         sdkp->DPOFUA = 0;
2873                 }
2874
2875                 /* No cache flush allowed for write protected devices */
2876                 if (sdkp->WCE && sdkp->write_prot)
2877                         sdkp->WCE = 0;
2878
2879                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2880                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2881                         sd_printk(KERN_NOTICE, sdkp,
2882                                   "Write cache: %s, read cache: %s, %s\n",
2883                                   sdkp->WCE ? "enabled" : "disabled",
2884                                   sdkp->RCD ? "disabled" : "enabled",
2885                                   sdkp->DPOFUA ? "supports DPO and FUA"
2886                                   : "doesn't support DPO or FUA");
2887
2888                 return;
2889         }
2890
2891 bad_sense:
2892         if (scsi_sense_valid(&sshdr) &&
2893             sshdr.sense_key == ILLEGAL_REQUEST &&
2894             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2895                 /* Invalid field in CDB */
2896                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2897         else
2898                 sd_first_printk(KERN_ERR, sdkp,
2899                                 "Asking for cache data failed\n");
2900
2901 defaults:
2902         if (sdp->wce_default_on) {
2903                 sd_first_printk(KERN_NOTICE, sdkp,
2904                                 "Assuming drive cache: write back\n");
2905                 sdkp->WCE = 1;
2906         } else {
2907                 sd_first_printk(KERN_WARNING, sdkp,
2908                                 "Assuming drive cache: write through\n");
2909                 sdkp->WCE = 0;
2910         }
2911         sdkp->RCD = 0;
2912         sdkp->DPOFUA = 0;
2913 }
2914
2915 /*
2916  * The ATO bit indicates whether the DIF application tag is available
2917  * for use by the operating system.
2918  */
2919 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2920 {
2921         int res, offset;
2922         struct scsi_device *sdp = sdkp->device;
2923         struct scsi_mode_data data;
2924         struct scsi_sense_hdr sshdr;
2925
2926         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2927                 return;
2928
2929         if (sdkp->protection_type == 0)
2930                 return;
2931
2932         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
2933                               sdkp->max_retries, &data, &sshdr);
2934
2935         if (res < 0 || !data.header_length ||
2936             data.length < 6) {
2937                 sd_first_printk(KERN_WARNING, sdkp,
2938                           "getting Control mode page failed, assume no ATO\n");
2939
2940                 if (scsi_sense_valid(&sshdr))
2941                         sd_print_sense_hdr(sdkp, &sshdr);
2942
2943                 return;
2944         }
2945
2946         offset = data.header_length + data.block_descriptor_length;
2947
2948         if ((buffer[offset] & 0x3f) != 0x0a) {
2949                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2950                 return;
2951         }
2952
2953         if ((buffer[offset + 5] & 0x80) == 0)
2954                 return;
2955
2956         sdkp->ATO = 1;
2957
2958         return;
2959 }
2960
2961 /**
2962  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2963  * @sdkp: disk to query
2964  */
2965 static void sd_read_block_limits(struct scsi_disk *sdkp)
2966 {
2967         struct scsi_vpd *vpd;
2968
2969         rcu_read_lock();
2970
2971         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2972         if (!vpd || vpd->len < 16)
2973                 goto out;
2974
2975         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2976         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2977         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2978
2979         if (vpd->len >= 64) {
2980                 unsigned int lba_count, desc_count;
2981
2982                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2983
2984                 if (!sdkp->lbpme)
2985                         goto out;
2986
2987                 lba_count = get_unaligned_be32(&vpd->data[20]);
2988                 desc_count = get_unaligned_be32(&vpd->data[24]);
2989
2990                 if (lba_count && desc_count)
2991                         sdkp->max_unmap_blocks = lba_count;
2992
2993                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2994
2995                 if (vpd->data[32] & 0x80)
2996                         sdkp->unmap_alignment =
2997                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2998
2999                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3000
3001                         if (sdkp->max_unmap_blocks)
3002                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3003                         else
3004                                 sd_config_discard(sdkp, SD_LBP_WS16);
3005
3006                 } else {        /* LBP VPD page tells us what to use */
3007                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3008                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3009                         else if (sdkp->lbpws)
3010                                 sd_config_discard(sdkp, SD_LBP_WS16);
3011                         else if (sdkp->lbpws10)
3012                                 sd_config_discard(sdkp, SD_LBP_WS10);
3013                         else
3014                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3015                 }
3016         }
3017
3018  out:
3019         rcu_read_unlock();
3020 }
3021
3022 /**
3023  * sd_read_block_characteristics - Query block dev. characteristics
3024  * @sdkp: disk to query
3025  */
3026 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3027 {
3028         struct request_queue *q = sdkp->disk->queue;
3029         struct scsi_vpd *vpd;
3030         u16 rot;
3031         u8 zoned;
3032
3033         rcu_read_lock();
3034         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3035
3036         if (!vpd || vpd->len < 8) {
3037                 rcu_read_unlock();
3038                 return;
3039         }
3040
3041         rot = get_unaligned_be16(&vpd->data[4]);
3042         zoned = (vpd->data[8] >> 4) & 3;
3043         rcu_read_unlock();
3044
3045         if (rot == 1) {
3046                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3047                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3048         }
3049
3050         if (sdkp->device->type == TYPE_ZBC) {
3051                 /*
3052                  * Host-managed: Per ZBC and ZAC specifications, writes in
3053                  * sequential write required zones of host-managed devices must
3054                  * be aligned to the device physical block size.
3055                  */
3056                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3057                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3058         } else {
3059                 sdkp->zoned = zoned;
3060                 if (sdkp->zoned == 1) {
3061                         /* Host-aware */
3062                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3063                 } else {
3064                         /* Regular disk or drive managed disk */
3065                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3066                 }
3067         }
3068
3069         if (!sdkp->first_scan)
3070                 return;
3071
3072         if (blk_queue_is_zoned(q)) {
3073                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3074                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3075         } else {
3076                 if (sdkp->zoned == 1)
3077                         sd_printk(KERN_NOTICE, sdkp,
3078                                   "Host-aware SMR disk used as regular disk\n");
3079                 else if (sdkp->zoned == 2)
3080                         sd_printk(KERN_NOTICE, sdkp,
3081                                   "Drive-managed SMR disk\n");
3082         }
3083 }
3084
3085 /**
3086  * sd_read_block_provisioning - Query provisioning VPD page
3087  * @sdkp: disk to query
3088  */
3089 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3090 {
3091         struct scsi_vpd *vpd;
3092
3093         if (sdkp->lbpme == 0)
3094                 return;
3095
3096         rcu_read_lock();
3097         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3098
3099         if (!vpd || vpd->len < 8) {
3100                 rcu_read_unlock();
3101                 return;
3102         }
3103
3104         sdkp->lbpvpd    = 1;
3105         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3106         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3107         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3108         rcu_read_unlock();
3109 }
3110
3111 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3112 {
3113         struct scsi_device *sdev = sdkp->device;
3114
3115         if (sdev->host->no_write_same) {
3116                 sdev->no_write_same = 1;
3117
3118                 return;
3119         }
3120
3121         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3122                 struct scsi_vpd *vpd;
3123
3124                 sdev->no_report_opcodes = 1;
3125
3126                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3127                  * CODES is unsupported and the device has an ATA
3128                  * Information VPD page (SAT).
3129                  */
3130                 rcu_read_lock();
3131                 vpd = rcu_dereference(sdev->vpd_pg89);
3132                 if (vpd)
3133                         sdev->no_write_same = 1;
3134                 rcu_read_unlock();
3135         }
3136
3137         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3138                 sdkp->ws16 = 1;
3139
3140         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3141                 sdkp->ws10 = 1;
3142 }
3143
3144 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3145 {
3146         struct scsi_device *sdev = sdkp->device;
3147
3148         if (!sdev->security_supported)
3149                 return;
3150
3151         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3152                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3153             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3154                         SECURITY_PROTOCOL_OUT, 0) == 1)
3155                 sdkp->security = 1;
3156 }
3157
3158 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3159 {
3160         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3161 }
3162
3163 /**
3164  * sd_read_cpr - Query concurrent positioning ranges
3165  * @sdkp:       disk to query
3166  */
3167 static void sd_read_cpr(struct scsi_disk *sdkp)
3168 {
3169         struct blk_independent_access_ranges *iars = NULL;
3170         unsigned char *buffer = NULL;
3171         unsigned int nr_cpr = 0;
3172         int i, vpd_len, buf_len = SD_BUF_SIZE;
3173         u8 *desc;
3174
3175         /*
3176          * We need to have the capacity set first for the block layer to be
3177          * able to check the ranges.
3178          */
3179         if (sdkp->first_scan)
3180                 return;
3181
3182         if (!sdkp->capacity)
3183                 goto out;
3184
3185         /*
3186          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3187          * leading to a maximum page size of 64 + 256*32 bytes.
3188          */
3189         buf_len = 64 + 256*32;
3190         buffer = kmalloc(buf_len, GFP_KERNEL);
3191         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3192                 goto out;
3193
3194         /* We must have at least a 64B header and one 32B range descriptor */
3195         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3196         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3197                 sd_printk(KERN_ERR, sdkp,
3198                           "Invalid Concurrent Positioning Ranges VPD page\n");
3199                 goto out;
3200         }
3201
3202         nr_cpr = (vpd_len - 64) / 32;
3203         if (nr_cpr == 1) {
3204                 nr_cpr = 0;
3205                 goto out;
3206         }
3207
3208         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3209         if (!iars) {
3210                 nr_cpr = 0;
3211                 goto out;
3212         }
3213
3214         desc = &buffer[64];
3215         for (i = 0; i < nr_cpr; i++, desc += 32) {
3216                 if (desc[0] != i) {
3217                         sd_printk(KERN_ERR, sdkp,
3218                                 "Invalid Concurrent Positioning Range number\n");
3219                         nr_cpr = 0;
3220                         break;
3221                 }
3222
3223                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3224                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3225         }
3226
3227 out:
3228         disk_set_independent_access_ranges(sdkp->disk, iars);
3229         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3230                 sd_printk(KERN_NOTICE, sdkp,
3231                           "%u concurrent positioning ranges\n", nr_cpr);
3232                 sdkp->nr_actuators = nr_cpr;
3233         }
3234
3235         kfree(buffer);
3236 }
3237
3238 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3239 {
3240         struct scsi_device *sdp = sdkp->device;
3241         unsigned int min_xfer_bytes =
3242                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3243
3244         if (sdkp->min_xfer_blocks == 0)
3245                 return false;
3246
3247         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3248                 sd_first_printk(KERN_WARNING, sdkp,
3249                                 "Preferred minimum I/O size %u bytes not a " \
3250                                 "multiple of physical block size (%u bytes)\n",
3251                                 min_xfer_bytes, sdkp->physical_block_size);
3252                 sdkp->min_xfer_blocks = 0;
3253                 return false;
3254         }
3255
3256         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3257                         min_xfer_bytes);
3258         return true;
3259 }
3260
3261 /*
3262  * Determine the device's preferred I/O size for reads and writes
3263  * unless the reported value is unreasonably small, large, not a
3264  * multiple of the physical block size, or simply garbage.
3265  */
3266 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3267                                       unsigned int dev_max)
3268 {
3269         struct scsi_device *sdp = sdkp->device;
3270         unsigned int opt_xfer_bytes =
3271                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3272         unsigned int min_xfer_bytes =
3273                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3274
3275         if (sdkp->opt_xfer_blocks == 0)
3276                 return false;
3277
3278         if (sdkp->opt_xfer_blocks > dev_max) {
3279                 sd_first_printk(KERN_WARNING, sdkp,
3280                                 "Optimal transfer size %u logical blocks " \
3281                                 "> dev_max (%u logical blocks)\n",
3282                                 sdkp->opt_xfer_blocks, dev_max);
3283                 return false;
3284         }
3285
3286         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3287                 sd_first_printk(KERN_WARNING, sdkp,
3288                                 "Optimal transfer size %u logical blocks " \
3289                                 "> sd driver limit (%u logical blocks)\n",
3290                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3291                 return false;
3292         }
3293
3294         if (opt_xfer_bytes < PAGE_SIZE) {
3295                 sd_first_printk(KERN_WARNING, sdkp,
3296                                 "Optimal transfer size %u bytes < " \
3297                                 "PAGE_SIZE (%u bytes)\n",
3298                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3299                 return false;
3300         }
3301
3302         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3303                 sd_first_printk(KERN_WARNING, sdkp,
3304                                 "Optimal transfer size %u bytes not a " \
3305                                 "multiple of preferred minimum block " \
3306                                 "size (%u bytes)\n",
3307                                 opt_xfer_bytes, min_xfer_bytes);
3308                 return false;
3309         }
3310
3311         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3312                 sd_first_printk(KERN_WARNING, sdkp,
3313                                 "Optimal transfer size %u bytes not a " \
3314                                 "multiple of physical block size (%u bytes)\n",
3315                                 opt_xfer_bytes, sdkp->physical_block_size);
3316                 return false;
3317         }
3318
3319         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3320                         opt_xfer_bytes);
3321         return true;
3322 }
3323
3324 /**
3325  *      sd_revalidate_disk - called the first time a new disk is seen,
3326  *      performs disk spin up, read_capacity, etc.
3327  *      @disk: struct gendisk we care about
3328  **/
3329 static int sd_revalidate_disk(struct gendisk *disk)
3330 {
3331         struct scsi_disk *sdkp = scsi_disk(disk);
3332         struct scsi_device *sdp = sdkp->device;
3333         struct request_queue *q = sdkp->disk->queue;
3334         sector_t old_capacity = sdkp->capacity;
3335         unsigned char *buffer;
3336         unsigned int dev_max, rw_max;
3337
3338         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3339                                       "sd_revalidate_disk\n"));
3340
3341         /*
3342          * If the device is offline, don't try and read capacity or any
3343          * of the other niceties.
3344          */
3345         if (!scsi_device_online(sdp))
3346                 goto out;
3347
3348         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3349         if (!buffer) {
3350                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3351                           "allocation failure.\n");
3352                 goto out;
3353         }
3354
3355         sd_spinup_disk(sdkp);
3356
3357         /*
3358          * Without media there is no reason to ask; moreover, some devices
3359          * react badly if we do.
3360          */
3361         if (sdkp->media_present) {
3362                 sd_read_capacity(sdkp, buffer);
3363
3364                 /*
3365                  * set the default to rotational.  All non-rotational devices
3366                  * support the block characteristics VPD page, which will
3367                  * cause this to be updated correctly and any device which
3368                  * doesn't support it should be treated as rotational.
3369                  */
3370                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3371                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3372
3373                 if (scsi_device_supports_vpd(sdp)) {
3374                         sd_read_block_provisioning(sdkp);
3375                         sd_read_block_limits(sdkp);
3376                         sd_read_block_characteristics(sdkp);
3377                         sd_zbc_read_zones(sdkp, buffer);
3378                         sd_read_cpr(sdkp);
3379                 }
3380
3381                 sd_print_capacity(sdkp, old_capacity);
3382
3383                 sd_read_write_protect_flag(sdkp, buffer);
3384                 sd_read_cache_type(sdkp, buffer);
3385                 sd_read_app_tag_own(sdkp, buffer);
3386                 sd_read_write_same(sdkp, buffer);
3387                 sd_read_security(sdkp, buffer);
3388                 sd_config_protection(sdkp);
3389         }
3390
3391         /*
3392          * We now have all cache related info, determine how we deal
3393          * with flush requests.
3394          */
3395         sd_set_flush_flag(sdkp);
3396
3397         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3398         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3399
3400         /* Some devices report a maximum block count for READ/WRITE requests. */
3401         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3402         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3403
3404         if (sd_validate_min_xfer_size(sdkp))
3405                 blk_queue_io_min(sdkp->disk->queue,
3406                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3407         else
3408                 blk_queue_io_min(sdkp->disk->queue, 0);
3409
3410         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3411                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3412                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3413         } else {
3414                 q->limits.io_opt = 0;
3415                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3416                                       (sector_t)BLK_DEF_MAX_SECTORS);
3417         }
3418
3419         /*
3420          * Limit default to SCSI host optimal sector limit if set. There may be
3421          * an impact on performance for when the size of a request exceeds this
3422          * host limit.
3423          */
3424         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3425
3426         /* Do not exceed controller limit */
3427         rw_max = min(rw_max, queue_max_hw_sectors(q));
3428
3429         /*
3430          * Only update max_sectors if previously unset or if the current value
3431          * exceeds the capabilities of the hardware.
3432          */
3433         if (sdkp->first_scan ||
3434             q->limits.max_sectors > q->limits.max_dev_sectors ||
3435             q->limits.max_sectors > q->limits.max_hw_sectors)
3436                 q->limits.max_sectors = rw_max;
3437
3438         sdkp->first_scan = 0;
3439
3440         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3441         sd_config_write_same(sdkp);
3442         kfree(buffer);
3443
3444         /*
3445          * For a zoned drive, revalidating the zones can be done only once
3446          * the gendisk capacity is set. So if this fails, set back the gendisk
3447          * capacity to 0.
3448          */
3449         if (sd_zbc_revalidate_zones(sdkp))
3450                 set_capacity_and_notify(disk, 0);
3451
3452  out:
3453         return 0;
3454 }
3455
3456 /**
3457  *      sd_unlock_native_capacity - unlock native capacity
3458  *      @disk: struct gendisk to set capacity for
3459  *
3460  *      Block layer calls this function if it detects that partitions
3461  *      on @disk reach beyond the end of the device.  If the SCSI host
3462  *      implements ->unlock_native_capacity() method, it's invoked to
3463  *      give it a chance to adjust the device capacity.
3464  *
3465  *      CONTEXT:
3466  *      Defined by block layer.  Might sleep.
3467  */
3468 static void sd_unlock_native_capacity(struct gendisk *disk)
3469 {
3470         struct scsi_device *sdev = scsi_disk(disk)->device;
3471
3472         if (sdev->host->hostt->unlock_native_capacity)
3473                 sdev->host->hostt->unlock_native_capacity(sdev);
3474 }
3475
3476 /**
3477  *      sd_format_disk_name - format disk name
3478  *      @prefix: name prefix - ie. "sd" for SCSI disks
3479  *      @index: index of the disk to format name for
3480  *      @buf: output buffer
3481  *      @buflen: length of the output buffer
3482  *
3483  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3484  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3485  *      which is followed by sdaaa.
3486  *
3487  *      This is basically 26 base counting with one extra 'nil' entry
3488  *      at the beginning from the second digit on and can be
3489  *      determined using similar method as 26 base conversion with the
3490  *      index shifted -1 after each digit is computed.
3491  *
3492  *      CONTEXT:
3493  *      Don't care.
3494  *
3495  *      RETURNS:
3496  *      0 on success, -errno on failure.
3497  */
3498 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3499 {
3500         const int base = 'z' - 'a' + 1;
3501         char *begin = buf + strlen(prefix);
3502         char *end = buf + buflen;
3503         char *p;
3504         int unit;
3505
3506         p = end - 1;
3507         *p = '\0';
3508         unit = base;
3509         do {
3510                 if (p == begin)
3511                         return -EINVAL;
3512                 *--p = 'a' + (index % unit);
3513                 index = (index / unit) - 1;
3514         } while (index >= 0);
3515
3516         memmove(begin, p, end - p);
3517         memcpy(buf, prefix, strlen(prefix));
3518
3519         return 0;
3520 }
3521
3522 /**
3523  *      sd_probe - called during driver initialization and whenever a
3524  *      new scsi device is attached to the system. It is called once
3525  *      for each scsi device (not just disks) present.
3526  *      @dev: pointer to device object
3527  *
3528  *      Returns 0 if successful (or not interested in this scsi device 
3529  *      (e.g. scanner)); 1 when there is an error.
3530  *
3531  *      Note: this function is invoked from the scsi mid-level.
3532  *      This function sets up the mapping between a given 
3533  *      <host,channel,id,lun> (found in sdp) and new device name 
3534  *      (e.g. /dev/sda). More precisely it is the block device major 
3535  *      and minor number that is chosen here.
3536  *
3537  *      Assume sd_probe is not re-entrant (for time being)
3538  *      Also think about sd_probe() and sd_remove() running coincidentally.
3539  **/
3540 static int sd_probe(struct device *dev)
3541 {
3542         struct scsi_device *sdp = to_scsi_device(dev);
3543         struct scsi_disk *sdkp;
3544         struct gendisk *gd;
3545         int index;
3546         int error;
3547
3548         scsi_autopm_get_device(sdp);
3549         error = -ENODEV;
3550         if (sdp->type != TYPE_DISK &&
3551             sdp->type != TYPE_ZBC &&
3552             sdp->type != TYPE_MOD &&
3553             sdp->type != TYPE_RBC)
3554                 goto out;
3555
3556         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3557                 sdev_printk(KERN_WARNING, sdp,
3558                             "Unsupported ZBC host-managed device.\n");
3559                 goto out;
3560         }
3561
3562         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3563                                         "sd_probe\n"));
3564
3565         error = -ENOMEM;
3566         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3567         if (!sdkp)
3568                 goto out;
3569
3570         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3571                                          &sd_bio_compl_lkclass);
3572         if (!gd)
3573                 goto out_free;
3574
3575         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3576         if (index < 0) {
3577                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3578                 goto out_put;
3579         }
3580
3581         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3582         if (error) {
3583                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3584                 goto out_free_index;
3585         }
3586
3587         sdkp->device = sdp;
3588         sdkp->disk = gd;
3589         sdkp->index = index;
3590         sdkp->max_retries = SD_MAX_RETRIES;
3591         atomic_set(&sdkp->openers, 0);
3592         atomic_set(&sdkp->device->ioerr_cnt, 0);
3593
3594         if (!sdp->request_queue->rq_timeout) {
3595                 if (sdp->type != TYPE_MOD)
3596                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3597                 else
3598                         blk_queue_rq_timeout(sdp->request_queue,
3599                                              SD_MOD_TIMEOUT);
3600         }
3601
3602         device_initialize(&sdkp->disk_dev);
3603         sdkp->disk_dev.parent = get_device(dev);
3604         sdkp->disk_dev.class = &sd_disk_class;
3605         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3606
3607         error = device_add(&sdkp->disk_dev);
3608         if (error) {
3609                 put_device(&sdkp->disk_dev);
3610                 goto out;
3611         }
3612
3613         dev_set_drvdata(dev, sdkp);
3614
3615         gd->major = sd_major((index & 0xf0) >> 4);
3616         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3617         gd->minors = SD_MINORS;
3618
3619         gd->fops = &sd_fops;
3620         gd->private_data = sdkp;
3621
3622         /* defaults, until the device tells us otherwise */
3623         sdp->sector_size = 512;
3624         sdkp->capacity = 0;
3625         sdkp->media_present = 1;
3626         sdkp->write_prot = 0;
3627         sdkp->cache_override = 0;
3628         sdkp->WCE = 0;
3629         sdkp->RCD = 0;
3630         sdkp->ATO = 0;
3631         sdkp->first_scan = 1;
3632         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3633
3634         sd_revalidate_disk(gd);
3635
3636         if (sdp->removable) {
3637                 gd->flags |= GENHD_FL_REMOVABLE;
3638                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3639                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3640         }
3641
3642         blk_pm_runtime_init(sdp->request_queue, dev);
3643         if (sdp->rpm_autosuspend) {
3644                 pm_runtime_set_autosuspend_delay(dev,
3645                         sdp->host->hostt->rpm_autosuspend_delay);
3646         }
3647
3648         error = device_add_disk(dev, gd, NULL);
3649         if (error) {
3650                 put_device(&sdkp->disk_dev);
3651                 put_disk(gd);
3652                 goto out;
3653         }
3654
3655         if (sdkp->security) {
3656                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3657                 if (sdkp->opal_dev)
3658                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3659         }
3660
3661         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3662                   sdp->removable ? "removable " : "");
3663         scsi_autopm_put_device(sdp);
3664
3665         return 0;
3666
3667  out_free_index:
3668         ida_free(&sd_index_ida, index);
3669  out_put:
3670         put_disk(gd);
3671  out_free:
3672         kfree(sdkp);
3673  out:
3674         scsi_autopm_put_device(sdp);
3675         return error;
3676 }
3677
3678 /**
3679  *      sd_remove - called whenever a scsi disk (previously recognized by
3680  *      sd_probe) is detached from the system. It is called (potentially
3681  *      multiple times) during sd module unload.
3682  *      @dev: pointer to device object
3683  *
3684  *      Note: this function is invoked from the scsi mid-level.
3685  *      This function potentially frees up a device name (e.g. /dev/sdc)
3686  *      that could be re-used by a subsequent sd_probe().
3687  *      This function is not called when the built-in sd driver is "exit-ed".
3688  **/
3689 static int sd_remove(struct device *dev)
3690 {
3691         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3692
3693         scsi_autopm_get_device(sdkp->device);
3694
3695         device_del(&sdkp->disk_dev);
3696         del_gendisk(sdkp->disk);
3697         sd_shutdown(dev);
3698
3699         put_disk(sdkp->disk);
3700         return 0;
3701 }
3702
3703 static void scsi_disk_release(struct device *dev)
3704 {
3705         struct scsi_disk *sdkp = to_scsi_disk(dev);
3706
3707         ida_free(&sd_index_ida, sdkp->index);
3708         sd_zbc_free_zone_info(sdkp);
3709         put_device(&sdkp->device->sdev_gendev);
3710         free_opal_dev(sdkp->opal_dev);
3711
3712         kfree(sdkp);
3713 }
3714
3715 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3716 {
3717         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3718         struct scsi_sense_hdr sshdr;
3719         const struct scsi_exec_args exec_args = {
3720                 .sshdr = &sshdr,
3721                 .req_flags = BLK_MQ_REQ_PM,
3722         };
3723         struct scsi_device *sdp = sdkp->device;
3724         int res;
3725
3726         if (start)
3727                 cmd[4] |= 1;    /* START */
3728
3729         if (sdp->start_stop_pwr_cond)
3730                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3731
3732         if (!scsi_device_online(sdp))
3733                 return -ENODEV;
3734
3735         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3736                                sdkp->max_retries, &exec_args);
3737         if (res) {
3738                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3739                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3740                         sd_print_sense_hdr(sdkp, &sshdr);
3741                         /* 0x3a is medium not present */
3742                         if (sshdr.asc == 0x3a)
3743                                 res = 0;
3744                 }
3745         }
3746
3747         /* SCSI error codes must not go to the generic layer */
3748         if (res)
3749                 return -EIO;
3750
3751         return 0;
3752 }
3753
3754 /*
3755  * Send a SYNCHRONIZE CACHE instruction down to the device through
3756  * the normal SCSI command structure.  Wait for the command to
3757  * complete.
3758  */
3759 static void sd_shutdown(struct device *dev)
3760 {
3761         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3762
3763         if (!sdkp)
3764                 return;         /* this can happen */
3765
3766         if (pm_runtime_suspended(dev))
3767                 return;
3768
3769         if (sdkp->WCE && sdkp->media_present) {
3770                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3771                 sd_sync_cache(sdkp, NULL);
3772         }
3773
3774         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3775                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3776                 sd_start_stop_device(sdkp, 0);
3777         }
3778 }
3779
3780 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3781 {
3782         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3783         struct scsi_sense_hdr sshdr;
3784         int ret = 0;
3785
3786         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3787                 return 0;
3788
3789         if (sdkp->WCE && sdkp->media_present) {
3790                 if (!sdkp->device->silence_suspend)
3791                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3792                 ret = sd_sync_cache(sdkp, &sshdr);
3793
3794                 if (ret) {
3795                         /* ignore OFFLINE device */
3796                         if (ret == -ENODEV)
3797                                 return 0;
3798
3799                         if (!scsi_sense_valid(&sshdr) ||
3800                             sshdr.sense_key != ILLEGAL_REQUEST)
3801                                 return ret;
3802
3803                         /*
3804                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3805                          * doesn't support sync. There's not much to do and
3806                          * suspend shouldn't fail.
3807                          */
3808                         ret = 0;
3809                 }
3810         }
3811
3812         if (sdkp->device->manage_start_stop) {
3813                 if (!sdkp->device->silence_suspend)
3814                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3815                 /* an error is not worth aborting a system sleep */
3816                 ret = sd_start_stop_device(sdkp, 0);
3817                 if (ignore_stop_errors)
3818                         ret = 0;
3819         }
3820
3821         return ret;
3822 }
3823
3824 static int sd_suspend_system(struct device *dev)
3825 {
3826         if (pm_runtime_suspended(dev))
3827                 return 0;
3828
3829         return sd_suspend_common(dev, true);
3830 }
3831
3832 static int sd_suspend_runtime(struct device *dev)
3833 {
3834         return sd_suspend_common(dev, false);
3835 }
3836
3837 static int sd_resume(struct device *dev)
3838 {
3839         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3840         int ret = 0;
3841
3842         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3843                 return 0;
3844
3845         if (!sdkp->device->manage_start_stop)
3846                 return 0;
3847
3848         if (!sdkp->device->no_start_on_resume) {
3849                 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3850                 ret = sd_start_stop_device(sdkp, 1);
3851         }
3852
3853         if (!ret)
3854                 opal_unlock_from_suspend(sdkp->opal_dev);
3855         return ret;
3856 }
3857
3858 static int sd_resume_system(struct device *dev)
3859 {
3860         if (pm_runtime_suspended(dev))
3861                 return 0;
3862
3863         return sd_resume(dev);
3864 }
3865
3866 static int sd_resume_runtime(struct device *dev)
3867 {
3868         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3869         struct scsi_device *sdp;
3870
3871         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3872                 return 0;
3873
3874         sdp = sdkp->device;
3875
3876         if (sdp->ignore_media_change) {
3877                 /* clear the device's sense data */
3878                 static const u8 cmd[10] = { REQUEST_SENSE };
3879                 const struct scsi_exec_args exec_args = {
3880                         .req_flags = BLK_MQ_REQ_PM,
3881                 };
3882
3883                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3884                                      sdp->request_queue->rq_timeout, 1,
3885                                      &exec_args))
3886                         sd_printk(KERN_NOTICE, sdkp,
3887                                   "Failed to clear sense data\n");
3888         }
3889
3890         return sd_resume(dev);
3891 }
3892
3893 static const struct dev_pm_ops sd_pm_ops = {
3894         .suspend                = sd_suspend_system,
3895         .resume                 = sd_resume_system,
3896         .poweroff               = sd_suspend_system,
3897         .restore                = sd_resume_system,
3898         .runtime_suspend        = sd_suspend_runtime,
3899         .runtime_resume         = sd_resume_runtime,
3900 };
3901
3902 static struct scsi_driver sd_template = {
3903         .gendrv = {
3904                 .name           = "sd",
3905                 .owner          = THIS_MODULE,
3906                 .probe          = sd_probe,
3907                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
3908                 .remove         = sd_remove,
3909                 .shutdown       = sd_shutdown,
3910                 .pm             = &sd_pm_ops,
3911         },
3912         .rescan                 = sd_rescan,
3913         .init_command           = sd_init_command,
3914         .uninit_command         = sd_uninit_command,
3915         .done                   = sd_done,
3916         .eh_action              = sd_eh_action,
3917         .eh_reset               = sd_eh_reset,
3918 };
3919
3920 /**
3921  *      init_sd - entry point for this driver (both when built in or when
3922  *      a module).
3923  *
3924  *      Note: this function registers this driver with the scsi mid-level.
3925  **/
3926 static int __init init_sd(void)
3927 {
3928         int majors = 0, i, err;
3929
3930         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3931
3932         for (i = 0; i < SD_MAJORS; i++) {
3933                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3934                         continue;
3935                 majors++;
3936         }
3937
3938         if (!majors)
3939                 return -ENODEV;
3940
3941         err = class_register(&sd_disk_class);
3942         if (err)
3943                 goto err_out;
3944
3945         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3946         if (!sd_page_pool) {
3947                 printk(KERN_ERR "sd: can't init discard page pool\n");
3948                 err = -ENOMEM;
3949                 goto err_out_class;
3950         }
3951
3952         err = scsi_register_driver(&sd_template.gendrv);
3953         if (err)
3954                 goto err_out_driver;
3955
3956         return 0;
3957
3958 err_out_driver:
3959         mempool_destroy(sd_page_pool);
3960 err_out_class:
3961         class_unregister(&sd_disk_class);
3962 err_out:
3963         for (i = 0; i < SD_MAJORS; i++)
3964                 unregister_blkdev(sd_major(i), "sd");
3965         return err;
3966 }
3967
3968 /**
3969  *      exit_sd - exit point for this driver (when it is a module).
3970  *
3971  *      Note: this function unregisters this driver from the scsi mid-level.
3972  **/
3973 static void __exit exit_sd(void)
3974 {
3975         int i;
3976
3977         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3978
3979         scsi_unregister_driver(&sd_template.gendrv);
3980         mempool_destroy(sd_page_pool);
3981
3982         class_unregister(&sd_disk_class);
3983
3984         for (i = 0; i < SD_MAJORS; i++)
3985                 unregister_blkdev(sd_major(i), "sd");
3986 }
3987
3988 module_init(init_sd);
3989 module_exit(exit_sd);
3990
3991 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3992 {
3993         scsi_print_sense_hdr(sdkp->device,
3994                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3995 }
3996
3997 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3998 {
3999         const char *hb_string = scsi_hostbyte_string(result);
4000
4001         if (hb_string)
4002                 sd_printk(KERN_INFO, sdkp,
4003                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4004                           hb_string ? hb_string : "invalid",
4005                           "DRIVER_OK");
4006         else
4007                 sd_printk(KERN_INFO, sdkp,
4008                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4009                           msg, host_byte(result), "DRIVER_OK");
4010 }