Merge tag 'm68k-for-v5.15-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 enum mpt3sas_perf_mode {
120         MPT_PERF_MODE_DEFAULT   = -1,
121         MPT_PERF_MODE_BALANCED  = 0,
122         MPT_PERF_MODE_IOPS      = 1,
123         MPT_PERF_MODE_LATENCY   = 2,
124 };
125
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128                 u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133
134 /**
135  * mpt3sas_base_check_cmd_timeout - Function
136  *              to check timeout and command termination due
137  *              to Host reset.
138  *
139  * @ioc:        per adapter object.
140  * @status:     Status of issued command.
141  * @mpi_request:mf request pointer.
142  * @sz:         size of buffer.
143  *
144  * Return: 1/0 Reset to be done or Not
145  */
146 u8
147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148                 u8 status, void *mpi_request, int sz)
149 {
150         u8 issue_reset = 0;
151
152         if (!(status & MPT3_CMD_RESET))
153                 issue_reset = 1;
154
155         ioc_err(ioc, "Command %s\n",
156                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157         _debug_dump_mf(mpi_request, sz);
158
159         return issue_reset;
160 }
161
162 /**
163  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164  * @val: ?
165  * @kp: ?
166  *
167  * Return: ?
168  */
169 static int
170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172         int ret = param_set_int(val, kp);
173         struct MPT3SAS_ADAPTER *ioc;
174
175         if (ret)
176                 return ret;
177
178         /* global ioc spinlock to protect controller list on list operations */
179         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180         spin_lock(&gioc_lock);
181         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
183         spin_unlock(&gioc_lock);
184         return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187         param_get_int, &mpt3sas_fwfault_debug, 0644);
188
189 /**
190  * _base_readl_aero - retry readl for max three times.
191  * @addr: MPT Fusion system interface register address
192  *
193  * Retry the readl() for max three times if it gets zero value
194  * while reading the system interface register.
195  */
196 static inline u32
197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199         u32 i = 0, ret_val;
200
201         do {
202                 ret_val = readl(addr);
203                 i++;
204         } while (ret_val == 0 && i < 3);
205
206         return ret_val;
207 }
208
209 static inline u32
210 _base_readl(const volatile void __iomem *addr)
211 {
212         return readl(addr);
213 }
214
215 /**
216  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217  *                                in BAR0 space.
218  *
219  * @ioc: per adapter object
220  * @reply: reply message frame(lower 32bit addr)
221  * @index: System request message index.
222  */
223 static void
224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225                 u32 index)
226 {
227         /*
228          * 256 is offset within sys register.
229          * 256 offset MPI frame starts. Max MPI frame supported is 32.
230          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231          */
232         u16 cmd_credit = ioc->facts.RequestCredit + 1;
233         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234                         MPI_FRAME_START_OFFSET +
235                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236
237         writel(reply, reply_free_iomem);
238 }
239
240 /**
241  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242  *                              to system/BAR0 region.
243  *
244  * @dst_iomem: Pointer to the destination location in BAR0 space.
245  * @src: Pointer to the Source data.
246  * @size: Size of data to be copied.
247  */
248 static void
249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251         int i;
252         u32 *src_virt_mem = (u32 *)src;
253
254         for (i = 0; i < size/4; i++)
255                 writel((u32)src_virt_mem[i],
256                                 (void __iomem *)dst_iomem + (i * 4));
257 }
258
259 /**
260  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261  *
262  * @dst_iomem: Pointer to the destination location in BAR0 space.
263  * @src: Pointer to the Source data.
264  * @size: Size of data to be copied.
265  */
266 static void
267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269         int i;
270         u32 *src_virt_mem = (u32 *)(src);
271
272         for (i = 0; i < size/4; i++)
273                 writel((u32)src_virt_mem[i],
274                         (void __iomem *)dst_iomem + (i * 4));
275 }
276
277 /**
278  * _base_get_chain - Calculates and Returns virtual chain address
279  *                       for the provided smid in BAR0 space.
280  *
281  * @ioc: per adapter object
282  * @smid: system request message index
283  * @sge_chain_count: Scatter gather chain count.
284  *
285  * Return: the chain address.
286  */
287 static inline void __iomem*
288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289                 u8 sge_chain_count)
290 {
291         void __iomem *base_chain, *chain_virt;
292         u16 cmd_credit = ioc->facts.RequestCredit + 1;
293
294         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295                 (cmd_credit * ioc->request_sz) +
296                 REPLY_FREE_POOL_SIZE;
297         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299         return chain_virt;
300 }
301
302 /**
303  * _base_get_chain_phys - Calculates and Returns physical address
304  *                      in BAR0 for scatter gather chains, for
305  *                      the provided smid.
306  *
307  * @ioc: per adapter object
308  * @smid: system request message index
309  * @sge_chain_count: Scatter gather chain count.
310  *
311  * Return: Physical chain address.
312  */
313 static inline phys_addr_t
314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315                 u8 sge_chain_count)
316 {
317         phys_addr_t base_chain_phys, chain_phys;
318         u16 cmd_credit = ioc->facts.RequestCredit + 1;
319
320         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321                 (cmd_credit * ioc->request_sz) +
322                 REPLY_FREE_POOL_SIZE;
323         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325         return chain_phys;
326 }
327
328 /**
329  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330  *                      buffer address for the provided smid.
331  *                      (Each smid can have 64K starts from 17024)
332  *
333  * @ioc: per adapter object
334  * @smid: system request message index
335  *
336  * Return: Pointer to buffer location in BAR0.
337  */
338
339 static void __iomem *
340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342         u16 cmd_credit = ioc->facts.RequestCredit + 1;
343         // Added extra 1 to reach end of chain.
344         void __iomem *chain_end = _base_get_chain(ioc,
345                         cmd_credit + 1,
346                         ioc->facts.MaxChainDepth);
347         return chain_end + (smid * 64 * 1024);
348 }
349
350 /**
351  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352  *              Host buffer Physical address for the provided smid.
353  *              (Each smid can have 64K starts from 17024)
354  *
355  * @ioc: per adapter object
356  * @smid: system request message index
357  *
358  * Return: Pointer to buffer location in BAR0.
359  */
360 static phys_addr_t
361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363         u16 cmd_credit = ioc->facts.RequestCredit + 1;
364         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365                         cmd_credit + 1,
366                         ioc->facts.MaxChainDepth);
367         return chain_end_phys + (smid * 64 * 1024);
368 }
369
370 /**
371  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372  *                      lookup list and Provides chain_buffer
373  *                      address for the matching dma address.
374  *                      (Each smid can have 64K starts from 17024)
375  *
376  * @ioc: per adapter object
377  * @chain_buffer_dma: Chain buffer dma address.
378  *
379  * Return: Pointer to chain buffer. Or Null on Failure.
380  */
381 static void *
382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383                 dma_addr_t chain_buffer_dma)
384 {
385         u16 index, j;
386         struct chain_tracker *ct;
387
388         for (index = 0; index < ioc->scsiio_depth; index++) {
389                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
390                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
391                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392                                 return ct->chain_buffer;
393                 }
394         }
395         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396         return NULL;
397 }
398
399 /**
400  * _clone_sg_entries -  MPI EP's scsiio and config requests
401  *                      are handled here. Base function for
402  *                      double buffering, before submitting
403  *                      the requests.
404  *
405  * @ioc: per adapter object.
406  * @mpi_request: mf request pointer.
407  * @smid: system request message index.
408  */
409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410                 void *mpi_request, u16 smid)
411 {
412         Mpi2SGESimple32_t *sgel, *sgel_next;
413         u32  sgl_flags, sge_chain_count = 0;
414         bool is_write = false;
415         u16 i = 0;
416         void __iomem *buffer_iomem;
417         phys_addr_t buffer_iomem_phys;
418         void __iomem *buff_ptr;
419         phys_addr_t buff_ptr_phys;
420         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422         phys_addr_t dst_addr_phys;
423         MPI2RequestHeader_t *request_hdr;
424         struct scsi_cmnd *scmd;
425         struct scatterlist *sg_scmd = NULL;
426         int is_scsiio_req = 0;
427
428         request_hdr = (MPI2RequestHeader_t *) mpi_request;
429
430         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431                 Mpi25SCSIIORequest_t *scsiio_request =
432                         (Mpi25SCSIIORequest_t *)mpi_request;
433                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434                 is_scsiio_req = 1;
435         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436                 Mpi2ConfigRequest_t  *config_req =
437                         (Mpi2ConfigRequest_t *)mpi_request;
438                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439         } else
440                 return;
441
442         /* From smid we can get scsi_cmd, once we have sg_scmd,
443          * we just need to get sg_virt and sg_next to get virtual
444          * address associated with sgel->Address.
445          */
446
447         if (is_scsiio_req) {
448                 /* Get scsi_cmd using smid */
449                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450                 if (scmd == NULL) {
451                         ioc_err(ioc, "scmd is NULL\n");
452                         return;
453                 }
454
455                 /* Get sg_scmd from scmd provided */
456                 sg_scmd = scsi_sglist(scmd);
457         }
458
459         /*
460          * 0 - 255      System register
461          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
462          * 4352 - 4864  Reply_free pool (512 byte is reserved
463          *              considering maxCredit 32. Reply need extra
464          *              room, for mCPU case kept four times of
465          *              maxCredit).
466          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
467          *              128 byte size = 12288)
468          * 17152 - x    Host buffer mapped with smid.
469          *              (Each smid can have 64K Max IO.)
470          * BAR0+Last 1K MSIX Addr and Data
471          * Total size in use 2113664 bytes of 4MB BAR0
472          */
473
474         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476
477         buff_ptr = buffer_iomem;
478         buff_ptr_phys = buffer_iomem_phys;
479         WARN_ON(buff_ptr_phys > U32_MAX);
480
481         if (le32_to_cpu(sgel->FlagsLength) &
482                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483                 is_write = true;
484
485         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486
487                 sgl_flags =
488                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489
490                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492                         /*
493                          * Helper function which on passing
494                          * chain_buffer_dma returns chain_buffer. Get
495                          * the virtual address for sgel->Address
496                          */
497                         sgel_next =
498                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
499                                                 le32_to_cpu(sgel->Address));
500                         if (sgel_next == NULL)
501                                 return;
502                         /*
503                          * This is coping 128 byte chain
504                          * frame (not a host buffer)
505                          */
506                         dst_chain_addr[sge_chain_count] =
507                                 _base_get_chain(ioc,
508                                         smid, sge_chain_count);
509                         src_chain_addr[sge_chain_count] =
510                                                 (void *) sgel_next;
511                         dst_addr_phys = _base_get_chain_phys(ioc,
512                                                 smid, sge_chain_count);
513                         WARN_ON(dst_addr_phys > U32_MAX);
514                         sgel->Address =
515                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
516                         sgel = sgel_next;
517                         sge_chain_count++;
518                         break;
519                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520                         if (is_write) {
521                                 if (is_scsiio_req) {
522                                         _base_clone_to_sys_mem(buff_ptr,
523                                             sg_virt(sg_scmd),
524                                             (le32_to_cpu(sgel->FlagsLength) &
525                                             0x00ffffff));
526                                         /*
527                                          * FIXME: this relies on a a zero
528                                          * PCI mem_offset.
529                                          */
530                                         sgel->Address =
531                                             cpu_to_le32((u32)buff_ptr_phys);
532                                 } else {
533                                         _base_clone_to_sys_mem(buff_ptr,
534                                             ioc->config_vaddr,
535                                             (le32_to_cpu(sgel->FlagsLength) &
536                                             0x00ffffff));
537                                         sgel->Address =
538                                             cpu_to_le32((u32)buff_ptr_phys);
539                                 }
540                         }
541                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542                             0x00ffffff);
543                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544                             0x00ffffff);
545                         if ((le32_to_cpu(sgel->FlagsLength) &
546                             (MPI2_SGE_FLAGS_END_OF_BUFFER
547                                         << MPI2_SGE_FLAGS_SHIFT)))
548                                 goto eob_clone_chain;
549                         else {
550                                 /*
551                                  * Every single element in MPT will have
552                                  * associated sg_next. Better to sanity that
553                                  * sg_next is not NULL, but it will be a bug
554                                  * if it is null.
555                                  */
556                                 if (is_scsiio_req) {
557                                         sg_scmd = sg_next(sg_scmd);
558                                         if (sg_scmd)
559                                                 sgel++;
560                                         else
561                                                 goto eob_clone_chain;
562                                 }
563                         }
564                         break;
565                 }
566         }
567
568 eob_clone_chain:
569         for (i = 0; i < sge_chain_count; i++) {
570                 if (is_scsiio_req)
571                         _base_clone_to_sys_mem(dst_chain_addr[i],
572                                 src_chain_addr[i], ioc->request_sz);
573         }
574 }
575
576 /**
577  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578  * @arg: input argument, used to derive ioc
579  *
580  * Return:
581  * 0 if controller is removed from pci subsystem.
582  * -1 for other case.
583  */
584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587         struct pci_dev *pdev;
588
589         if (!ioc)
590                 return -1;
591
592         pdev = ioc->pdev;
593         if (!pdev)
594                 return -1;
595         pci_stop_and_remove_bus_device_locked(pdev);
596         return 0;
597 }
598
599 /**
600  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
601  * @ioc: Per Adapter Object
602  *
603  * Return: nothing.
604  */
605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
606 {
607         Mpi26IoUnitControlRequest_t *mpi_request;
608         Mpi26IoUnitControlReply_t *mpi_reply;
609         u16 smid;
610         ktime_t current_time;
611         u64 TimeStamp = 0;
612         u8 issue_reset = 0;
613
614         mutex_lock(&ioc->scsih_cmds.mutex);
615         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
616                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
617                 goto out;
618         }
619         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
620         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
621         if (!smid) {
622                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
623                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
624                 goto out;
625         }
626         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
627         ioc->scsih_cmds.smid = smid;
628         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
629         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
630         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
631         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
632         current_time = ktime_get_real();
633         TimeStamp = ktime_to_ms(current_time);
634         mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
635         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
636         init_completion(&ioc->scsih_cmds.done);
637         ioc->put_smid_default(ioc, smid);
638         dinitprintk(ioc, ioc_info(ioc,
639             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
640             TimeStamp));
641         wait_for_completion_timeout(&ioc->scsih_cmds.done,
642                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
643         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
644                 mpt3sas_check_cmd_timeout(ioc,
645                     ioc->scsih_cmds.status, mpi_request,
646                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
647                 goto issue_host_reset;
648         }
649         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
650                 mpi_reply = ioc->scsih_cmds.reply;
651                 dinitprintk(ioc, ioc_info(ioc,
652                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
653                     le16_to_cpu(mpi_reply->IOCStatus),
654                     le32_to_cpu(mpi_reply->IOCLogInfo)));
655         }
656 issue_host_reset:
657         if (issue_reset)
658                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
659         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
660 out:
661         mutex_unlock(&ioc->scsih_cmds.mutex);
662 }
663
664 /**
665  * _base_fault_reset_work - workq handling ioc fault conditions
666  * @work: input argument, used to derive ioc
667  *
668  * Context: sleep.
669  */
670 static void
671 _base_fault_reset_work(struct work_struct *work)
672 {
673         struct MPT3SAS_ADAPTER *ioc =
674             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
675         unsigned long    flags;
676         u32 doorbell;
677         int rc;
678         struct task_struct *p;
679
680
681         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
682         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
683                         ioc->pci_error_recovery)
684                 goto rearm_timer;
685         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
686
687         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
688         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
689                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
690
691                 /* It may be possible that EEH recovery can resolve some of
692                  * pci bus failure issues rather removing the dead ioc function
693                  * by considering controller is in a non-operational state. So
694                  * here priority is given to the EEH recovery. If it doesn't
695                  * not resolve this issue, mpt3sas driver will consider this
696                  * controller to non-operational state and remove the dead ioc
697                  * function.
698                  */
699                 if (ioc->non_operational_loop++ < 5) {
700                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
701                                                          flags);
702                         goto rearm_timer;
703                 }
704
705                 /*
706                  * Call _scsih_flush_pending_cmds callback so that we flush all
707                  * pending commands back to OS. This call is required to avoid
708                  * deadlock at block layer. Dead IOC will fail to do diag reset,
709                  * and this call is safe since dead ioc will never return any
710                  * command back from HW.
711                  */
712                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
713                 /*
714                  * Set remove_host flag early since kernel thread will
715                  * take some time to execute.
716                  */
717                 ioc->remove_host = 1;
718                 /*Remove the Dead Host */
719                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
720                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
721                 if (IS_ERR(p))
722                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
723                                 __func__);
724                 else
725                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
726                                 __func__);
727                 return; /* don't rearm timer */
728         }
729
730         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
731                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
732                     ioc->manu_pg11.CoreDumpTOSec :
733                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
734
735                 timeout /= (FAULT_POLLING_INTERVAL/1000);
736
737                 if (ioc->ioc_coredump_loop == 0) {
738                         mpt3sas_print_coredump_info(ioc,
739                             doorbell & MPI2_DOORBELL_DATA_MASK);
740                         /* do not accept any IOs and disable the interrupts */
741                         spin_lock_irqsave(
742                             &ioc->ioc_reset_in_progress_lock, flags);
743                         ioc->shost_recovery = 1;
744                         spin_unlock_irqrestore(
745                             &ioc->ioc_reset_in_progress_lock, flags);
746                         mpt3sas_base_mask_interrupts(ioc);
747                         _base_clear_outstanding_commands(ioc);
748                 }
749
750                 ioc_info(ioc, "%s: CoreDump loop %d.",
751                     __func__, ioc->ioc_coredump_loop);
752
753                 /* Wait until CoreDump completes or times out */
754                 if (ioc->ioc_coredump_loop++ < timeout) {
755                         spin_lock_irqsave(
756                             &ioc->ioc_reset_in_progress_lock, flags);
757                         goto rearm_timer;
758                 }
759         }
760
761         if (ioc->ioc_coredump_loop) {
762                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
763                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
764                             __func__, ioc->ioc_coredump_loop);
765                 else
766                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
767                             __func__, ioc->ioc_coredump_loop);
768                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
769         }
770         ioc->non_operational_loop = 0;
771         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
772                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
773                 ioc_warn(ioc, "%s: hard reset: %s\n",
774                          __func__, rc == 0 ? "success" : "failed");
775                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
776                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
777                         mpt3sas_print_fault_code(ioc, doorbell &
778                             MPI2_DOORBELL_DATA_MASK);
779                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
780                     MPI2_IOC_STATE_COREDUMP)
781                         mpt3sas_print_coredump_info(ioc, doorbell &
782                             MPI2_DOORBELL_DATA_MASK);
783                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
784                     MPI2_IOC_STATE_OPERATIONAL)
785                         return; /* don't rearm timer */
786         }
787         ioc->ioc_coredump_loop = 0;
788         if (ioc->time_sync_interval &&
789             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
790                 ioc->timestamp_update_count = 0;
791                 _base_sync_drv_fw_timestamp(ioc);
792         }
793         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
794  rearm_timer:
795         if (ioc->fault_reset_work_q)
796                 queue_delayed_work(ioc->fault_reset_work_q,
797                     &ioc->fault_reset_work,
798                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
799         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
800 }
801
802 /**
803  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
804  * @ioc: per adapter object
805  *
806  * Context: sleep.
807  */
808 void
809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
810 {
811         unsigned long    flags;
812
813         if (ioc->fault_reset_work_q)
814                 return;
815
816         ioc->timestamp_update_count = 0;
817         /* initialize fault polling */
818
819         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
820         snprintf(ioc->fault_reset_work_q_name,
821             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
822             ioc->driver_name, ioc->id);
823         ioc->fault_reset_work_q =
824                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
825         if (!ioc->fault_reset_work_q) {
826                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
827                 return;
828         }
829         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
830         if (ioc->fault_reset_work_q)
831                 queue_delayed_work(ioc->fault_reset_work_q,
832                     &ioc->fault_reset_work,
833                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
834         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
835 }
836
837 /**
838  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
839  * @ioc: per adapter object
840  *
841  * Context: sleep.
842  */
843 void
844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
845 {
846         unsigned long flags;
847         struct workqueue_struct *wq;
848
849         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
850         wq = ioc->fault_reset_work_q;
851         ioc->fault_reset_work_q = NULL;
852         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
853         if (wq) {
854                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
855                         flush_workqueue(wq);
856                 destroy_workqueue(wq);
857         }
858 }
859
860 /**
861  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
862  * @ioc: per adapter object
863  * @fault_code: fault code
864  */
865 void
866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
867 {
868         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
869 }
870
871 /**
872  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
873  * @ioc: per adapter object
874  * @fault_code: fault code
875  *
876  * Return: nothing.
877  */
878 void
879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
880 {
881         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
882 }
883
884 /**
885  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
886  * completes or times out
887  * @ioc: per adapter object
888  * @caller: caller function name
889  *
890  * Return: 0 for success, non-zero for failure.
891  */
892 int
893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
894                 const char *caller)
895 {
896         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
897                         ioc->manu_pg11.CoreDumpTOSec :
898                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
899
900         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
901                                         timeout);
902
903         if (ioc_state)
904                 ioc_err(ioc,
905                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
906                     caller, ioc_state);
907         else
908                 ioc_info(ioc,
909                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
910                     caller, ioc_state);
911
912         return ioc_state;
913 }
914
915 /**
916  * mpt3sas_halt_firmware - halt's mpt controller firmware
917  * @ioc: per adapter object
918  *
919  * For debugging timeout related issues.  Writing 0xCOFFEE00
920  * to the doorbell register will halt controller firmware. With
921  * the purpose to stop both driver and firmware, the enduser can
922  * obtain a ring buffer from controller UART.
923  */
924 void
925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
926 {
927         u32 doorbell;
928
929         if (!ioc->fwfault_debug)
930                 return;
931
932         dump_stack();
933
934         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
935         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
936                 mpt3sas_print_fault_code(ioc, doorbell &
937                     MPI2_DOORBELL_DATA_MASK);
938         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
939             MPI2_IOC_STATE_COREDUMP) {
940                 mpt3sas_print_coredump_info(ioc, doorbell &
941                     MPI2_DOORBELL_DATA_MASK);
942         } else {
943                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
944                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
945         }
946
947         if (ioc->fwfault_debug == 2)
948                 for (;;)
949                         ;
950         else
951                 panic("panic in %s\n", __func__);
952 }
953
954 /**
955  * _base_sas_ioc_info - verbose translation of the ioc status
956  * @ioc: per adapter object
957  * @mpi_reply: reply mf payload returned from firmware
958  * @request_hdr: request mf
959  */
960 static void
961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
962         MPI2RequestHeader_t *request_hdr)
963 {
964         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
965             MPI2_IOCSTATUS_MASK;
966         char *desc = NULL;
967         u16 frame_sz;
968         char *func_str = NULL;
969
970         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
971         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
972             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
973             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
974                 return;
975
976         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
977                 return;
978         /*
979          * Older Firmware version doesn't support driver trigger pages.
980          * So, skip displaying 'config invalid type' type
981          * of error message.
982          */
983         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
984                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
985
986                 if ((rqst->ExtPageType ==
987                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
988                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
989                         return;
990                 }
991         }
992
993         switch (ioc_status) {
994
995 /****************************************************************************
996 *  Common IOCStatus values for all replies
997 ****************************************************************************/
998
999         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1000                 desc = "invalid function";
1001                 break;
1002         case MPI2_IOCSTATUS_BUSY:
1003                 desc = "busy";
1004                 break;
1005         case MPI2_IOCSTATUS_INVALID_SGL:
1006                 desc = "invalid sgl";
1007                 break;
1008         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1009                 desc = "internal error";
1010                 break;
1011         case MPI2_IOCSTATUS_INVALID_VPID:
1012                 desc = "invalid vpid";
1013                 break;
1014         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1015                 desc = "insufficient resources";
1016                 break;
1017         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1018                 desc = "insufficient power";
1019                 break;
1020         case MPI2_IOCSTATUS_INVALID_FIELD:
1021                 desc = "invalid field";
1022                 break;
1023         case MPI2_IOCSTATUS_INVALID_STATE:
1024                 desc = "invalid state";
1025                 break;
1026         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1027                 desc = "op state not supported";
1028                 break;
1029
1030 /****************************************************************************
1031 *  Config IOCStatus values
1032 ****************************************************************************/
1033
1034         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1035                 desc = "config invalid action";
1036                 break;
1037         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1038                 desc = "config invalid type";
1039                 break;
1040         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1041                 desc = "config invalid page";
1042                 break;
1043         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1044                 desc = "config invalid data";
1045                 break;
1046         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1047                 desc = "config no defaults";
1048                 break;
1049         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1050                 desc = "config cant commit";
1051                 break;
1052
1053 /****************************************************************************
1054 *  SCSI IO Reply
1055 ****************************************************************************/
1056
1057         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1058         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1059         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1060         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1061         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1062         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1063         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1064         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1065         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1066         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1067         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1068         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1069                 break;
1070
1071 /****************************************************************************
1072 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1073 ****************************************************************************/
1074
1075         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1076                 desc = "eedp guard error";
1077                 break;
1078         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1079                 desc = "eedp ref tag error";
1080                 break;
1081         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1082                 desc = "eedp app tag error";
1083                 break;
1084
1085 /****************************************************************************
1086 *  SCSI Target values
1087 ****************************************************************************/
1088
1089         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1090                 desc = "target invalid io index";
1091                 break;
1092         case MPI2_IOCSTATUS_TARGET_ABORTED:
1093                 desc = "target aborted";
1094                 break;
1095         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1096                 desc = "target no conn retryable";
1097                 break;
1098         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1099                 desc = "target no connection";
1100                 break;
1101         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1102                 desc = "target xfer count mismatch";
1103                 break;
1104         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1105                 desc = "target data offset error";
1106                 break;
1107         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1108                 desc = "target too much write data";
1109                 break;
1110         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1111                 desc = "target iu too short";
1112                 break;
1113         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1114                 desc = "target ack nak timeout";
1115                 break;
1116         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1117                 desc = "target nak received";
1118                 break;
1119
1120 /****************************************************************************
1121 *  Serial Attached SCSI values
1122 ****************************************************************************/
1123
1124         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1125                 desc = "smp request failed";
1126                 break;
1127         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1128                 desc = "smp data overrun";
1129                 break;
1130
1131 /****************************************************************************
1132 *  Diagnostic Buffer Post / Diagnostic Release values
1133 ****************************************************************************/
1134
1135         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1136                 desc = "diagnostic released";
1137                 break;
1138         default:
1139                 break;
1140         }
1141
1142         if (!desc)
1143                 return;
1144
1145         switch (request_hdr->Function) {
1146         case MPI2_FUNCTION_CONFIG:
1147                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1148                 func_str = "config_page";
1149                 break;
1150         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1151                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1152                 func_str = "task_mgmt";
1153                 break;
1154         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1155                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1156                 func_str = "sas_iounit_ctl";
1157                 break;
1158         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1159                 frame_sz = sizeof(Mpi2SepRequest_t);
1160                 func_str = "enclosure";
1161                 break;
1162         case MPI2_FUNCTION_IOC_INIT:
1163                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1164                 func_str = "ioc_init";
1165                 break;
1166         case MPI2_FUNCTION_PORT_ENABLE:
1167                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1168                 func_str = "port_enable";
1169                 break;
1170         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1171                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1172                 func_str = "smp_passthru";
1173                 break;
1174         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1175                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1176                     ioc->sge_size;
1177                 func_str = "nvme_encapsulated";
1178                 break;
1179         default:
1180                 frame_sz = 32;
1181                 func_str = "unknown";
1182                 break;
1183         }
1184
1185         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1186                  desc, ioc_status, request_hdr, func_str);
1187
1188         _debug_dump_mf(request_hdr, frame_sz/4);
1189 }
1190
1191 /**
1192  * _base_display_event_data - verbose translation of firmware asyn events
1193  * @ioc: per adapter object
1194  * @mpi_reply: reply mf payload returned from firmware
1195  */
1196 static void
1197 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1198         Mpi2EventNotificationReply_t *mpi_reply)
1199 {
1200         char *desc = NULL;
1201         u16 event;
1202
1203         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1204                 return;
1205
1206         event = le16_to_cpu(mpi_reply->Event);
1207
1208         switch (event) {
1209         case MPI2_EVENT_LOG_DATA:
1210                 desc = "Log Data";
1211                 break;
1212         case MPI2_EVENT_STATE_CHANGE:
1213                 desc = "Status Change";
1214                 break;
1215         case MPI2_EVENT_HARD_RESET_RECEIVED:
1216                 desc = "Hard Reset Received";
1217                 break;
1218         case MPI2_EVENT_EVENT_CHANGE:
1219                 desc = "Event Change";
1220                 break;
1221         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1222                 desc = "Device Status Change";
1223                 break;
1224         case MPI2_EVENT_IR_OPERATION_STATUS:
1225                 if (!ioc->hide_ir_msg)
1226                         desc = "IR Operation Status";
1227                 break;
1228         case MPI2_EVENT_SAS_DISCOVERY:
1229         {
1230                 Mpi2EventDataSasDiscovery_t *event_data =
1231                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1232                 ioc_info(ioc, "Discovery: (%s)",
1233                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1234                          "start" : "stop");
1235                 if (event_data->DiscoveryStatus)
1236                         pr_cont(" discovery_status(0x%08x)",
1237                             le32_to_cpu(event_data->DiscoveryStatus));
1238                 pr_cont("\n");
1239                 return;
1240         }
1241         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1242                 desc = "SAS Broadcast Primitive";
1243                 break;
1244         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1245                 desc = "SAS Init Device Status Change";
1246                 break;
1247         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1248                 desc = "SAS Init Table Overflow";
1249                 break;
1250         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1251                 desc = "SAS Topology Change List";
1252                 break;
1253         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1254                 desc = "SAS Enclosure Device Status Change";
1255                 break;
1256         case MPI2_EVENT_IR_VOLUME:
1257                 if (!ioc->hide_ir_msg)
1258                         desc = "IR Volume";
1259                 break;
1260         case MPI2_EVENT_IR_PHYSICAL_DISK:
1261                 if (!ioc->hide_ir_msg)
1262                         desc = "IR Physical Disk";
1263                 break;
1264         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1265                 if (!ioc->hide_ir_msg)
1266                         desc = "IR Configuration Change List";
1267                 break;
1268         case MPI2_EVENT_LOG_ENTRY_ADDED:
1269                 if (!ioc->hide_ir_msg)
1270                         desc = "Log Entry Added";
1271                 break;
1272         case MPI2_EVENT_TEMP_THRESHOLD:
1273                 desc = "Temperature Threshold";
1274                 break;
1275         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1276                 desc = "Cable Event";
1277                 break;
1278         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1279                 desc = "SAS Device Discovery Error";
1280                 break;
1281         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1282                 desc = "PCIE Device Status Change";
1283                 break;
1284         case MPI2_EVENT_PCIE_ENUMERATION:
1285         {
1286                 Mpi26EventDataPCIeEnumeration_t *event_data =
1287                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1288                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1289                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1290                          "start" : "stop");
1291                 if (event_data->EnumerationStatus)
1292                         pr_cont("enumeration_status(0x%08x)",
1293                                 le32_to_cpu(event_data->EnumerationStatus));
1294                 pr_cont("\n");
1295                 return;
1296         }
1297         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1298                 desc = "PCIE Topology Change List";
1299                 break;
1300         }
1301
1302         if (!desc)
1303                 return;
1304
1305         ioc_info(ioc, "%s\n", desc);
1306 }
1307
1308 /**
1309  * _base_sas_log_info - verbose translation of firmware log info
1310  * @ioc: per adapter object
1311  * @log_info: log info
1312  */
1313 static void
1314 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1315 {
1316         union loginfo_type {
1317                 u32     loginfo;
1318                 struct {
1319                         u32     subcode:16;
1320                         u32     code:8;
1321                         u32     originator:4;
1322                         u32     bus_type:4;
1323                 } dw;
1324         };
1325         union loginfo_type sas_loginfo;
1326         char *originator_str = NULL;
1327
1328         sas_loginfo.loginfo = log_info;
1329         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1330                 return;
1331
1332         /* each nexus loss loginfo */
1333         if (log_info == 0x31170000)
1334                 return;
1335
1336         /* eat the loginfos associated with task aborts */
1337         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1338             0x31140000 || log_info == 0x31130000))
1339                 return;
1340
1341         switch (sas_loginfo.dw.originator) {
1342         case 0:
1343                 originator_str = "IOP";
1344                 break;
1345         case 1:
1346                 originator_str = "PL";
1347                 break;
1348         case 2:
1349                 if (!ioc->hide_ir_msg)
1350                         originator_str = "IR";
1351                 else
1352                         originator_str = "WarpDrive";
1353                 break;
1354         }
1355
1356         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1357                  log_info,
1358                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1359 }
1360
1361 /**
1362  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1363  * @ioc: per adapter object
1364  * @smid: system request message index
1365  * @msix_index: MSIX table index supplied by the OS
1366  * @reply: reply message frame (lower 32bit addr)
1367  */
1368 static void
1369 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1370         u32 reply)
1371 {
1372         MPI2DefaultReply_t *mpi_reply;
1373         u16 ioc_status;
1374         u32 loginfo = 0;
1375
1376         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1377         if (unlikely(!mpi_reply)) {
1378                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1379                         __FILE__, __LINE__, __func__);
1380                 return;
1381         }
1382         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1383
1384         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1385             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1386                 _base_sas_ioc_info(ioc , mpi_reply,
1387                    mpt3sas_base_get_msg_frame(ioc, smid));
1388         }
1389
1390         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1391                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1392                 _base_sas_log_info(ioc, loginfo);
1393         }
1394
1395         if (ioc_status || loginfo) {
1396                 ioc_status &= MPI2_IOCSTATUS_MASK;
1397                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1398         }
1399 }
1400
1401 /**
1402  * mpt3sas_base_done - base internal command completion routine
1403  * @ioc: per adapter object
1404  * @smid: system request message index
1405  * @msix_index: MSIX table index supplied by the OS
1406  * @reply: reply message frame(lower 32bit addr)
1407  *
1408  * Return:
1409  * 1 meaning mf should be freed from _base_interrupt
1410  * 0 means the mf is freed from this function.
1411  */
1412 u8
1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1414         u32 reply)
1415 {
1416         MPI2DefaultReply_t *mpi_reply;
1417
1418         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1419         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1420                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1421
1422         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1423                 return 1;
1424
1425         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1426         if (mpi_reply) {
1427                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1428                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1429         }
1430         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1431
1432         complete(&ioc->base_cmds.done);
1433         return 1;
1434 }
1435
1436 /**
1437  * _base_async_event - main callback handler for firmware asyn events
1438  * @ioc: per adapter object
1439  * @msix_index: MSIX table index supplied by the OS
1440  * @reply: reply message frame(lower 32bit addr)
1441  *
1442  * Return:
1443  * 1 meaning mf should be freed from _base_interrupt
1444  * 0 means the mf is freed from this function.
1445  */
1446 static u8
1447 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1448 {
1449         Mpi2EventNotificationReply_t *mpi_reply;
1450         Mpi2EventAckRequest_t *ack_request;
1451         u16 smid;
1452         struct _event_ack_list *delayed_event_ack;
1453
1454         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1455         if (!mpi_reply)
1456                 return 1;
1457         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1458                 return 1;
1459
1460         _base_display_event_data(ioc, mpi_reply);
1461
1462         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1463                 goto out;
1464         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1465         if (!smid) {
1466                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1467                                         GFP_ATOMIC);
1468                 if (!delayed_event_ack)
1469                         goto out;
1470                 INIT_LIST_HEAD(&delayed_event_ack->list);
1471                 delayed_event_ack->Event = mpi_reply->Event;
1472                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1473                 list_add_tail(&delayed_event_ack->list,
1474                                 &ioc->delayed_event_ack_list);
1475                 dewtprintk(ioc,
1476                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1477                                     le16_to_cpu(mpi_reply->Event)));
1478                 goto out;
1479         }
1480
1481         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1482         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1483         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1484         ack_request->Event = mpi_reply->Event;
1485         ack_request->EventContext = mpi_reply->EventContext;
1486         ack_request->VF_ID = 0;  /* TODO */
1487         ack_request->VP_ID = 0;
1488         ioc->put_smid_default(ioc, smid);
1489
1490  out:
1491
1492         /* scsih callback handler */
1493         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1494
1495         /* ctl callback handler */
1496         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1497
1498         return 1;
1499 }
1500
1501 static struct scsiio_tracker *
1502 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1503 {
1504         struct scsi_cmnd *cmd;
1505
1506         if (WARN_ON(!smid) ||
1507             WARN_ON(smid >= ioc->hi_priority_smid))
1508                 return NULL;
1509
1510         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1511         if (cmd)
1512                 return scsi_cmd_priv(cmd);
1513
1514         return NULL;
1515 }
1516
1517 /**
1518  * _base_get_cb_idx - obtain the callback index
1519  * @ioc: per adapter object
1520  * @smid: system request message index
1521  *
1522  * Return: callback index.
1523  */
1524 static u8
1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1526 {
1527         int i;
1528         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1529         u8 cb_idx = 0xFF;
1530
1531         if (smid < ioc->hi_priority_smid) {
1532                 struct scsiio_tracker *st;
1533
1534                 if (smid < ctl_smid) {
1535                         st = _get_st_from_smid(ioc, smid);
1536                         if (st)
1537                                 cb_idx = st->cb_idx;
1538                 } else if (smid == ctl_smid)
1539                         cb_idx = ioc->ctl_cb_idx;
1540         } else if (smid < ioc->internal_smid) {
1541                 i = smid - ioc->hi_priority_smid;
1542                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1543         } else if (smid <= ioc->hba_queue_depth) {
1544                 i = smid - ioc->internal_smid;
1545                 cb_idx = ioc->internal_lookup[i].cb_idx;
1546         }
1547         return cb_idx;
1548 }
1549
1550 /**
1551  * mpt3sas_base_mask_interrupts - disable interrupts
1552  * @ioc: per adapter object
1553  *
1554  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1555  */
1556 void
1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1558 {
1559         u32 him_register;
1560
1561         ioc->mask_interrupts = 1;
1562         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1563         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1564         writel(him_register, &ioc->chip->HostInterruptMask);
1565         ioc->base_readl(&ioc->chip->HostInterruptMask);
1566 }
1567
1568 /**
1569  * mpt3sas_base_unmask_interrupts - enable interrupts
1570  * @ioc: per adapter object
1571  *
1572  * Enabling only Reply Interrupts
1573  */
1574 void
1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1576 {
1577         u32 him_register;
1578
1579         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1580         him_register &= ~MPI2_HIM_RIM;
1581         writel(him_register, &ioc->chip->HostInterruptMask);
1582         ioc->mask_interrupts = 0;
1583 }
1584
1585 union reply_descriptor {
1586         u64 word;
1587         struct {
1588                 u32 low;
1589                 u32 high;
1590         } u;
1591 };
1592
1593 static u32 base_mod64(u64 dividend, u32 divisor)
1594 {
1595         u32 remainder;
1596
1597         if (!divisor)
1598                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1599         remainder = do_div(dividend, divisor);
1600         return remainder;
1601 }
1602
1603 /**
1604  * _base_process_reply_queue - Process reply descriptors from reply
1605  *              descriptor post queue.
1606  * @reply_q: per IRQ's reply queue object.
1607  *
1608  * Return: number of reply descriptors processed from reply
1609  *              descriptor queue.
1610  */
1611 static int
1612 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1613 {
1614         union reply_descriptor rd;
1615         u64 completed_cmds;
1616         u8 request_descript_type;
1617         u16 smid;
1618         u8 cb_idx;
1619         u32 reply;
1620         u8 msix_index = reply_q->msix_index;
1621         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1622         Mpi2ReplyDescriptorsUnion_t *rpf;
1623         u8 rc;
1624
1625         completed_cmds = 0;
1626         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1627                 return completed_cmds;
1628
1629         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1630         request_descript_type = rpf->Default.ReplyFlags
1631              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1632         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1633                 atomic_dec(&reply_q->busy);
1634                 return completed_cmds;
1635         }
1636
1637         cb_idx = 0xFF;
1638         do {
1639                 rd.word = le64_to_cpu(rpf->Words);
1640                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1641                         goto out;
1642                 reply = 0;
1643                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1644                 if (request_descript_type ==
1645                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1646                     request_descript_type ==
1647                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1648                     request_descript_type ==
1649                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1650                         cb_idx = _base_get_cb_idx(ioc, smid);
1651                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1652                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1653                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1654                                     msix_index, 0);
1655                                 if (rc)
1656                                         mpt3sas_base_free_smid(ioc, smid);
1657                         }
1658                 } else if (request_descript_type ==
1659                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1660                         reply = le32_to_cpu(
1661                             rpf->AddressReply.ReplyFrameAddress);
1662                         if (reply > ioc->reply_dma_max_address ||
1663                             reply < ioc->reply_dma_min_address)
1664                                 reply = 0;
1665                         if (smid) {
1666                                 cb_idx = _base_get_cb_idx(ioc, smid);
1667                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1668                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1669                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1670                                             msix_index, reply);
1671                                         if (reply)
1672                                                 _base_display_reply_info(ioc,
1673                                                     smid, msix_index, reply);
1674                                         if (rc)
1675                                                 mpt3sas_base_free_smid(ioc,
1676                                                     smid);
1677                                 }
1678                         } else {
1679                                 _base_async_event(ioc, msix_index, reply);
1680                         }
1681
1682                         /* reply free queue handling */
1683                         if (reply) {
1684                                 ioc->reply_free_host_index =
1685                                     (ioc->reply_free_host_index ==
1686                                     (ioc->reply_free_queue_depth - 1)) ?
1687                                     0 : ioc->reply_free_host_index + 1;
1688                                 ioc->reply_free[ioc->reply_free_host_index] =
1689                                     cpu_to_le32(reply);
1690                                 if (ioc->is_mcpu_endpoint)
1691                                         _base_clone_reply_to_sys_mem(ioc,
1692                                                 reply,
1693                                                 ioc->reply_free_host_index);
1694                                 writel(ioc->reply_free_host_index,
1695                                     &ioc->chip->ReplyFreeHostIndex);
1696                         }
1697                 }
1698
1699                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1700                 reply_q->reply_post_host_index =
1701                     (reply_q->reply_post_host_index ==
1702                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1703                     reply_q->reply_post_host_index + 1;
1704                 request_descript_type =
1705                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1706                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707                 completed_cmds++;
1708                 /* Update the reply post host index after continuously
1709                  * processing the threshold number of Reply Descriptors.
1710                  * So that FW can find enough entries to post the Reply
1711                  * Descriptors in the reply descriptor post queue.
1712                  */
1713                 if (completed_cmds >= ioc->thresh_hold) {
1714                         if (ioc->combined_reply_queue) {
1715                                 writel(reply_q->reply_post_host_index |
1716                                                 ((msix_index  & 7) <<
1717                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1718                                     ioc->replyPostRegisterIndex[msix_index/8]);
1719                         } else {
1720                                 writel(reply_q->reply_post_host_index |
1721                                                 (msix_index <<
1722                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1723                                                 &ioc->chip->ReplyPostHostIndex);
1724                         }
1725                         if (!reply_q->irq_poll_scheduled) {
1726                                 reply_q->irq_poll_scheduled = true;
1727                                 irq_poll_sched(&reply_q->irqpoll);
1728                         }
1729                         atomic_dec(&reply_q->busy);
1730                         return completed_cmds;
1731                 }
1732                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1733                         goto out;
1734                 if (!reply_q->reply_post_host_index)
1735                         rpf = reply_q->reply_post_free;
1736                 else
1737                         rpf++;
1738         } while (1);
1739
1740  out:
1741
1742         if (!completed_cmds) {
1743                 atomic_dec(&reply_q->busy);
1744                 return completed_cmds;
1745         }
1746
1747         if (ioc->is_warpdrive) {
1748                 writel(reply_q->reply_post_host_index,
1749                 ioc->reply_post_host_index[msix_index]);
1750                 atomic_dec(&reply_q->busy);
1751                 return completed_cmds;
1752         }
1753
1754         /* Update Reply Post Host Index.
1755          * For those HBA's which support combined reply queue feature
1756          * 1. Get the correct Supplemental Reply Post Host Index Register.
1757          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1758          *    Index Register address bank i.e replyPostRegisterIndex[],
1759          * 2. Then update this register with new reply host index value
1760          *    in ReplyPostIndex field and the MSIxIndex field with
1761          *    msix_index value reduced to a value between 0 and 7,
1762          *    using a modulo 8 operation. Since each Supplemental Reply Post
1763          *    Host Index Register supports 8 MSI-X vectors.
1764          *
1765          * For other HBA's just update the Reply Post Host Index register with
1766          * new reply host index value in ReplyPostIndex Field and msix_index
1767          * value in MSIxIndex field.
1768          */
1769         if (ioc->combined_reply_queue)
1770                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1771                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1772                         ioc->replyPostRegisterIndex[msix_index/8]);
1773         else
1774                 writel(reply_q->reply_post_host_index | (msix_index <<
1775                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1776                         &ioc->chip->ReplyPostHostIndex);
1777         atomic_dec(&reply_q->busy);
1778         return completed_cmds;
1779 }
1780
1781 /**
1782  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1783  * @irq: irq number (not used)
1784  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1785  *
1786  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1787  */
1788 static irqreturn_t
1789 _base_interrupt(int irq, void *bus_id)
1790 {
1791         struct adapter_reply_queue *reply_q = bus_id;
1792         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1793
1794         if (ioc->mask_interrupts)
1795                 return IRQ_NONE;
1796         if (reply_q->irq_poll_scheduled)
1797                 return IRQ_HANDLED;
1798         return ((_base_process_reply_queue(reply_q) > 0) ?
1799                         IRQ_HANDLED : IRQ_NONE);
1800 }
1801
1802 /**
1803  * _base_irqpoll - IRQ poll callback handler
1804  * @irqpoll: irq_poll object
1805  * @budget: irq poll weight
1806  *
1807  * Return: number of reply descriptors processed
1808  */
1809 static int
1810 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1811 {
1812         struct adapter_reply_queue *reply_q;
1813         int num_entries = 0;
1814
1815         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1816                         irqpoll);
1817         if (reply_q->irq_line_enable) {
1818                 disable_irq_nosync(reply_q->os_irq);
1819                 reply_q->irq_line_enable = false;
1820         }
1821         num_entries = _base_process_reply_queue(reply_q);
1822         if (num_entries < budget) {
1823                 irq_poll_complete(irqpoll);
1824                 reply_q->irq_poll_scheduled = false;
1825                 reply_q->irq_line_enable = true;
1826                 enable_irq(reply_q->os_irq);
1827                 /*
1828                  * Go for one more round of processing the
1829                  * reply descriptor post queue in case the HBA
1830                  * Firmware has posted some reply descriptors
1831                  * while reenabling the IRQ.
1832                  */
1833                 _base_process_reply_queue(reply_q);
1834         }
1835
1836         return num_entries;
1837 }
1838
1839 /**
1840  * _base_init_irqpolls - initliaze IRQ polls
1841  * @ioc: per adapter object
1842  *
1843  * Return: nothing
1844  */
1845 static void
1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1847 {
1848         struct adapter_reply_queue *reply_q, *next;
1849
1850         if (list_empty(&ioc->reply_queue_list))
1851                 return;
1852
1853         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1854                 irq_poll_init(&reply_q->irqpoll,
1855                         ioc->hba_queue_depth/4, _base_irqpoll);
1856                 reply_q->irq_poll_scheduled = false;
1857                 reply_q->irq_line_enable = true;
1858                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1859                     reply_q->msix_index);
1860         }
1861 }
1862
1863 /**
1864  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1865  * @ioc: per adapter object
1866  *
1867  * Return: Whether or not MSI/X is enabled.
1868  */
1869 static inline int
1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1871 {
1872         return (ioc->facts.IOCCapabilities &
1873             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1874 }
1875
1876 /**
1877  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1878  * @ioc: per adapter object
1879  * @poll: poll over reply descriptor pools incase interrupt for
1880  *              timed-out SCSI command got delayed
1881  * Context: non-ISR context
1882  *
1883  * Called when a Task Management request has completed.
1884  */
1885 void
1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1887 {
1888         struct adapter_reply_queue *reply_q;
1889
1890         /* If MSIX capability is turned off
1891          * then multi-queues are not enabled
1892          */
1893         if (!_base_is_controller_msix_enabled(ioc))
1894                 return;
1895
1896         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1897                 if (ioc->shost_recovery || ioc->remove_host ||
1898                                 ioc->pci_error_recovery)
1899                         return;
1900                 /* TMs are on msix_index == 0 */
1901                 if (reply_q->msix_index == 0)
1902                         continue;
1903                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1904                 if (reply_q->irq_poll_scheduled) {
1905                         /* Calling irq_poll_disable will wait for any pending
1906                          * callbacks to have completed.
1907                          */
1908                         irq_poll_disable(&reply_q->irqpoll);
1909                         irq_poll_enable(&reply_q->irqpoll);
1910                         /* check how the scheduled poll has ended,
1911                          * clean up only if necessary
1912                          */
1913                         if (reply_q->irq_poll_scheduled) {
1914                                 reply_q->irq_poll_scheduled = false;
1915                                 reply_q->irq_line_enable = true;
1916                                 enable_irq(reply_q->os_irq);
1917                         }
1918                 }
1919         }
1920         if (poll)
1921                 _base_process_reply_queue(reply_q);
1922 }
1923
1924 /**
1925  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1926  * @cb_idx: callback index
1927  */
1928 void
1929 mpt3sas_base_release_callback_handler(u8 cb_idx)
1930 {
1931         mpt_callbacks[cb_idx] = NULL;
1932 }
1933
1934 /**
1935  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1936  * @cb_func: callback function
1937  *
1938  * Return: Index of @cb_func.
1939  */
1940 u8
1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1942 {
1943         u8 cb_idx;
1944
1945         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1946                 if (mpt_callbacks[cb_idx] == NULL)
1947                         break;
1948
1949         mpt_callbacks[cb_idx] = cb_func;
1950         return cb_idx;
1951 }
1952
1953 /**
1954  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1955  */
1956 void
1957 mpt3sas_base_initialize_callback_handler(void)
1958 {
1959         u8 cb_idx;
1960
1961         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1962                 mpt3sas_base_release_callback_handler(cb_idx);
1963 }
1964
1965
1966 /**
1967  * _base_build_zero_len_sge - build zero length sg entry
1968  * @ioc: per adapter object
1969  * @paddr: virtual address for SGE
1970  *
1971  * Create a zero length scatter gather entry to insure the IOCs hardware has
1972  * something to use if the target device goes brain dead and tries
1973  * to send data even when none is asked for.
1974  */
1975 static void
1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1977 {
1978         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1979             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1980             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1981             MPI2_SGE_FLAGS_SHIFT);
1982         ioc->base_add_sg_single(paddr, flags_length, -1);
1983 }
1984
1985 /**
1986  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1987  * @paddr: virtual address for SGE
1988  * @flags_length: SGE flags and data transfer length
1989  * @dma_addr: Physical address
1990  */
1991 static void
1992 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1993 {
1994         Mpi2SGESimple32_t *sgel = paddr;
1995
1996         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1997             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1998         sgel->FlagsLength = cpu_to_le32(flags_length);
1999         sgel->Address = cpu_to_le32(dma_addr);
2000 }
2001
2002
2003 /**
2004  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2005  * @paddr: virtual address for SGE
2006  * @flags_length: SGE flags and data transfer length
2007  * @dma_addr: Physical address
2008  */
2009 static void
2010 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2011 {
2012         Mpi2SGESimple64_t *sgel = paddr;
2013
2014         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2015             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2016         sgel->FlagsLength = cpu_to_le32(flags_length);
2017         sgel->Address = cpu_to_le64(dma_addr);
2018 }
2019
2020 /**
2021  * _base_get_chain_buffer_tracker - obtain chain tracker
2022  * @ioc: per adapter object
2023  * @scmd: SCSI commands of the IO request
2024  *
2025  * Return: chain tracker from chain_lookup table using key as
2026  * smid and smid's chain_offset.
2027  */
2028 static struct chain_tracker *
2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2030                                struct scsi_cmnd *scmd)
2031 {
2032         struct chain_tracker *chain_req;
2033         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2034         u16 smid = st->smid;
2035         u8 chain_offset =
2036            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2037
2038         if (chain_offset == ioc->chains_needed_per_io)
2039                 return NULL;
2040
2041         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2042         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2043         return chain_req;
2044 }
2045
2046
2047 /**
2048  * _base_build_sg - build generic sg
2049  * @ioc: per adapter object
2050  * @psge: virtual address for SGE
2051  * @data_out_dma: physical address for WRITES
2052  * @data_out_sz: data xfer size for WRITES
2053  * @data_in_dma: physical address for READS
2054  * @data_in_sz: data xfer size for READS
2055  */
2056 static void
2057 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2058         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2059         size_t data_in_sz)
2060 {
2061         u32 sgl_flags;
2062
2063         if (!data_out_sz && !data_in_sz) {
2064                 _base_build_zero_len_sge(ioc, psge);
2065                 return;
2066         }
2067
2068         if (data_out_sz && data_in_sz) {
2069                 /* WRITE sgel first */
2070                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2071                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2072                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2073                 ioc->base_add_sg_single(psge, sgl_flags |
2074                     data_out_sz, data_out_dma);
2075
2076                 /* incr sgel */
2077                 psge += ioc->sge_size;
2078
2079                 /* READ sgel last */
2080                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2081                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2082                     MPI2_SGE_FLAGS_END_OF_LIST);
2083                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2084                 ioc->base_add_sg_single(psge, sgl_flags |
2085                     data_in_sz, data_in_dma);
2086         } else if (data_out_sz) /* WRITE */ {
2087                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2088                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2089                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2090                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2091                 ioc->base_add_sg_single(psge, sgl_flags |
2092                     data_out_sz, data_out_dma);
2093         } else if (data_in_sz) /* READ */ {
2094                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2095                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2096                     MPI2_SGE_FLAGS_END_OF_LIST);
2097                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2098                 ioc->base_add_sg_single(psge, sgl_flags |
2099                     data_in_sz, data_in_dma);
2100         }
2101 }
2102
2103 /* IEEE format sgls */
2104
2105 /**
2106  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2107  *                        a native SGL (NVMe PRP).
2108  * @ioc: per adapter object
2109  * @smid: system request message index for getting asscociated SGL
2110  * @nvme_encap_request: the NVMe request msg frame pointer
2111  * @data_out_dma: physical address for WRITES
2112  * @data_out_sz: data xfer size for WRITES
2113  * @data_in_dma: physical address for READS
2114  * @data_in_sz: data xfer size for READS
2115  *
2116  * The native SGL is built starting in the first PRP
2117  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2118  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2119  * used to describe a larger data buffer.  If the data buffer is too large to
2120  * describe using the two PRP entriess inside the NVMe message, then PRP1
2121  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2122  * list located elsewhere in memory to describe the remaining data memory
2123  * segments.  The PRP list will be contiguous.
2124  *
2125  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2126  * consists of a list of PRP entries to describe a number of noncontigous
2127  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2128  * however, that this function is only used by the IOCTL call, so the memory
2129  * given will be guaranteed to be contiguous.  There is no need to translate
2130  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2131  * contiguous space that is one page size each.
2132  *
2133  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2134  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2135  * contains the second PRP element if the memory being described fits within 2
2136  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2137  *
2138  * A PRP list pointer contains the address of a PRP list, structured as a linear
2139  * array of PRP entries.  Each PRP entry in this list describes a segment of
2140  * physical memory.
2141  *
2142  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2143  * always points at the beginning of a 4KB physical memory page, and the offset
2144  * describes where within that 4KB page the memory segment begins.  Only the
2145  * first element in a PRP list may contain a non-zero offset, implying that all
2146  * memory segments following the first begin at the start of a 4KB page.
2147  *
2148  * Each PRP element normally describes 4KB of physical memory, with exceptions
2149  * for the first and last elements in the list.  If the memory being described
2150  * by the list begins at a non-zero offset within the first 4KB page, then the
2151  * first PRP element will contain a non-zero offset indicating where the region
2152  * begins within the 4KB page.  The last memory segment may end before the end
2153  * of the 4KB segment, depending upon the overall size of the memory being
2154  * described by the PRP list.
2155  *
2156  * Since PRP entries lack any indication of size, the overall data buffer length
2157  * is used to determine where the end of the data memory buffer is located, and
2158  * how many PRP entries are required to describe it.
2159  */
2160 static void
2161 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2162         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2163         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2164         size_t data_in_sz)
2165 {
2166         int             prp_size = NVME_PRP_SIZE;
2167         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2168         __le64          *prp_page;
2169         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2170         u32             offset, entry_len;
2171         u32             page_mask_result, page_mask;
2172         size_t          length;
2173         struct mpt3sas_nvme_cmd *nvme_cmd =
2174                 (void *)nvme_encap_request->NVMe_Command;
2175
2176         /*
2177          * Not all commands require a data transfer. If no data, just return
2178          * without constructing any PRP.
2179          */
2180         if (!data_in_sz && !data_out_sz)
2181                 return;
2182         prp1_entry = &nvme_cmd->prp1;
2183         prp2_entry = &nvme_cmd->prp2;
2184         prp_entry = prp1_entry;
2185         /*
2186          * For the PRP entries, use the specially allocated buffer of
2187          * contiguous memory.
2188          */
2189         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2190         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2191
2192         /*
2193          * Check if we are within 1 entry of a page boundary we don't
2194          * want our first entry to be a PRP List entry.
2195          */
2196         page_mask = ioc->page_size - 1;
2197         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2198         if (!page_mask_result) {
2199                 /* Bump up to next page boundary. */
2200                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2201                 prp_page_dma = prp_page_dma + prp_size;
2202         }
2203
2204         /*
2205          * Set PRP physical pointer, which initially points to the current PRP
2206          * DMA memory page.
2207          */
2208         prp_entry_dma = prp_page_dma;
2209
2210         /* Get physical address and length of the data buffer. */
2211         if (data_in_sz) {
2212                 dma_addr = data_in_dma;
2213                 length = data_in_sz;
2214         } else {
2215                 dma_addr = data_out_dma;
2216                 length = data_out_sz;
2217         }
2218
2219         /* Loop while the length is not zero. */
2220         while (length) {
2221                 /*
2222                  * Check if we need to put a list pointer here if we are at
2223                  * page boundary - prp_size (8 bytes).
2224                  */
2225                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2226                 if (!page_mask_result) {
2227                         /*
2228                          * This is the last entry in a PRP List, so we need to
2229                          * put a PRP list pointer here.  What this does is:
2230                          *   - bump the current memory pointer to the next
2231                          *     address, which will be the next full page.
2232                          *   - set the PRP Entry to point to that page.  This
2233                          *     is now the PRP List pointer.
2234                          *   - bump the PRP Entry pointer the start of the
2235                          *     next page.  Since all of this PRP memory is
2236                          *     contiguous, no need to get a new page - it's
2237                          *     just the next address.
2238                          */
2239                         prp_entry_dma++;
2240                         *prp_entry = cpu_to_le64(prp_entry_dma);
2241                         prp_entry++;
2242                 }
2243
2244                 /* Need to handle if entry will be part of a page. */
2245                 offset = dma_addr & page_mask;
2246                 entry_len = ioc->page_size - offset;
2247
2248                 if (prp_entry == prp1_entry) {
2249                         /*
2250                          * Must fill in the first PRP pointer (PRP1) before
2251                          * moving on.
2252                          */
2253                         *prp1_entry = cpu_to_le64(dma_addr);
2254
2255                         /*
2256                          * Now point to the second PRP entry within the
2257                          * command (PRP2).
2258                          */
2259                         prp_entry = prp2_entry;
2260                 } else if (prp_entry == prp2_entry) {
2261                         /*
2262                          * Should the PRP2 entry be a PRP List pointer or just
2263                          * a regular PRP pointer?  If there is more than one
2264                          * more page of data, must use a PRP List pointer.
2265                          */
2266                         if (length > ioc->page_size) {
2267                                 /*
2268                                  * PRP2 will contain a PRP List pointer because
2269                                  * more PRP's are needed with this command. The
2270                                  * list will start at the beginning of the
2271                                  * contiguous buffer.
2272                                  */
2273                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2274
2275                                 /*
2276                                  * The next PRP Entry will be the start of the
2277                                  * first PRP List.
2278                                  */
2279                                 prp_entry = prp_page;
2280                         } else {
2281                                 /*
2282                                  * After this, the PRP Entries are complete.
2283                                  * This command uses 2 PRP's and no PRP list.
2284                                  */
2285                                 *prp2_entry = cpu_to_le64(dma_addr);
2286                         }
2287                 } else {
2288                         /*
2289                          * Put entry in list and bump the addresses.
2290                          *
2291                          * After PRP1 and PRP2 are filled in, this will fill in
2292                          * all remaining PRP entries in a PRP List, one per
2293                          * each time through the loop.
2294                          */
2295                         *prp_entry = cpu_to_le64(dma_addr);
2296                         prp_entry++;
2297                         prp_entry_dma++;
2298                 }
2299
2300                 /*
2301                  * Bump the phys address of the command's data buffer by the
2302                  * entry_len.
2303                  */
2304                 dma_addr += entry_len;
2305
2306                 /* Decrement length accounting for last partial page. */
2307                 if (entry_len > length)
2308                         length = 0;
2309                 else
2310                         length -= entry_len;
2311         }
2312 }
2313
2314 /**
2315  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2316  *                      SGLs specific to NVMe drives only
2317  *
2318  * @ioc:                per adapter object
2319  * @scmd:               SCSI command from the mid-layer
2320  * @mpi_request:        mpi request
2321  * @smid:               msg Index
2322  * @sge_count:          scatter gather element count.
2323  *
2324  * Return:              true: PRPs are built
2325  *                      false: IEEE SGLs needs to be built
2326  */
2327 static void
2328 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2329                 struct scsi_cmnd *scmd,
2330                 Mpi25SCSIIORequest_t *mpi_request,
2331                 u16 smid, int sge_count)
2332 {
2333         int sge_len, num_prp_in_chain = 0;
2334         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2335         __le64 *curr_buff;
2336         dma_addr_t msg_dma, sge_addr, offset;
2337         u32 page_mask, page_mask_result;
2338         struct scatterlist *sg_scmd;
2339         u32 first_prp_len;
2340         int data_len = scsi_bufflen(scmd);
2341         u32 nvme_pg_size;
2342
2343         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2344         /*
2345          * Nvme has a very convoluted prp format.  One prp is required
2346          * for each page or partial page. Driver need to split up OS sg_list
2347          * entries if it is longer than one page or cross a page
2348          * boundary.  Driver also have to insert a PRP list pointer entry as
2349          * the last entry in each physical page of the PRP list.
2350          *
2351          * NOTE: The first PRP "entry" is actually placed in the first
2352          * SGL entry in the main message as IEEE 64 format.  The 2nd
2353          * entry in the main message is the chain element, and the rest
2354          * of the PRP entries are built in the contiguous pcie buffer.
2355          */
2356         page_mask = nvme_pg_size - 1;
2357
2358         /*
2359          * Native SGL is needed.
2360          * Put a chain element in main message frame that points to the first
2361          * chain buffer.
2362          *
2363          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2364          *        a native SGL.
2365          */
2366
2367         /* Set main message chain element pointer */
2368         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2369         /*
2370          * For NVMe the chain element needs to be the 2nd SG entry in the main
2371          * message.
2372          */
2373         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2374                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2375
2376         /*
2377          * For the PRP entries, use the specially allocated buffer of
2378          * contiguous memory.  Normal chain buffers can't be used
2379          * because each chain buffer would need to be the size of an OS
2380          * page (4k).
2381          */
2382         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2383         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2384
2385         main_chain_element->Address = cpu_to_le64(msg_dma);
2386         main_chain_element->NextChainOffset = 0;
2387         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2388                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2389                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2390
2391         /* Build first prp, sge need not to be page aligned*/
2392         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2393         sg_scmd = scsi_sglist(scmd);
2394         sge_addr = sg_dma_address(sg_scmd);
2395         sge_len = sg_dma_len(sg_scmd);
2396
2397         offset = sge_addr & page_mask;
2398         first_prp_len = nvme_pg_size - offset;
2399
2400         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2401         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2402
2403         data_len -= first_prp_len;
2404
2405         if (sge_len > first_prp_len) {
2406                 sge_addr += first_prp_len;
2407                 sge_len -= first_prp_len;
2408         } else if (data_len && (sge_len == first_prp_len)) {
2409                 sg_scmd = sg_next(sg_scmd);
2410                 sge_addr = sg_dma_address(sg_scmd);
2411                 sge_len = sg_dma_len(sg_scmd);
2412         }
2413
2414         for (;;) {
2415                 offset = sge_addr & page_mask;
2416
2417                 /* Put PRP pointer due to page boundary*/
2418                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2419                 if (unlikely(!page_mask_result)) {
2420                         scmd_printk(KERN_NOTICE,
2421                                 scmd, "page boundary curr_buff: 0x%p\n",
2422                                 curr_buff);
2423                         msg_dma += 8;
2424                         *curr_buff = cpu_to_le64(msg_dma);
2425                         curr_buff++;
2426                         num_prp_in_chain++;
2427                 }
2428
2429                 *curr_buff = cpu_to_le64(sge_addr);
2430                 curr_buff++;
2431                 msg_dma += 8;
2432                 num_prp_in_chain++;
2433
2434                 sge_addr += nvme_pg_size;
2435                 sge_len -= nvme_pg_size;
2436                 data_len -= nvme_pg_size;
2437
2438                 if (data_len <= 0)
2439                         break;
2440
2441                 if (sge_len > 0)
2442                         continue;
2443
2444                 sg_scmd = sg_next(sg_scmd);
2445                 sge_addr = sg_dma_address(sg_scmd);
2446                 sge_len = sg_dma_len(sg_scmd);
2447         }
2448
2449         main_chain_element->Length =
2450                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2451         return;
2452 }
2453
2454 static bool
2455 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2456         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2457 {
2458         u32 data_length = 0;
2459         bool build_prp = true;
2460
2461         data_length = scsi_bufflen(scmd);
2462         if (pcie_device &&
2463             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2464                 build_prp = false;
2465                 return build_prp;
2466         }
2467
2468         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2469          * we built IEEE SGL
2470          */
2471         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2472                 build_prp = false;
2473
2474         return build_prp;
2475 }
2476
2477 /**
2478  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2479  * determine if the driver needs to build a native SGL.  If so, that native
2480  * SGL is built in the special contiguous buffers allocated especially for
2481  * PCIe SGL creation.  If the driver will not build a native SGL, return
2482  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2483  * supports NVMe.
2484  * @ioc: per adapter object
2485  * @mpi_request: mf request pointer
2486  * @smid: system request message index
2487  * @scmd: scsi command
2488  * @pcie_device: points to the PCIe device's info
2489  *
2490  * Return: 0 if native SGL was built, 1 if no SGL was built
2491  */
2492 static int
2493 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2494         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2495         struct _pcie_device *pcie_device)
2496 {
2497         int sges_left;
2498
2499         /* Get the SG list pointer and info. */
2500         sges_left = scsi_dma_map(scmd);
2501         if (sges_left < 0) {
2502                 sdev_printk(KERN_ERR, scmd->device,
2503                         "scsi_dma_map failed: request for %d bytes!\n",
2504                         scsi_bufflen(scmd));
2505                 return 1;
2506         }
2507
2508         /* Check if we need to build a native SG list. */
2509         if (!base_is_prp_possible(ioc, pcie_device,
2510                                 scmd, sges_left)) {
2511                 /* We built a native SG list, just return. */
2512                 goto out;
2513         }
2514
2515         /*
2516          * Build native NVMe PRP.
2517          */
2518         base_make_prp_nvme(ioc, scmd, mpi_request,
2519                         smid, sges_left);
2520
2521         return 0;
2522 out:
2523         scsi_dma_unmap(scmd);
2524         return 1;
2525 }
2526
2527 /**
2528  * _base_add_sg_single_ieee - add sg element for IEEE format
2529  * @paddr: virtual address for SGE
2530  * @flags: SGE flags
2531  * @chain_offset: number of 128 byte elements from start of segment
2532  * @length: data transfer length
2533  * @dma_addr: Physical address
2534  */
2535 static void
2536 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2537         dma_addr_t dma_addr)
2538 {
2539         Mpi25IeeeSgeChain64_t *sgel = paddr;
2540
2541         sgel->Flags = flags;
2542         sgel->NextChainOffset = chain_offset;
2543         sgel->Length = cpu_to_le32(length);
2544         sgel->Address = cpu_to_le64(dma_addr);
2545 }
2546
2547 /**
2548  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2549  * @ioc: per adapter object
2550  * @paddr: virtual address for SGE
2551  *
2552  * Create a zero length scatter gather entry to insure the IOCs hardware has
2553  * something to use if the target device goes brain dead and tries
2554  * to send data even when none is asked for.
2555  */
2556 static void
2557 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2558 {
2559         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2560                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2561                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2562
2563         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2564 }
2565
2566 /**
2567  * _base_build_sg_scmd - main sg creation routine
2568  *              pcie_device is unused here!
2569  * @ioc: per adapter object
2570  * @scmd: scsi command
2571  * @smid: system request message index
2572  * @unused: unused pcie_device pointer
2573  * Context: none.
2574  *
2575  * The main routine that builds scatter gather table from a given
2576  * scsi request sent via the .queuecommand main handler.
2577  *
2578  * Return: 0 success, anything else error
2579  */
2580 static int
2581 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2582         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2583 {
2584         Mpi2SCSIIORequest_t *mpi_request;
2585         dma_addr_t chain_dma;
2586         struct scatterlist *sg_scmd;
2587         void *sg_local, *chain;
2588         u32 chain_offset;
2589         u32 chain_length;
2590         u32 chain_flags;
2591         int sges_left;
2592         u32 sges_in_segment;
2593         u32 sgl_flags;
2594         u32 sgl_flags_last_element;
2595         u32 sgl_flags_end_buffer;
2596         struct chain_tracker *chain_req;
2597
2598         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2599
2600         /* init scatter gather flags */
2601         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2602         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2603                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2604         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2605             << MPI2_SGE_FLAGS_SHIFT;
2606         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2607             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2608             << MPI2_SGE_FLAGS_SHIFT;
2609         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2610
2611         sg_scmd = scsi_sglist(scmd);
2612         sges_left = scsi_dma_map(scmd);
2613         if (sges_left < 0) {
2614                 sdev_printk(KERN_ERR, scmd->device,
2615                  "scsi_dma_map failed: request for %d bytes!\n",
2616                  scsi_bufflen(scmd));
2617                 return -ENOMEM;
2618         }
2619
2620         sg_local = &mpi_request->SGL;
2621         sges_in_segment = ioc->max_sges_in_main_message;
2622         if (sges_left <= sges_in_segment)
2623                 goto fill_in_last_segment;
2624
2625         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2626             (sges_in_segment * ioc->sge_size))/4;
2627
2628         /* fill in main message segment when there is a chain following */
2629         while (sges_in_segment) {
2630                 if (sges_in_segment == 1)
2631                         ioc->base_add_sg_single(sg_local,
2632                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2633                             sg_dma_address(sg_scmd));
2634                 else
2635                         ioc->base_add_sg_single(sg_local, sgl_flags |
2636                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2637                 sg_scmd = sg_next(sg_scmd);
2638                 sg_local += ioc->sge_size;
2639                 sges_left--;
2640                 sges_in_segment--;
2641         }
2642
2643         /* initializing the chain flags and pointers */
2644         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2645         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2646         if (!chain_req)
2647                 return -1;
2648         chain = chain_req->chain_buffer;
2649         chain_dma = chain_req->chain_buffer_dma;
2650         do {
2651                 sges_in_segment = (sges_left <=
2652                     ioc->max_sges_in_chain_message) ? sges_left :
2653                     ioc->max_sges_in_chain_message;
2654                 chain_offset = (sges_left == sges_in_segment) ?
2655                     0 : (sges_in_segment * ioc->sge_size)/4;
2656                 chain_length = sges_in_segment * ioc->sge_size;
2657                 if (chain_offset) {
2658                         chain_offset = chain_offset <<
2659                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2660                         chain_length += ioc->sge_size;
2661                 }
2662                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2663                     chain_length, chain_dma);
2664                 sg_local = chain;
2665                 if (!chain_offset)
2666                         goto fill_in_last_segment;
2667
2668                 /* fill in chain segments */
2669                 while (sges_in_segment) {
2670                         if (sges_in_segment == 1)
2671                                 ioc->base_add_sg_single(sg_local,
2672                                     sgl_flags_last_element |
2673                                     sg_dma_len(sg_scmd),
2674                                     sg_dma_address(sg_scmd));
2675                         else
2676                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2677                                     sg_dma_len(sg_scmd),
2678                                     sg_dma_address(sg_scmd));
2679                         sg_scmd = sg_next(sg_scmd);
2680                         sg_local += ioc->sge_size;
2681                         sges_left--;
2682                         sges_in_segment--;
2683                 }
2684
2685                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2686                 if (!chain_req)
2687                         return -1;
2688                 chain = chain_req->chain_buffer;
2689                 chain_dma = chain_req->chain_buffer_dma;
2690         } while (1);
2691
2692
2693  fill_in_last_segment:
2694
2695         /* fill the last segment */
2696         while (sges_left) {
2697                 if (sges_left == 1)
2698                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2699                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2700                 else
2701                         ioc->base_add_sg_single(sg_local, sgl_flags |
2702                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2703                 sg_scmd = sg_next(sg_scmd);
2704                 sg_local += ioc->sge_size;
2705                 sges_left--;
2706         }
2707
2708         return 0;
2709 }
2710
2711 /**
2712  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2713  * @ioc: per adapter object
2714  * @scmd: scsi command
2715  * @smid: system request message index
2716  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2717  * constructed on need.
2718  * Context: none.
2719  *
2720  * The main routine that builds scatter gather table from a given
2721  * scsi request sent via the .queuecommand main handler.
2722  *
2723  * Return: 0 success, anything else error
2724  */
2725 static int
2726 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2727         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2728 {
2729         Mpi25SCSIIORequest_t *mpi_request;
2730         dma_addr_t chain_dma;
2731         struct scatterlist *sg_scmd;
2732         void *sg_local, *chain;
2733         u32 chain_offset;
2734         u32 chain_length;
2735         int sges_left;
2736         u32 sges_in_segment;
2737         u8 simple_sgl_flags;
2738         u8 simple_sgl_flags_last;
2739         u8 chain_sgl_flags;
2740         struct chain_tracker *chain_req;
2741
2742         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2743
2744         /* init scatter gather flags */
2745         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2746             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2747         simple_sgl_flags_last = simple_sgl_flags |
2748             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2749         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2750             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2751
2752         /* Check if we need to build a native SG list. */
2753         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2754                         smid, scmd, pcie_device) == 0)) {
2755                 /* We built a native SG list, just return. */
2756                 return 0;
2757         }
2758
2759         sg_scmd = scsi_sglist(scmd);
2760         sges_left = scsi_dma_map(scmd);
2761         if (sges_left < 0) {
2762                 sdev_printk(KERN_ERR, scmd->device,
2763                         "scsi_dma_map failed: request for %d bytes!\n",
2764                         scsi_bufflen(scmd));
2765                 return -ENOMEM;
2766         }
2767
2768         sg_local = &mpi_request->SGL;
2769         sges_in_segment = (ioc->request_sz -
2770                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2771         if (sges_left <= sges_in_segment)
2772                 goto fill_in_last_segment;
2773
2774         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2775             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2776
2777         /* fill in main message segment when there is a chain following */
2778         while (sges_in_segment > 1) {
2779                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2780                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2781                 sg_scmd = sg_next(sg_scmd);
2782                 sg_local += ioc->sge_size_ieee;
2783                 sges_left--;
2784                 sges_in_segment--;
2785         }
2786
2787         /* initializing the pointers */
2788         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2789         if (!chain_req)
2790                 return -1;
2791         chain = chain_req->chain_buffer;
2792         chain_dma = chain_req->chain_buffer_dma;
2793         do {
2794                 sges_in_segment = (sges_left <=
2795                     ioc->max_sges_in_chain_message) ? sges_left :
2796                     ioc->max_sges_in_chain_message;
2797                 chain_offset = (sges_left == sges_in_segment) ?
2798                     0 : sges_in_segment;
2799                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2800                 if (chain_offset)
2801                         chain_length += ioc->sge_size_ieee;
2802                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2803                     chain_offset, chain_length, chain_dma);
2804
2805                 sg_local = chain;
2806                 if (!chain_offset)
2807                         goto fill_in_last_segment;
2808
2809                 /* fill in chain segments */
2810                 while (sges_in_segment) {
2811                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2812                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2813                         sg_scmd = sg_next(sg_scmd);
2814                         sg_local += ioc->sge_size_ieee;
2815                         sges_left--;
2816                         sges_in_segment--;
2817                 }
2818
2819                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2820                 if (!chain_req)
2821                         return -1;
2822                 chain = chain_req->chain_buffer;
2823                 chain_dma = chain_req->chain_buffer_dma;
2824         } while (1);
2825
2826
2827  fill_in_last_segment:
2828
2829         /* fill the last segment */
2830         while (sges_left > 0) {
2831                 if (sges_left == 1)
2832                         _base_add_sg_single_ieee(sg_local,
2833                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2834                             sg_dma_address(sg_scmd));
2835                 else
2836                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2837                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2838                 sg_scmd = sg_next(sg_scmd);
2839                 sg_local += ioc->sge_size_ieee;
2840                 sges_left--;
2841         }
2842
2843         return 0;
2844 }
2845
2846 /**
2847  * _base_build_sg_ieee - build generic sg for IEEE format
2848  * @ioc: per adapter object
2849  * @psge: virtual address for SGE
2850  * @data_out_dma: physical address for WRITES
2851  * @data_out_sz: data xfer size for WRITES
2852  * @data_in_dma: physical address for READS
2853  * @data_in_sz: data xfer size for READS
2854  */
2855 static void
2856 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2857         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2858         size_t data_in_sz)
2859 {
2860         u8 sgl_flags;
2861
2862         if (!data_out_sz && !data_in_sz) {
2863                 _base_build_zero_len_sge_ieee(ioc, psge);
2864                 return;
2865         }
2866
2867         if (data_out_sz && data_in_sz) {
2868                 /* WRITE sgel first */
2869                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2870                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2871                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2872                     data_out_dma);
2873
2874                 /* incr sgel */
2875                 psge += ioc->sge_size_ieee;
2876
2877                 /* READ sgel last */
2878                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2879                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2880                     data_in_dma);
2881         } else if (data_out_sz) /* WRITE */ {
2882                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2883                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2884                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2885                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2886                     data_out_dma);
2887         } else if (data_in_sz) /* READ */ {
2888                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2889                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2890                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2891                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2892                     data_in_dma);
2893         }
2894 }
2895
2896 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2897
2898 /**
2899  * _base_config_dma_addressing - set dma addressing
2900  * @ioc: per adapter object
2901  * @pdev: PCI device struct
2902  *
2903  * Return: 0 for success, non-zero for failure.
2904  */
2905 static int
2906 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2907 {
2908         struct sysinfo s;
2909
2910         if (ioc->is_mcpu_endpoint ||
2911             sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2912             dma_get_required_mask(&pdev->dev) <= 32)
2913                 ioc->dma_mask = 32;
2914         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2915         else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2916                 ioc->dma_mask = 63;
2917         else
2918                 ioc->dma_mask = 64;
2919
2920         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
2921             dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
2922                 return -ENODEV;
2923
2924         if (ioc->dma_mask > 32) {
2925                 ioc->base_add_sg_single = &_base_add_sg_single_64;
2926                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2927         } else {
2928                 ioc->base_add_sg_single = &_base_add_sg_single_32;
2929                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2930         }
2931
2932         si_meminfo(&s);
2933         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2934                 ioc->dma_mask, convert_to_kb(s.totalram));
2935
2936         return 0;
2937 }
2938
2939 /**
2940  * _base_check_enable_msix - checks MSIX capabable.
2941  * @ioc: per adapter object
2942  *
2943  * Check to see if card is capable of MSIX, and set number
2944  * of available msix vectors
2945  */
2946 static int
2947 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2948 {
2949         int base;
2950         u16 message_control;
2951
2952         /* Check whether controller SAS2008 B0 controller,
2953          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2954          */
2955         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2956             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2957                 return -EINVAL;
2958         }
2959
2960         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2961         if (!base) {
2962                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2963                 return -EINVAL;
2964         }
2965
2966         /* get msix vector count */
2967         /* NUMA_IO not supported for older controllers */
2968         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2969             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2970             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2971             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2972             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2973             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2974             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2975                 ioc->msix_vector_count = 1;
2976         else {
2977                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2978                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2979         }
2980         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2981                                   ioc->msix_vector_count));
2982         return 0;
2983 }
2984
2985 /**
2986  * mpt3sas_base_free_irq - free irq
2987  * @ioc: per adapter object
2988  *
2989  * Freeing respective reply_queue from the list.
2990  */
2991 void
2992 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2993 {
2994         struct adapter_reply_queue *reply_q, *next;
2995
2996         if (list_empty(&ioc->reply_queue_list))
2997                 return;
2998
2999         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3000                 list_del(&reply_q->list);
3001                 if (ioc->smp_affinity_enable)
3002                         irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3003                             reply_q->msix_index), NULL);
3004                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3005                          reply_q);
3006                 kfree(reply_q);
3007         }
3008 }
3009
3010 /**
3011  * _base_request_irq - request irq
3012  * @ioc: per adapter object
3013  * @index: msix index into vector table
3014  *
3015  * Inserting respective reply_queue into the list.
3016  */
3017 static int
3018 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3019 {
3020         struct pci_dev *pdev = ioc->pdev;
3021         struct adapter_reply_queue *reply_q;
3022         int r;
3023
3024         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3025         if (!reply_q) {
3026                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3027                         sizeof(struct adapter_reply_queue));
3028                 return -ENOMEM;
3029         }
3030         reply_q->ioc = ioc;
3031         reply_q->msix_index = index;
3032
3033         atomic_set(&reply_q->busy, 0);
3034         if (ioc->msix_enable)
3035                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3036                     ioc->driver_name, ioc->id, index);
3037         else
3038                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3039                     ioc->driver_name, ioc->id);
3040         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3041                         IRQF_SHARED, reply_q->name, reply_q);
3042         if (r) {
3043                 pr_err("%s: unable to allocate interrupt %d!\n",
3044                        reply_q->name, pci_irq_vector(pdev, index));
3045                 kfree(reply_q);
3046                 return -EBUSY;
3047         }
3048
3049         INIT_LIST_HEAD(&reply_q->list);
3050         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3051         return 0;
3052 }
3053
3054 /**
3055  * _base_assign_reply_queues - assigning msix index for each cpu
3056  * @ioc: per adapter object
3057  *
3058  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3059  *
3060  * It would nice if we could call irq_set_affinity, however it is not
3061  * an exported symbol
3062  */
3063 static void
3064 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3065 {
3066         unsigned int cpu, nr_cpus, nr_msix, index = 0;
3067         struct adapter_reply_queue *reply_q;
3068         int local_numa_node;
3069
3070         if (!_base_is_controller_msix_enabled(ioc))
3071                 return;
3072
3073         if (ioc->msix_load_balance)
3074                 return;
3075
3076         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3077
3078         nr_cpus = num_online_cpus();
3079         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3080                                                ioc->facts.MaxMSIxVectors);
3081         if (!nr_msix)
3082                 return;
3083
3084         if (ioc->smp_affinity_enable) {
3085
3086                 /*
3087                  * set irq affinity to local numa node for those irqs
3088                  * corresponding to high iops queues.
3089                  */
3090                 if (ioc->high_iops_queues) {
3091                         local_numa_node = dev_to_node(&ioc->pdev->dev);
3092                         for (index = 0; index < ioc->high_iops_queues;
3093                             index++) {
3094                                 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3095                                     index), cpumask_of_node(local_numa_node));
3096                         }
3097                 }
3098
3099                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3100                         const cpumask_t *mask;
3101
3102                         if (reply_q->msix_index < ioc->high_iops_queues)
3103                                 continue;
3104
3105                         mask = pci_irq_get_affinity(ioc->pdev,
3106                             reply_q->msix_index);
3107                         if (!mask) {
3108                                 ioc_warn(ioc, "no affinity for msi %x\n",
3109                                          reply_q->msix_index);
3110                                 goto fall_back;
3111                         }
3112
3113                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3114                                 if (cpu >= ioc->cpu_msix_table_sz)
3115                                         break;
3116                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3117                         }
3118                 }
3119                 return;
3120         }
3121
3122 fall_back:
3123         cpu = cpumask_first(cpu_online_mask);
3124         nr_msix -= ioc->high_iops_queues;
3125         index = 0;
3126
3127         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3128                 unsigned int i, group = nr_cpus / nr_msix;
3129
3130                 if (reply_q->msix_index < ioc->high_iops_queues)
3131                         continue;
3132
3133                 if (cpu >= nr_cpus)
3134                         break;
3135
3136                 if (index < nr_cpus % nr_msix)
3137                         group++;
3138
3139                 for (i = 0 ; i < group ; i++) {
3140                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3141                         cpu = cpumask_next(cpu, cpu_online_mask);
3142                 }
3143                 index++;
3144         }
3145 }
3146
3147 /**
3148  * _base_check_and_enable_high_iops_queues - enable high iops mode
3149  * @ioc: per adapter object
3150  * @hba_msix_vector_count: msix vectors supported by HBA
3151  *
3152  * Enable high iops queues only if
3153  *  - HBA is a SEA/AERO controller and
3154  *  - MSI-Xs vector supported by the HBA is 128 and
3155  *  - total CPU count in the system >=16 and
3156  *  - loaded driver with default max_msix_vectors module parameter and
3157  *  - system booted in non kdump mode
3158  *
3159  * Return: nothing.
3160  */
3161 static void
3162 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3163                 int hba_msix_vector_count)
3164 {
3165         u16 lnksta, speed;
3166
3167         if (perf_mode == MPT_PERF_MODE_IOPS ||
3168             perf_mode == MPT_PERF_MODE_LATENCY) {
3169                 ioc->high_iops_queues = 0;
3170                 return;
3171         }
3172
3173         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3174
3175                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3176                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3177
3178                 if (speed < 0x4) {
3179                         ioc->high_iops_queues = 0;
3180                         return;
3181                 }
3182         }
3183
3184         if (!reset_devices && ioc->is_aero_ioc &&
3185             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3186             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3187             max_msix_vectors == -1)
3188                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3189         else
3190                 ioc->high_iops_queues = 0;
3191 }
3192
3193 /**
3194  * mpt3sas_base_disable_msix - disables msix
3195  * @ioc: per adapter object
3196  *
3197  */
3198 void
3199 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3200 {
3201         if (!ioc->msix_enable)
3202                 return;
3203         pci_free_irq_vectors(ioc->pdev);
3204         ioc->msix_enable = 0;
3205 }
3206
3207 /**
3208  * _base_alloc_irq_vectors - allocate msix vectors
3209  * @ioc: per adapter object
3210  *
3211  */
3212 static int
3213 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3214 {
3215         int i, irq_flags = PCI_IRQ_MSIX;
3216         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3217         struct irq_affinity *descp = &desc;
3218
3219         if (ioc->smp_affinity_enable)
3220                 irq_flags |= PCI_IRQ_AFFINITY;
3221         else
3222                 descp = NULL;
3223
3224         ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3225             ioc->reply_queue_count);
3226
3227         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3228             ioc->high_iops_queues,
3229             ioc->reply_queue_count, irq_flags, descp);
3230
3231         return i;
3232 }
3233
3234 /**
3235  * _base_enable_msix - enables msix, failback to io_apic
3236  * @ioc: per adapter object
3237  *
3238  */
3239 static int
3240 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3241 {
3242         int r;
3243         int i, local_max_msix_vectors;
3244         u8 try_msix = 0;
3245
3246         ioc->msix_load_balance = false;
3247
3248         if (msix_disable == -1 || msix_disable == 0)
3249                 try_msix = 1;
3250
3251         if (!try_msix)
3252                 goto try_ioapic;
3253
3254         if (_base_check_enable_msix(ioc) != 0)
3255                 goto try_ioapic;
3256
3257         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3258         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3259                 ioc->cpu_count, max_msix_vectors);
3260         if (ioc->is_aero_ioc)
3261                 _base_check_and_enable_high_iops_queues(ioc,
3262                         ioc->msix_vector_count);
3263         ioc->reply_queue_count =
3264                 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3265                 ioc->msix_vector_count);
3266
3267         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3268                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3269         else
3270                 local_max_msix_vectors = max_msix_vectors;
3271
3272         if (local_max_msix_vectors > 0)
3273                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3274                         ioc->reply_queue_count);
3275         else if (local_max_msix_vectors == 0)
3276                 goto try_ioapic;
3277
3278         /*
3279          * Enable msix_load_balance only if combined reply queue mode is
3280          * disabled on SAS3 & above generation HBA devices.
3281          */
3282         if (!ioc->combined_reply_queue &&
3283             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3284                 ioc_info(ioc,
3285                     "combined ReplyQueue is off, Enabling msix load balance\n");
3286                 ioc->msix_load_balance = true;
3287         }
3288
3289         /*
3290          * smp affinity setting is not need when msix load balance
3291          * is enabled.
3292          */
3293         if (ioc->msix_load_balance)
3294                 ioc->smp_affinity_enable = 0;
3295
3296         r = _base_alloc_irq_vectors(ioc);
3297         if (r < 0) {
3298                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3299                 goto try_ioapic;
3300         }
3301
3302         ioc->msix_enable = 1;
3303         ioc->reply_queue_count = r;
3304         for (i = 0; i < ioc->reply_queue_count; i++) {
3305                 r = _base_request_irq(ioc, i);
3306                 if (r) {
3307                         mpt3sas_base_free_irq(ioc);
3308                         mpt3sas_base_disable_msix(ioc);
3309                         goto try_ioapic;
3310                 }
3311         }
3312
3313         ioc_info(ioc, "High IOPs queues : %s\n",
3314                         ioc->high_iops_queues ? "enabled" : "disabled");
3315
3316         return 0;
3317
3318 /* failback to io_apic interrupt routing */
3319  try_ioapic:
3320         ioc->high_iops_queues = 0;
3321         ioc_info(ioc, "High IOPs queues : disabled\n");
3322         ioc->reply_queue_count = 1;
3323         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3324         if (r < 0) {
3325                 dfailprintk(ioc,
3326                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3327                                      r));
3328         } else
3329                 r = _base_request_irq(ioc, 0);
3330
3331         return r;
3332 }
3333
3334 /**
3335  * mpt3sas_base_unmap_resources - free controller resources
3336  * @ioc: per adapter object
3337  */
3338 static void
3339 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3340 {
3341         struct pci_dev *pdev = ioc->pdev;
3342
3343         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3344
3345         mpt3sas_base_free_irq(ioc);
3346         mpt3sas_base_disable_msix(ioc);
3347
3348         kfree(ioc->replyPostRegisterIndex);
3349         ioc->replyPostRegisterIndex = NULL;
3350
3351
3352         if (ioc->chip_phys) {
3353                 iounmap(ioc->chip);
3354                 ioc->chip_phys = 0;
3355         }
3356
3357         if (pci_is_enabled(pdev)) {
3358                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3359                 pci_disable_pcie_error_reporting(pdev);
3360                 pci_disable_device(pdev);
3361         }
3362 }
3363
3364 static int
3365 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3366
3367 /**
3368  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3369  *     and if it is in fault state then issue diag reset.
3370  * @ioc: per adapter object
3371  *
3372  * Return: 0 for success, non-zero for failure.
3373  */
3374 int
3375 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3376 {
3377         u32 ioc_state;
3378         int rc = -EFAULT;
3379
3380         dinitprintk(ioc, pr_info("%s\n", __func__));
3381         if (ioc->pci_error_recovery)
3382                 return 0;
3383         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3384         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3385
3386         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3387                 mpt3sas_print_fault_code(ioc, ioc_state &
3388                     MPI2_DOORBELL_DATA_MASK);
3389                 mpt3sas_base_mask_interrupts(ioc);
3390                 rc = _base_diag_reset(ioc);
3391         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3392             MPI2_IOC_STATE_COREDUMP) {
3393                 mpt3sas_print_coredump_info(ioc, ioc_state &
3394                      MPI2_DOORBELL_DATA_MASK);
3395                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3396                 mpt3sas_base_mask_interrupts(ioc);
3397                 rc = _base_diag_reset(ioc);
3398         }
3399
3400         return rc;
3401 }
3402
3403 /**
3404  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3405  * @ioc: per adapter object
3406  *
3407  * Return: 0 for success, non-zero for failure.
3408  */
3409 int
3410 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3411 {
3412         struct pci_dev *pdev = ioc->pdev;
3413         u32 memap_sz;
3414         u32 pio_sz;
3415         int i, r = 0, rc;
3416         u64 pio_chip = 0;
3417         phys_addr_t chip_phys = 0;
3418         struct adapter_reply_queue *reply_q;
3419
3420         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3421
3422         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3423         if (pci_enable_device_mem(pdev)) {
3424                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3425                 ioc->bars = 0;
3426                 return -ENODEV;
3427         }
3428
3429
3430         if (pci_request_selected_regions(pdev, ioc->bars,
3431             ioc->driver_name)) {
3432                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3433                 ioc->bars = 0;
3434                 r = -ENODEV;
3435                 goto out_fail;
3436         }
3437
3438 /* AER (Advanced Error Reporting) hooks */
3439         pci_enable_pcie_error_reporting(pdev);
3440
3441         pci_set_master(pdev);
3442
3443
3444         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3445                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3446                 r = -ENODEV;
3447                 goto out_fail;
3448         }
3449
3450         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3451              (!memap_sz || !pio_sz); i++) {
3452                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3453                         if (pio_sz)
3454                                 continue;
3455                         pio_chip = (u64)pci_resource_start(pdev, i);
3456                         pio_sz = pci_resource_len(pdev, i);
3457                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3458                         if (memap_sz)
3459                                 continue;
3460                         ioc->chip_phys = pci_resource_start(pdev, i);
3461                         chip_phys = ioc->chip_phys;
3462                         memap_sz = pci_resource_len(pdev, i);
3463                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3464                 }
3465         }
3466
3467         if (ioc->chip == NULL) {
3468                 ioc_err(ioc,
3469                     "unable to map adapter memory! or resource not found\n");
3470                 r = -EINVAL;
3471                 goto out_fail;
3472         }
3473
3474         mpt3sas_base_mask_interrupts(ioc);
3475
3476         r = _base_get_ioc_facts(ioc);
3477         if (r) {
3478                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3479                 if (rc || (_base_get_ioc_facts(ioc)))
3480                         goto out_fail;
3481         }
3482
3483         if (!ioc->rdpq_array_enable_assigned) {
3484                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3485                 ioc->rdpq_array_enable_assigned = 1;
3486         }
3487
3488         r = _base_enable_msix(ioc);
3489         if (r)
3490                 goto out_fail;
3491
3492         if (!ioc->is_driver_loading)
3493                 _base_init_irqpolls(ioc);
3494         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3495          * revision HBAs and also only when reply queue count is greater than 8
3496          */
3497         if (ioc->combined_reply_queue) {
3498                 /* Determine the Supplemental Reply Post Host Index Registers
3499                  * Addresse. Supplemental Reply Post Host Index Registers
3500                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3501                  * each register is at offset bytes of
3502                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3503                  */
3504                 ioc->replyPostRegisterIndex = kcalloc(
3505                      ioc->combined_reply_index_count,
3506                      sizeof(resource_size_t *), GFP_KERNEL);
3507                 if (!ioc->replyPostRegisterIndex) {
3508                         ioc_err(ioc,
3509                             "allocation for replyPostRegisterIndex failed!\n");
3510                         r = -ENOMEM;
3511                         goto out_fail;
3512                 }
3513
3514                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3515                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3516                              ((u8 __force *)&ioc->chip->Doorbell +
3517                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3518                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3519                 }
3520         }
3521
3522         if (ioc->is_warpdrive) {
3523                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3524                     &ioc->chip->ReplyPostHostIndex;
3525
3526                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3527                         ioc->reply_post_host_index[i] =
3528                         (resource_size_t __iomem *)
3529                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3530                         * 4)));
3531         }
3532
3533         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3534                 pr_info("%s: %s enabled: IRQ %d\n",
3535                         reply_q->name,
3536                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3537                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3538
3539         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3540                  &chip_phys, ioc->chip, memap_sz);
3541         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3542                  (unsigned long long)pio_chip, pio_sz);
3543
3544         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3545         pci_save_state(pdev);
3546         return 0;
3547
3548  out_fail:
3549         mpt3sas_base_unmap_resources(ioc);
3550         return r;
3551 }
3552
3553 /**
3554  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3555  * @ioc: per adapter object
3556  * @smid: system request message index(smid zero is invalid)
3557  *
3558  * Return: virt pointer to message frame.
3559  */
3560 void *
3561 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3562 {
3563         return (void *)(ioc->request + (smid * ioc->request_sz));
3564 }
3565
3566 /**
3567  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3568  * @ioc: per adapter object
3569  * @smid: system request message index
3570  *
3571  * Return: virt pointer to sense buffer.
3572  */
3573 void *
3574 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3575 {
3576         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3577 }
3578
3579 /**
3580  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3581  * @ioc: per adapter object
3582  * @smid: system request message index
3583  *
3584  * Return: phys pointer to the low 32bit address of the sense buffer.
3585  */
3586 __le32
3587 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3588 {
3589         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3590             SCSI_SENSE_BUFFERSIZE));
3591 }
3592
3593 /**
3594  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3595  * @ioc: per adapter object
3596  * @smid: system request message index
3597  *
3598  * Return: virt pointer to a PCIe SGL.
3599  */
3600 void *
3601 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3602 {
3603         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3604 }
3605
3606 /**
3607  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3608  * @ioc: per adapter object
3609  * @smid: system request message index
3610  *
3611  * Return: phys pointer to the address of the PCIe buffer.
3612  */
3613 dma_addr_t
3614 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3615 {
3616         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3617 }
3618
3619 /**
3620  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3621  * @ioc: per adapter object
3622  * @phys_addr: lower 32 physical addr of the reply
3623  *
3624  * Converts 32bit lower physical addr into a virt address.
3625  */
3626 void *
3627 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3628 {
3629         if (!phys_addr)
3630                 return NULL;
3631         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3632 }
3633
3634 /**
3635  * _base_get_msix_index - get the msix index
3636  * @ioc: per adapter object
3637  * @scmd: scsi_cmnd object
3638  *
3639  * Return: msix index of general reply queues,
3640  * i.e. reply queue on which IO request's reply
3641  * should be posted by the HBA firmware.
3642  */
3643 static inline u8
3644 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3645         struct scsi_cmnd *scmd)
3646 {
3647         /* Enables reply_queue load balancing */
3648         if (ioc->msix_load_balance)
3649                 return ioc->reply_queue_count ?
3650                     base_mod64(atomic64_add_return(1,
3651                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3652
3653         if (scmd && ioc->shost->nr_hw_queues > 1) {
3654                 u32 tag = blk_mq_unique_tag(scmd->request);
3655
3656                 return blk_mq_unique_tag_to_hwq(tag) +
3657                         ioc->high_iops_queues;
3658         }
3659
3660         return ioc->cpu_msix_table[raw_smp_processor_id()];
3661 }
3662
3663 /**
3664  * _base_get_high_iops_msix_index - get the msix index of
3665  *                              high iops queues
3666  * @ioc: per adapter object
3667  * @scmd: scsi_cmnd object
3668  *
3669  * Return: msix index of high iops reply queues.
3670  * i.e. high iops reply queue on which IO request's
3671  * reply should be posted by the HBA firmware.
3672  */
3673 static inline u8
3674 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3675         struct scsi_cmnd *scmd)
3676 {
3677         /**
3678          * Round robin the IO interrupts among the high iops
3679          * reply queues in terms of batch count 16 when outstanding
3680          * IOs on the target device is >=8.
3681          */
3682
3683         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3684                 return base_mod64((
3685                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3686                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3687                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3688
3689         return _base_get_msix_index(ioc, scmd);
3690 }
3691
3692 /**
3693  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3694  * @ioc: per adapter object
3695  * @cb_idx: callback index
3696  *
3697  * Return: smid (zero is invalid)
3698  */
3699 u16
3700 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3701 {
3702         unsigned long flags;
3703         struct request_tracker *request;
3704         u16 smid;
3705
3706         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3707         if (list_empty(&ioc->internal_free_list)) {
3708                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3709                 ioc_err(ioc, "%s: smid not available\n", __func__);
3710                 return 0;
3711         }
3712
3713         request = list_entry(ioc->internal_free_list.next,
3714             struct request_tracker, tracker_list);
3715         request->cb_idx = cb_idx;
3716         smid = request->smid;
3717         list_del(&request->tracker_list);
3718         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3719         return smid;
3720 }
3721
3722 /**
3723  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3724  * @ioc: per adapter object
3725  * @cb_idx: callback index
3726  * @scmd: pointer to scsi command object
3727  *
3728  * Return: smid (zero is invalid)
3729  */
3730 u16
3731 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3732         struct scsi_cmnd *scmd)
3733 {
3734         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3735         u16 smid;
3736         u32 tag, unique_tag;
3737
3738         unique_tag = blk_mq_unique_tag(scmd->request);
3739         tag = blk_mq_unique_tag_to_tag(unique_tag);
3740
3741         /*
3742          * Store hw queue number corresponding to the tag.
3743          * This hw queue number is used later to determine
3744          * the unique_tag using the logic below. This unique_tag
3745          * is used to retrieve the scmd pointer corresponding
3746          * to tag using scsi_host_find_tag() API.
3747          *
3748          * tag = smid - 1;
3749          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3750          */
3751         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3752
3753         smid = tag + 1;
3754         request->cb_idx = cb_idx;
3755         request->smid = smid;
3756         request->scmd = scmd;
3757         INIT_LIST_HEAD(&request->chain_list);
3758         return smid;
3759 }
3760
3761 /**
3762  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3763  * @ioc: per adapter object
3764  * @cb_idx: callback index
3765  *
3766  * Return: smid (zero is invalid)
3767  */
3768 u16
3769 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3770 {
3771         unsigned long flags;
3772         struct request_tracker *request;
3773         u16 smid;
3774
3775         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3776         if (list_empty(&ioc->hpr_free_list)) {
3777                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3778                 return 0;
3779         }
3780
3781         request = list_entry(ioc->hpr_free_list.next,
3782             struct request_tracker, tracker_list);
3783         request->cb_idx = cb_idx;
3784         smid = request->smid;
3785         list_del(&request->tracker_list);
3786         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3787         return smid;
3788 }
3789
3790 static void
3791 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3792 {
3793         /*
3794          * See _wait_for_commands_to_complete() call with regards to this code.
3795          */
3796         if (ioc->shost_recovery && ioc->pending_io_count) {
3797                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3798                 if (ioc->pending_io_count == 0)
3799                         wake_up(&ioc->reset_wq);
3800         }
3801 }
3802
3803 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3804                            struct scsiio_tracker *st)
3805 {
3806         if (WARN_ON(st->smid == 0))
3807                 return;
3808         st->cb_idx = 0xFF;
3809         st->direct_io = 0;
3810         st->scmd = NULL;
3811         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3812         st->smid = 0;
3813 }
3814
3815 /**
3816  * mpt3sas_base_free_smid - put smid back on free_list
3817  * @ioc: per adapter object
3818  * @smid: system request message index
3819  */
3820 void
3821 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3822 {
3823         unsigned long flags;
3824         int i;
3825
3826         if (smid < ioc->hi_priority_smid) {
3827                 struct scsiio_tracker *st;
3828                 void *request;
3829
3830                 st = _get_st_from_smid(ioc, smid);
3831                 if (!st) {
3832                         _base_recovery_check(ioc);
3833                         return;
3834                 }
3835
3836                 /* Clear MPI request frame */
3837                 request = mpt3sas_base_get_msg_frame(ioc, smid);
3838                 memset(request, 0, ioc->request_sz);
3839
3840                 mpt3sas_base_clear_st(ioc, st);
3841                 _base_recovery_check(ioc);
3842                 ioc->io_queue_num[smid - 1] = 0;
3843                 return;
3844         }
3845
3846         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3847         if (smid < ioc->internal_smid) {
3848                 /* hi-priority */
3849                 i = smid - ioc->hi_priority_smid;
3850                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3851                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3852         } else if (smid <= ioc->hba_queue_depth) {
3853                 /* internal queue */
3854                 i = smid - ioc->internal_smid;
3855                 ioc->internal_lookup[i].cb_idx = 0xFF;
3856                 list_add(&ioc->internal_lookup[i].tracker_list,
3857                     &ioc->internal_free_list);
3858         }
3859         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3860 }
3861
3862 /**
3863  * _base_mpi_ep_writeq - 32 bit write to MMIO
3864  * @b: data payload
3865  * @addr: address in MMIO space
3866  * @writeq_lock: spin lock
3867  *
3868  * This special handling for MPI EP to take care of 32 bit
3869  * environment where its not quarenteed to send the entire word
3870  * in one transfer.
3871  */
3872 static inline void
3873 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3874                                         spinlock_t *writeq_lock)
3875 {
3876         unsigned long flags;
3877
3878         spin_lock_irqsave(writeq_lock, flags);
3879         __raw_writel((u32)(b), addr);
3880         __raw_writel((u32)(b >> 32), (addr + 4));
3881         spin_unlock_irqrestore(writeq_lock, flags);
3882 }
3883
3884 /**
3885  * _base_writeq - 64 bit write to MMIO
3886  * @b: data payload
3887  * @addr: address in MMIO space
3888  * @writeq_lock: spin lock
3889  *
3890  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3891  * care of 32 bit environment where its not quarenteed to send the entire word
3892  * in one transfer.
3893  */
3894 #if defined(writeq) && defined(CONFIG_64BIT)
3895 static inline void
3896 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3897 {
3898         wmb();
3899         __raw_writeq(b, addr);
3900         barrier();
3901 }
3902 #else
3903 static inline void
3904 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3905 {
3906         _base_mpi_ep_writeq(b, addr, writeq_lock);
3907 }
3908 #endif
3909
3910 /**
3911  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3912  *                                variable of scsi tracker
3913  * @ioc: per adapter object
3914  * @smid: system request message index
3915  *
3916  * Return: msix index.
3917  */
3918 static u8
3919 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3920 {
3921         struct scsiio_tracker *st = NULL;
3922
3923         if (smid < ioc->hi_priority_smid)
3924                 st = _get_st_from_smid(ioc, smid);
3925
3926         if (st == NULL)
3927                 return  _base_get_msix_index(ioc, NULL);
3928
3929         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3930         return st->msix_io;
3931 }
3932
3933 /**
3934  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3935  * @ioc: per adapter object
3936  * @smid: system request message index
3937  * @handle: device handle
3938  */
3939 static void
3940 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3941         u16 smid, u16 handle)
3942 {
3943         Mpi2RequestDescriptorUnion_t descriptor;
3944         u64 *request = (u64 *)&descriptor;
3945         void *mpi_req_iomem;
3946         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3947
3948         _clone_sg_entries(ioc, (void *) mfp, smid);
3949         mpi_req_iomem = (void __force *)ioc->chip +
3950                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3951         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3952                                         ioc->request_sz);
3953         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3954         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3955         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3956         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3957         descriptor.SCSIIO.LMID = 0;
3958         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3959             &ioc->scsi_lookup_lock);
3960 }
3961
3962 /**
3963  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3964  * @ioc: per adapter object
3965  * @smid: system request message index
3966  * @handle: device handle
3967  */
3968 static void
3969 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3970 {
3971         Mpi2RequestDescriptorUnion_t descriptor;
3972         u64 *request = (u64 *)&descriptor;
3973
3974
3975         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3976         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3977         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3978         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3979         descriptor.SCSIIO.LMID = 0;
3980         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3981             &ioc->scsi_lookup_lock);
3982 }
3983
3984 /**
3985  * _base_put_smid_fast_path - send fast path request to firmware
3986  * @ioc: per adapter object
3987  * @smid: system request message index
3988  * @handle: device handle
3989  */
3990 static void
3991 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3992         u16 handle)
3993 {
3994         Mpi2RequestDescriptorUnion_t descriptor;
3995         u64 *request = (u64 *)&descriptor;
3996
3997         descriptor.SCSIIO.RequestFlags =
3998             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3999         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4000         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4001         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4002         descriptor.SCSIIO.LMID = 0;
4003         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4004             &ioc->scsi_lookup_lock);
4005 }
4006
4007 /**
4008  * _base_put_smid_hi_priority - send Task Management request to firmware
4009  * @ioc: per adapter object
4010  * @smid: system request message index
4011  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4012  */
4013 static void
4014 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4015         u16 msix_task)
4016 {
4017         Mpi2RequestDescriptorUnion_t descriptor;
4018         void *mpi_req_iomem;
4019         u64 *request;
4020
4021         if (ioc->is_mcpu_endpoint) {
4022                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4023
4024                 /* TBD 256 is offset within sys register. */
4025                 mpi_req_iomem = (void __force *)ioc->chip
4026                                         + MPI_FRAME_START_OFFSET
4027                                         + (smid * ioc->request_sz);
4028                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4029                                                         ioc->request_sz);
4030         }
4031
4032         request = (u64 *)&descriptor;
4033
4034         descriptor.HighPriority.RequestFlags =
4035             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4036         descriptor.HighPriority.MSIxIndex =  msix_task;
4037         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4038         descriptor.HighPriority.LMID = 0;
4039         descriptor.HighPriority.Reserved1 = 0;
4040         if (ioc->is_mcpu_endpoint)
4041                 _base_mpi_ep_writeq(*request,
4042                                 &ioc->chip->RequestDescriptorPostLow,
4043                                 &ioc->scsi_lookup_lock);
4044         else
4045                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4046                     &ioc->scsi_lookup_lock);
4047 }
4048
4049 /**
4050  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4051  *  firmware
4052  * @ioc: per adapter object
4053  * @smid: system request message index
4054  */
4055 void
4056 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4057 {
4058         Mpi2RequestDescriptorUnion_t descriptor;
4059         u64 *request = (u64 *)&descriptor;
4060
4061         descriptor.Default.RequestFlags =
4062                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4063         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4064         descriptor.Default.SMID = cpu_to_le16(smid);
4065         descriptor.Default.LMID = 0;
4066         descriptor.Default.DescriptorTypeDependent = 0;
4067         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4068             &ioc->scsi_lookup_lock);
4069 }
4070
4071 /**
4072  * _base_put_smid_default - Default, primarily used for config pages
4073  * @ioc: per adapter object
4074  * @smid: system request message index
4075  */
4076 static void
4077 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4078 {
4079         Mpi2RequestDescriptorUnion_t descriptor;
4080         void *mpi_req_iomem;
4081         u64 *request;
4082
4083         if (ioc->is_mcpu_endpoint) {
4084                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4085
4086                 _clone_sg_entries(ioc, (void *) mfp, smid);
4087                 /* TBD 256 is offset within sys register */
4088                 mpi_req_iomem = (void __force *)ioc->chip +
4089                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4090                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4091                                                         ioc->request_sz);
4092         }
4093         request = (u64 *)&descriptor;
4094         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4095         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4096         descriptor.Default.SMID = cpu_to_le16(smid);
4097         descriptor.Default.LMID = 0;
4098         descriptor.Default.DescriptorTypeDependent = 0;
4099         if (ioc->is_mcpu_endpoint)
4100                 _base_mpi_ep_writeq(*request,
4101                                 &ioc->chip->RequestDescriptorPostLow,
4102                                 &ioc->scsi_lookup_lock);
4103         else
4104                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4105                                 &ioc->scsi_lookup_lock);
4106 }
4107
4108 /**
4109  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4110  *   Atomic Request Descriptor
4111  * @ioc: per adapter object
4112  * @smid: system request message index
4113  * @handle: device handle, unused in this function, for function type match
4114  *
4115  * Return: nothing.
4116  */
4117 static void
4118 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4119         u16 handle)
4120 {
4121         Mpi26AtomicRequestDescriptor_t descriptor;
4122         u32 *request = (u32 *)&descriptor;
4123
4124         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4125         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4126         descriptor.SMID = cpu_to_le16(smid);
4127
4128         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4129 }
4130
4131 /**
4132  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4133  * using Atomic Request Descriptor
4134  * @ioc: per adapter object
4135  * @smid: system request message index
4136  * @handle: device handle, unused in this function, for function type match
4137  * Return: nothing
4138  */
4139 static void
4140 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4141         u16 handle)
4142 {
4143         Mpi26AtomicRequestDescriptor_t descriptor;
4144         u32 *request = (u32 *)&descriptor;
4145
4146         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4147         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4148         descriptor.SMID = cpu_to_le16(smid);
4149
4150         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4151 }
4152
4153 /**
4154  * _base_put_smid_hi_priority_atomic - send Task Management request to
4155  * firmware using Atomic Request Descriptor
4156  * @ioc: per adapter object
4157  * @smid: system request message index
4158  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4159  *
4160  * Return: nothing.
4161  */
4162 static void
4163 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4164         u16 msix_task)
4165 {
4166         Mpi26AtomicRequestDescriptor_t descriptor;
4167         u32 *request = (u32 *)&descriptor;
4168
4169         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4170         descriptor.MSIxIndex = msix_task;
4171         descriptor.SMID = cpu_to_le16(smid);
4172
4173         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4174 }
4175
4176 /**
4177  * _base_put_smid_default_atomic - Default, primarily used for config pages
4178  * use Atomic Request Descriptor
4179  * @ioc: per adapter object
4180  * @smid: system request message index
4181  *
4182  * Return: nothing.
4183  */
4184 static void
4185 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4186 {
4187         Mpi26AtomicRequestDescriptor_t descriptor;
4188         u32 *request = (u32 *)&descriptor;
4189
4190         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4191         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4192         descriptor.SMID = cpu_to_le16(smid);
4193
4194         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4195 }
4196
4197 /**
4198  * _base_display_OEMs_branding - Display branding string
4199  * @ioc: per adapter object
4200  */
4201 static void
4202 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4203 {
4204         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4205                 return;
4206
4207         switch (ioc->pdev->subsystem_vendor) {
4208         case PCI_VENDOR_ID_INTEL:
4209                 switch (ioc->pdev->device) {
4210                 case MPI2_MFGPAGE_DEVID_SAS2008:
4211                         switch (ioc->pdev->subsystem_device) {
4212                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4213                                 ioc_info(ioc, "%s\n",
4214                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4215                                 break;
4216                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4217                                 ioc_info(ioc, "%s\n",
4218                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4219                                 break;
4220                         case MPT2SAS_INTEL_SSD910_SSDID:
4221                                 ioc_info(ioc, "%s\n",
4222                                          MPT2SAS_INTEL_SSD910_BRANDING);
4223                                 break;
4224                         default:
4225                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4226                                          ioc->pdev->subsystem_device);
4227                                 break;
4228                         }
4229                         break;
4230                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4231                         switch (ioc->pdev->subsystem_device) {
4232                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4233                                 ioc_info(ioc, "%s\n",
4234                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4235                                 break;
4236                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4237                                 ioc_info(ioc, "%s\n",
4238                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4239                                 break;
4240                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4241                                 ioc_info(ioc, "%s\n",
4242                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4243                                 break;
4244                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4245                                 ioc_info(ioc, "%s\n",
4246                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4247                                 break;
4248                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4249                                 ioc_info(ioc, "%s\n",
4250                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4251                                 break;
4252                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4253                                 ioc_info(ioc, "%s\n",
4254                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4255                                 break;
4256                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4257                                 ioc_info(ioc, "%s\n",
4258                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4259                                 break;
4260                         default:
4261                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4262                                          ioc->pdev->subsystem_device);
4263                                 break;
4264                         }
4265                         break;
4266                 case MPI25_MFGPAGE_DEVID_SAS3008:
4267                         switch (ioc->pdev->subsystem_device) {
4268                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4269                                 ioc_info(ioc, "%s\n",
4270                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4271                                 break;
4272
4273                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4274                                 ioc_info(ioc, "%s\n",
4275                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4276                                 break;
4277                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4278                                 ioc_info(ioc, "%s\n",
4279                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4280                                 break;
4281                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4282                                 ioc_info(ioc, "%s\n",
4283                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4284                                 break;
4285                         default:
4286                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4287                                          ioc->pdev->subsystem_device);
4288                                 break;
4289                         }
4290                         break;
4291                 default:
4292                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4293                                  ioc->pdev->subsystem_device);
4294                         break;
4295                 }
4296                 break;
4297         case PCI_VENDOR_ID_DELL:
4298                 switch (ioc->pdev->device) {
4299                 case MPI2_MFGPAGE_DEVID_SAS2008:
4300                         switch (ioc->pdev->subsystem_device) {
4301                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4302                                 ioc_info(ioc, "%s\n",
4303                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4304                                 break;
4305                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4306                                 ioc_info(ioc, "%s\n",
4307                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4308                                 break;
4309                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4310                                 ioc_info(ioc, "%s\n",
4311                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4312                                 break;
4313                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4314                                 ioc_info(ioc, "%s\n",
4315                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4316                                 break;
4317                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4318                                 ioc_info(ioc, "%s\n",
4319                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4320                                 break;
4321                         case MPT2SAS_DELL_PERC_H200_SSDID:
4322                                 ioc_info(ioc, "%s\n",
4323                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4324                                 break;
4325                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4326                                 ioc_info(ioc, "%s\n",
4327                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4328                                 break;
4329                         default:
4330                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4331                                          ioc->pdev->subsystem_device);
4332                                 break;
4333                         }
4334                         break;
4335                 case MPI25_MFGPAGE_DEVID_SAS3008:
4336                         switch (ioc->pdev->subsystem_device) {
4337                         case MPT3SAS_DELL_12G_HBA_SSDID:
4338                                 ioc_info(ioc, "%s\n",
4339                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4340                                 break;
4341                         default:
4342                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4343                                          ioc->pdev->subsystem_device);
4344                                 break;
4345                         }
4346                         break;
4347                 default:
4348                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4349                                  ioc->pdev->subsystem_device);
4350                         break;
4351                 }
4352                 break;
4353         case PCI_VENDOR_ID_CISCO:
4354                 switch (ioc->pdev->device) {
4355                 case MPI25_MFGPAGE_DEVID_SAS3008:
4356                         switch (ioc->pdev->subsystem_device) {
4357                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4358                                 ioc_info(ioc, "%s\n",
4359                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4360                                 break;
4361                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4362                                 ioc_info(ioc, "%s\n",
4363                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4364                                 break;
4365                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4366                                 ioc_info(ioc, "%s\n",
4367                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4368                                 break;
4369                         default:
4370                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4371                                          ioc->pdev->subsystem_device);
4372                                 break;
4373                         }
4374                         break;
4375                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4376                         switch (ioc->pdev->subsystem_device) {
4377                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4378                                 ioc_info(ioc, "%s\n",
4379                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4380                                 break;
4381                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4382                                 ioc_info(ioc, "%s\n",
4383                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4384                                 break;
4385                         default:
4386                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4387                                          ioc->pdev->subsystem_device);
4388                                 break;
4389                         }
4390                         break;
4391                 default:
4392                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4393                                  ioc->pdev->subsystem_device);
4394                         break;
4395                 }
4396                 break;
4397         case MPT2SAS_HP_3PAR_SSVID:
4398                 switch (ioc->pdev->device) {
4399                 case MPI2_MFGPAGE_DEVID_SAS2004:
4400                         switch (ioc->pdev->subsystem_device) {
4401                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4402                                 ioc_info(ioc, "%s\n",
4403                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4404                                 break;
4405                         default:
4406                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4407                                          ioc->pdev->subsystem_device);
4408                                 break;
4409                         }
4410                         break;
4411                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4412                         switch (ioc->pdev->subsystem_device) {
4413                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4414                                 ioc_info(ioc, "%s\n",
4415                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4416                                 break;
4417                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4418                                 ioc_info(ioc, "%s\n",
4419                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4420                                 break;
4421                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4422                                 ioc_info(ioc, "%s\n",
4423                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4424                                 break;
4425                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4426                                 ioc_info(ioc, "%s\n",
4427                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4428                                 break;
4429                         default:
4430                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4431                                          ioc->pdev->subsystem_device);
4432                                 break;
4433                         }
4434                         break;
4435                 default:
4436                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4437                                  ioc->pdev->subsystem_device);
4438                         break;
4439                 }
4440                 break;
4441         default:
4442                 break;
4443         }
4444 }
4445
4446 /**
4447  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4448  *                              version from FW Image Header.
4449  * @ioc: per adapter object
4450  *
4451  * Return: 0 for success, non-zero for failure.
4452  */
4453         static int
4454 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4455 {
4456         Mpi2FWImageHeader_t *fw_img_hdr;
4457         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4458         Mpi25FWUploadRequest_t *mpi_request;
4459         Mpi2FWUploadReply_t mpi_reply;
4460         int r = 0, issue_diag_reset = 0;
4461         u32  package_version = 0;
4462         void *fwpkg_data = NULL;
4463         dma_addr_t fwpkg_data_dma;
4464         u16 smid, ioc_status;
4465         size_t data_length;
4466
4467         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4468
4469         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4470                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4471                 return -EAGAIN;
4472         }
4473
4474         data_length = sizeof(Mpi2FWImageHeader_t);
4475         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4476                         &fwpkg_data_dma, GFP_KERNEL);
4477         if (!fwpkg_data) {
4478                 ioc_err(ioc,
4479                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4480                         __FILE__, __LINE__, __func__);
4481                 return -ENOMEM;
4482         }
4483
4484         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4485         if (!smid) {
4486                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4487                 r = -EAGAIN;
4488                 goto out;
4489         }
4490
4491         ioc->base_cmds.status = MPT3_CMD_PENDING;
4492         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4493         ioc->base_cmds.smid = smid;
4494         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4495         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4496         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4497         mpi_request->ImageSize = cpu_to_le32(data_length);
4498         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4499                         data_length);
4500         init_completion(&ioc->base_cmds.done);
4501         ioc->put_smid_default(ioc, smid);
4502         /* Wait for 15 seconds */
4503         wait_for_completion_timeout(&ioc->base_cmds.done,
4504                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4505         ioc_info(ioc, "%s: complete\n", __func__);
4506         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4507                 ioc_err(ioc, "%s: timeout\n", __func__);
4508                 _debug_dump_mf(mpi_request,
4509                                 sizeof(Mpi25FWUploadRequest_t)/4);
4510                 issue_diag_reset = 1;
4511         } else {
4512                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4513                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4514                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4515                                         sizeof(Mpi2FWUploadReply_t));
4516                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4517                                                 MPI2_IOCSTATUS_MASK;
4518                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4519                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4520                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4521                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4522                                         cmp_img_hdr =
4523                                             (Mpi26ComponentImageHeader_t *)
4524                                             (fwpkg_data);
4525                                         package_version =
4526                                             le32_to_cpu(
4527                                             cmp_img_hdr->ApplicationSpecific);
4528                                 } else
4529                                         package_version =
4530                                             le32_to_cpu(
4531                                             fw_img_hdr->PackageVersion.Word);
4532                                 if (package_version)
4533                                         ioc_info(ioc,
4534                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4535                                         ((package_version) & 0xFF000000) >> 24,
4536                                         ((package_version) & 0x00FF0000) >> 16,
4537                                         ((package_version) & 0x0000FF00) >> 8,
4538                                         (package_version) & 0x000000FF);
4539                         } else {
4540                                 _debug_dump_mf(&mpi_reply,
4541                                                 sizeof(Mpi2FWUploadReply_t)/4);
4542                         }
4543                 }
4544         }
4545         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4546 out:
4547         if (fwpkg_data)
4548                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4549                                 fwpkg_data_dma);
4550         if (issue_diag_reset) {
4551                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4552                         return -EFAULT;
4553                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4554                         return -EFAULT;
4555                 r = -EAGAIN;
4556         }
4557         return r;
4558 }
4559
4560 /**
4561  * _base_display_ioc_capabilities - Display IOC's capabilities.
4562  * @ioc: per adapter object
4563  */
4564 static void
4565 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4566 {
4567         int i = 0;
4568         char desc[16];
4569         u32 iounit_pg1_flags;
4570         u32 bios_version;
4571
4572         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4573         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4574         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4575                  desc,
4576                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4577                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4578                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4579                  ioc->facts.FWVersion.Word & 0x000000FF,
4580                  ioc->pdev->revision,
4581                  (bios_version & 0xFF000000) >> 24,
4582                  (bios_version & 0x00FF0000) >> 16,
4583                  (bios_version & 0x0000FF00) >> 8,
4584                  bios_version & 0x000000FF);
4585
4586         _base_display_OEMs_branding(ioc);
4587
4588         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4589                 pr_info("%sNVMe", i ? "," : "");
4590                 i++;
4591         }
4592
4593         ioc_info(ioc, "Protocol=(");
4594
4595         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4596                 pr_cont("Initiator");
4597                 i++;
4598         }
4599
4600         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4601                 pr_cont("%sTarget", i ? "," : "");
4602                 i++;
4603         }
4604
4605         i = 0;
4606         pr_cont("), Capabilities=(");
4607
4608         if (!ioc->hide_ir_msg) {
4609                 if (ioc->facts.IOCCapabilities &
4610                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4611                         pr_cont("Raid");
4612                         i++;
4613                 }
4614         }
4615
4616         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4617                 pr_cont("%sTLR", i ? "," : "");
4618                 i++;
4619         }
4620
4621         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4622                 pr_cont("%sMulticast", i ? "," : "");
4623                 i++;
4624         }
4625
4626         if (ioc->facts.IOCCapabilities &
4627             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4628                 pr_cont("%sBIDI Target", i ? "," : "");
4629                 i++;
4630         }
4631
4632         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4633                 pr_cont("%sEEDP", i ? "," : "");
4634                 i++;
4635         }
4636
4637         if (ioc->facts.IOCCapabilities &
4638             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4639                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4640                 i++;
4641         }
4642
4643         if (ioc->facts.IOCCapabilities &
4644             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4645                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4646                 i++;
4647         }
4648
4649         if (ioc->facts.IOCCapabilities &
4650             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4651                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4652                 i++;
4653         }
4654
4655         if (ioc->facts.IOCCapabilities &
4656             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4657                 pr_cont("%sTask Set Full", i ? "," : "");
4658                 i++;
4659         }
4660
4661         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4662         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4663                 pr_cont("%sNCQ", i ? "," : "");
4664                 i++;
4665         }
4666
4667         pr_cont(")\n");
4668 }
4669
4670 /**
4671  * mpt3sas_base_update_missing_delay - change the missing delay timers
4672  * @ioc: per adapter object
4673  * @device_missing_delay: amount of time till device is reported missing
4674  * @io_missing_delay: interval IO is returned when there is a missing device
4675  *
4676  * Passed on the command line, this function will modify the device missing
4677  * delay, as well as the io missing delay. This should be called at driver
4678  * load time.
4679  */
4680 void
4681 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4682         u16 device_missing_delay, u8 io_missing_delay)
4683 {
4684         u16 dmd, dmd_new, dmd_orignal;
4685         u8 io_missing_delay_original;
4686         u16 sz;
4687         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4688         Mpi2ConfigReply_t mpi_reply;
4689         u8 num_phys = 0;
4690         u16 ioc_status;
4691
4692         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4693         if (!num_phys)
4694                 return;
4695
4696         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4697             sizeof(Mpi2SasIOUnit1PhyData_t));
4698         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4699         if (!sas_iounit_pg1) {
4700                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4701                         __FILE__, __LINE__, __func__);
4702                 goto out;
4703         }
4704         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4705             sas_iounit_pg1, sz))) {
4706                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4707                         __FILE__, __LINE__, __func__);
4708                 goto out;
4709         }
4710         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4711             MPI2_IOCSTATUS_MASK;
4712         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4713                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4714                         __FILE__, __LINE__, __func__);
4715                 goto out;
4716         }
4717
4718         /* device missing delay */
4719         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4720         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4721                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4722         else
4723                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4724         dmd_orignal = dmd;
4725         if (device_missing_delay > 0x7F) {
4726                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4727                     device_missing_delay;
4728                 dmd = dmd / 16;
4729                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4730         } else
4731                 dmd = device_missing_delay;
4732         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4733
4734         /* io missing delay */
4735         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4736         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4737
4738         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4739             sz)) {
4740                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4741                         dmd_new = (dmd &
4742                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4743                 else
4744                         dmd_new =
4745                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4746                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4747                          dmd_orignal, dmd_new);
4748                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4749                          io_missing_delay_original,
4750                          io_missing_delay);
4751                 ioc->device_missing_delay = dmd_new;
4752                 ioc->io_missing_delay = io_missing_delay;
4753         }
4754
4755 out:
4756         kfree(sas_iounit_pg1);
4757 }
4758
4759 /**
4760  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4761  *    according to performance mode.
4762  * @ioc : per adapter object
4763  *
4764  * Return: zero on success; otherwise return EAGAIN error code asking the
4765  * caller to retry.
4766  */
4767 static int
4768 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4769 {
4770         Mpi2IOCPage1_t ioc_pg1;
4771         Mpi2ConfigReply_t mpi_reply;
4772         int rc;
4773
4774         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4775         if (rc)
4776                 return rc;
4777         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4778
4779         switch (perf_mode) {
4780         case MPT_PERF_MODE_DEFAULT:
4781         case MPT_PERF_MODE_BALANCED:
4782                 if (ioc->high_iops_queues) {
4783                         ioc_info(ioc,
4784                                 "Enable interrupt coalescing only for first\t"
4785                                 "%d reply queues\n",
4786                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4787                         /*
4788                          * If 31st bit is zero then interrupt coalescing is
4789                          * enabled for all reply descriptor post queues.
4790                          * If 31st bit is set to one then user can
4791                          * enable/disable interrupt coalescing on per reply
4792                          * descriptor post queue group(8) basis. So to enable
4793                          * interrupt coalescing only on first reply descriptor
4794                          * post queue group 31st bit and zero th bit is enabled.
4795                          */
4796                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4797                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4798                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4799                         if (rc)
4800                                 return rc;
4801                         ioc_info(ioc, "performance mode: balanced\n");
4802                         return 0;
4803                 }
4804                 fallthrough;
4805         case MPT_PERF_MODE_LATENCY:
4806                 /*
4807                  * Enable interrupt coalescing on all reply queues
4808                  * with timeout value 0xA
4809                  */
4810                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4811                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4812                 ioc_pg1.ProductSpecific = 0;
4813                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4814                 if (rc)
4815                         return rc;
4816                 ioc_info(ioc, "performance mode: latency\n");
4817                 break;
4818         case MPT_PERF_MODE_IOPS:
4819                 /*
4820                  * Enable interrupt coalescing on all reply queues.
4821                  */
4822                 ioc_info(ioc,
4823                     "performance mode: iops with coalescing timeout: 0x%x\n",
4824                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
4825                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4826                 ioc_pg1.ProductSpecific = 0;
4827                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4828                 if (rc)
4829                         return rc;
4830                 break;
4831         }
4832         return 0;
4833 }
4834
4835 /**
4836  * _base_get_event_diag_triggers - get event diag trigger values from
4837  *                              persistent pages
4838  * @ioc : per adapter object
4839  *
4840  * Return: nothing.
4841  */
4842 static int
4843 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4844 {
4845         Mpi26DriverTriggerPage2_t trigger_pg2;
4846         struct SL_WH_EVENT_TRIGGER_T *event_tg;
4847         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
4848         Mpi2ConfigReply_t mpi_reply;
4849         int r = 0, i = 0;
4850         u16 count = 0;
4851         u16 ioc_status;
4852
4853         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
4854             &trigger_pg2);
4855         if (r)
4856                 return r;
4857
4858         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4859             MPI2_IOCSTATUS_MASK;
4860         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4861                 dinitprintk(ioc,
4862                     ioc_err(ioc,
4863                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
4864                    __func__, ioc_status));
4865                 return 0;
4866         }
4867
4868         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
4869                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
4870                 count = min_t(u16, NUM_VALID_ENTRIES, count);
4871                 ioc->diag_trigger_event.ValidEntries = count;
4872
4873                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
4874                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
4875                 for (i = 0; i < count; i++) {
4876                         event_tg->EventValue = le16_to_cpu(
4877                             mpi_event_tg->MPIEventCode);
4878                         event_tg->LogEntryQualifier = le16_to_cpu(
4879                             mpi_event_tg->MPIEventCodeSpecific);
4880                         event_tg++;
4881                         mpi_event_tg++;
4882                 }
4883         }
4884         return 0;
4885 }
4886
4887 /**
4888  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
4889  *                              persistent pages
4890  * @ioc : per adapter object
4891  *
4892  * Return: 0 on success; otherwise return failure status.
4893  */
4894 static int
4895 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4896 {
4897         Mpi26DriverTriggerPage3_t trigger_pg3;
4898         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
4899         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
4900         Mpi2ConfigReply_t mpi_reply;
4901         int r = 0, i = 0;
4902         u16 count = 0;
4903         u16 ioc_status;
4904
4905         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
4906             &trigger_pg3);
4907         if (r)
4908                 return r;
4909
4910         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4911             MPI2_IOCSTATUS_MASK;
4912         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4913                 dinitprintk(ioc,
4914                     ioc_err(ioc,
4915                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
4916                     __func__, ioc_status));
4917                 return 0;
4918         }
4919
4920         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
4921                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
4922                 count = min_t(u16, NUM_VALID_ENTRIES, count);
4923                 ioc->diag_trigger_scsi.ValidEntries = count;
4924
4925                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
4926                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
4927                 for (i = 0; i < count; i++) {
4928                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
4929                         scsi_tg->ASC = mpi_scsi_tg->ASC;
4930                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
4931
4932                         scsi_tg++;
4933                         mpi_scsi_tg++;
4934                 }
4935         }
4936         return 0;
4937 }
4938
4939 /**
4940  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
4941  *                              persistent pages
4942  * @ioc : per adapter object
4943  *
4944  * Return: 0 on success; otherwise return failure status.
4945  */
4946 static int
4947 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4948 {
4949         Mpi26DriverTriggerPage4_t trigger_pg4;
4950         struct SL_WH_MPI_TRIGGER_T *status_tg;
4951         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
4952         Mpi2ConfigReply_t mpi_reply;
4953         int r = 0, i = 0;
4954         u16 count = 0;
4955         u16 ioc_status;
4956
4957         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
4958             &trigger_pg4);
4959         if (r)
4960                 return r;
4961
4962         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4963             MPI2_IOCSTATUS_MASK;
4964         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4965                 dinitprintk(ioc,
4966                     ioc_err(ioc,
4967                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
4968                     __func__, ioc_status));
4969                 return 0;
4970         }
4971
4972         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
4973                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
4974                 count = min_t(u16, NUM_VALID_ENTRIES, count);
4975                 ioc->diag_trigger_mpi.ValidEntries = count;
4976
4977                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
4978                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
4979
4980                 for (i = 0; i < count; i++) {
4981                         status_tg->IOCStatus = le16_to_cpu(
4982                             mpi_status_tg->IOCStatus);
4983                         status_tg->IocLogInfo = le32_to_cpu(
4984                             mpi_status_tg->LogInfo);
4985
4986                         status_tg++;
4987                         mpi_status_tg++;
4988                 }
4989         }
4990         return 0;
4991 }
4992
4993 /**
4994  * _base_get_master_diag_triggers - get master diag trigger values from
4995  *                              persistent pages
4996  * @ioc : per adapter object
4997  *
4998  * Return: nothing.
4999  */
5000 static int
5001 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5002 {
5003         Mpi26DriverTriggerPage1_t trigger_pg1;
5004         Mpi2ConfigReply_t mpi_reply;
5005         int r;
5006         u16 ioc_status;
5007
5008         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5009             &trigger_pg1);
5010         if (r)
5011                 return r;
5012
5013         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5014             MPI2_IOCSTATUS_MASK;
5015         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5016                 dinitprintk(ioc,
5017                     ioc_err(ioc,
5018                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5019                    __func__, ioc_status));
5020                 return 0;
5021         }
5022
5023         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5024                 ioc->diag_trigger_master.MasterData |=
5025                     le32_to_cpu(
5026                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5027         return 0;
5028 }
5029
5030 /**
5031  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5032  *                                      driver trigger pages or not
5033  * @ioc : per adapter object
5034  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5035  *
5036  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5037  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5038  * return EAGAIN if diag reset occurred due to FW fault and asking the
5039  * caller to retry the command.
5040  *
5041  */
5042 static int
5043 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5044 {
5045         Mpi26DriverTriggerPage0_t trigger_pg0;
5046         int r = 0;
5047         Mpi2ConfigReply_t mpi_reply;
5048         u16 ioc_status;
5049
5050         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5051             &trigger_pg0);
5052         if (r)
5053                 return r;
5054
5055         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5056             MPI2_IOCSTATUS_MASK;
5057         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5058                 return -EFAULT;
5059
5060         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5061         return 0;
5062 }
5063
5064 /**
5065  * _base_get_diag_triggers - Retrieve diag trigger values from
5066  *                              persistent pages.
5067  * @ioc : per adapter object
5068  *
5069  * Return: zero on success; otherwise return EAGAIN error codes
5070  * asking the caller to retry.
5071  */
5072 static int
5073 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5074 {
5075         int trigger_flags;
5076         int r;
5077
5078         /*
5079          * Default setting of master trigger.
5080          */
5081         ioc->diag_trigger_master.MasterData =
5082             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5083
5084         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5085         if (r) {
5086                 if (r == -EAGAIN)
5087                         return r;
5088                 /*
5089                  * Don't go for error handling when FW doesn't support
5090                  * driver trigger pages.
5091                  */
5092                 return 0;
5093         }
5094
5095         ioc->supports_trigger_pages = 1;
5096
5097         /*
5098          * Retrieve master diag trigger values from driver trigger pg1
5099          * if master trigger bit enabled in TriggerFlags.
5100          */
5101         if ((u16)trigger_flags &
5102             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5103                 r = _base_get_master_diag_triggers(ioc);
5104                 if (r)
5105                         return r;
5106         }
5107
5108         /*
5109          * Retrieve event diag trigger values from driver trigger pg2
5110          * if event trigger bit enabled in TriggerFlags.
5111          */
5112         if ((u16)trigger_flags &
5113             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5114                 r = _base_get_event_diag_triggers(ioc);
5115                 if (r)
5116                         return r;
5117         }
5118
5119         /*
5120          * Retrieve scsi diag trigger values from driver trigger pg3
5121          * if scsi trigger bit enabled in TriggerFlags.
5122          */
5123         if ((u16)trigger_flags &
5124             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5125                 r = _base_get_scsi_diag_triggers(ioc);
5126                 if (r)
5127                         return r;
5128         }
5129         /*
5130          * Retrieve mpi error diag trigger values from driver trigger pg4
5131          * if loginfo trigger bit enabled in TriggerFlags.
5132          */
5133         if ((u16)trigger_flags &
5134             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5135                 r = _base_get_mpi_diag_triggers(ioc);
5136                 if (r)
5137                         return r;
5138         }
5139         return 0;
5140 }
5141
5142 /**
5143  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5144  *                      online FW update, in case updated FW supports driver
5145  *                      trigger pages.
5146  * @ioc : per adapter object
5147  *
5148  * Return: nothing.
5149  */
5150 static void
5151 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5152 {
5153
5154         if (ioc->diag_trigger_master.MasterData)
5155                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5156                     &ioc->diag_trigger_master, 1);
5157
5158         if (ioc->diag_trigger_event.ValidEntries)
5159                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5160                     &ioc->diag_trigger_event, 1);
5161
5162         if (ioc->diag_trigger_scsi.ValidEntries)
5163                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5164                     &ioc->diag_trigger_scsi, 1);
5165
5166         if (ioc->diag_trigger_mpi.ValidEntries)
5167                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5168                     &ioc->diag_trigger_mpi, 1);
5169 }
5170
5171 /**
5172  * _base_static_config_pages - static start of day config pages
5173  * @ioc: per adapter object
5174  */
5175 static int
5176 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5177 {
5178         Mpi2ConfigReply_t mpi_reply;
5179         u32 iounit_pg1_flags;
5180         int tg_flags = 0;
5181         int rc;
5182         ioc->nvme_abort_timeout = 30;
5183
5184         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5185             &ioc->manu_pg0);
5186         if (rc)
5187                 return rc;
5188         if (ioc->ir_firmware) {
5189                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5190                     &ioc->manu_pg10);
5191                 if (rc)
5192                         return rc;
5193         }
5194         /*
5195          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5196          * flag unset in NVDATA.
5197          */
5198         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5199             &ioc->manu_pg11);
5200         if (rc)
5201                 return rc;
5202         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5203                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5204                     ioc->name);
5205                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5206                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5207                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5208                     &ioc->manu_pg11);
5209         }
5210         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5211                 ioc->tm_custom_handling = 1;
5212         else {
5213                 ioc->tm_custom_handling = 0;
5214                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5215                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5216                 else if (ioc->manu_pg11.NVMeAbortTO >
5217                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5218                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5219                 else
5220                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5221         }
5222         ioc->time_sync_interval =
5223             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5224         if (ioc->time_sync_interval) {
5225                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5226                         ioc->time_sync_interval =
5227                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5228                 else
5229                         ioc->time_sync_interval =
5230                             ioc->time_sync_interval * SECONDS_PER_MIN;
5231                 dinitprintk(ioc, ioc_info(ioc,
5232                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5233                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5234                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5235         } else {
5236                 if (ioc->is_gen35_ioc)
5237                         ioc_warn(ioc,
5238                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5239         }
5240         rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5241         if (rc)
5242                 return rc;
5243         rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5244         if (rc)
5245                 return rc;
5246         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5247         if (rc)
5248                 return rc;
5249         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5250         if (rc)
5251                 return rc;
5252         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5253         if (rc)
5254                 return rc;
5255         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5256         if (rc)
5257                 return rc;
5258         _base_display_ioc_capabilities(ioc);
5259
5260         /*
5261          * Enable task_set_full handling in iounit_pg1 when the
5262          * facts capabilities indicate that its supported.
5263          */
5264         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5265         if ((ioc->facts.IOCCapabilities &
5266             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5267                 iounit_pg1_flags &=
5268                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5269         else
5270                 iounit_pg1_flags |=
5271                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5272         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5273         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5274         if (rc)
5275                 return rc;
5276
5277         if (ioc->iounit_pg8.NumSensors)
5278                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5279         if (ioc->is_aero_ioc) {
5280                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5281                 if (rc)
5282                         return rc;
5283         }
5284         if (ioc->is_gen35_ioc) {
5285                 if (ioc->is_driver_loading) {
5286                         rc = _base_get_diag_triggers(ioc);
5287                         if (rc)
5288                                 return rc;
5289                 } else {
5290                         /*
5291                          * In case of online HBA FW update operation,
5292                          * check whether updated FW supports the driver trigger
5293                          * pages or not.
5294                          * - If previous FW has not supported driver trigger
5295                          *   pages and newer FW supports them then update these
5296                          *   pages with current diag trigger values.
5297                          * - If previous FW has supported driver trigger pages
5298                          *   and new FW doesn't support them then disable
5299                          *   support_trigger_pages flag.
5300                          */
5301                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5302                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5303                                 _base_update_diag_trigger_pages(ioc);
5304                         else if (ioc->supports_trigger_pages &&
5305                             tg_flags == -EFAULT)
5306                                 ioc->supports_trigger_pages = 0;
5307                 }
5308         }
5309         return 0;
5310 }
5311
5312 /**
5313  * mpt3sas_free_enclosure_list - release memory
5314  * @ioc: per adapter object
5315  *
5316  * Free memory allocated during enclosure add.
5317  */
5318 void
5319 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5320 {
5321         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5322
5323         /* Free enclosure list */
5324         list_for_each_entry_safe(enclosure_dev,
5325                         enclosure_dev_next, &ioc->enclosure_list, list) {
5326                 list_del(&enclosure_dev->list);
5327                 kfree(enclosure_dev);
5328         }
5329 }
5330
5331 /**
5332  * _base_release_memory_pools - release memory
5333  * @ioc: per adapter object
5334  *
5335  * Free memory allocated from _base_allocate_memory_pools.
5336  */
5337 static void
5338 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5339 {
5340         int i = 0;
5341         int j = 0;
5342         int dma_alloc_count = 0;
5343         struct chain_tracker *ct;
5344         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5345
5346         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5347
5348         if (ioc->request) {
5349                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5350                     ioc->request,  ioc->request_dma);
5351                 dexitprintk(ioc,
5352                             ioc_info(ioc, "request_pool(0x%p): free\n",
5353                                      ioc->request));
5354                 ioc->request = NULL;
5355         }
5356
5357         if (ioc->sense) {
5358                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5359                 dma_pool_destroy(ioc->sense_dma_pool);
5360                 dexitprintk(ioc,
5361                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5362                                      ioc->sense));
5363                 ioc->sense = NULL;
5364         }
5365
5366         if (ioc->reply) {
5367                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5368                 dma_pool_destroy(ioc->reply_dma_pool);
5369                 dexitprintk(ioc,
5370                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5371                                      ioc->reply));
5372                 ioc->reply = NULL;
5373         }
5374
5375         if (ioc->reply_free) {
5376                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5377                     ioc->reply_free_dma);
5378                 dma_pool_destroy(ioc->reply_free_dma_pool);
5379                 dexitprintk(ioc,
5380                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5381                                      ioc->reply_free));
5382                 ioc->reply_free = NULL;
5383         }
5384
5385         if (ioc->reply_post) {
5386                 dma_alloc_count = DIV_ROUND_UP(count,
5387                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5388                 for (i = 0; i < count; i++) {
5389                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5390                             && dma_alloc_count) {
5391                                 if (ioc->reply_post[i].reply_post_free) {
5392                                         dma_pool_free(
5393                                             ioc->reply_post_free_dma_pool,
5394                                             ioc->reply_post[i].reply_post_free,
5395                                         ioc->reply_post[i].reply_post_free_dma);
5396                                         dexitprintk(ioc, ioc_info(ioc,
5397                                            "reply_post_free_pool(0x%p): free\n",
5398                                            ioc->reply_post[i].reply_post_free));
5399                                         ioc->reply_post[i].reply_post_free =
5400                                                                         NULL;
5401                                 }
5402                                 --dma_alloc_count;
5403                         }
5404                 }
5405                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5406                 if (ioc->reply_post_free_array &&
5407                         ioc->rdpq_array_enable) {
5408                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5409                             ioc->reply_post_free_array,
5410                             ioc->reply_post_free_array_dma);
5411                         ioc->reply_post_free_array = NULL;
5412                 }
5413                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5414                 kfree(ioc->reply_post);
5415         }
5416
5417         if (ioc->pcie_sgl_dma_pool) {
5418                 for (i = 0; i < ioc->scsiio_depth; i++) {
5419                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5420                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5421                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5422                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5423                 }
5424                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5425         }
5426         if (ioc->config_page) {
5427                 dexitprintk(ioc,
5428                             ioc_info(ioc, "config_page(0x%p): free\n",
5429                                      ioc->config_page));
5430                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5431                     ioc->config_page, ioc->config_page_dma);
5432         }
5433
5434         kfree(ioc->hpr_lookup);
5435         ioc->hpr_lookup = NULL;
5436         kfree(ioc->internal_lookup);
5437         ioc->internal_lookup = NULL;
5438         if (ioc->chain_lookup) {
5439                 for (i = 0; i < ioc->scsiio_depth; i++) {
5440                         for (j = ioc->chains_per_prp_buffer;
5441                             j < ioc->chains_needed_per_io; j++) {
5442                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5443                                 if (ct && ct->chain_buffer)
5444                                         dma_pool_free(ioc->chain_dma_pool,
5445                                                 ct->chain_buffer,
5446                                                 ct->chain_buffer_dma);
5447                         }
5448                         kfree(ioc->chain_lookup[i].chains_per_smid);
5449                 }
5450                 dma_pool_destroy(ioc->chain_dma_pool);
5451                 kfree(ioc->chain_lookup);
5452                 ioc->chain_lookup = NULL;
5453         }
5454
5455         kfree(ioc->io_queue_num);
5456         ioc->io_queue_num = NULL;
5457 }
5458
5459 /**
5460  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5461  *      having same upper 32bits in their base memory address.
5462  * @reply_pool_start_address: Base address of a reply queue set
5463  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5464  *
5465  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5466  * memory address, else 0.
5467  */
5468
5469 static int
5470 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5471 {
5472         long reply_pool_end_address;
5473
5474         reply_pool_end_address = reply_pool_start_address + pool_sz;
5475
5476         if (upper_32_bits(reply_pool_start_address) ==
5477                 upper_32_bits(reply_pool_end_address))
5478                 return 1;
5479         else
5480                 return 0;
5481 }
5482
5483 /**
5484  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5485  * @ioc: Adapter object
5486  *
5487  * Return: 0 for success, non-zero for failure.
5488  **/
5489 static inline int
5490 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5491 {
5492         int reduce_sz = 64;
5493
5494         if ((ioc->hba_queue_depth - reduce_sz) >
5495             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5496                 ioc->hba_queue_depth -= reduce_sz;
5497                 return 0;
5498         } else
5499                 return -ENOMEM;
5500 }
5501
5502 /**
5503  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5504  *                      for pcie sgl pools.
5505  * @ioc: Adapter object
5506  * @sz: DMA Pool size
5507  *
5508  * Return: 0 for success, non-zero for failure.
5509  */
5510
5511 static int
5512 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5513 {
5514         int i = 0, j = 0;
5515         struct chain_tracker *ct;
5516
5517         ioc->pcie_sgl_dma_pool =
5518             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5519             ioc->page_size, 0);
5520         if (!ioc->pcie_sgl_dma_pool) {
5521                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5522                 return -ENOMEM;
5523         }
5524
5525         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5526         ioc->chains_per_prp_buffer =
5527             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5528         for (i = 0; i < ioc->scsiio_depth; i++) {
5529                 ioc->pcie_sg_lookup[i].pcie_sgl =
5530                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5531                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5532                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5533                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5534                         return -EAGAIN;
5535                 }
5536
5537                 if (!mpt3sas_check_same_4gb_region(
5538                     (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5539                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5540                             ioc->pcie_sg_lookup[i].pcie_sgl,
5541                             (unsigned long long)
5542                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5543                         ioc->use_32bit_dma = true;
5544                         return -EAGAIN;
5545                 }
5546
5547                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5548                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5549                         ct->chain_buffer =
5550                             ioc->pcie_sg_lookup[i].pcie_sgl +
5551                             (j * ioc->chain_segment_sz);
5552                         ct->chain_buffer_dma =
5553                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5554                             (j * ioc->chain_segment_sz);
5555                 }
5556         }
5557         dinitprintk(ioc, ioc_info(ioc,
5558             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5559             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5560         dinitprintk(ioc, ioc_info(ioc,
5561             "Number of chains can fit in a PRP page(%d)\n",
5562             ioc->chains_per_prp_buffer));
5563         return 0;
5564 }
5565
5566 /**
5567  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5568  *                      for chain dma pool.
5569  * @ioc: Adapter object
5570  * @sz: DMA Pool size
5571  *
5572  * Return: 0 for success, non-zero for failure.
5573  */
5574 static int
5575 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5576 {
5577         int i = 0, j = 0;
5578         struct chain_tracker *ctr;
5579
5580         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5581             ioc->chain_segment_sz, 16, 0);
5582         if (!ioc->chain_dma_pool)
5583                 return -ENOMEM;
5584
5585         for (i = 0; i < ioc->scsiio_depth; i++) {
5586                 for (j = ioc->chains_per_prp_buffer;
5587                     j < ioc->chains_needed_per_io; j++) {
5588                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5589                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5590                             GFP_KERNEL, &ctr->chain_buffer_dma);
5591                         if (!ctr->chain_buffer)
5592                                 return -EAGAIN;
5593                         if (!mpt3sas_check_same_4gb_region((long)
5594                             ctr->chain_buffer, ioc->chain_segment_sz)) {
5595                                 ioc_err(ioc,
5596                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5597                                     ctr->chain_buffer,
5598                                     (unsigned long long)ctr->chain_buffer_dma);
5599                                 ioc->use_32bit_dma = true;
5600                                 return -EAGAIN;
5601                         }
5602                 }
5603         }
5604         dinitprintk(ioc, ioc_info(ioc,
5605             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5606             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5607             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5608             ioc->chain_segment_sz))/1024));
5609         return 0;
5610 }
5611
5612 /**
5613  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5614  *                      for sense dma pool.
5615  * @ioc: Adapter object
5616  * @sz: DMA Pool size
5617  * Return: 0 for success, non-zero for failure.
5618  */
5619 static int
5620 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5621 {
5622         ioc->sense_dma_pool =
5623             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5624         if (!ioc->sense_dma_pool)
5625                 return -ENOMEM;
5626         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5627             GFP_KERNEL, &ioc->sense_dma);
5628         if (!ioc->sense)
5629                 return -EAGAIN;
5630         if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5631                 dinitprintk(ioc, pr_err(
5632                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5633                     ioc->sense, (unsigned long long) ioc->sense_dma));
5634                 ioc->use_32bit_dma = true;
5635                 return -EAGAIN;
5636         }
5637         ioc_info(ioc,
5638             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5639             ioc->sense, (unsigned long long)ioc->sense_dma,
5640             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5641         return 0;
5642 }
5643
5644 /**
5645  * _base_allocate_reply_pool - Allocating DMA'able memory
5646  *                      for reply pool.
5647  * @ioc: Adapter object
5648  * @sz: DMA Pool size
5649  * Return: 0 for success, non-zero for failure.
5650  */
5651 static int
5652 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5653 {
5654         /* reply pool, 4 byte align */
5655         ioc->reply_dma_pool = dma_pool_create("reply pool",
5656             &ioc->pdev->dev, sz, 4, 0);
5657         if (!ioc->reply_dma_pool)
5658                 return -ENOMEM;
5659         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5660             &ioc->reply_dma);
5661         if (!ioc->reply)
5662                 return -EAGAIN;
5663         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5664                 dinitprintk(ioc, pr_err(
5665                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5666                     ioc->reply, (unsigned long long) ioc->reply_dma));
5667                 ioc->use_32bit_dma = true;
5668                 return -EAGAIN;
5669         }
5670         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5671         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5672         ioc_info(ioc,
5673             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5674             ioc->reply, (unsigned long long)ioc->reply_dma,
5675             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5676         return 0;
5677 }
5678
5679 /**
5680  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5681  *                      for reply free dma pool.
5682  * @ioc: Adapter object
5683  * @sz: DMA Pool size
5684  * Return: 0 for success, non-zero for failure.
5685  */
5686 static int
5687 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5688 {
5689         /* reply free queue, 16 byte align */
5690         ioc->reply_free_dma_pool = dma_pool_create(
5691             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5692         if (!ioc->reply_free_dma_pool)
5693                 return -ENOMEM;
5694         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5695             GFP_KERNEL, &ioc->reply_free_dma);
5696         if (!ioc->reply_free)
5697                 return -EAGAIN;
5698         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5699                 dinitprintk(ioc,
5700                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5701                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5702                 ioc->use_32bit_dma = true;
5703                 return -EAGAIN;
5704         }
5705         memset(ioc->reply_free, 0, sz);
5706         dinitprintk(ioc, ioc_info(ioc,
5707             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5708             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5709         dinitprintk(ioc, ioc_info(ioc,
5710             "reply_free_dma (0x%llx)\n",
5711             (unsigned long long)ioc->reply_free_dma));
5712         return 0;
5713 }
5714
5715 /**
5716  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5717  *                      for reply post free array.
5718  * @ioc: Adapter object
5719  * @reply_post_free_array_sz: DMA Pool size
5720  * Return: 0 for success, non-zero for failure.
5721  */
5722
5723 static int
5724 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5725         u32 reply_post_free_array_sz)
5726 {
5727         ioc->reply_post_free_array_dma_pool =
5728             dma_pool_create("reply_post_free_array pool",
5729             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5730         if (!ioc->reply_post_free_array_dma_pool)
5731                 return -ENOMEM;
5732         ioc->reply_post_free_array =
5733             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5734             GFP_KERNEL, &ioc->reply_post_free_array_dma);
5735         if (!ioc->reply_post_free_array)
5736                 return -EAGAIN;
5737         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
5738             reply_post_free_array_sz)) {
5739                 dinitprintk(ioc, pr_err(
5740                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5741                     ioc->reply_free,
5742                     (unsigned long long) ioc->reply_free_dma));
5743                 ioc->use_32bit_dma = true;
5744                 return -EAGAIN;
5745         }
5746         return 0;
5747 }
5748 /**
5749  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5750  *                     for reply queues.
5751  * @ioc: per adapter object
5752  * @sz: DMA Pool size
5753  * Return: 0 for success, non-zero for failure.
5754  */
5755 static int
5756 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
5757 {
5758         int i = 0;
5759         u32 dma_alloc_count = 0;
5760         int reply_post_free_sz = ioc->reply_post_queue_depth *
5761                 sizeof(Mpi2DefaultReplyDescriptor_t);
5762         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5763
5764         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
5765                         GFP_KERNEL);
5766         if (!ioc->reply_post)
5767                 return -ENOMEM;
5768         /*
5769          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5770          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5771          *  be within 4GB boundary i.e reply queues in a set must have same
5772          *  upper 32-bits in their memory address. so here driver is allocating
5773          *  the DMA'able memory for reply queues according.
5774          *  Driver uses limitation of
5775          *  VENTURA_SERIES to manage INVADER_SERIES as well.
5776          */
5777         dma_alloc_count = DIV_ROUND_UP(count,
5778                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5779         ioc->reply_post_free_dma_pool =
5780                 dma_pool_create("reply_post_free pool",
5781                     &ioc->pdev->dev, sz, 16, 0);
5782         if (!ioc->reply_post_free_dma_pool)
5783                 return -ENOMEM;
5784         for (i = 0; i < count; i++) {
5785                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5786                         ioc->reply_post[i].reply_post_free =
5787                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5788                                 GFP_KERNEL,
5789                                 &ioc->reply_post[i].reply_post_free_dma);
5790                         if (!ioc->reply_post[i].reply_post_free)
5791                                 return -ENOMEM;
5792                         /*
5793                          * Each set of RDPQ pool must satisfy 4gb boundary
5794                          * restriction.
5795                          * 1) Check if allocated resources for RDPQ pool are in
5796                          *      the same 4GB range.
5797                          * 2) If #1 is true, continue with 64 bit DMA.
5798                          * 3) If #1 is false, return 1. which means free all the
5799                          * resources and set DMA mask to 32 and allocate.
5800                          */
5801                         if (!mpt3sas_check_same_4gb_region(
5802                                 (long)ioc->reply_post[i].reply_post_free, sz)) {
5803                                 dinitprintk(ioc,
5804                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
5805                                     "reply_post_free_dma = (0x%llx)\n",
5806                                     ioc->reply_post[i].reply_post_free,
5807                                     (unsigned long long)
5808                                     ioc->reply_post[i].reply_post_free_dma));
5809                                 return -EAGAIN;
5810                         }
5811                         dma_alloc_count--;
5812
5813                 } else {
5814                         ioc->reply_post[i].reply_post_free =
5815                             (Mpi2ReplyDescriptorsUnion_t *)
5816                             ((long)ioc->reply_post[i-1].reply_post_free
5817                             + reply_post_free_sz);
5818                         ioc->reply_post[i].reply_post_free_dma =
5819                             (dma_addr_t)
5820                             (ioc->reply_post[i-1].reply_post_free_dma +
5821                             reply_post_free_sz);
5822                 }
5823         }
5824         return 0;
5825 }
5826
5827 /**
5828  * _base_allocate_memory_pools - allocate start of day memory pools
5829  * @ioc: per adapter object
5830  *
5831  * Return: 0 success, anything else error.
5832  */
5833 static int
5834 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5835 {
5836         struct mpt3sas_facts *facts;
5837         u16 max_sge_elements;
5838         u16 chains_needed_per_io;
5839         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5840         u32 retry_sz;
5841         u32 rdpq_sz = 0, sense_sz = 0;
5842         u16 max_request_credit, nvme_blocks_needed;
5843         unsigned short sg_tablesize;
5844         u16 sge_size;
5845         int i;
5846         int ret = 0, rc = 0;
5847
5848         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5849
5850
5851         retry_sz = 0;
5852         facts = &ioc->facts;
5853
5854         /* command line tunables for max sgl entries */
5855         if (max_sgl_entries != -1)
5856                 sg_tablesize = max_sgl_entries;
5857         else {
5858                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5859                         sg_tablesize = MPT2SAS_SG_DEPTH;
5860                 else
5861                         sg_tablesize = MPT3SAS_SG_DEPTH;
5862         }
5863
5864         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5865         if (reset_devices)
5866                 sg_tablesize = min_t(unsigned short, sg_tablesize,
5867                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
5868
5869         if (ioc->is_mcpu_endpoint)
5870                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5871         else {
5872                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5873                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5874                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5875                         sg_tablesize = min_t(unsigned short, sg_tablesize,
5876                                         SG_MAX_SEGMENTS);
5877                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5878                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5879                 }
5880                 ioc->shost->sg_tablesize = sg_tablesize;
5881         }
5882
5883         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5884                 (facts->RequestCredit / 4));
5885         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5886                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5887                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
5888                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5889                                 facts->RequestCredit);
5890                         return -ENOMEM;
5891                 }
5892                 ioc->internal_depth = 10;
5893         }
5894
5895         ioc->hi_priority_depth = ioc->internal_depth - (5);
5896         /* command line tunables  for max controller queue depth */
5897         if (max_queue_depth != -1 && max_queue_depth != 0) {
5898                 max_request_credit = min_t(u16, max_queue_depth +
5899                         ioc->internal_depth, facts->RequestCredit);
5900                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5901                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5902         } else if (reset_devices)
5903                 max_request_credit = min_t(u16, facts->RequestCredit,
5904                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5905         else
5906                 max_request_credit = min_t(u16, facts->RequestCredit,
5907                     MAX_HBA_QUEUE_DEPTH);
5908
5909         /* Firmware maintains additional facts->HighPriorityCredit number of
5910          * credits for HiPriprity Request messages, so hba queue depth will be
5911          * sum of max_request_credit and high priority queue depth.
5912          */
5913         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5914
5915         /* request frame size */
5916         ioc->request_sz = facts->IOCRequestFrameSize * 4;
5917
5918         /* reply frame size */
5919         ioc->reply_sz = facts->ReplyFrameSize * 4;
5920
5921         /* chain segment size */
5922         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5923                 if (facts->IOCMaxChainSegmentSize)
5924                         ioc->chain_segment_sz =
5925                                         facts->IOCMaxChainSegmentSize *
5926                                         MAX_CHAIN_ELEMT_SZ;
5927                 else
5928                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5929                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5930                                                     MAX_CHAIN_ELEMT_SZ;
5931         } else
5932                 ioc->chain_segment_sz = ioc->request_sz;
5933
5934         /* calculate the max scatter element size */
5935         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5936
5937  retry_allocation:
5938         total_sz = 0;
5939         /* calculate number of sg elements left over in the 1st frame */
5940         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5941             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5942         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5943
5944         /* now do the same for a chain buffer */
5945         max_sge_elements = ioc->chain_segment_sz - sge_size;
5946         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5947
5948         /*
5949          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5950          */
5951         chains_needed_per_io = ((ioc->shost->sg_tablesize -
5952            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5953             + 1;
5954         if (chains_needed_per_io > facts->MaxChainDepth) {
5955                 chains_needed_per_io = facts->MaxChainDepth;
5956                 ioc->shost->sg_tablesize = min_t(u16,
5957                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5958                 * chains_needed_per_io), ioc->shost->sg_tablesize);
5959         }
5960         ioc->chains_needed_per_io = chains_needed_per_io;
5961
5962         /* reply free queue sizing - taking into account for 64 FW events */
5963         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5964
5965         /* mCPU manage single counters for simplicity */
5966         if (ioc->is_mcpu_endpoint)
5967                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5968         else {
5969                 /* calculate reply descriptor post queue depth */
5970                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5971                         ioc->reply_free_queue_depth +  1;
5972                 /* align the reply post queue on the next 16 count boundary */
5973                 if (ioc->reply_post_queue_depth % 16)
5974                         ioc->reply_post_queue_depth += 16 -
5975                                 (ioc->reply_post_queue_depth % 16);
5976         }
5977
5978         if (ioc->reply_post_queue_depth >
5979             facts->MaxReplyDescriptorPostQueueDepth) {
5980                 ioc->reply_post_queue_depth =
5981                                 facts->MaxReplyDescriptorPostQueueDepth -
5982                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
5983                 ioc->hba_queue_depth =
5984                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5985                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5986         }
5987
5988         ioc_info(ioc,
5989             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5990             "sge_per_io(%d), chains_per_io(%d)\n",
5991             ioc->max_sges_in_main_message,
5992             ioc->max_sges_in_chain_message,
5993             ioc->shost->sg_tablesize,
5994             ioc->chains_needed_per_io);
5995
5996         /* reply post queue, 16 byte align */
5997         reply_post_free_sz = ioc->reply_post_queue_depth *
5998             sizeof(Mpi2DefaultReplyDescriptor_t);
5999         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6000         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6001             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6002                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6003         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6004         if (ret == -EAGAIN) {
6005                 /*
6006                  * Free allocated bad RDPQ memory pools.
6007                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6008                  */
6009                 _base_release_memory_pools(ioc);
6010                 ioc->use_32bit_dma = true;
6011                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6012                         ioc_err(ioc,
6013                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6014                         return -ENODEV;
6015                 }
6016                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6017                         return -ENOMEM;
6018         } else if (ret == -ENOMEM)
6019                 return -ENOMEM;
6020         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6021             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6022         ioc->scsiio_depth = ioc->hba_queue_depth -
6023             ioc->hi_priority_depth - ioc->internal_depth;
6024
6025         /* set the scsi host can_queue depth
6026          * with some internal commands that could be outstanding
6027          */
6028         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6029         dinitprintk(ioc,
6030                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6031                              ioc->shost->can_queue));
6032
6033         /* contiguous pool for request and chains, 16 byte align, one extra "
6034          * "frame for smid=0
6035          */
6036         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6037         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6038
6039         /* hi-priority queue */
6040         sz += (ioc->hi_priority_depth * ioc->request_sz);
6041
6042         /* internal queue */
6043         sz += (ioc->internal_depth * ioc->request_sz);
6044
6045         ioc->request_dma_sz = sz;
6046         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6047                         &ioc->request_dma, GFP_KERNEL);
6048         if (!ioc->request) {
6049                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6050                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6051                         ioc->request_sz, sz / 1024);
6052                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6053                         goto out;
6054                 retry_sz = 64;
6055                 ioc->hba_queue_depth -= retry_sz;
6056                 _base_release_memory_pools(ioc);
6057                 goto retry_allocation;
6058         }
6059
6060         if (retry_sz)
6061                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6062                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6063                         ioc->request_sz, sz / 1024);
6064
6065         /* hi-priority queue */
6066         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6067             ioc->request_sz);
6068         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6069             ioc->request_sz);
6070
6071         /* internal queue */
6072         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6073             ioc->request_sz);
6074         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6075             ioc->request_sz);
6076
6077         ioc_info(ioc,
6078             "request pool(0x%p) - dma(0x%llx): "
6079             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6080             ioc->request, (unsigned long long) ioc->request_dma,
6081             ioc->hba_queue_depth, ioc->request_sz,
6082             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6083
6084         total_sz += sz;
6085
6086         dinitprintk(ioc,
6087                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6088                              ioc->request, ioc->scsiio_depth));
6089
6090         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6091         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6092         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6093         if (!ioc->chain_lookup) {
6094                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6095                 goto out;
6096         }
6097
6098         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6099         for (i = 0; i < ioc->scsiio_depth; i++) {
6100                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6101                 if (!ioc->chain_lookup[i].chains_per_smid) {
6102                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6103                         goto out;
6104                 }
6105         }
6106
6107         /* initialize hi-priority queue smid's */
6108         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6109             sizeof(struct request_tracker), GFP_KERNEL);
6110         if (!ioc->hpr_lookup) {
6111                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6112                 goto out;
6113         }
6114         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6115         dinitprintk(ioc,
6116                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6117                              ioc->hi_priority,
6118                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6119
6120         /* initialize internal queue smid's */
6121         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6122             sizeof(struct request_tracker), GFP_KERNEL);
6123         if (!ioc->internal_lookup) {
6124                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6125                 goto out;
6126         }
6127         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6128         dinitprintk(ioc,
6129                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6130                              ioc->internal,
6131                              ioc->internal_depth, ioc->internal_smid));
6132
6133         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6134             sizeof(u16), GFP_KERNEL);
6135         if (!ioc->io_queue_num)
6136                 goto out;
6137         /*
6138          * The number of NVMe page sized blocks needed is:
6139          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6140          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6141          * that is placed in the main message frame.  8 is the size of each PRP
6142          * entry or PRP list pointer entry.  8 is subtracted from page_size
6143          * because of the PRP list pointer entry at the end of a page, so this
6144          * is not counted as a PRP entry.  The 1 added page is a round up.
6145          *
6146          * To avoid allocation failures due to the amount of memory that could
6147          * be required for NVMe PRP's, only each set of NVMe blocks will be
6148          * contiguous, so a new set is allocated for each possible I/O.
6149          */
6150
6151         ioc->chains_per_prp_buffer = 0;
6152         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6153                 nvme_blocks_needed =
6154                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6155                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6156                 nvme_blocks_needed++;
6157
6158                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6159                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6160                 if (!ioc->pcie_sg_lookup) {
6161                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6162                         goto out;
6163                 }
6164                 sz = nvme_blocks_needed * ioc->page_size;
6165                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6166                 if (rc == -ENOMEM)
6167                         return -ENOMEM;
6168                 else if (rc == -EAGAIN)
6169                         goto try_32bit_dma;
6170                 total_sz += sz * ioc->scsiio_depth;
6171         }
6172
6173         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6174         if (rc == -ENOMEM)
6175                 return -ENOMEM;
6176         else if (rc == -EAGAIN)
6177                 goto try_32bit_dma;
6178         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6179                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6180         dinitprintk(ioc,
6181             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6182             ioc->chain_depth, ioc->chain_segment_sz,
6183             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6184         /* sense buffers, 4 byte align */
6185         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6186         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6187         if (rc  == -ENOMEM)
6188                 return -ENOMEM;
6189         else if (rc == -EAGAIN)
6190                 goto try_32bit_dma;
6191         total_sz += sense_sz;
6192         ioc_info(ioc,
6193             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6194             "element_size(%d), pool_size(%d kB)\n",
6195             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6196             SCSI_SENSE_BUFFERSIZE, sz / 1024);
6197         /* reply pool, 4 byte align */
6198         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6199         rc = _base_allocate_reply_pool(ioc, sz);
6200         if (rc == -ENOMEM)
6201                 return -ENOMEM;
6202         else if (rc == -EAGAIN)
6203                 goto try_32bit_dma;
6204         total_sz += sz;
6205
6206         /* reply free queue, 16 byte align */
6207         sz = ioc->reply_free_queue_depth * 4;
6208         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6209         if (rc  == -ENOMEM)
6210                 return -ENOMEM;
6211         else if (rc == -EAGAIN)
6212                 goto try_32bit_dma;
6213         dinitprintk(ioc,
6214                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6215                              (unsigned long long)ioc->reply_free_dma));
6216         total_sz += sz;
6217         if (ioc->rdpq_array_enable) {
6218                 reply_post_free_array_sz = ioc->reply_queue_count *
6219                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6220                 rc = _base_allocate_reply_post_free_array(ioc,
6221                     reply_post_free_array_sz);
6222                 if (rc == -ENOMEM)
6223                         return -ENOMEM;
6224                 else if (rc == -EAGAIN)
6225                         goto try_32bit_dma;
6226         }
6227         ioc->config_page_sz = 512;
6228         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6229                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6230         if (!ioc->config_page) {
6231                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6232                 goto out;
6233         }
6234
6235         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6236             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6237             ioc->config_page_sz);
6238         total_sz += ioc->config_page_sz;
6239
6240         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6241                  total_sz / 1024);
6242         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6243                  ioc->shost->can_queue, facts->RequestCredit);
6244         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6245                  ioc->shost->sg_tablesize);
6246         return 0;
6247
6248 try_32bit_dma:
6249         _base_release_memory_pools(ioc);
6250         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6251                 /* Change dma coherent mask to 32 bit and reallocate */
6252                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6253                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6254                             pci_name(ioc->pdev));
6255                         return -ENODEV;
6256                 }
6257         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6258                 return -ENOMEM;
6259         goto retry_allocation;
6260
6261  out:
6262         return -ENOMEM;
6263 }
6264
6265 /**
6266  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6267  * @ioc: Pointer to MPT_ADAPTER structure
6268  * @cooked: Request raw or cooked IOC state
6269  *
6270  * Return: all IOC Doorbell register bits if cooked==0, else just the
6271  * Doorbell bits in MPI_IOC_STATE_MASK.
6272  */
6273 u32
6274 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6275 {
6276         u32 s, sc;
6277
6278         s = ioc->base_readl(&ioc->chip->Doorbell);
6279         sc = s & MPI2_IOC_STATE_MASK;
6280         return cooked ? sc : s;
6281 }
6282
6283 /**
6284  * _base_wait_on_iocstate - waiting on a particular ioc state
6285  * @ioc: ?
6286  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6287  * @timeout: timeout in second
6288  *
6289  * Return: 0 for success, non-zero for failure.
6290  */
6291 static int
6292 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6293 {
6294         u32 count, cntdn;
6295         u32 current_state;
6296
6297         count = 0;
6298         cntdn = 1000 * timeout;
6299         do {
6300                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6301                 if (current_state == ioc_state)
6302                         return 0;
6303                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6304                         break;
6305                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6306                         break;
6307
6308                 usleep_range(1000, 1500);
6309                 count++;
6310         } while (--cntdn);
6311
6312         return current_state;
6313 }
6314
6315 /**
6316  * _base_dump_reg_set - This function will print hexdump of register set.
6317  * @ioc: per adapter object
6318  *
6319  * Return: nothing.
6320  */
6321 static inline void
6322 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6323 {
6324         unsigned int i, sz = 256;
6325         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6326
6327         ioc_info(ioc, "System Register set:\n");
6328         for (i = 0; i < (sz / sizeof(u32)); i++)
6329                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6330 }
6331
6332 /**
6333  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6334  * a write to the doorbell)
6335  * @ioc: per adapter object
6336  * @timeout: timeout in seconds
6337  *
6338  * Return: 0 for success, non-zero for failure.
6339  *
6340  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6341  */
6342
6343 static int
6344 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6345 {
6346         u32 cntdn, count;
6347         u32 int_status;
6348
6349         count = 0;
6350         cntdn = 1000 * timeout;
6351         do {
6352                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6353                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6354                         dhsprintk(ioc,
6355                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6356                                            __func__, count, timeout));
6357                         return 0;
6358                 }
6359
6360                 usleep_range(1000, 1500);
6361                 count++;
6362         } while (--cntdn);
6363
6364         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6365                 __func__, count, int_status);
6366         return -EFAULT;
6367 }
6368
6369 static int
6370 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6371 {
6372         u32 cntdn, count;
6373         u32 int_status;
6374
6375         count = 0;
6376         cntdn = 2000 * timeout;
6377         do {
6378                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6379                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6380                         dhsprintk(ioc,
6381                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6382                                            __func__, count, timeout));
6383                         return 0;
6384                 }
6385
6386                 udelay(500);
6387                 count++;
6388         } while (--cntdn);
6389
6390         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6391                 __func__, count, int_status);
6392         return -EFAULT;
6393
6394 }
6395
6396 /**
6397  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6398  * @ioc: per adapter object
6399  * @timeout: timeout in second
6400  *
6401  * Return: 0 for success, non-zero for failure.
6402  *
6403  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6404  * doorbell.
6405  */
6406 static int
6407 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6408 {
6409         u32 cntdn, count;
6410         u32 int_status;
6411         u32 doorbell;
6412
6413         count = 0;
6414         cntdn = 1000 * timeout;
6415         do {
6416                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6417                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6418                         dhsprintk(ioc,
6419                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6420                                            __func__, count, timeout));
6421                         return 0;
6422                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6423                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6424                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6425                             MPI2_IOC_STATE_FAULT) {
6426                                 mpt3sas_print_fault_code(ioc, doorbell);
6427                                 return -EFAULT;
6428                         }
6429                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6430                             MPI2_IOC_STATE_COREDUMP) {
6431                                 mpt3sas_print_coredump_info(ioc, doorbell);
6432                                 return -EFAULT;
6433                         }
6434                 } else if (int_status == 0xFFFFFFFF)
6435                         goto out;
6436
6437                 usleep_range(1000, 1500);
6438                 count++;
6439         } while (--cntdn);
6440
6441  out:
6442         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6443                 __func__, count, int_status);
6444         return -EFAULT;
6445 }
6446
6447 /**
6448  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6449  * @ioc: per adapter object
6450  * @timeout: timeout in second
6451  *
6452  * Return: 0 for success, non-zero for failure.
6453  */
6454 static int
6455 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6456 {
6457         u32 cntdn, count;
6458         u32 doorbell_reg;
6459
6460         count = 0;
6461         cntdn = 1000 * timeout;
6462         do {
6463                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6464                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6465                         dhsprintk(ioc,
6466                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6467                                            __func__, count, timeout));
6468                         return 0;
6469                 }
6470
6471                 usleep_range(1000, 1500);
6472                 count++;
6473         } while (--cntdn);
6474
6475         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6476                 __func__, count, doorbell_reg);
6477         return -EFAULT;
6478 }
6479
6480 /**
6481  * _base_send_ioc_reset - send doorbell reset
6482  * @ioc: per adapter object
6483  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6484  * @timeout: timeout in second
6485  *
6486  * Return: 0 for success, non-zero for failure.
6487  */
6488 static int
6489 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6490 {
6491         u32 ioc_state;
6492         int r = 0;
6493         unsigned long flags;
6494
6495         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6496                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6497                 return -EFAULT;
6498         }
6499
6500         if (!(ioc->facts.IOCCapabilities &
6501            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6502                 return -EFAULT;
6503
6504         ioc_info(ioc, "sending message unit reset !!\n");
6505
6506         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6507             &ioc->chip->Doorbell);
6508         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6509                 r = -EFAULT;
6510                 goto out;
6511         }
6512
6513         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6514         if (ioc_state) {
6515                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6516                         __func__, ioc_state);
6517                 r = -EFAULT;
6518                 goto out;
6519         }
6520  out:
6521         if (r != 0) {
6522                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6523                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6524                 /*
6525                  * Wait for IOC state CoreDump to clear only during
6526                  * HBA initialization & release time.
6527                  */
6528                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6529                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6530                     ioc->fault_reset_work_q == NULL)) {
6531                         spin_unlock_irqrestore(
6532                             &ioc->ioc_reset_in_progress_lock, flags);
6533                         mpt3sas_print_coredump_info(ioc, ioc_state);
6534                         mpt3sas_base_wait_for_coredump_completion(ioc,
6535                             __func__);
6536                         spin_lock_irqsave(
6537                             &ioc->ioc_reset_in_progress_lock, flags);
6538                 }
6539                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6540         }
6541         ioc_info(ioc, "message unit reset: %s\n",
6542                  r == 0 ? "SUCCESS" : "FAILED");
6543         return r;
6544 }
6545
6546 /**
6547  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6548  * @ioc: per adapter object
6549  * @timeout: timeout in seconds
6550  *
6551  * Return: Waits up to timeout seconds for the IOC to
6552  * become operational. Returns 0 if IOC is present
6553  * and operational; otherwise returns %-EFAULT.
6554  */
6555
6556 int
6557 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6558 {
6559         int wait_state_count = 0;
6560         u32 ioc_state;
6561
6562         do {
6563                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6564                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6565                         break;
6566
6567                 /*
6568                  * Watchdog thread will be started after IOC Initialization, so
6569                  * no need to wait here for IOC state to become operational
6570                  * when IOC Initialization is on. Instead the driver will
6571                  * return ETIME status, so that calling function can issue
6572                  * diag reset operation and retry the command.
6573                  */
6574                 if (ioc->is_driver_loading)
6575                         return -ETIME;
6576
6577                 ssleep(1);
6578                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6579                                 __func__, ++wait_state_count);
6580         } while (--timeout);
6581         if (!timeout) {
6582                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6583                 return -EFAULT;
6584         }
6585         if (wait_state_count)
6586                 ioc_info(ioc, "ioc is operational\n");
6587         return 0;
6588 }
6589
6590 /**
6591  * _base_handshake_req_reply_wait - send request thru doorbell interface
6592  * @ioc: per adapter object
6593  * @request_bytes: request length
6594  * @request: pointer having request payload
6595  * @reply_bytes: reply length
6596  * @reply: pointer to reply payload
6597  * @timeout: timeout in second
6598  *
6599  * Return: 0 for success, non-zero for failure.
6600  */
6601 static int
6602 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6603         u32 *request, int reply_bytes, u16 *reply, int timeout)
6604 {
6605         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6606         int i;
6607         u8 failed;
6608         __le32 *mfp;
6609
6610         /* make sure doorbell is not in use */
6611         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6612                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6613                 return -EFAULT;
6614         }
6615
6616         /* clear pending doorbell interrupts from previous state changes */
6617         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6618             MPI2_HIS_IOC2SYS_DB_STATUS)
6619                 writel(0, &ioc->chip->HostInterruptStatus);
6620
6621         /* send message to ioc */
6622         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6623             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6624             &ioc->chip->Doorbell);
6625
6626         if ((_base_spin_on_doorbell_int(ioc, 5))) {
6627                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6628                         __LINE__);
6629                 return -EFAULT;
6630         }
6631         writel(0, &ioc->chip->HostInterruptStatus);
6632
6633         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6634                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6635                         __LINE__);
6636                 return -EFAULT;
6637         }
6638
6639         /* send message 32-bits at a time */
6640         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6641                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6642                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6643                         failed = 1;
6644         }
6645
6646         if (failed) {
6647                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6648                         __LINE__);
6649                 return -EFAULT;
6650         }
6651
6652         /* now wait for the reply */
6653         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6654                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6655                         __LINE__);
6656                 return -EFAULT;
6657         }
6658
6659         /* read the first two 16-bits, it gives the total length of the reply */
6660         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6661             & MPI2_DOORBELL_DATA_MASK);
6662         writel(0, &ioc->chip->HostInterruptStatus);
6663         if ((_base_wait_for_doorbell_int(ioc, 5))) {
6664                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6665                         __LINE__);
6666                 return -EFAULT;
6667         }
6668         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6669             & MPI2_DOORBELL_DATA_MASK);
6670         writel(0, &ioc->chip->HostInterruptStatus);
6671
6672         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6673                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6674                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6675                                 __LINE__);
6676                         return -EFAULT;
6677                 }
6678                 if (i >=  reply_bytes/2) /* overflow case */
6679                         ioc->base_readl(&ioc->chip->Doorbell);
6680                 else
6681                         reply[i] = le16_to_cpu(
6682                             ioc->base_readl(&ioc->chip->Doorbell)
6683                             & MPI2_DOORBELL_DATA_MASK);
6684                 writel(0, &ioc->chip->HostInterruptStatus);
6685         }
6686
6687         _base_wait_for_doorbell_int(ioc, 5);
6688         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6689                 dhsprintk(ioc,
6690                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
6691                                    __LINE__));
6692         }
6693         writel(0, &ioc->chip->HostInterruptStatus);
6694
6695         if (ioc->logging_level & MPT_DEBUG_INIT) {
6696                 mfp = (__le32 *)reply;
6697                 pr_info("\toffset:data\n");
6698                 for (i = 0; i < reply_bytes/4; i++)
6699                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6700                             le32_to_cpu(mfp[i]));
6701         }
6702         return 0;
6703 }
6704
6705 /**
6706  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6707  * @ioc: per adapter object
6708  * @mpi_reply: the reply payload from FW
6709  * @mpi_request: the request payload sent to FW
6710  *
6711  * The SAS IO Unit Control Request message allows the host to perform low-level
6712  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6713  * to obtain the IOC assigned device handles for a device if it has other
6714  * identifying information about the device, in addition allows the host to
6715  * remove IOC resources associated with the device.
6716  *
6717  * Return: 0 for success, non-zero for failure.
6718  */
6719 int
6720 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6721         Mpi2SasIoUnitControlReply_t *mpi_reply,
6722         Mpi2SasIoUnitControlRequest_t *mpi_request)
6723 {
6724         u16 smid;
6725         u8 issue_reset = 0;
6726         int rc;
6727         void *request;
6728
6729         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6730
6731         mutex_lock(&ioc->base_cmds.mutex);
6732
6733         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6734                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6735                 rc = -EAGAIN;
6736                 goto out;
6737         }
6738
6739         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6740         if (rc)
6741                 goto out;
6742
6743         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6744         if (!smid) {
6745                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6746                 rc = -EAGAIN;
6747                 goto out;
6748         }
6749
6750         rc = 0;
6751         ioc->base_cmds.status = MPT3_CMD_PENDING;
6752         request = mpt3sas_base_get_msg_frame(ioc, smid);
6753         ioc->base_cmds.smid = smid;
6754         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6755         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6756             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6757                 ioc->ioc_link_reset_in_progress = 1;
6758         init_completion(&ioc->base_cmds.done);
6759         ioc->put_smid_default(ioc, smid);
6760         wait_for_completion_timeout(&ioc->base_cmds.done,
6761             msecs_to_jiffies(10000));
6762         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6763             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6764             ioc->ioc_link_reset_in_progress)
6765                 ioc->ioc_link_reset_in_progress = 0;
6766         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6767                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6768                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6769                     issue_reset);
6770                 goto issue_host_reset;
6771         }
6772         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6773                 memcpy(mpi_reply, ioc->base_cmds.reply,
6774                     sizeof(Mpi2SasIoUnitControlReply_t));
6775         else
6776                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6777         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6778         goto out;
6779
6780  issue_host_reset:
6781         if (issue_reset)
6782                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6783         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6784         rc = -EFAULT;
6785  out:
6786         mutex_unlock(&ioc->base_cmds.mutex);
6787         return rc;
6788 }
6789
6790 /**
6791  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6792  * @ioc: per adapter object
6793  * @mpi_reply: the reply payload from FW
6794  * @mpi_request: the request payload sent to FW
6795  *
6796  * The SCSI Enclosure Processor request message causes the IOC to
6797  * communicate with SES devices to control LED status signals.
6798  *
6799  * Return: 0 for success, non-zero for failure.
6800  */
6801 int
6802 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6803         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6804 {
6805         u16 smid;
6806         u8 issue_reset = 0;
6807         int rc;
6808         void *request;
6809
6810         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6811
6812         mutex_lock(&ioc->base_cmds.mutex);
6813
6814         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6815                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6816                 rc = -EAGAIN;
6817                 goto out;
6818         }
6819
6820         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6821         if (rc)
6822                 goto out;
6823
6824         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6825         if (!smid) {
6826                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6827                 rc = -EAGAIN;
6828                 goto out;
6829         }
6830
6831         rc = 0;
6832         ioc->base_cmds.status = MPT3_CMD_PENDING;
6833         request = mpt3sas_base_get_msg_frame(ioc, smid);
6834         ioc->base_cmds.smid = smid;
6835         memset(request, 0, ioc->request_sz);
6836         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6837         init_completion(&ioc->base_cmds.done);
6838         ioc->put_smid_default(ioc, smid);
6839         wait_for_completion_timeout(&ioc->base_cmds.done,
6840             msecs_to_jiffies(10000));
6841         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6842                 mpt3sas_check_cmd_timeout(ioc,
6843                     ioc->base_cmds.status, mpi_request,
6844                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
6845                 goto issue_host_reset;
6846         }
6847         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6848                 memcpy(mpi_reply, ioc->base_cmds.reply,
6849                     sizeof(Mpi2SepReply_t));
6850         else
6851                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6852         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6853         goto out;
6854
6855  issue_host_reset:
6856         if (issue_reset)
6857                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6858         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6859         rc = -EFAULT;
6860  out:
6861         mutex_unlock(&ioc->base_cmds.mutex);
6862         return rc;
6863 }
6864
6865 /**
6866  * _base_get_port_facts - obtain port facts reply and save in ioc
6867  * @ioc: per adapter object
6868  * @port: ?
6869  *
6870  * Return: 0 for success, non-zero for failure.
6871  */
6872 static int
6873 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6874 {
6875         Mpi2PortFactsRequest_t mpi_request;
6876         Mpi2PortFactsReply_t mpi_reply;
6877         struct mpt3sas_port_facts *pfacts;
6878         int mpi_reply_sz, mpi_request_sz, r;
6879
6880         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6881
6882         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6883         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6884         memset(&mpi_request, 0, mpi_request_sz);
6885         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6886         mpi_request.PortNumber = port;
6887         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6888             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6889
6890         if (r != 0) {
6891                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6892                 return r;
6893         }
6894
6895         pfacts = &ioc->pfacts[port];
6896         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6897         pfacts->PortNumber = mpi_reply.PortNumber;
6898         pfacts->VP_ID = mpi_reply.VP_ID;
6899         pfacts->VF_ID = mpi_reply.VF_ID;
6900         pfacts->MaxPostedCmdBuffers =
6901             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6902
6903         return 0;
6904 }
6905
6906 /**
6907  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6908  * @ioc: per adapter object
6909  * @timeout:
6910  *
6911  * Return: 0 for success, non-zero for failure.
6912  */
6913 static int
6914 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6915 {
6916         u32 ioc_state;
6917         int rc;
6918
6919         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6920
6921         if (ioc->pci_error_recovery) {
6922                 dfailprintk(ioc,
6923                             ioc_info(ioc, "%s: host in pci error recovery\n",
6924                                      __func__));
6925                 return -EFAULT;
6926         }
6927
6928         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6929         dhsprintk(ioc,
6930                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6931                            __func__, ioc_state));
6932
6933         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6934             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6935                 return 0;
6936
6937         if (ioc_state & MPI2_DOORBELL_USED) {
6938                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6939                 goto issue_diag_reset;
6940         }
6941
6942         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6943                 mpt3sas_print_fault_code(ioc, ioc_state &
6944                     MPI2_DOORBELL_DATA_MASK);
6945                 goto issue_diag_reset;
6946         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6947             MPI2_IOC_STATE_COREDUMP) {
6948                 ioc_info(ioc,
6949                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6950                     __func__, ioc_state);
6951                 return -EFAULT;
6952         }
6953
6954         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6955         if (ioc_state) {
6956                 dfailprintk(ioc,
6957                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6958                                      __func__, ioc_state));
6959                 return -EFAULT;
6960         }
6961
6962  issue_diag_reset:
6963         rc = _base_diag_reset(ioc);
6964         return rc;
6965 }
6966
6967 /**
6968  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6969  * @ioc: per adapter object
6970  *
6971  * Return: 0 for success, non-zero for failure.
6972  */
6973 static int
6974 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6975 {
6976         Mpi2IOCFactsRequest_t mpi_request;
6977         Mpi2IOCFactsReply_t mpi_reply;
6978         struct mpt3sas_facts *facts;
6979         int mpi_reply_sz, mpi_request_sz, r;
6980
6981         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6982
6983         r = _base_wait_for_iocstate(ioc, 10);
6984         if (r) {
6985                 dfailprintk(ioc,
6986                             ioc_info(ioc, "%s: failed getting to correct state\n",
6987                                      __func__));
6988                 return r;
6989         }
6990         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6991         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6992         memset(&mpi_request, 0, mpi_request_sz);
6993         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6994         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6995             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6996
6997         if (r != 0) {
6998                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6999                 return r;
7000         }
7001
7002         facts = &ioc->facts;
7003         memset(facts, 0, sizeof(struct mpt3sas_facts));
7004         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7005         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7006         facts->VP_ID = mpi_reply.VP_ID;
7007         facts->VF_ID = mpi_reply.VF_ID;
7008         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7009         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7010         facts->WhoInit = mpi_reply.WhoInit;
7011         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7012         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7013         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7014             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7015                 ioc->combined_reply_queue = 0;
7016         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7017         facts->MaxReplyDescriptorPostQueueDepth =
7018             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7019         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7020         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7021         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7022                 ioc->ir_firmware = 1;
7023         if ((facts->IOCCapabilities &
7024               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7025                 ioc->rdpq_array_capable = 1;
7026         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7027             && ioc->is_aero_ioc)
7028                 ioc->atomic_desc_capable = 1;
7029         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7030         facts->IOCRequestFrameSize =
7031             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7032         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7033                 facts->IOCMaxChainSegmentSize =
7034                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7035         }
7036         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7037         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7038         ioc->shost->max_id = -1;
7039         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7040         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7041         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7042         facts->HighPriorityCredit =
7043             le16_to_cpu(mpi_reply.HighPriorityCredit);
7044         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7045         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7046         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7047
7048         /*
7049          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7050          */
7051         ioc->page_size = 1 << facts->CurrentHostPageSize;
7052         if (ioc->page_size == 1) {
7053                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7054                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7055         }
7056         dinitprintk(ioc,
7057                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7058                              facts->CurrentHostPageSize));
7059
7060         dinitprintk(ioc,
7061                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7062                              facts->RequestCredit, facts->MaxChainDepth));
7063         dinitprintk(ioc,
7064                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7065                              facts->IOCRequestFrameSize * 4,
7066                              facts->ReplyFrameSize * 4));
7067         return 0;
7068 }
7069
7070 /**
7071  * _base_send_ioc_init - send ioc_init to firmware
7072  * @ioc: per adapter object
7073  *
7074  * Return: 0 for success, non-zero for failure.
7075  */
7076 static int
7077 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7078 {
7079         Mpi2IOCInitRequest_t mpi_request;
7080         Mpi2IOCInitReply_t mpi_reply;
7081         int i, r = 0;
7082         ktime_t current_time;
7083         u16 ioc_status;
7084         u32 reply_post_free_array_sz = 0;
7085
7086         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7087
7088         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7089         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7090         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7091         mpi_request.VF_ID = 0; /* TODO */
7092         mpi_request.VP_ID = 0;
7093         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7094         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7095         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7096
7097         if (_base_is_controller_msix_enabled(ioc))
7098                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7099         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7100         mpi_request.ReplyDescriptorPostQueueDepth =
7101             cpu_to_le16(ioc->reply_post_queue_depth);
7102         mpi_request.ReplyFreeQueueDepth =
7103             cpu_to_le16(ioc->reply_free_queue_depth);
7104
7105         mpi_request.SenseBufferAddressHigh =
7106             cpu_to_le32((u64)ioc->sense_dma >> 32);
7107         mpi_request.SystemReplyAddressHigh =
7108             cpu_to_le32((u64)ioc->reply_dma >> 32);
7109         mpi_request.SystemRequestFrameBaseAddress =
7110             cpu_to_le64((u64)ioc->request_dma);
7111         mpi_request.ReplyFreeQueueAddress =
7112             cpu_to_le64((u64)ioc->reply_free_dma);
7113
7114         if (ioc->rdpq_array_enable) {
7115                 reply_post_free_array_sz = ioc->reply_queue_count *
7116                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7117                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7118                 for (i = 0; i < ioc->reply_queue_count; i++)
7119                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7120                             cpu_to_le64(
7121                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7122                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7123                 mpi_request.ReplyDescriptorPostQueueAddress =
7124                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7125         } else {
7126                 mpi_request.ReplyDescriptorPostQueueAddress =
7127                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7128         }
7129
7130         /*
7131          * Set the flag to enable CoreDump state feature in IOC firmware.
7132          */
7133         mpi_request.ConfigurationFlags |=
7134             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7135
7136         /* This time stamp specifies number of milliseconds
7137          * since epoch ~ midnight January 1, 1970.
7138          */
7139         current_time = ktime_get_real();
7140         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7141
7142         if (ioc->logging_level & MPT_DEBUG_INIT) {
7143                 __le32 *mfp;
7144                 int i;
7145
7146                 mfp = (__le32 *)&mpi_request;
7147                 ioc_info(ioc, "\toffset:data\n");
7148                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7149                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7150                             le32_to_cpu(mfp[i]));
7151         }
7152
7153         r = _base_handshake_req_reply_wait(ioc,
7154             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7155             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7156
7157         if (r != 0) {
7158                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7159                 return r;
7160         }
7161
7162         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7163         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7164             mpi_reply.IOCLogInfo) {
7165                 ioc_err(ioc, "%s: failed\n", __func__);
7166                 r = -EIO;
7167         }
7168
7169         /* Reset TimeSync Counter*/
7170         ioc->timestamp_update_count = 0;
7171         return r;
7172 }
7173
7174 /**
7175  * mpt3sas_port_enable_done - command completion routine for port enable
7176  * @ioc: per adapter object
7177  * @smid: system request message index
7178  * @msix_index: MSIX table index supplied by the OS
7179  * @reply: reply message frame(lower 32bit addr)
7180  *
7181  * Return: 1 meaning mf should be freed from _base_interrupt
7182  *          0 means the mf is freed from this function.
7183  */
7184 u8
7185 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7186         u32 reply)
7187 {
7188         MPI2DefaultReply_t *mpi_reply;
7189         u16 ioc_status;
7190
7191         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7192                 return 1;
7193
7194         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7195         if (!mpi_reply)
7196                 return 1;
7197
7198         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7199                 return 1;
7200
7201         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7202         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7203         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7204         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7205         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7206         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7207                 ioc->port_enable_failed = 1;
7208
7209         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7210                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7211                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7212                         mpt3sas_port_enable_complete(ioc);
7213                         return 1;
7214                 } else {
7215                         ioc->start_scan_failed = ioc_status;
7216                         ioc->start_scan = 0;
7217                         return 1;
7218                 }
7219         }
7220         complete(&ioc->port_enable_cmds.done);
7221         return 1;
7222 }
7223
7224 /**
7225  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7226  * @ioc: per adapter object
7227  *
7228  * Return: 0 for success, non-zero for failure.
7229  */
7230 static int
7231 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7232 {
7233         Mpi2PortEnableRequest_t *mpi_request;
7234         Mpi2PortEnableReply_t *mpi_reply;
7235         int r = 0;
7236         u16 smid;
7237         u16 ioc_status;
7238
7239         ioc_info(ioc, "sending port enable !!\n");
7240
7241         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7242                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7243                 return -EAGAIN;
7244         }
7245
7246         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7247         if (!smid) {
7248                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7249                 return -EAGAIN;
7250         }
7251
7252         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7253         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7254         ioc->port_enable_cmds.smid = smid;
7255         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7256         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7257
7258         init_completion(&ioc->port_enable_cmds.done);
7259         ioc->put_smid_default(ioc, smid);
7260         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7261         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7262                 ioc_err(ioc, "%s: timeout\n", __func__);
7263                 _debug_dump_mf(mpi_request,
7264                     sizeof(Mpi2PortEnableRequest_t)/4);
7265                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7266                         r = -EFAULT;
7267                 else
7268                         r = -ETIME;
7269                 goto out;
7270         }
7271
7272         mpi_reply = ioc->port_enable_cmds.reply;
7273         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7274         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7275                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7276                         __func__, ioc_status);
7277                 r = -EFAULT;
7278                 goto out;
7279         }
7280
7281  out:
7282         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7283         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7284         return r;
7285 }
7286
7287 /**
7288  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7289  * @ioc: per adapter object
7290  *
7291  * Return: 0 for success, non-zero for failure.
7292  */
7293 int
7294 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7295 {
7296         Mpi2PortEnableRequest_t *mpi_request;
7297         u16 smid;
7298
7299         ioc_info(ioc, "sending port enable !!\n");
7300
7301         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7302                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7303                 return -EAGAIN;
7304         }
7305
7306         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7307         if (!smid) {
7308                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7309                 return -EAGAIN;
7310         }
7311         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7312         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7313         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7314         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7315         ioc->port_enable_cmds.smid = smid;
7316         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7317         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7318
7319         ioc->put_smid_default(ioc, smid);
7320         return 0;
7321 }
7322
7323 /**
7324  * _base_determine_wait_on_discovery - desposition
7325  * @ioc: per adapter object
7326  *
7327  * Decide whether to wait on discovery to complete. Used to either
7328  * locate boot device, or report volumes ahead of physical devices.
7329  *
7330  * Return: 1 for wait, 0 for don't wait.
7331  */
7332 static int
7333 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7334 {
7335         /* We wait for discovery to complete if IR firmware is loaded.
7336          * The sas topology events arrive before PD events, so we need time to
7337          * turn on the bit in ioc->pd_handles to indicate PD
7338          * Also, it maybe required to report Volumes ahead of physical
7339          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7340          */
7341         if (ioc->ir_firmware)
7342                 return 1;
7343
7344         /* if no Bios, then we don't need to wait */
7345         if (!ioc->bios_pg3.BiosVersion)
7346                 return 0;
7347
7348         /* Bios is present, then we drop down here.
7349          *
7350          * If there any entries in the Bios Page 2, then we wait
7351          * for discovery to complete.
7352          */
7353
7354         /* Current Boot Device */
7355         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7356             MPI2_BIOSPAGE2_FORM_MASK) ==
7357             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7358         /* Request Boot Device */
7359            (ioc->bios_pg2.ReqBootDeviceForm &
7360             MPI2_BIOSPAGE2_FORM_MASK) ==
7361             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7362         /* Alternate Request Boot Device */
7363            (ioc->bios_pg2.ReqAltBootDeviceForm &
7364             MPI2_BIOSPAGE2_FORM_MASK) ==
7365             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7366                 return 0;
7367
7368         return 1;
7369 }
7370
7371 /**
7372  * _base_unmask_events - turn on notification for this event
7373  * @ioc: per adapter object
7374  * @event: firmware event
7375  *
7376  * The mask is stored in ioc->event_masks.
7377  */
7378 static void
7379 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7380 {
7381         u32 desired_event;
7382
7383         if (event >= 128)
7384                 return;
7385
7386         desired_event = (1 << (event % 32));
7387
7388         if (event < 32)
7389                 ioc->event_masks[0] &= ~desired_event;
7390         else if (event < 64)
7391                 ioc->event_masks[1] &= ~desired_event;
7392         else if (event < 96)
7393                 ioc->event_masks[2] &= ~desired_event;
7394         else if (event < 128)
7395                 ioc->event_masks[3] &= ~desired_event;
7396 }
7397
7398 /**
7399  * _base_event_notification - send event notification
7400  * @ioc: per adapter object
7401  *
7402  * Return: 0 for success, non-zero for failure.
7403  */
7404 static int
7405 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7406 {
7407         Mpi2EventNotificationRequest_t *mpi_request;
7408         u16 smid;
7409         int r = 0;
7410         int i, issue_diag_reset = 0;
7411
7412         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7413
7414         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7415                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7416                 return -EAGAIN;
7417         }
7418
7419         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7420         if (!smid) {
7421                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7422                 return -EAGAIN;
7423         }
7424         ioc->base_cmds.status = MPT3_CMD_PENDING;
7425         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7426         ioc->base_cmds.smid = smid;
7427         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7428         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7429         mpi_request->VF_ID = 0; /* TODO */
7430         mpi_request->VP_ID = 0;
7431         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7432                 mpi_request->EventMasks[i] =
7433                     cpu_to_le32(ioc->event_masks[i]);
7434         init_completion(&ioc->base_cmds.done);
7435         ioc->put_smid_default(ioc, smid);
7436         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7437         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7438                 ioc_err(ioc, "%s: timeout\n", __func__);
7439                 _debug_dump_mf(mpi_request,
7440                     sizeof(Mpi2EventNotificationRequest_t)/4);
7441                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7442                         r = -EFAULT;
7443                 else
7444                         issue_diag_reset = 1;
7445
7446         } else
7447                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7448         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7449
7450         if (issue_diag_reset) {
7451                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7452                         return -EFAULT;
7453                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7454                         return -EFAULT;
7455                 r = -EAGAIN;
7456         }
7457         return r;
7458 }
7459
7460 /**
7461  * mpt3sas_base_validate_event_type - validating event types
7462  * @ioc: per adapter object
7463  * @event_type: firmware event
7464  *
7465  * This will turn on firmware event notification when application
7466  * ask for that event. We don't mask events that are already enabled.
7467  */
7468 void
7469 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7470 {
7471         int i, j;
7472         u32 event_mask, desired_event;
7473         u8 send_update_to_fw;
7474
7475         for (i = 0, send_update_to_fw = 0; i <
7476             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7477                 event_mask = ~event_type[i];
7478                 desired_event = 1;
7479                 for (j = 0; j < 32; j++) {
7480                         if (!(event_mask & desired_event) &&
7481                             (ioc->event_masks[i] & desired_event)) {
7482                                 ioc->event_masks[i] &= ~desired_event;
7483                                 send_update_to_fw = 1;
7484                         }
7485                         desired_event = (desired_event << 1);
7486                 }
7487         }
7488
7489         if (!send_update_to_fw)
7490                 return;
7491
7492         mutex_lock(&ioc->base_cmds.mutex);
7493         _base_event_notification(ioc);
7494         mutex_unlock(&ioc->base_cmds.mutex);
7495 }
7496
7497 /**
7498  * _base_diag_reset - the "big hammer" start of day reset
7499  * @ioc: per adapter object
7500  *
7501  * Return: 0 for success, non-zero for failure.
7502  */
7503 static int
7504 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7505 {
7506         u32 host_diagnostic;
7507         u32 ioc_state;
7508         u32 count;
7509         u32 hcb_size;
7510
7511         ioc_info(ioc, "sending diag reset !!\n");
7512
7513         pci_cfg_access_lock(ioc->pdev);
7514
7515         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7516
7517         count = 0;
7518         do {
7519                 /* Write magic sequence to WriteSequence register
7520                  * Loop until in diagnostic mode
7521                  */
7522                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7523                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7524                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7525                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7526                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7527                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7528                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7529                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7530
7531                 /* wait 100 msec */
7532                 msleep(100);
7533
7534                 if (count++ > 20) {
7535                         ioc_info(ioc,
7536                             "Stop writing magic sequence after 20 retries\n");
7537                         _base_dump_reg_set(ioc);
7538                         goto out;
7539                 }
7540
7541                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7542                 drsprintk(ioc,
7543                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7544                                    count, host_diagnostic));
7545
7546         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7547
7548         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7549
7550         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7551         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7552              &ioc->chip->HostDiagnostic);
7553
7554         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7555         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7556
7557         /* Approximately 300 second max wait */
7558         for (count = 0; count < (300000000 /
7559                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7560
7561                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7562
7563                 if (host_diagnostic == 0xFFFFFFFF) {
7564                         ioc_info(ioc,
7565                             "Invalid host diagnostic register value\n");
7566                         _base_dump_reg_set(ioc);
7567                         goto out;
7568                 }
7569                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7570                         break;
7571
7572                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7573         }
7574
7575         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7576
7577                 drsprintk(ioc,
7578                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7579                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7580                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7581                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7582
7583                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7584                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7585                     &ioc->chip->HCBSize);
7586         }
7587
7588         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7589         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7590             &ioc->chip->HostDiagnostic);
7591
7592         drsprintk(ioc,
7593                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
7594         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7595
7596         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7597         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7598         if (ioc_state) {
7599                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7600                         __func__, ioc_state);
7601                 _base_dump_reg_set(ioc);
7602                 goto out;
7603         }
7604
7605         pci_cfg_access_unlock(ioc->pdev);
7606         ioc_info(ioc, "diag reset: SUCCESS\n");
7607         return 0;
7608
7609  out:
7610         pci_cfg_access_unlock(ioc->pdev);
7611         ioc_err(ioc, "diag reset: FAILED\n");
7612         return -EFAULT;
7613 }
7614
7615 /**
7616  * mpt3sas_base_make_ioc_ready - put controller in READY state
7617  * @ioc: per adapter object
7618  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7619  *
7620  * Return: 0 for success, non-zero for failure.
7621  */
7622 int
7623 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7624 {
7625         u32 ioc_state;
7626         int rc;
7627         int count;
7628
7629         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7630
7631         if (ioc->pci_error_recovery)
7632                 return 0;
7633
7634         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7635         dhsprintk(ioc,
7636                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7637                            __func__, ioc_state));
7638
7639         /* if in RESET state, it should move to READY state shortly */
7640         count = 0;
7641         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7642                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7643                     MPI2_IOC_STATE_READY) {
7644                         if (count++ == 10) {
7645                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7646                                         __func__, ioc_state);
7647                                 return -EFAULT;
7648                         }
7649                         ssleep(1);
7650                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7651                 }
7652         }
7653
7654         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7655                 return 0;
7656
7657         if (ioc_state & MPI2_DOORBELL_USED) {
7658                 ioc_info(ioc, "unexpected doorbell active!\n");
7659                 goto issue_diag_reset;
7660         }
7661
7662         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7663                 mpt3sas_print_fault_code(ioc, ioc_state &
7664                     MPI2_DOORBELL_DATA_MASK);
7665                 goto issue_diag_reset;
7666         }
7667
7668         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7669                 /*
7670                  * if host reset is invoked while watch dog thread is waiting
7671                  * for IOC state to be changed to Fault state then driver has
7672                  * to wait here for CoreDump state to clear otherwise reset
7673                  * will be issued to the FW and FW move the IOC state to
7674                  * reset state without copying the FW logs to coredump region.
7675                  */
7676                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7677                         mpt3sas_print_coredump_info(ioc, ioc_state &
7678                             MPI2_DOORBELL_DATA_MASK);
7679                         mpt3sas_base_wait_for_coredump_completion(ioc,
7680                             __func__);
7681                 }
7682                 goto issue_diag_reset;
7683         }
7684
7685         if (type == FORCE_BIG_HAMMER)
7686                 goto issue_diag_reset;
7687
7688         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7689                 if (!(_base_send_ioc_reset(ioc,
7690                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7691                         return 0;
7692         }
7693
7694  issue_diag_reset:
7695         rc = _base_diag_reset(ioc);
7696         return rc;
7697 }
7698
7699 /**
7700  * _base_make_ioc_operational - put controller in OPERATIONAL state
7701  * @ioc: per adapter object
7702  *
7703  * Return: 0 for success, non-zero for failure.
7704  */
7705 static int
7706 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7707 {
7708         int r, i, index, rc;
7709         unsigned long   flags;
7710         u32 reply_address;
7711         u16 smid;
7712         struct _tr_list *delayed_tr, *delayed_tr_next;
7713         struct _sc_list *delayed_sc, *delayed_sc_next;
7714         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7715         u8 hide_flag;
7716         struct adapter_reply_queue *reply_q;
7717         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7718
7719         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7720
7721         /* clean the delayed target reset list */
7722         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7723             &ioc->delayed_tr_list, list) {
7724                 list_del(&delayed_tr->list);
7725                 kfree(delayed_tr);
7726         }
7727
7728
7729         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7730             &ioc->delayed_tr_volume_list, list) {
7731                 list_del(&delayed_tr->list);
7732                 kfree(delayed_tr);
7733         }
7734
7735         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7736             &ioc->delayed_sc_list, list) {
7737                 list_del(&delayed_sc->list);
7738                 kfree(delayed_sc);
7739         }
7740
7741         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7742             &ioc->delayed_event_ack_list, list) {
7743                 list_del(&delayed_event_ack->list);
7744                 kfree(delayed_event_ack);
7745         }
7746
7747         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7748
7749         /* hi-priority queue */
7750         INIT_LIST_HEAD(&ioc->hpr_free_list);
7751         smid = ioc->hi_priority_smid;
7752         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7753                 ioc->hpr_lookup[i].cb_idx = 0xFF;
7754                 ioc->hpr_lookup[i].smid = smid;
7755                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7756                     &ioc->hpr_free_list);
7757         }
7758
7759         /* internal queue */
7760         INIT_LIST_HEAD(&ioc->internal_free_list);
7761         smid = ioc->internal_smid;
7762         for (i = 0; i < ioc->internal_depth; i++, smid++) {
7763                 ioc->internal_lookup[i].cb_idx = 0xFF;
7764                 ioc->internal_lookup[i].smid = smid;
7765                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7766                     &ioc->internal_free_list);
7767         }
7768
7769         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7770
7771         /* initialize Reply Free Queue */
7772         for (i = 0, reply_address = (u32)ioc->reply_dma ;
7773             i < ioc->reply_free_queue_depth ; i++, reply_address +=
7774             ioc->reply_sz) {
7775                 ioc->reply_free[i] = cpu_to_le32(reply_address);
7776                 if (ioc->is_mcpu_endpoint)
7777                         _base_clone_reply_to_sys_mem(ioc,
7778                                         reply_address, i);
7779         }
7780
7781         /* initialize reply queues */
7782         if (ioc->is_driver_loading)
7783                 _base_assign_reply_queues(ioc);
7784
7785         /* initialize Reply Post Free Queue */
7786         index = 0;
7787         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7788         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7789                 /*
7790                  * If RDPQ is enabled, switch to the next allocation.
7791                  * Otherwise advance within the contiguous region.
7792                  */
7793                 if (ioc->rdpq_array_enable) {
7794                         reply_q->reply_post_free =
7795                                 ioc->reply_post[index++].reply_post_free;
7796                 } else {
7797                         reply_q->reply_post_free = reply_post_free_contig;
7798                         reply_post_free_contig += ioc->reply_post_queue_depth;
7799                 }
7800
7801                 reply_q->reply_post_host_index = 0;
7802                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7803                         reply_q->reply_post_free[i].Words =
7804                             cpu_to_le64(ULLONG_MAX);
7805                 if (!_base_is_controller_msix_enabled(ioc))
7806                         goto skip_init_reply_post_free_queue;
7807         }
7808  skip_init_reply_post_free_queue:
7809
7810         r = _base_send_ioc_init(ioc);
7811         if (r) {
7812                 /*
7813                  * No need to check IOC state for fault state & issue
7814                  * diag reset during host reset. This check is need
7815                  * only during driver load time.
7816                  */
7817                 if (!ioc->is_driver_loading)
7818                         return r;
7819
7820                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
7821                 if (rc || (_base_send_ioc_init(ioc)))
7822                         return r;
7823         }
7824
7825         /* initialize reply free host index */
7826         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7827         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7828
7829         /* initialize reply post host index */
7830         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7831                 if (ioc->combined_reply_queue)
7832                         writel((reply_q->msix_index & 7)<<
7833                            MPI2_RPHI_MSIX_INDEX_SHIFT,
7834                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7835                 else
7836                         writel(reply_q->msix_index <<
7837                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
7838                                 &ioc->chip->ReplyPostHostIndex);
7839
7840                 if (!_base_is_controller_msix_enabled(ioc))
7841                         goto skip_init_reply_post_host_index;
7842         }
7843
7844  skip_init_reply_post_host_index:
7845
7846         mpt3sas_base_unmask_interrupts(ioc);
7847
7848         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7849                 r = _base_display_fwpkg_version(ioc);
7850                 if (r)
7851                         return r;
7852         }
7853
7854         r = _base_static_config_pages(ioc);
7855         if (r)
7856                 return r;
7857
7858         r = _base_event_notification(ioc);
7859         if (r)
7860                 return r;
7861
7862         if (!ioc->shost_recovery) {
7863
7864                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7865                     == 0x80) {
7866                         hide_flag = (u8) (
7867                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7868                             MFG_PAGE10_HIDE_SSDS_MASK);
7869                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7870                                 ioc->mfg_pg10_hide_flag = hide_flag;
7871                 }
7872
7873                 ioc->wait_for_discovery_to_complete =
7874                     _base_determine_wait_on_discovery(ioc);
7875
7876                 return r; /* scan_start and scan_finished support */
7877         }
7878
7879         r = _base_send_port_enable(ioc);
7880         if (r)
7881                 return r;
7882
7883         return r;
7884 }
7885
7886 /**
7887  * mpt3sas_base_free_resources - free resources controller resources
7888  * @ioc: per adapter object
7889  */
7890 void
7891 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7892 {
7893         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7894
7895         /* synchronizing freeing resource with pci_access_mutex lock */
7896         mutex_lock(&ioc->pci_access_mutex);
7897         if (ioc->chip_phys && ioc->chip) {
7898                 mpt3sas_base_mask_interrupts(ioc);
7899                 ioc->shost_recovery = 1;
7900                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
7901                 ioc->shost_recovery = 0;
7902         }
7903
7904         mpt3sas_base_unmap_resources(ioc);
7905         mutex_unlock(&ioc->pci_access_mutex);
7906         return;
7907 }
7908
7909 /**
7910  * mpt3sas_base_attach - attach controller instance
7911  * @ioc: per adapter object
7912  *
7913  * Return: 0 for success, non-zero for failure.
7914  */
7915 int
7916 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7917 {
7918         int r, i, rc;
7919         int cpu_id, last_cpu_id = 0;
7920
7921         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7922
7923         /* setup cpu_msix_table */
7924         ioc->cpu_count = num_online_cpus();
7925         for_each_online_cpu(cpu_id)
7926                 last_cpu_id = cpu_id;
7927         ioc->cpu_msix_table_sz = last_cpu_id + 1;
7928         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7929         ioc->reply_queue_count = 1;
7930         if (!ioc->cpu_msix_table) {
7931                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7932                 r = -ENOMEM;
7933                 goto out_free_resources;
7934         }
7935
7936         if (ioc->is_warpdrive) {
7937                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7938                     sizeof(resource_size_t *), GFP_KERNEL);
7939                 if (!ioc->reply_post_host_index) {
7940                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7941                         r = -ENOMEM;
7942                         goto out_free_resources;
7943                 }
7944         }
7945
7946         ioc->smp_affinity_enable = smp_affinity_enable;
7947
7948         ioc->rdpq_array_enable_assigned = 0;
7949         ioc->use_32bit_dma = false;
7950         ioc->dma_mask = 64;
7951         if (ioc->is_aero_ioc)
7952                 ioc->base_readl = &_base_readl_aero;
7953         else
7954                 ioc->base_readl = &_base_readl;
7955         r = mpt3sas_base_map_resources(ioc);
7956         if (r)
7957                 goto out_free_resources;
7958
7959         pci_set_drvdata(ioc->pdev, ioc->shost);
7960         r = _base_get_ioc_facts(ioc);
7961         if (r) {
7962                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
7963                 if (rc || (_base_get_ioc_facts(ioc)))
7964                         goto out_free_resources;
7965         }
7966
7967         switch (ioc->hba_mpi_version_belonged) {
7968         case MPI2_VERSION:
7969                 ioc->build_sg_scmd = &_base_build_sg_scmd;
7970                 ioc->build_sg = &_base_build_sg;
7971                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7972                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7973                 break;
7974         case MPI25_VERSION:
7975         case MPI26_VERSION:
7976                 /*
7977                  * In SAS3.0,
7978                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7979                  * Target Status - all require the IEEE formatted scatter gather
7980                  * elements.
7981                  */
7982                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7983                 ioc->build_sg = &_base_build_sg_ieee;
7984                 ioc->build_nvme_prp = &_base_build_nvme_prp;
7985                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7986                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7987                 if (ioc->high_iops_queues)
7988                         ioc->get_msix_index_for_smlio =
7989                                         &_base_get_high_iops_msix_index;
7990                 else
7991                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7992                 break;
7993         }
7994         if (ioc->atomic_desc_capable) {
7995                 ioc->put_smid_default = &_base_put_smid_default_atomic;
7996                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7997                 ioc->put_smid_fast_path =
7998                                 &_base_put_smid_fast_path_atomic;
7999                 ioc->put_smid_hi_priority =
8000                                 &_base_put_smid_hi_priority_atomic;
8001         } else {
8002                 ioc->put_smid_default = &_base_put_smid_default;
8003                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8004                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8005                 if (ioc->is_mcpu_endpoint)
8006                         ioc->put_smid_scsi_io =
8007                                 &_base_put_smid_mpi_ep_scsi_io;
8008                 else
8009                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8010         }
8011         /*
8012          * These function pointers for other requests that don't
8013          * the require IEEE scatter gather elements.
8014          *
8015          * For example Configuration Pages and SAS IOUNIT Control don't.
8016          */
8017         ioc->build_sg_mpi = &_base_build_sg;
8018         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8019
8020         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8021         if (r)
8022                 goto out_free_resources;
8023
8024         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8025             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8026         if (!ioc->pfacts) {
8027                 r = -ENOMEM;
8028                 goto out_free_resources;
8029         }
8030
8031         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8032                 r = _base_get_port_facts(ioc, i);
8033                 if (r) {
8034                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8035                         if (rc || (_base_get_port_facts(ioc, i)))
8036                                 goto out_free_resources;
8037                 }
8038         }
8039
8040         r = _base_allocate_memory_pools(ioc);
8041         if (r)
8042                 goto out_free_resources;
8043
8044         if (irqpoll_weight > 0)
8045                 ioc->thresh_hold = irqpoll_weight;
8046         else
8047                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8048
8049         _base_init_irqpolls(ioc);
8050         init_waitqueue_head(&ioc->reset_wq);
8051
8052         /* allocate memory pd handle bitmask list */
8053         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8054         if (ioc->facts.MaxDevHandle % 8)
8055                 ioc->pd_handles_sz++;
8056         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8057             GFP_KERNEL);
8058         if (!ioc->pd_handles) {
8059                 r = -ENOMEM;
8060                 goto out_free_resources;
8061         }
8062         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8063             GFP_KERNEL);
8064         if (!ioc->blocking_handles) {
8065                 r = -ENOMEM;
8066                 goto out_free_resources;
8067         }
8068
8069         /* allocate memory for pending OS device add list */
8070         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8071         if (ioc->facts.MaxDevHandle % 8)
8072                 ioc->pend_os_device_add_sz++;
8073         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8074             GFP_KERNEL);
8075         if (!ioc->pend_os_device_add) {
8076                 r = -ENOMEM;
8077                 goto out_free_resources;
8078         }
8079
8080         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8081         ioc->device_remove_in_progress =
8082                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8083         if (!ioc->device_remove_in_progress) {
8084                 r = -ENOMEM;
8085                 goto out_free_resources;
8086         }
8087
8088         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8089
8090         /* base internal command bits */
8091         mutex_init(&ioc->base_cmds.mutex);
8092         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8093         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8094
8095         /* port_enable command bits */
8096         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8097         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8098
8099         /* transport internal command bits */
8100         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8101         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8102         mutex_init(&ioc->transport_cmds.mutex);
8103
8104         /* scsih internal command bits */
8105         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8106         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8107         mutex_init(&ioc->scsih_cmds.mutex);
8108
8109         /* task management internal command bits */
8110         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8111         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8112         mutex_init(&ioc->tm_cmds.mutex);
8113
8114         /* config page internal command bits */
8115         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8116         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8117         mutex_init(&ioc->config_cmds.mutex);
8118
8119         /* ctl module internal command bits */
8120         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8121         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8122         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8123         mutex_init(&ioc->ctl_cmds.mutex);
8124
8125         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8126             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8127             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8128             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8129                 r = -ENOMEM;
8130                 goto out_free_resources;
8131         }
8132
8133         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8134                 ioc->event_masks[i] = -1;
8135
8136         /* here we enable the events we care about */
8137         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8138         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8139         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8140         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8141         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8142         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8143         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8144         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8145         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8146         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8147         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8148         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8149         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8150         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8151                 if (ioc->is_gen35_ioc) {
8152                         _base_unmask_events(ioc,
8153                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8154                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8155                         _base_unmask_events(ioc,
8156                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8157                 }
8158         }
8159         r = _base_make_ioc_operational(ioc);
8160         if (r == -EAGAIN) {
8161                 r = _base_make_ioc_operational(ioc);
8162                 if (r)
8163                         goto out_free_resources;
8164         }
8165
8166         /*
8167          * Copy current copy of IOCFacts in prev_fw_facts
8168          * and it will be used during online firmware upgrade.
8169          */
8170         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8171             sizeof(struct mpt3sas_facts));
8172
8173         ioc->non_operational_loop = 0;
8174         ioc->ioc_coredump_loop = 0;
8175         ioc->got_task_abort_from_ioctl = 0;
8176         return 0;
8177
8178  out_free_resources:
8179
8180         ioc->remove_host = 1;
8181
8182         mpt3sas_base_free_resources(ioc);
8183         _base_release_memory_pools(ioc);
8184         pci_set_drvdata(ioc->pdev, NULL);
8185         kfree(ioc->cpu_msix_table);
8186         if (ioc->is_warpdrive)
8187                 kfree(ioc->reply_post_host_index);
8188         kfree(ioc->pd_handles);
8189         kfree(ioc->blocking_handles);
8190         kfree(ioc->device_remove_in_progress);
8191         kfree(ioc->pend_os_device_add);
8192         kfree(ioc->tm_cmds.reply);
8193         kfree(ioc->transport_cmds.reply);
8194         kfree(ioc->scsih_cmds.reply);
8195         kfree(ioc->config_cmds.reply);
8196         kfree(ioc->base_cmds.reply);
8197         kfree(ioc->port_enable_cmds.reply);
8198         kfree(ioc->ctl_cmds.reply);
8199         kfree(ioc->ctl_cmds.sense);
8200         kfree(ioc->pfacts);
8201         ioc->ctl_cmds.reply = NULL;
8202         ioc->base_cmds.reply = NULL;
8203         ioc->tm_cmds.reply = NULL;
8204         ioc->scsih_cmds.reply = NULL;
8205         ioc->transport_cmds.reply = NULL;
8206         ioc->config_cmds.reply = NULL;
8207         ioc->pfacts = NULL;
8208         return r;
8209 }
8210
8211
8212 /**
8213  * mpt3sas_base_detach - remove controller instance
8214  * @ioc: per adapter object
8215  */
8216 void
8217 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8218 {
8219         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8220
8221         mpt3sas_base_stop_watchdog(ioc);
8222         mpt3sas_base_free_resources(ioc);
8223         _base_release_memory_pools(ioc);
8224         mpt3sas_free_enclosure_list(ioc);
8225         pci_set_drvdata(ioc->pdev, NULL);
8226         kfree(ioc->cpu_msix_table);
8227         if (ioc->is_warpdrive)
8228                 kfree(ioc->reply_post_host_index);
8229         kfree(ioc->pd_handles);
8230         kfree(ioc->blocking_handles);
8231         kfree(ioc->device_remove_in_progress);
8232         kfree(ioc->pend_os_device_add);
8233         kfree(ioc->pfacts);
8234         kfree(ioc->ctl_cmds.reply);
8235         kfree(ioc->ctl_cmds.sense);
8236         kfree(ioc->base_cmds.reply);
8237         kfree(ioc->port_enable_cmds.reply);
8238         kfree(ioc->tm_cmds.reply);
8239         kfree(ioc->transport_cmds.reply);
8240         kfree(ioc->scsih_cmds.reply);
8241         kfree(ioc->config_cmds.reply);
8242 }
8243
8244 /**
8245  * _base_pre_reset_handler - pre reset handler
8246  * @ioc: per adapter object
8247  */
8248 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8249 {
8250         mpt3sas_scsih_pre_reset_handler(ioc);
8251         mpt3sas_ctl_pre_reset_handler(ioc);
8252         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8253 }
8254
8255 /**
8256  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8257  * @ioc: per adapter object
8258  */
8259 static void
8260 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8261 {
8262         dtmprintk(ioc,
8263             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8264         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8265                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8266                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8267                 complete(&ioc->transport_cmds.done);
8268         }
8269         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8270                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8271                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8272                 complete(&ioc->base_cmds.done);
8273         }
8274         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8275                 ioc->port_enable_failed = 1;
8276                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8277                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8278                 if (ioc->is_driver_loading) {
8279                         ioc->start_scan_failed =
8280                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8281                         ioc->start_scan = 0;
8282                 } else {
8283                         complete(&ioc->port_enable_cmds.done);
8284                 }
8285         }
8286         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8287                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8288                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8289                 ioc->config_cmds.smid = USHRT_MAX;
8290                 complete(&ioc->config_cmds.done);
8291         }
8292 }
8293
8294 /**
8295  * _base_clear_outstanding_commands - clear all outstanding commands
8296  * @ioc: per adapter object
8297  */
8298 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8299 {
8300         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8301         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8302         _base_clear_outstanding_mpt_commands(ioc);
8303 }
8304
8305 /**
8306  * _base_reset_done_handler - reset done handler
8307  * @ioc: per adapter object
8308  */
8309 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8310 {
8311         mpt3sas_scsih_reset_done_handler(ioc);
8312         mpt3sas_ctl_reset_done_handler(ioc);
8313         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8314 }
8315
8316 /**
8317  * mpt3sas_wait_for_commands_to_complete - reset controller
8318  * @ioc: Pointer to MPT_ADAPTER structure
8319  *
8320  * This function is waiting 10s for all pending commands to complete
8321  * prior to putting controller in reset.
8322  */
8323 void
8324 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8325 {
8326         u32 ioc_state;
8327
8328         ioc->pending_io_count = 0;
8329
8330         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8331         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8332                 return;
8333
8334         /* pending command count */
8335         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8336
8337         if (!ioc->pending_io_count)
8338                 return;
8339
8340         /* wait for pending commands to complete */
8341         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8342 }
8343
8344 /**
8345  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8346  *     attributes during online firmware upgrade and update the corresponding
8347  *     IOC variables accordingly.
8348  *
8349  * @ioc: Pointer to MPT_ADAPTER structure
8350  */
8351 static int
8352 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8353 {
8354         u16 pd_handles_sz;
8355         void *pd_handles = NULL, *blocking_handles = NULL;
8356         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8357         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8358
8359         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8360                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8361                 if (ioc->facts.MaxDevHandle % 8)
8362                         pd_handles_sz++;
8363
8364                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8365                     GFP_KERNEL);
8366                 if (!pd_handles) {
8367                         ioc_info(ioc,
8368                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8369                             pd_handles_sz);
8370                         return -ENOMEM;
8371                 }
8372                 memset(pd_handles + ioc->pd_handles_sz, 0,
8373                     (pd_handles_sz - ioc->pd_handles_sz));
8374                 ioc->pd_handles = pd_handles;
8375
8376                 blocking_handles = krealloc(ioc->blocking_handles,
8377                     pd_handles_sz, GFP_KERNEL);
8378                 if (!blocking_handles) {
8379                         ioc_info(ioc,
8380                             "Unable to allocate the memory for "
8381                             "blocking_handles of sz: %d\n",
8382                             pd_handles_sz);
8383                         return -ENOMEM;
8384                 }
8385                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8386                     (pd_handles_sz - ioc->pd_handles_sz));
8387                 ioc->blocking_handles = blocking_handles;
8388                 ioc->pd_handles_sz = pd_handles_sz;
8389
8390                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8391                     pd_handles_sz, GFP_KERNEL);
8392                 if (!pend_os_device_add) {
8393                         ioc_info(ioc,
8394                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8395                             pd_handles_sz);
8396                         return -ENOMEM;
8397                 }
8398                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8399                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8400                 ioc->pend_os_device_add = pend_os_device_add;
8401                 ioc->pend_os_device_add_sz = pd_handles_sz;
8402
8403                 device_remove_in_progress = krealloc(
8404                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8405                 if (!device_remove_in_progress) {
8406                         ioc_info(ioc,
8407                             "Unable to allocate the memory for "
8408                             "device_remove_in_progress of sz: %d\n "
8409                             , pd_handles_sz);
8410                         return -ENOMEM;
8411                 }
8412                 memset(device_remove_in_progress +
8413                     ioc->device_remove_in_progress_sz, 0,
8414                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8415                 ioc->device_remove_in_progress = device_remove_in_progress;
8416                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8417         }
8418
8419         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8420         return 0;
8421 }
8422
8423 /**
8424  * mpt3sas_base_hard_reset_handler - reset controller
8425  * @ioc: Pointer to MPT_ADAPTER structure
8426  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8427  *
8428  * Return: 0 for success, non-zero for failure.
8429  */
8430 int
8431 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8432         enum reset_type type)
8433 {
8434         int r;
8435         unsigned long flags;
8436         u32 ioc_state;
8437         u8 is_fault = 0, is_trigger = 0;
8438
8439         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8440
8441         if (ioc->pci_error_recovery) {
8442                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8443                 r = 0;
8444                 goto out_unlocked;
8445         }
8446
8447         if (mpt3sas_fwfault_debug)
8448                 mpt3sas_halt_firmware(ioc);
8449
8450         /* wait for an active reset in progress to complete */
8451         mutex_lock(&ioc->reset_in_progress_mutex);
8452
8453         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8454         ioc->shost_recovery = 1;
8455         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8456
8457         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8458             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8459             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8460             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8461                 is_trigger = 1;
8462                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8463                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8464                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8465                     MPI2_IOC_STATE_COREDUMP) {
8466                         is_fault = 1;
8467                         ioc->htb_rel.trigger_info_dwords[1] =
8468                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8469                 }
8470         }
8471         _base_pre_reset_handler(ioc);
8472         mpt3sas_wait_for_commands_to_complete(ioc);
8473         mpt3sas_base_mask_interrupts(ioc);
8474         r = mpt3sas_base_make_ioc_ready(ioc, type);
8475         if (r)
8476                 goto out;
8477         _base_clear_outstanding_commands(ioc);
8478
8479         /* If this hard reset is called while port enable is active, then
8480          * there is no reason to call make_ioc_operational
8481          */
8482         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8483                 ioc->remove_host = 1;
8484                 r = -EFAULT;
8485                 goto out;
8486         }
8487         r = _base_get_ioc_facts(ioc);
8488         if (r)
8489                 goto out;
8490
8491         r = _base_check_ioc_facts_changes(ioc);
8492         if (r) {
8493                 ioc_info(ioc,
8494                     "Some of the parameters got changed in this new firmware"
8495                     " image and it requires system reboot\n");
8496                 goto out;
8497         }
8498         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8499                 panic("%s: Issue occurred with flashing controller firmware."
8500                       "Please reboot the system and ensure that the correct"
8501                       " firmware version is running\n", ioc->name);
8502
8503         r = _base_make_ioc_operational(ioc);
8504         if (!r)
8505                 _base_reset_done_handler(ioc);
8506
8507  out:
8508         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8509
8510         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8511         ioc->shost_recovery = 0;
8512         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8513         ioc->ioc_reset_count++;
8514         mutex_unlock(&ioc->reset_in_progress_mutex);
8515
8516  out_unlocked:
8517         if ((r == 0) && is_trigger) {
8518                 if (is_fault)
8519                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8520                 else
8521                         mpt3sas_trigger_master(ioc,
8522                             MASTER_TRIGGER_ADAPTER_RESET);
8523         }
8524         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8525         return r;
8526 }