Merge tag 'riscv/for-v5.4-rc1-b' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81         HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x40700E11, "Smart Array 5300", &SA5A_access},
162         {0x40800E11, "Smart Array 5i", &SA5B_access},
163         {0x40820E11, "Smart Array 532", &SA5B_access},
164         {0x40830E11, "Smart Array 5312", &SA5B_access},
165         {0x409A0E11, "Smart Array 641", &SA5A_access},
166         {0x409B0E11, "Smart Array 642", &SA5A_access},
167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169         {0x40910E11, "Smart Array 6i", &SA5A_access},
170         {0x3225103C, "Smart Array P600", &SA5A_access},
171         {0x3223103C, "Smart Array P800", &SA5A_access},
172         {0x3234103C, "Smart Array P400", &SA5A_access},
173         {0x3235103C, "Smart Array P400i", &SA5A_access},
174         {0x3211103C, "Smart Array E200i", &SA5A_access},
175         {0x3212103C, "Smart Array E200", &SA5A_access},
176         {0x3213103C, "Smart Array E200i", &SA5A_access},
177         {0x3214103C, "Smart Array E200i", &SA5A_access},
178         {0x3215103C, "Smart Array E200i", &SA5A_access},
179         {0x3237103C, "Smart Array E500", &SA5A_access},
180         {0x323D103C, "Smart Array P700m", &SA5A_access},
181         {0x3241103C, "Smart Array P212", &SA5_access},
182         {0x3243103C, "Smart Array P410", &SA5_access},
183         {0x3245103C, "Smart Array P410i", &SA5_access},
184         {0x3247103C, "Smart Array P411", &SA5_access},
185         {0x3249103C, "Smart Array P812", &SA5_access},
186         {0x324A103C, "Smart Array P712m", &SA5_access},
187         {0x324B103C, "Smart Array P711m", &SA5_access},
188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189         {0x3350103C, "Smart Array P222", &SA5_access},
190         {0x3351103C, "Smart Array P420", &SA5_access},
191         {0x3352103C, "Smart Array P421", &SA5_access},
192         {0x3353103C, "Smart Array P822", &SA5_access},
193         {0x3354103C, "Smart Array P420i", &SA5_access},
194         {0x3355103C, "Smart Array P220i", &SA5_access},
195         {0x3356103C, "Smart Array P721m", &SA5_access},
196         {0x1920103C, "Smart Array P430i", &SA5_access},
197         {0x1921103C, "Smart Array P830i", &SA5_access},
198         {0x1922103C, "Smart Array P430", &SA5_access},
199         {0x1923103C, "Smart Array P431", &SA5_access},
200         {0x1924103C, "Smart Array P830", &SA5_access},
201         {0x1925103C, "Smart Array P831", &SA5_access},
202         {0x1926103C, "Smart Array P731m", &SA5_access},
203         {0x1928103C, "Smart Array P230i", &SA5_access},
204         {0x1929103C, "Smart Array P530", &SA5_access},
205         {0x21BD103C, "Smart Array P244br", &SA5_access},
206         {0x21BE103C, "Smart Array P741m", &SA5_access},
207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
210         {0x21C2103C, "Smart Array P440", &SA5_access},
211         {0x21C3103C, "Smart Array P441", &SA5_access},
212         {0x21C4103C, "Smart Array", &SA5_access},
213         {0x21C5103C, "Smart Array P841", &SA5_access},
214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
215         {0x21C7103C, "Smart HBA H240", &SA5_access},
216         {0x21C8103C, "Smart HBA H241", &SA5_access},
217         {0x21C9103C, "Smart Array", &SA5_access},
218         {0x21CA103C, "Smart Array P246br", &SA5_access},
219         {0x21CB103C, "Smart Array P840", &SA5_access},
220         {0x21CC103C, "Smart Array", &SA5_access},
221         {0x21CD103C, "Smart Array", &SA5_access},
222         {0x21CE103C, "Smart HBA", &SA5_access},
223         {0x05809005, "SmartHBA-SA", &SA5_access},
224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241                         struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245                 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256                       void __user *arg);
257
258 #ifdef CONFIG_COMPAT
259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
260         void __user *arg);
261 #endif
262
263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
267                                             struct scsi_cmnd *scmd);
268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
269         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
270         int cmd_type);
271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
274
275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
276 static void hpsa_scan_start(struct Scsi_Host *);
277 static int hpsa_scan_finished(struct Scsi_Host *sh,
278         unsigned long elapsed_time);
279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
280
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
282 static int hpsa_slave_alloc(struct scsi_device *sdev);
283 static int hpsa_slave_configure(struct scsi_device *sdev);
284 static void hpsa_slave_destroy(struct scsi_device *sdev);
285
286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
287 static int check_for_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 static void check_ioctl_unit_attention(struct ctlr_info *h,
290         struct CommandList *c);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket, int num_buckets,
293         int nsgs, int min_blocks, u32 *bucket_map);
294 static void hpsa_free_performant_mode(struct ctlr_info *h);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
296 static inline u32 next_command(struct ctlr_info *h, u8 q);
297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
298                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
299                                u64 *cfg_offset);
300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
301                                     unsigned long *memory_bar);
302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
303                                 bool *legacy_board);
304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
305                                            unsigned char lunaddr[],
306                                            int reply_queue);
307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
308                                      int wait_for_ready);
309 static inline void finish_cmd(struct CommandList *c);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
314 static void hpsa_flush_cache(struct ctlr_info *h);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
316         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
317         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
318 static void hpsa_command_resubmit_worker(struct work_struct *work);
319 static u32 lockup_detected(struct ctlr_info *h);
320 static int detect_controller_lockup(struct ctlr_info *h);
321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
323         struct ReportExtendedLUNdata *buf, int bufsize);
324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
325         unsigned char scsi3addr[], u8 page);
326 static int hpsa_luns_changed(struct ctlr_info *h);
327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
328                                struct hpsa_scsi_dev_t *dev,
329                                unsigned char *scsi3addr);
330
331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
332 {
333         unsigned long *priv = shost_priv(sdev->host);
334         return (struct ctlr_info *) *priv;
335 }
336
337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
338 {
339         unsigned long *priv = shost_priv(sh);
340         return (struct ctlr_info *) *priv;
341 }
342
343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
344 {
345         return c->scsi_cmd == SCSI_CMD_IDLE;
346 }
347
348 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
350                         u8 *sense_key, u8 *asc, u8 *ascq)
351 {
352         struct scsi_sense_hdr sshdr;
353         bool rc;
354
355         *sense_key = -1;
356         *asc = -1;
357         *ascq = -1;
358
359         if (sense_data_len < 1)
360                 return;
361
362         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
363         if (rc) {
364                 *sense_key = sshdr.sense_key;
365                 *asc = sshdr.asc;
366                 *ascq = sshdr.ascq;
367         }
368 }
369
370 static int check_for_unit_attention(struct ctlr_info *h,
371         struct CommandList *c)
372 {
373         u8 sense_key, asc, ascq;
374         int sense_len;
375
376         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
377                 sense_len = sizeof(c->err_info->SenseInfo);
378         else
379                 sense_len = c->err_info->SenseLen;
380
381         decode_sense_data(c->err_info->SenseInfo, sense_len,
382                                 &sense_key, &asc, &ascq);
383         if (sense_key != UNIT_ATTENTION || asc == 0xff)
384                 return 0;
385
386         switch (asc) {
387         case STATE_CHANGED:
388                 dev_warn(&h->pdev->dev,
389                         "%s: a state change detected, command retried\n",
390                         h->devname);
391                 break;
392         case LUN_FAILED:
393                 dev_warn(&h->pdev->dev,
394                         "%s: LUN failure detected\n", h->devname);
395                 break;
396         case REPORT_LUNS_CHANGED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: report LUN data changed\n", h->devname);
399         /*
400          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401          * target (array) devices.
402          */
403                 break;
404         case POWER_OR_RESET:
405                 dev_warn(&h->pdev->dev,
406                         "%s: a power on or device reset detected\n",
407                         h->devname);
408                 break;
409         case UNIT_ATTENTION_CLEARED:
410                 dev_warn(&h->pdev->dev,
411                         "%s: unit attention cleared by another initiator\n",
412                         h->devname);
413                 break;
414         default:
415                 dev_warn(&h->pdev->dev,
416                         "%s: unknown unit attention detected\n",
417                         h->devname);
418                 break;
419         }
420         return 1;
421 }
422
423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
424 {
425         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
426                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
427                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
428                 return 0;
429         dev_warn(&h->pdev->dev, HPSA "device busy");
430         return 1;
431 }
432
433 static u32 lockup_detected(struct ctlr_info *h);
434 static ssize_t host_show_lockup_detected(struct device *dev,
435                 struct device_attribute *attr, char *buf)
436 {
437         int ld;
438         struct ctlr_info *h;
439         struct Scsi_Host *shost = class_to_shost(dev);
440
441         h = shost_to_hba(shost);
442         ld = lockup_detected(h);
443
444         return sprintf(buf, "ld=%d\n", ld);
445 }
446
447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
448                                          struct device_attribute *attr,
449                                          const char *buf, size_t count)
450 {
451         int status, len;
452         struct ctlr_info *h;
453         struct Scsi_Host *shost = class_to_shost(dev);
454         char tmpbuf[10];
455
456         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
457                 return -EACCES;
458         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
459         strncpy(tmpbuf, buf, len);
460         tmpbuf[len] = '\0';
461         if (sscanf(tmpbuf, "%d", &status) != 1)
462                 return -EINVAL;
463         h = shost_to_hba(shost);
464         h->acciopath_status = !!status;
465         dev_warn(&h->pdev->dev,
466                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
467                 h->acciopath_status ? "enabled" : "disabled");
468         return count;
469 }
470
471 static ssize_t host_store_raid_offload_debug(struct device *dev,
472                                          struct device_attribute *attr,
473                                          const char *buf, size_t count)
474 {
475         int debug_level, len;
476         struct ctlr_info *h;
477         struct Scsi_Host *shost = class_to_shost(dev);
478         char tmpbuf[10];
479
480         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481                 return -EACCES;
482         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
483         strncpy(tmpbuf, buf, len);
484         tmpbuf[len] = '\0';
485         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
486                 return -EINVAL;
487         if (debug_level < 0)
488                 debug_level = 0;
489         h = shost_to_hba(shost);
490         h->raid_offload_debug = debug_level;
491         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
492                 h->raid_offload_debug);
493         return count;
494 }
495
496 static ssize_t host_store_rescan(struct device *dev,
497                                  struct device_attribute *attr,
498                                  const char *buf, size_t count)
499 {
500         struct ctlr_info *h;
501         struct Scsi_Host *shost = class_to_shost(dev);
502         h = shost_to_hba(shost);
503         hpsa_scan_start(h->scsi_host);
504         return count;
505 }
506
507 static ssize_t host_show_firmware_revision(struct device *dev,
508              struct device_attribute *attr, char *buf)
509 {
510         struct ctlr_info *h;
511         struct Scsi_Host *shost = class_to_shost(dev);
512         unsigned char *fwrev;
513
514         h = shost_to_hba(shost);
515         if (!h->hba_inquiry_data)
516                 return 0;
517         fwrev = &h->hba_inquiry_data[32];
518         return snprintf(buf, 20, "%c%c%c%c\n",
519                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
520 }
521
522 static ssize_t host_show_commands_outstanding(struct device *dev,
523              struct device_attribute *attr, char *buf)
524 {
525         struct Scsi_Host *shost = class_to_shost(dev);
526         struct ctlr_info *h = shost_to_hba(shost);
527
528         return snprintf(buf, 20, "%d\n",
529                         atomic_read(&h->commands_outstanding));
530 }
531
532 static ssize_t host_show_transport_mode(struct device *dev,
533         struct device_attribute *attr, char *buf)
534 {
535         struct ctlr_info *h;
536         struct Scsi_Host *shost = class_to_shost(dev);
537
538         h = shost_to_hba(shost);
539         return snprintf(buf, 20, "%s\n",
540                 h->transMethod & CFGTBL_Trans_Performant ?
541                         "performant" : "simple");
542 }
543
544 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
545         struct device_attribute *attr, char *buf)
546 {
547         struct ctlr_info *h;
548         struct Scsi_Host *shost = class_to_shost(dev);
549
550         h = shost_to_hba(shost);
551         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
552                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
553 }
554
555 /* List of controllers which cannot be hard reset on kexec with reset_devices */
556 static u32 unresettable_controller[] = {
557         0x324a103C, /* Smart Array P712m */
558         0x324b103C, /* Smart Array P711m */
559         0x3223103C, /* Smart Array P800 */
560         0x3234103C, /* Smart Array P400 */
561         0x3235103C, /* Smart Array P400i */
562         0x3211103C, /* Smart Array E200i */
563         0x3212103C, /* Smart Array E200 */
564         0x3213103C, /* Smart Array E200i */
565         0x3214103C, /* Smart Array E200i */
566         0x3215103C, /* Smart Array E200i */
567         0x3237103C, /* Smart Array E500 */
568         0x323D103C, /* Smart Array P700m */
569         0x40800E11, /* Smart Array 5i */
570         0x409C0E11, /* Smart Array 6400 */
571         0x409D0E11, /* Smart Array 6400 EM */
572         0x40700E11, /* Smart Array 5300 */
573         0x40820E11, /* Smart Array 532 */
574         0x40830E11, /* Smart Array 5312 */
575         0x409A0E11, /* Smart Array 641 */
576         0x409B0E11, /* Smart Array 642 */
577         0x40910E11, /* Smart Array 6i */
578 };
579
580 /* List of controllers which cannot even be soft reset */
581 static u32 soft_unresettable_controller[] = {
582         0x40800E11, /* Smart Array 5i */
583         0x40700E11, /* Smart Array 5300 */
584         0x40820E11, /* Smart Array 532 */
585         0x40830E11, /* Smart Array 5312 */
586         0x409A0E11, /* Smart Array 641 */
587         0x409B0E11, /* Smart Array 642 */
588         0x40910E11, /* Smart Array 6i */
589         /* Exclude 640x boards.  These are two pci devices in one slot
590          * which share a battery backed cache module.  One controls the
591          * cache, the other accesses the cache through the one that controls
592          * it.  If we reset the one controlling the cache, the other will
593          * likely not be happy.  Just forbid resetting this conjoined mess.
594          * The 640x isn't really supported by hpsa anyway.
595          */
596         0x409C0E11, /* Smart Array 6400 */
597         0x409D0E11, /* Smart Array 6400 EM */
598 };
599
600 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
601 {
602         int i;
603
604         for (i = 0; i < nelems; i++)
605                 if (a[i] == board_id)
606                         return 1;
607         return 0;
608 }
609
610 static int ctlr_is_hard_resettable(u32 board_id)
611 {
612         return !board_id_in_array(unresettable_controller,
613                         ARRAY_SIZE(unresettable_controller), board_id);
614 }
615
616 static int ctlr_is_soft_resettable(u32 board_id)
617 {
618         return !board_id_in_array(soft_unresettable_controller,
619                         ARRAY_SIZE(soft_unresettable_controller), board_id);
620 }
621
622 static int ctlr_is_resettable(u32 board_id)
623 {
624         return ctlr_is_hard_resettable(board_id) ||
625                 ctlr_is_soft_resettable(board_id);
626 }
627
628 static ssize_t host_show_resettable(struct device *dev,
629         struct device_attribute *attr, char *buf)
630 {
631         struct ctlr_info *h;
632         struct Scsi_Host *shost = class_to_shost(dev);
633
634         h = shost_to_hba(shost);
635         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
636 }
637
638 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
639 {
640         return (scsi3addr[3] & 0xC0) == 0x40;
641 }
642
643 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
644         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
645 };
646 #define HPSA_RAID_0     0
647 #define HPSA_RAID_4     1
648 #define HPSA_RAID_1     2       /* also used for RAID 10 */
649 #define HPSA_RAID_5     3       /* also used for RAID 50 */
650 #define HPSA_RAID_51    4
651 #define HPSA_RAID_6     5       /* also used for RAID 60 */
652 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
653 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
654 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
655
656 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
657 {
658         return !device->physical_device;
659 }
660
661 static ssize_t raid_level_show(struct device *dev,
662              struct device_attribute *attr, char *buf)
663 {
664         ssize_t l = 0;
665         unsigned char rlevel;
666         struct ctlr_info *h;
667         struct scsi_device *sdev;
668         struct hpsa_scsi_dev_t *hdev;
669         unsigned long flags;
670
671         sdev = to_scsi_device(dev);
672         h = sdev_to_hba(sdev);
673         spin_lock_irqsave(&h->lock, flags);
674         hdev = sdev->hostdata;
675         if (!hdev) {
676                 spin_unlock_irqrestore(&h->lock, flags);
677                 return -ENODEV;
678         }
679
680         /* Is this even a logical drive? */
681         if (!is_logical_device(hdev)) {
682                 spin_unlock_irqrestore(&h->lock, flags);
683                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
684                 return l;
685         }
686
687         rlevel = hdev->raid_level;
688         spin_unlock_irqrestore(&h->lock, flags);
689         if (rlevel > RAID_UNKNOWN)
690                 rlevel = RAID_UNKNOWN;
691         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
692         return l;
693 }
694
695 static ssize_t lunid_show(struct device *dev,
696              struct device_attribute *attr, char *buf)
697 {
698         struct ctlr_info *h;
699         struct scsi_device *sdev;
700         struct hpsa_scsi_dev_t *hdev;
701         unsigned long flags;
702         unsigned char lunid[8];
703
704         sdev = to_scsi_device(dev);
705         h = sdev_to_hba(sdev);
706         spin_lock_irqsave(&h->lock, flags);
707         hdev = sdev->hostdata;
708         if (!hdev) {
709                 spin_unlock_irqrestore(&h->lock, flags);
710                 return -ENODEV;
711         }
712         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
713         spin_unlock_irqrestore(&h->lock, flags);
714         return snprintf(buf, 20, "0x%8phN\n", lunid);
715 }
716
717 static ssize_t unique_id_show(struct device *dev,
718              struct device_attribute *attr, char *buf)
719 {
720         struct ctlr_info *h;
721         struct scsi_device *sdev;
722         struct hpsa_scsi_dev_t *hdev;
723         unsigned long flags;
724         unsigned char sn[16];
725
726         sdev = to_scsi_device(dev);
727         h = sdev_to_hba(sdev);
728         spin_lock_irqsave(&h->lock, flags);
729         hdev = sdev->hostdata;
730         if (!hdev) {
731                 spin_unlock_irqrestore(&h->lock, flags);
732                 return -ENODEV;
733         }
734         memcpy(sn, hdev->device_id, sizeof(sn));
735         spin_unlock_irqrestore(&h->lock, flags);
736         return snprintf(buf, 16 * 2 + 2,
737                         "%02X%02X%02X%02X%02X%02X%02X%02X"
738                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
739                         sn[0], sn[1], sn[2], sn[3],
740                         sn[4], sn[5], sn[6], sn[7],
741                         sn[8], sn[9], sn[10], sn[11],
742                         sn[12], sn[13], sn[14], sn[15]);
743 }
744
745 static ssize_t sas_address_show(struct device *dev,
746               struct device_attribute *attr, char *buf)
747 {
748         struct ctlr_info *h;
749         struct scsi_device *sdev;
750         struct hpsa_scsi_dev_t *hdev;
751         unsigned long flags;
752         u64 sas_address;
753
754         sdev = to_scsi_device(dev);
755         h = sdev_to_hba(sdev);
756         spin_lock_irqsave(&h->lock, flags);
757         hdev = sdev->hostdata;
758         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
759                 spin_unlock_irqrestore(&h->lock, flags);
760                 return -ENODEV;
761         }
762         sas_address = hdev->sas_address;
763         spin_unlock_irqrestore(&h->lock, flags);
764
765         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
766 }
767
768 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
769              struct device_attribute *attr, char *buf)
770 {
771         struct ctlr_info *h;
772         struct scsi_device *sdev;
773         struct hpsa_scsi_dev_t *hdev;
774         unsigned long flags;
775         int offload_enabled;
776
777         sdev = to_scsi_device(dev);
778         h = sdev_to_hba(sdev);
779         spin_lock_irqsave(&h->lock, flags);
780         hdev = sdev->hostdata;
781         if (!hdev) {
782                 spin_unlock_irqrestore(&h->lock, flags);
783                 return -ENODEV;
784         }
785         offload_enabled = hdev->offload_enabled;
786         spin_unlock_irqrestore(&h->lock, flags);
787
788         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
789                 return snprintf(buf, 20, "%d\n", offload_enabled);
790         else
791                 return snprintf(buf, 40, "%s\n",
792                                 "Not applicable for a controller");
793 }
794
795 #define MAX_PATHS 8
796 static ssize_t path_info_show(struct device *dev,
797              struct device_attribute *attr, char *buf)
798 {
799         struct ctlr_info *h;
800         struct scsi_device *sdev;
801         struct hpsa_scsi_dev_t *hdev;
802         unsigned long flags;
803         int i;
804         int output_len = 0;
805         u8 box;
806         u8 bay;
807         u8 path_map_index = 0;
808         char *active;
809         unsigned char phys_connector[2];
810
811         sdev = to_scsi_device(dev);
812         h = sdev_to_hba(sdev);
813         spin_lock_irqsave(&h->devlock, flags);
814         hdev = sdev->hostdata;
815         if (!hdev) {
816                 spin_unlock_irqrestore(&h->devlock, flags);
817                 return -ENODEV;
818         }
819
820         bay = hdev->bay;
821         for (i = 0; i < MAX_PATHS; i++) {
822                 path_map_index = 1<<i;
823                 if (i == hdev->active_path_index)
824                         active = "Active";
825                 else if (hdev->path_map & path_map_index)
826                         active = "Inactive";
827                 else
828                         continue;
829
830                 output_len += scnprintf(buf + output_len,
831                                 PAGE_SIZE - output_len,
832                                 "[%d:%d:%d:%d] %20.20s ",
833                                 h->scsi_host->host_no,
834                                 hdev->bus, hdev->target, hdev->lun,
835                                 scsi_device_type(hdev->devtype));
836
837                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
838                         output_len += scnprintf(buf + output_len,
839                                                 PAGE_SIZE - output_len,
840                                                 "%s\n", active);
841                         continue;
842                 }
843
844                 box = hdev->box[i];
845                 memcpy(&phys_connector, &hdev->phys_connector[i],
846                         sizeof(phys_connector));
847                 if (phys_connector[0] < '0')
848                         phys_connector[0] = '0';
849                 if (phys_connector[1] < '0')
850                         phys_connector[1] = '0';
851                 output_len += scnprintf(buf + output_len,
852                                 PAGE_SIZE - output_len,
853                                 "PORT: %.2s ",
854                                 phys_connector);
855                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
856                         hdev->expose_device) {
857                         if (box == 0 || box == 0xFF) {
858                                 output_len += scnprintf(buf + output_len,
859                                         PAGE_SIZE - output_len,
860                                         "BAY: %hhu %s\n",
861                                         bay, active);
862                         } else {
863                                 output_len += scnprintf(buf + output_len,
864                                         PAGE_SIZE - output_len,
865                                         "BOX: %hhu BAY: %hhu %s\n",
866                                         box, bay, active);
867                         }
868                 } else if (box != 0 && box != 0xFF) {
869                         output_len += scnprintf(buf + output_len,
870                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
871                                 box, active);
872                 } else
873                         output_len += scnprintf(buf + output_len,
874                                 PAGE_SIZE - output_len, "%s\n", active);
875         }
876
877         spin_unlock_irqrestore(&h->devlock, flags);
878         return output_len;
879 }
880
881 static ssize_t host_show_ctlr_num(struct device *dev,
882         struct device_attribute *attr, char *buf)
883 {
884         struct ctlr_info *h;
885         struct Scsi_Host *shost = class_to_shost(dev);
886
887         h = shost_to_hba(shost);
888         return snprintf(buf, 20, "%d\n", h->ctlr);
889 }
890
891 static ssize_t host_show_legacy_board(struct device *dev,
892         struct device_attribute *attr, char *buf)
893 {
894         struct ctlr_info *h;
895         struct Scsi_Host *shost = class_to_shost(dev);
896
897         h = shost_to_hba(shost);
898         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
899 }
900
901 static DEVICE_ATTR_RO(raid_level);
902 static DEVICE_ATTR_RO(lunid);
903 static DEVICE_ATTR_RO(unique_id);
904 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
905 static DEVICE_ATTR_RO(sas_address);
906 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
907                         host_show_hp_ssd_smart_path_enabled, NULL);
908 static DEVICE_ATTR_RO(path_info);
909 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
910                 host_show_hp_ssd_smart_path_status,
911                 host_store_hp_ssd_smart_path_status);
912 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
913                         host_store_raid_offload_debug);
914 static DEVICE_ATTR(firmware_revision, S_IRUGO,
915         host_show_firmware_revision, NULL);
916 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
917         host_show_commands_outstanding, NULL);
918 static DEVICE_ATTR(transport_mode, S_IRUGO,
919         host_show_transport_mode, NULL);
920 static DEVICE_ATTR(resettable, S_IRUGO,
921         host_show_resettable, NULL);
922 static DEVICE_ATTR(lockup_detected, S_IRUGO,
923         host_show_lockup_detected, NULL);
924 static DEVICE_ATTR(ctlr_num, S_IRUGO,
925         host_show_ctlr_num, NULL);
926 static DEVICE_ATTR(legacy_board, S_IRUGO,
927         host_show_legacy_board, NULL);
928
929 static struct device_attribute *hpsa_sdev_attrs[] = {
930         &dev_attr_raid_level,
931         &dev_attr_lunid,
932         &dev_attr_unique_id,
933         &dev_attr_hp_ssd_smart_path_enabled,
934         &dev_attr_path_info,
935         &dev_attr_sas_address,
936         NULL,
937 };
938
939 static struct device_attribute *hpsa_shost_attrs[] = {
940         &dev_attr_rescan,
941         &dev_attr_firmware_revision,
942         &dev_attr_commands_outstanding,
943         &dev_attr_transport_mode,
944         &dev_attr_resettable,
945         &dev_attr_hp_ssd_smart_path_status,
946         &dev_attr_raid_offload_debug,
947         &dev_attr_lockup_detected,
948         &dev_attr_ctlr_num,
949         &dev_attr_legacy_board,
950         NULL,
951 };
952
953 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
954                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
955
956 static struct scsi_host_template hpsa_driver_template = {
957         .module                 = THIS_MODULE,
958         .name                   = HPSA,
959         .proc_name              = HPSA,
960         .queuecommand           = hpsa_scsi_queue_command,
961         .scan_start             = hpsa_scan_start,
962         .scan_finished          = hpsa_scan_finished,
963         .change_queue_depth     = hpsa_change_queue_depth,
964         .this_id                = -1,
965         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
966         .ioctl                  = hpsa_ioctl,
967         .slave_alloc            = hpsa_slave_alloc,
968         .slave_configure        = hpsa_slave_configure,
969         .slave_destroy          = hpsa_slave_destroy,
970 #ifdef CONFIG_COMPAT
971         .compat_ioctl           = hpsa_compat_ioctl,
972 #endif
973         .sdev_attrs = hpsa_sdev_attrs,
974         .shost_attrs = hpsa_shost_attrs,
975         .max_sectors = 2048,
976         .no_write_same = 1,
977 };
978
979 static inline u32 next_command(struct ctlr_info *h, u8 q)
980 {
981         u32 a;
982         struct reply_queue_buffer *rq = &h->reply_queue[q];
983
984         if (h->transMethod & CFGTBL_Trans_io_accel1)
985                 return h->access.command_completed(h, q);
986
987         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
988                 return h->access.command_completed(h, q);
989
990         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
991                 a = rq->head[rq->current_entry];
992                 rq->current_entry++;
993                 atomic_dec(&h->commands_outstanding);
994         } else {
995                 a = FIFO_EMPTY;
996         }
997         /* Check for wraparound */
998         if (rq->current_entry == h->max_commands) {
999                 rq->current_entry = 0;
1000                 rq->wraparound ^= 1;
1001         }
1002         return a;
1003 }
1004
1005 /*
1006  * There are some special bits in the bus address of the
1007  * command that we have to set for the controller to know
1008  * how to process the command:
1009  *
1010  * Normal performant mode:
1011  * bit 0: 1 means performant mode, 0 means simple mode.
1012  * bits 1-3 = block fetch table entry
1013  * bits 4-6 = command type (== 0)
1014  *
1015  * ioaccel1 mode:
1016  * bit 0 = "performant mode" bit.
1017  * bits 1-3 = block fetch table entry
1018  * bits 4-6 = command type (== 110)
1019  * (command type is needed because ioaccel1 mode
1020  * commands are submitted through the same register as normal
1021  * mode commands, so this is how the controller knows whether
1022  * the command is normal mode or ioaccel1 mode.)
1023  *
1024  * ioaccel2 mode:
1025  * bit 0 = "performant mode" bit.
1026  * bits 1-4 = block fetch table entry (note extra bit)
1027  * bits 4-6 = not needed, because ioaccel2 mode has
1028  * a separate special register for submitting commands.
1029  */
1030
1031 /*
1032  * set_performant_mode: Modify the tag for cciss performant
1033  * set bit 0 for pull model, bits 3-1 for block fetch
1034  * register number
1035  */
1036 #define DEFAULT_REPLY_QUEUE (-1)
1037 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1038                                         int reply_queue)
1039 {
1040         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1041                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1042                 if (unlikely(!h->msix_vectors))
1043                         return;
1044                 c->Header.ReplyQueue = reply_queue;
1045         }
1046 }
1047
1048 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1049                                                 struct CommandList *c,
1050                                                 int reply_queue)
1051 {
1052         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1053
1054         /*
1055          * Tell the controller to post the reply to the queue for this
1056          * processor.  This seems to give the best I/O throughput.
1057          */
1058         cp->ReplyQueue = reply_queue;
1059         /*
1060          * Set the bits in the address sent down to include:
1061          *  - performant mode bit (bit 0)
1062          *  - pull count (bits 1-3)
1063          *  - command type (bits 4-6)
1064          */
1065         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1066                                         IOACCEL1_BUSADDR_CMDTYPE;
1067 }
1068
1069 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1070                                                 struct CommandList *c,
1071                                                 int reply_queue)
1072 {
1073         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1074                 &h->ioaccel2_cmd_pool[c->cmdindex];
1075
1076         /* Tell the controller to post the reply to the queue for this
1077          * processor.  This seems to give the best I/O throughput.
1078          */
1079         cp->reply_queue = reply_queue;
1080         /* Set the bits in the address sent down to include:
1081          *  - performant mode bit not used in ioaccel mode 2
1082          *  - pull count (bits 0-3)
1083          *  - command type isn't needed for ioaccel2
1084          */
1085         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1086 }
1087
1088 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1089                                                 struct CommandList *c,
1090                                                 int reply_queue)
1091 {
1092         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1093
1094         /*
1095          * Tell the controller to post the reply to the queue for this
1096          * processor.  This seems to give the best I/O throughput.
1097          */
1098         cp->reply_queue = reply_queue;
1099         /*
1100          * Set the bits in the address sent down to include:
1101          *  - performant mode bit not used in ioaccel mode 2
1102          *  - pull count (bits 0-3)
1103          *  - command type isn't needed for ioaccel2
1104          */
1105         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1106 }
1107
1108 static int is_firmware_flash_cmd(u8 *cdb)
1109 {
1110         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1111 }
1112
1113 /*
1114  * During firmware flash, the heartbeat register may not update as frequently
1115  * as it should.  So we dial down lockup detection during firmware flash. and
1116  * dial it back up when firmware flash completes.
1117  */
1118 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1119 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1120 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1121 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1122                 struct CommandList *c)
1123 {
1124         if (!is_firmware_flash_cmd(c->Request.CDB))
1125                 return;
1126         atomic_inc(&h->firmware_flash_in_progress);
1127         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1128 }
1129
1130 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1131                 struct CommandList *c)
1132 {
1133         if (is_firmware_flash_cmd(c->Request.CDB) &&
1134                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1135                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1136 }
1137
1138 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1139         struct CommandList *c, int reply_queue)
1140 {
1141         dial_down_lockup_detection_during_fw_flash(h, c);
1142         atomic_inc(&h->commands_outstanding);
1143         if (c->device)
1144                 atomic_inc(&c->device->commands_outstanding);
1145
1146         reply_queue = h->reply_map[raw_smp_processor_id()];
1147         switch (c->cmd_type) {
1148         case CMD_IOACCEL1:
1149                 set_ioaccel1_performant_mode(h, c, reply_queue);
1150                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1151                 break;
1152         case CMD_IOACCEL2:
1153                 set_ioaccel2_performant_mode(h, c, reply_queue);
1154                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1155                 break;
1156         case IOACCEL2_TMF:
1157                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1158                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1159                 break;
1160         default:
1161                 set_performant_mode(h, c, reply_queue);
1162                 h->access.submit_command(h, c);
1163         }
1164 }
1165
1166 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1167 {
1168         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1169 }
1170
1171 static inline int is_hba_lunid(unsigned char scsi3addr[])
1172 {
1173         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1174 }
1175
1176 static inline int is_scsi_rev_5(struct ctlr_info *h)
1177 {
1178         if (!h->hba_inquiry_data)
1179                 return 0;
1180         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1181                 return 1;
1182         return 0;
1183 }
1184
1185 static int hpsa_find_target_lun(struct ctlr_info *h,
1186         unsigned char scsi3addr[], int bus, int *target, int *lun)
1187 {
1188         /* finds an unused bus, target, lun for a new physical device
1189          * assumes h->devlock is held
1190          */
1191         int i, found = 0;
1192         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1193
1194         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1195
1196         for (i = 0; i < h->ndevices; i++) {
1197                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1198                         __set_bit(h->dev[i]->target, lun_taken);
1199         }
1200
1201         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1202         if (i < HPSA_MAX_DEVICES) {
1203                 /* *bus = 1; */
1204                 *target = i;
1205                 *lun = 0;
1206                 found = 1;
1207         }
1208         return !found;
1209 }
1210
1211 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1212         struct hpsa_scsi_dev_t *dev, char *description)
1213 {
1214 #define LABEL_SIZE 25
1215         char label[LABEL_SIZE];
1216
1217         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1218                 return;
1219
1220         switch (dev->devtype) {
1221         case TYPE_RAID:
1222                 snprintf(label, LABEL_SIZE, "controller");
1223                 break;
1224         case TYPE_ENCLOSURE:
1225                 snprintf(label, LABEL_SIZE, "enclosure");
1226                 break;
1227         case TYPE_DISK:
1228         case TYPE_ZBC:
1229                 if (dev->external)
1230                         snprintf(label, LABEL_SIZE, "external");
1231                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1232                         snprintf(label, LABEL_SIZE, "%s",
1233                                 raid_label[PHYSICAL_DRIVE]);
1234                 else
1235                         snprintf(label, LABEL_SIZE, "RAID-%s",
1236                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1237                                 raid_label[dev->raid_level]);
1238                 break;
1239         case TYPE_ROM:
1240                 snprintf(label, LABEL_SIZE, "rom");
1241                 break;
1242         case TYPE_TAPE:
1243                 snprintf(label, LABEL_SIZE, "tape");
1244                 break;
1245         case TYPE_MEDIUM_CHANGER:
1246                 snprintf(label, LABEL_SIZE, "changer");
1247                 break;
1248         default:
1249                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1250                 break;
1251         }
1252
1253         dev_printk(level, &h->pdev->dev,
1254                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1255                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1256                         description,
1257                         scsi_device_type(dev->devtype),
1258                         dev->vendor,
1259                         dev->model,
1260                         label,
1261                         dev->offload_config ? '+' : '-',
1262                         dev->offload_to_be_enabled ? '+' : '-',
1263                         dev->expose_device);
1264 }
1265
1266 /* Add an entry into h->dev[] array. */
1267 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1268                 struct hpsa_scsi_dev_t *device,
1269                 struct hpsa_scsi_dev_t *added[], int *nadded)
1270 {
1271         /* assumes h->devlock is held */
1272         int n = h->ndevices;
1273         int i;
1274         unsigned char addr1[8], addr2[8];
1275         struct hpsa_scsi_dev_t *sd;
1276
1277         if (n >= HPSA_MAX_DEVICES) {
1278                 dev_err(&h->pdev->dev, "too many devices, some will be "
1279                         "inaccessible.\n");
1280                 return -1;
1281         }
1282
1283         /* physical devices do not have lun or target assigned until now. */
1284         if (device->lun != -1)
1285                 /* Logical device, lun is already assigned. */
1286                 goto lun_assigned;
1287
1288         /* If this device a non-zero lun of a multi-lun device
1289          * byte 4 of the 8-byte LUN addr will contain the logical
1290          * unit no, zero otherwise.
1291          */
1292         if (device->scsi3addr[4] == 0) {
1293                 /* This is not a non-zero lun of a multi-lun device */
1294                 if (hpsa_find_target_lun(h, device->scsi3addr,
1295                         device->bus, &device->target, &device->lun) != 0)
1296                         return -1;
1297                 goto lun_assigned;
1298         }
1299
1300         /* This is a non-zero lun of a multi-lun device.
1301          * Search through our list and find the device which
1302          * has the same 8 byte LUN address, excepting byte 4 and 5.
1303          * Assign the same bus and target for this new LUN.
1304          * Use the logical unit number from the firmware.
1305          */
1306         memcpy(addr1, device->scsi3addr, 8);
1307         addr1[4] = 0;
1308         addr1[5] = 0;
1309         for (i = 0; i < n; i++) {
1310                 sd = h->dev[i];
1311                 memcpy(addr2, sd->scsi3addr, 8);
1312                 addr2[4] = 0;
1313                 addr2[5] = 0;
1314                 /* differ only in byte 4 and 5? */
1315                 if (memcmp(addr1, addr2, 8) == 0) {
1316                         device->bus = sd->bus;
1317                         device->target = sd->target;
1318                         device->lun = device->scsi3addr[4];
1319                         break;
1320                 }
1321         }
1322         if (device->lun == -1) {
1323                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1324                         " suspect firmware bug or unsupported hardware "
1325                         "configuration.\n");
1326                 return -1;
1327         }
1328
1329 lun_assigned:
1330
1331         h->dev[n] = device;
1332         h->ndevices++;
1333         added[*nadded] = device;
1334         (*nadded)++;
1335         hpsa_show_dev_msg(KERN_INFO, h, device,
1336                 device->expose_device ? "added" : "masked");
1337         return 0;
1338 }
1339
1340 /*
1341  * Called during a scan operation.
1342  *
1343  * Update an entry in h->dev[] array.
1344  */
1345 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1346         int entry, struct hpsa_scsi_dev_t *new_entry)
1347 {
1348         /* assumes h->devlock is held */
1349         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1350
1351         /* Raid level changed. */
1352         h->dev[entry]->raid_level = new_entry->raid_level;
1353
1354         /*
1355          * ioacccel_handle may have changed for a dual domain disk
1356          */
1357         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1358
1359         /* Raid offload parameters changed.  Careful about the ordering. */
1360         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1361                 /*
1362                  * if drive is newly offload_enabled, we want to copy the
1363                  * raid map data first.  If previously offload_enabled and
1364                  * offload_config were set, raid map data had better be
1365                  * the same as it was before. If raid map data has changed
1366                  * then it had better be the case that
1367                  * h->dev[entry]->offload_enabled is currently 0.
1368                  */
1369                 h->dev[entry]->raid_map = new_entry->raid_map;
1370                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371         }
1372         if (new_entry->offload_to_be_enabled) {
1373                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1375         }
1376         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1377         h->dev[entry]->offload_config = new_entry->offload_config;
1378         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1379         h->dev[entry]->queue_depth = new_entry->queue_depth;
1380
1381         /*
1382          * We can turn off ioaccel offload now, but need to delay turning
1383          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1384          * can't do that until all the devices are updated.
1385          */
1386         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1387
1388         /*
1389          * turn ioaccel off immediately if told to do so.
1390          */
1391         if (!new_entry->offload_to_be_enabled)
1392                 h->dev[entry]->offload_enabled = 0;
1393
1394         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1395 }
1396
1397 /* Replace an entry from h->dev[] array. */
1398 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1399         int entry, struct hpsa_scsi_dev_t *new_entry,
1400         struct hpsa_scsi_dev_t *added[], int *nadded,
1401         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1402 {
1403         /* assumes h->devlock is held */
1404         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1405         removed[*nremoved] = h->dev[entry];
1406         (*nremoved)++;
1407
1408         /*
1409          * New physical devices won't have target/lun assigned yet
1410          * so we need to preserve the values in the slot we are replacing.
1411          */
1412         if (new_entry->target == -1) {
1413                 new_entry->target = h->dev[entry]->target;
1414                 new_entry->lun = h->dev[entry]->lun;
1415         }
1416
1417         h->dev[entry] = new_entry;
1418         added[*nadded] = new_entry;
1419         (*nadded)++;
1420
1421         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1422 }
1423
1424 /* Remove an entry from h->dev[] array. */
1425 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1426         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1427 {
1428         /* assumes h->devlock is held */
1429         int i;
1430         struct hpsa_scsi_dev_t *sd;
1431
1432         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1433
1434         sd = h->dev[entry];
1435         removed[*nremoved] = h->dev[entry];
1436         (*nremoved)++;
1437
1438         for (i = entry; i < h->ndevices-1; i++)
1439                 h->dev[i] = h->dev[i+1];
1440         h->ndevices--;
1441         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1442 }
1443
1444 #define SCSI3ADDR_EQ(a, b) ( \
1445         (a)[7] == (b)[7] && \
1446         (a)[6] == (b)[6] && \
1447         (a)[5] == (b)[5] && \
1448         (a)[4] == (b)[4] && \
1449         (a)[3] == (b)[3] && \
1450         (a)[2] == (b)[2] && \
1451         (a)[1] == (b)[1] && \
1452         (a)[0] == (b)[0])
1453
1454 static void fixup_botched_add(struct ctlr_info *h,
1455         struct hpsa_scsi_dev_t *added)
1456 {
1457         /* called when scsi_add_device fails in order to re-adjust
1458          * h->dev[] to match the mid layer's view.
1459          */
1460         unsigned long flags;
1461         int i, j;
1462
1463         spin_lock_irqsave(&h->lock, flags);
1464         for (i = 0; i < h->ndevices; i++) {
1465                 if (h->dev[i] == added) {
1466                         for (j = i; j < h->ndevices-1; j++)
1467                                 h->dev[j] = h->dev[j+1];
1468                         h->ndevices--;
1469                         break;
1470                 }
1471         }
1472         spin_unlock_irqrestore(&h->lock, flags);
1473         kfree(added);
1474 }
1475
1476 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1477         struct hpsa_scsi_dev_t *dev2)
1478 {
1479         /* we compare everything except lun and target as these
1480          * are not yet assigned.  Compare parts likely
1481          * to differ first
1482          */
1483         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1484                 sizeof(dev1->scsi3addr)) != 0)
1485                 return 0;
1486         if (memcmp(dev1->device_id, dev2->device_id,
1487                 sizeof(dev1->device_id)) != 0)
1488                 return 0;
1489         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1492                 return 0;
1493         if (dev1->devtype != dev2->devtype)
1494                 return 0;
1495         if (dev1->bus != dev2->bus)
1496                 return 0;
1497         return 1;
1498 }
1499
1500 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1501         struct hpsa_scsi_dev_t *dev2)
1502 {
1503         /* Device attributes that can change, but don't mean
1504          * that the device is a different device, nor that the OS
1505          * needs to be told anything about the change.
1506          */
1507         if (dev1->raid_level != dev2->raid_level)
1508                 return 1;
1509         if (dev1->offload_config != dev2->offload_config)
1510                 return 1;
1511         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1512                 return 1;
1513         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1514                 if (dev1->queue_depth != dev2->queue_depth)
1515                         return 1;
1516         /*
1517          * This can happen for dual domain devices. An active
1518          * path change causes the ioaccel handle to change
1519          *
1520          * for example note the handle differences between p0 and p1
1521          * Device                    WWN               ,WWN hash,Handle
1522          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1523          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1524          */
1525         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1526                 return 1;
1527         return 0;
1528 }
1529
1530 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1531  * and return needle location in *index.  If scsi3addr matches, but not
1532  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1533  * location in *index.
1534  * In the case of a minor device attribute change, such as RAID level, just
1535  * return DEVICE_UPDATED, along with the updated device's location in index.
1536  * If needle not found, return DEVICE_NOT_FOUND.
1537  */
1538 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1539         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1540         int *index)
1541 {
1542         int i;
1543 #define DEVICE_NOT_FOUND 0
1544 #define DEVICE_CHANGED 1
1545 #define DEVICE_SAME 2
1546 #define DEVICE_UPDATED 3
1547         if (needle == NULL)
1548                 return DEVICE_NOT_FOUND;
1549
1550         for (i = 0; i < haystack_size; i++) {
1551                 if (haystack[i] == NULL) /* previously removed. */
1552                         continue;
1553                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1554                         *index = i;
1555                         if (device_is_the_same(needle, haystack[i])) {
1556                                 if (device_updated(needle, haystack[i]))
1557                                         return DEVICE_UPDATED;
1558                                 return DEVICE_SAME;
1559                         } else {
1560                                 /* Keep offline devices offline */
1561                                 if (needle->volume_offline)
1562                                         return DEVICE_NOT_FOUND;
1563                                 return DEVICE_CHANGED;
1564                         }
1565                 }
1566         }
1567         *index = -1;
1568         return DEVICE_NOT_FOUND;
1569 }
1570
1571 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1572                                         unsigned char scsi3addr[])
1573 {
1574         struct offline_device_entry *device;
1575         unsigned long flags;
1576
1577         /* Check to see if device is already on the list */
1578         spin_lock_irqsave(&h->offline_device_lock, flags);
1579         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1580                 if (memcmp(device->scsi3addr, scsi3addr,
1581                         sizeof(device->scsi3addr)) == 0) {
1582                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1583                         return;
1584                 }
1585         }
1586         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587
1588         /* Device is not on the list, add it. */
1589         device = kmalloc(sizeof(*device), GFP_KERNEL);
1590         if (!device)
1591                 return;
1592
1593         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1594         spin_lock_irqsave(&h->offline_device_lock, flags);
1595         list_add_tail(&device->offline_list, &h->offline_device_list);
1596         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 }
1598
1599 /* Print a message explaining various offline volume states */
1600 static void hpsa_show_volume_status(struct ctlr_info *h,
1601         struct hpsa_scsi_dev_t *sd)
1602 {
1603         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1604                 dev_info(&h->pdev->dev,
1605                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1606                         h->scsi_host->host_no,
1607                         sd->bus, sd->target, sd->lun);
1608         switch (sd->volume_offline) {
1609         case HPSA_LV_OK:
1610                 break;
1611         case HPSA_LV_UNDERGOING_ERASE:
1612                 dev_info(&h->pdev->dev,
1613                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1614                         h->scsi_host->host_no,
1615                         sd->bus, sd->target, sd->lun);
1616                 break;
1617         case HPSA_LV_NOT_AVAILABLE:
1618                 dev_info(&h->pdev->dev,
1619                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1620                         h->scsi_host->host_no,
1621                         sd->bus, sd->target, sd->lun);
1622                 break;
1623         case HPSA_LV_UNDERGOING_RPI:
1624                 dev_info(&h->pdev->dev,
1625                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1626                         h->scsi_host->host_no,
1627                         sd->bus, sd->target, sd->lun);
1628                 break;
1629         case HPSA_LV_PENDING_RPI:
1630                 dev_info(&h->pdev->dev,
1631                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1632                         h->scsi_host->host_no,
1633                         sd->bus, sd->target, sd->lun);
1634                 break;
1635         case HPSA_LV_ENCRYPTED_NO_KEY:
1636                 dev_info(&h->pdev->dev,
1637                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1638                         h->scsi_host->host_no,
1639                         sd->bus, sd->target, sd->lun);
1640                 break;
1641         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1642                 dev_info(&h->pdev->dev,
1643                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1644                         h->scsi_host->host_no,
1645                         sd->bus, sd->target, sd->lun);
1646                 break;
1647         case HPSA_LV_UNDERGOING_ENCRYPTION:
1648                 dev_info(&h->pdev->dev,
1649                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1650                         h->scsi_host->host_no,
1651                         sd->bus, sd->target, sd->lun);
1652                 break;
1653         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1654                 dev_info(&h->pdev->dev,
1655                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1656                         h->scsi_host->host_no,
1657                         sd->bus, sd->target, sd->lun);
1658                 break;
1659         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1660                 dev_info(&h->pdev->dev,
1661                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1662                         h->scsi_host->host_no,
1663                         sd->bus, sd->target, sd->lun);
1664                 break;
1665         case HPSA_LV_PENDING_ENCRYPTION:
1666                 dev_info(&h->pdev->dev,
1667                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1668                         h->scsi_host->host_no,
1669                         sd->bus, sd->target, sd->lun);
1670                 break;
1671         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1672                 dev_info(&h->pdev->dev,
1673                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1674                         h->scsi_host->host_no,
1675                         sd->bus, sd->target, sd->lun);
1676                 break;
1677         }
1678 }
1679
1680 /*
1681  * Figure the list of physical drive pointers for a logical drive with
1682  * raid offload configured.
1683  */
1684 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1685                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1686                                 struct hpsa_scsi_dev_t *logical_drive)
1687 {
1688         struct raid_map_data *map = &logical_drive->raid_map;
1689         struct raid_map_disk_data *dd = &map->data[0];
1690         int i, j;
1691         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1692                                 le16_to_cpu(map->metadata_disks_per_row);
1693         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1694                                 le16_to_cpu(map->layout_map_count) *
1695                                 total_disks_per_row;
1696         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1697                                 total_disks_per_row;
1698         int qdepth;
1699
1700         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1701                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1702
1703         logical_drive->nphysical_disks = nraid_map_entries;
1704
1705         qdepth = 0;
1706         for (i = 0; i < nraid_map_entries; i++) {
1707                 logical_drive->phys_disk[i] = NULL;
1708                 if (!logical_drive->offload_config)
1709                         continue;
1710                 for (j = 0; j < ndevices; j++) {
1711                         if (dev[j] == NULL)
1712                                 continue;
1713                         if (dev[j]->devtype != TYPE_DISK &&
1714                             dev[j]->devtype != TYPE_ZBC)
1715                                 continue;
1716                         if (is_logical_device(dev[j]))
1717                                 continue;
1718                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1719                                 continue;
1720
1721                         logical_drive->phys_disk[i] = dev[j];
1722                         if (i < nphys_disk)
1723                                 qdepth = min(h->nr_cmds, qdepth +
1724                                     logical_drive->phys_disk[i]->queue_depth);
1725                         break;
1726                 }
1727
1728                 /*
1729                  * This can happen if a physical drive is removed and
1730                  * the logical drive is degraded.  In that case, the RAID
1731                  * map data will refer to a physical disk which isn't actually
1732                  * present.  And in that case offload_enabled should already
1733                  * be 0, but we'll turn it off here just in case
1734                  */
1735                 if (!logical_drive->phys_disk[i]) {
1736                         dev_warn(&h->pdev->dev,
1737                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1738                                 __func__,
1739                                 h->scsi_host->host_no, logical_drive->bus,
1740                                 logical_drive->target, logical_drive->lun);
1741                         logical_drive->offload_enabled = 0;
1742                         logical_drive->offload_to_be_enabled = 0;
1743                         logical_drive->queue_depth = 8;
1744                 }
1745         }
1746         if (nraid_map_entries)
1747                 /*
1748                  * This is correct for reads, too high for full stripe writes,
1749                  * way too high for partial stripe writes
1750                  */
1751                 logical_drive->queue_depth = qdepth;
1752         else {
1753                 if (logical_drive->external)
1754                         logical_drive->queue_depth = EXTERNAL_QD;
1755                 else
1756                         logical_drive->queue_depth = h->nr_cmds;
1757         }
1758 }
1759
1760 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1761                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1762 {
1763         int i;
1764
1765         for (i = 0; i < ndevices; i++) {
1766                 if (dev[i] == NULL)
1767                         continue;
1768                 if (dev[i]->devtype != TYPE_DISK &&
1769                     dev[i]->devtype != TYPE_ZBC)
1770                         continue;
1771                 if (!is_logical_device(dev[i]))
1772                         continue;
1773
1774                 /*
1775                  * If offload is currently enabled, the RAID map and
1776                  * phys_disk[] assignment *better* not be changing
1777                  * because we would be changing ioaccel phsy_disk[] pointers
1778                  * on a ioaccel volume processing I/O requests.
1779                  *
1780                  * If an ioaccel volume status changed, initially because it was
1781                  * re-configured and thus underwent a transformation, or
1782                  * a drive failed, we would have received a state change
1783                  * request and ioaccel should have been turned off. When the
1784                  * transformation completes, we get another state change
1785                  * request to turn ioaccel back on. In this case, we need
1786                  * to update the ioaccel information.
1787                  *
1788                  * Thus: If it is not currently enabled, but will be after
1789                  * the scan completes, make sure the ioaccel pointers
1790                  * are up to date.
1791                  */
1792
1793                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1794                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1795         }
1796 }
1797
1798 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1799 {
1800         int rc = 0;
1801
1802         if (!h->scsi_host)
1803                 return 1;
1804
1805         if (is_logical_device(device)) /* RAID */
1806                 rc = scsi_add_device(h->scsi_host, device->bus,
1807                                         device->target, device->lun);
1808         else /* HBA */
1809                 rc = hpsa_add_sas_device(h->sas_host, device);
1810
1811         return rc;
1812 }
1813
1814 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1815                                                 struct hpsa_scsi_dev_t *dev)
1816 {
1817         int i;
1818         int count = 0;
1819
1820         for (i = 0; i < h->nr_cmds; i++) {
1821                 struct CommandList *c = h->cmd_pool + i;
1822                 int refcount = atomic_inc_return(&c->refcount);
1823
1824                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1825                                 dev->scsi3addr)) {
1826                         unsigned long flags;
1827
1828                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1829                         if (!hpsa_is_cmd_idle(c))
1830                                 ++count;
1831                         spin_unlock_irqrestore(&h->lock, flags);
1832                 }
1833
1834                 cmd_free(h, c);
1835         }
1836
1837         return count;
1838 }
1839
1840 #define NUM_WAIT 20
1841 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1842                                                 struct hpsa_scsi_dev_t *device)
1843 {
1844         int cmds = 0;
1845         int waits = 0;
1846         int num_wait = NUM_WAIT;
1847
1848         if (device->external)
1849                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1850
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > num_wait)
1856                         break;
1857                 msleep(1000);
1858         }
1859
1860         if (waits > num_wait) {
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1863                         __func__,
1864                         h->scsi_host->host_no,
1865                         device->bus, device->target, device->lun, cmds);
1866         }
1867 }
1868
1869 static void hpsa_remove_device(struct ctlr_info *h,
1870                         struct hpsa_scsi_dev_t *device)
1871 {
1872         struct scsi_device *sdev = NULL;
1873
1874         if (!h->scsi_host)
1875                 return;
1876
1877         /*
1878          * Allow for commands to drain
1879          */
1880         device->removed = 1;
1881         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1882
1883         if (is_logical_device(device)) { /* RAID */
1884                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1885                                                 device->target, device->lun);
1886                 if (sdev) {
1887                         scsi_remove_device(sdev);
1888                         scsi_device_put(sdev);
1889                 } else {
1890                         /*
1891                          * We don't expect to get here.  Future commands
1892                          * to this device will get a selection timeout as
1893                          * if the device were gone.
1894                          */
1895                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1896                                         "didn't find device for removal.");
1897                 }
1898         } else { /* HBA */
1899
1900                 hpsa_remove_sas_device(device);
1901         }
1902 }
1903
1904 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1905         struct hpsa_scsi_dev_t *sd[], int nsds)
1906 {
1907         /* sd contains scsi3 addresses and devtypes, and inquiry
1908          * data.  This function takes what's in sd to be the current
1909          * reality and updates h->dev[] to reflect that reality.
1910          */
1911         int i, entry, device_change, changes = 0;
1912         struct hpsa_scsi_dev_t *csd;
1913         unsigned long flags;
1914         struct hpsa_scsi_dev_t **added, **removed;
1915         int nadded, nremoved;
1916
1917         /*
1918          * A reset can cause a device status to change
1919          * re-schedule the scan to see what happened.
1920          */
1921         spin_lock_irqsave(&h->reset_lock, flags);
1922         if (h->reset_in_progress) {
1923                 h->drv_req_rescan = 1;
1924                 spin_unlock_irqrestore(&h->reset_lock, flags);
1925                 return;
1926         }
1927         spin_unlock_irqrestore(&h->reset_lock, flags);
1928
1929         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1930         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1931
1932         if (!added || !removed) {
1933                 dev_warn(&h->pdev->dev, "out of memory in "
1934                         "adjust_hpsa_scsi_table\n");
1935                 goto free_and_out;
1936         }
1937
1938         spin_lock_irqsave(&h->devlock, flags);
1939
1940         /* find any devices in h->dev[] that are not in
1941          * sd[] and remove them from h->dev[], and for any
1942          * devices which have changed, remove the old device
1943          * info and add the new device info.
1944          * If minor device attributes change, just update
1945          * the existing device structure.
1946          */
1947         i = 0;
1948         nremoved = 0;
1949         nadded = 0;
1950         while (i < h->ndevices) {
1951                 csd = h->dev[i];
1952                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1953                 if (device_change == DEVICE_NOT_FOUND) {
1954                         changes++;
1955                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1956                         continue; /* remove ^^^, hence i not incremented */
1957                 } else if (device_change == DEVICE_CHANGED) {
1958                         changes++;
1959                         hpsa_scsi_replace_entry(h, i, sd[entry],
1960                                 added, &nadded, removed, &nremoved);
1961                         /* Set it to NULL to prevent it from being freed
1962                          * at the bottom of hpsa_update_scsi_devices()
1963                          */
1964                         sd[entry] = NULL;
1965                 } else if (device_change == DEVICE_UPDATED) {
1966                         hpsa_scsi_update_entry(h, i, sd[entry]);
1967                 }
1968                 i++;
1969         }
1970
1971         /* Now, make sure every device listed in sd[] is also
1972          * listed in h->dev[], adding them if they aren't found
1973          */
1974
1975         for (i = 0; i < nsds; i++) {
1976                 if (!sd[i]) /* if already added above. */
1977                         continue;
1978
1979                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1980                  * as the SCSI mid-layer does not handle such devices well.
1981                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1982                  * at 160Hz, and prevents the system from coming up.
1983                  */
1984                 if (sd[i]->volume_offline) {
1985                         hpsa_show_volume_status(h, sd[i]);
1986                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1987                         continue;
1988                 }
1989
1990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1991                                         h->ndevices, &entry);
1992                 if (device_change == DEVICE_NOT_FOUND) {
1993                         changes++;
1994                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1995                                 break;
1996                         sd[i] = NULL; /* prevent from being freed later. */
1997                 } else if (device_change == DEVICE_CHANGED) {
1998                         /* should never happen... */
1999                         changes++;
2000                         dev_warn(&h->pdev->dev,
2001                                 "device unexpectedly changed.\n");
2002                         /* but if it does happen, we just ignore that device */
2003                 }
2004         }
2005         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2006
2007         /*
2008          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2009          * any logical drives that need it enabled.
2010          *
2011          * The raid map should be current by now.
2012          *
2013          * We are updating the device list used for I/O requests.
2014          */
2015         for (i = 0; i < h->ndevices; i++) {
2016                 if (h->dev[i] == NULL)
2017                         continue;
2018                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2019         }
2020
2021         spin_unlock_irqrestore(&h->devlock, flags);
2022
2023         /* Monitor devices which are in one of several NOT READY states to be
2024          * brought online later. This must be done without holding h->devlock,
2025          * so don't touch h->dev[]
2026          */
2027         for (i = 0; i < nsds; i++) {
2028                 if (!sd[i]) /* if already added above. */
2029                         continue;
2030                 if (sd[i]->volume_offline)
2031                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2032         }
2033
2034         /* Don't notify scsi mid layer of any changes the first time through
2035          * (or if there are no changes) scsi_scan_host will do it later the
2036          * first time through.
2037          */
2038         if (!changes)
2039                 goto free_and_out;
2040
2041         /* Notify scsi mid layer of any removed devices */
2042         for (i = 0; i < nremoved; i++) {
2043                 if (removed[i] == NULL)
2044                         continue;
2045                 if (removed[i]->expose_device)
2046                         hpsa_remove_device(h, removed[i]);
2047                 kfree(removed[i]);
2048                 removed[i] = NULL;
2049         }
2050
2051         /* Notify scsi mid layer of any added devices */
2052         for (i = 0; i < nadded; i++) {
2053                 int rc = 0;
2054
2055                 if (added[i] == NULL)
2056                         continue;
2057                 if (!(added[i]->expose_device))
2058                         continue;
2059                 rc = hpsa_add_device(h, added[i]);
2060                 if (!rc)
2061                         continue;
2062                 dev_warn(&h->pdev->dev,
2063                         "addition failed %d, device not added.", rc);
2064                 /* now we have to remove it from h->dev,
2065                  * since it didn't get added to scsi mid layer
2066                  */
2067                 fixup_botched_add(h, added[i]);
2068                 h->drv_req_rescan = 1;
2069         }
2070
2071 free_and_out:
2072         kfree(added);
2073         kfree(removed);
2074 }
2075
2076 /*
2077  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2078  * Assume's h->devlock is held.
2079  */
2080 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2081         int bus, int target, int lun)
2082 {
2083         int i;
2084         struct hpsa_scsi_dev_t *sd;
2085
2086         for (i = 0; i < h->ndevices; i++) {
2087                 sd = h->dev[i];
2088                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2089                         return sd;
2090         }
2091         return NULL;
2092 }
2093
2094 static int hpsa_slave_alloc(struct scsi_device *sdev)
2095 {
2096         struct hpsa_scsi_dev_t *sd = NULL;
2097         unsigned long flags;
2098         struct ctlr_info *h;
2099
2100         h = sdev_to_hba(sdev);
2101         spin_lock_irqsave(&h->devlock, flags);
2102         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2103                 struct scsi_target *starget;
2104                 struct sas_rphy *rphy;
2105
2106                 starget = scsi_target(sdev);
2107                 rphy = target_to_rphy(starget);
2108                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2109                 if (sd) {
2110                         sd->target = sdev_id(sdev);
2111                         sd->lun = sdev->lun;
2112                 }
2113         }
2114         if (!sd)
2115                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2116                                         sdev_id(sdev), sdev->lun);
2117
2118         if (sd && sd->expose_device) {
2119                 atomic_set(&sd->ioaccel_cmds_out, 0);
2120                 sdev->hostdata = sd;
2121         } else
2122                 sdev->hostdata = NULL;
2123         spin_unlock_irqrestore(&h->devlock, flags);
2124         return 0;
2125 }
2126
2127 /* configure scsi device based on internal per-device structure */
2128 static int hpsa_slave_configure(struct scsi_device *sdev)
2129 {
2130         struct hpsa_scsi_dev_t *sd;
2131         int queue_depth;
2132
2133         sd = sdev->hostdata;
2134         sdev->no_uld_attach = !sd || !sd->expose_device;
2135
2136         if (sd) {
2137                 sd->was_removed = 0;
2138                 if (sd->external) {
2139                         queue_depth = EXTERNAL_QD;
2140                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2141                         blk_queue_rq_timeout(sdev->request_queue,
2142                                                 HPSA_EH_PTRAID_TIMEOUT);
2143                 } else {
2144                         queue_depth = sd->queue_depth != 0 ?
2145                                         sd->queue_depth : sdev->host->can_queue;
2146                 }
2147         } else
2148                 queue_depth = sdev->host->can_queue;
2149
2150         scsi_change_queue_depth(sdev, queue_depth);
2151
2152         return 0;
2153 }
2154
2155 static void hpsa_slave_destroy(struct scsi_device *sdev)
2156 {
2157         struct hpsa_scsi_dev_t *hdev = NULL;
2158
2159         hdev = sdev->hostdata;
2160
2161         if (hdev)
2162                 hdev->was_removed = 1;
2163 }
2164
2165 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167         int i;
2168
2169         if (!h->ioaccel2_cmd_sg_list)
2170                 return;
2171         for (i = 0; i < h->nr_cmds; i++) {
2172                 kfree(h->ioaccel2_cmd_sg_list[i]);
2173                 h->ioaccel2_cmd_sg_list[i] = NULL;
2174         }
2175         kfree(h->ioaccel2_cmd_sg_list);
2176         h->ioaccel2_cmd_sg_list = NULL;
2177 }
2178
2179 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2180 {
2181         int i;
2182
2183         if (h->chainsize <= 0)
2184                 return 0;
2185
2186         h->ioaccel2_cmd_sg_list =
2187                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2188                                         GFP_KERNEL);
2189         if (!h->ioaccel2_cmd_sg_list)
2190                 return -ENOMEM;
2191         for (i = 0; i < h->nr_cmds; i++) {
2192                 h->ioaccel2_cmd_sg_list[i] =
2193                         kmalloc_array(h->maxsgentries,
2194                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2195                                       GFP_KERNEL);
2196                 if (!h->ioaccel2_cmd_sg_list[i])
2197                         goto clean;
2198         }
2199         return 0;
2200
2201 clean:
2202         hpsa_free_ioaccel2_sg_chain_blocks(h);
2203         return -ENOMEM;
2204 }
2205
2206 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208         int i;
2209
2210         if (!h->cmd_sg_list)
2211                 return;
2212         for (i = 0; i < h->nr_cmds; i++) {
2213                 kfree(h->cmd_sg_list[i]);
2214                 h->cmd_sg_list[i] = NULL;
2215         }
2216         kfree(h->cmd_sg_list);
2217         h->cmd_sg_list = NULL;
2218 }
2219
2220 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2221 {
2222         int i;
2223
2224         if (h->chainsize <= 0)
2225                 return 0;
2226
2227         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2228                                  GFP_KERNEL);
2229         if (!h->cmd_sg_list)
2230                 return -ENOMEM;
2231
2232         for (i = 0; i < h->nr_cmds; i++) {
2233                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2234                                                   sizeof(*h->cmd_sg_list[i]),
2235                                                   GFP_KERNEL);
2236                 if (!h->cmd_sg_list[i])
2237                         goto clean;
2238
2239         }
2240         return 0;
2241
2242 clean:
2243         hpsa_free_sg_chain_blocks(h);
2244         return -ENOMEM;
2245 }
2246
2247 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2248         struct io_accel2_cmd *cp, struct CommandList *c)
2249 {
2250         struct ioaccel2_sg_element *chain_block;
2251         u64 temp64;
2252         u32 chain_size;
2253
2254         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2255         chain_size = le32_to_cpu(cp->sg[0].length);
2256         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2257                                 DMA_TO_DEVICE);
2258         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2259                 /* prevent subsequent unmapping */
2260                 cp->sg->address = 0;
2261                 return -1;
2262         }
2263         cp->sg->address = cpu_to_le64(temp64);
2264         return 0;
2265 }
2266
2267 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2268         struct io_accel2_cmd *cp)
2269 {
2270         struct ioaccel2_sg_element *chain_sg;
2271         u64 temp64;
2272         u32 chain_size;
2273
2274         chain_sg = cp->sg;
2275         temp64 = le64_to_cpu(chain_sg->address);
2276         chain_size = le32_to_cpu(cp->sg[0].length);
2277         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2278 }
2279
2280 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2281         struct CommandList *c)
2282 {
2283         struct SGDescriptor *chain_sg, *chain_block;
2284         u64 temp64;
2285         u32 chain_len;
2286
2287         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2288         chain_block = h->cmd_sg_list[c->cmdindex];
2289         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2290         chain_len = sizeof(*chain_sg) *
2291                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2292         chain_sg->Len = cpu_to_le32(chain_len);
2293         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2294                                 DMA_TO_DEVICE);
2295         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2296                 /* prevent subsequent unmapping */
2297                 chain_sg->Addr = cpu_to_le64(0);
2298                 return -1;
2299         }
2300         chain_sg->Addr = cpu_to_le64(temp64);
2301         return 0;
2302 }
2303
2304 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2305         struct CommandList *c)
2306 {
2307         struct SGDescriptor *chain_sg;
2308
2309         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2310                 return;
2311
2312         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2313         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2314                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2315 }
2316
2317
2318 /* Decode the various types of errors on ioaccel2 path.
2319  * Return 1 for any error that should generate a RAID path retry.
2320  * Return 0 for errors that don't require a RAID path retry.
2321  */
2322 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2323                                         struct CommandList *c,
2324                                         struct scsi_cmnd *cmd,
2325                                         struct io_accel2_cmd *c2,
2326                                         struct hpsa_scsi_dev_t *dev)
2327 {
2328         int data_len;
2329         int retry = 0;
2330         u32 ioaccel2_resid = 0;
2331
2332         switch (c2->error_data.serv_response) {
2333         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2334                 switch (c2->error_data.status) {
2335                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2336                         if (cmd)
2337                                 cmd->result = 0;
2338                         break;
2339                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2340                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2341                         if (c2->error_data.data_present !=
2342                                         IOACCEL2_SENSE_DATA_PRESENT) {
2343                                 memset(cmd->sense_buffer, 0,
2344                                         SCSI_SENSE_BUFFERSIZE);
2345                                 break;
2346                         }
2347                         /* copy the sense data */
2348                         data_len = c2->error_data.sense_data_len;
2349                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2350                                 data_len = SCSI_SENSE_BUFFERSIZE;
2351                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2352                                 data_len =
2353                                         sizeof(c2->error_data.sense_data_buff);
2354                         memcpy(cmd->sense_buffer,
2355                                 c2->error_data.sense_data_buff, data_len);
2356                         retry = 1;
2357                         break;
2358                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2359                         retry = 1;
2360                         break;
2361                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2362                         retry = 1;
2363                         break;
2364                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2365                         retry = 1;
2366                         break;
2367                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2368                         retry = 1;
2369                         break;
2370                 default:
2371                         retry = 1;
2372                         break;
2373                 }
2374                 break;
2375         case IOACCEL2_SERV_RESPONSE_FAILURE:
2376                 switch (c2->error_data.status) {
2377                 case IOACCEL2_STATUS_SR_IO_ERROR:
2378                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2379                 case IOACCEL2_STATUS_SR_OVERRUN:
2380                         retry = 1;
2381                         break;
2382                 case IOACCEL2_STATUS_SR_UNDERRUN:
2383                         cmd->result = (DID_OK << 16);           /* host byte */
2384                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2385                         ioaccel2_resid = get_unaligned_le32(
2386                                                 &c2->error_data.resid_cnt[0]);
2387                         scsi_set_resid(cmd, ioaccel2_resid);
2388                         break;
2389                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2390                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2391                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2392                         /*
2393                          * Did an HBA disk disappear? We will eventually
2394                          * get a state change event from the controller but
2395                          * in the meantime, we need to tell the OS that the
2396                          * HBA disk is no longer there and stop I/O
2397                          * from going down. This allows the potential re-insert
2398                          * of the disk to get the same device node.
2399                          */
2400                         if (dev->physical_device && dev->expose_device) {
2401                                 cmd->result = DID_NO_CONNECT << 16;
2402                                 dev->removed = 1;
2403                                 h->drv_req_rescan = 1;
2404                                 dev_warn(&h->pdev->dev,
2405                                         "%s: device is gone!\n", __func__);
2406                         } else
2407                                 /*
2408                                  * Retry by sending down the RAID path.
2409                                  * We will get an event from ctlr to
2410                                  * trigger rescan regardless.
2411                                  */
2412                                 retry = 1;
2413                         break;
2414                 default:
2415                         retry = 1;
2416                 }
2417                 break;
2418         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2419                 break;
2420         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2421                 break;
2422         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2423                 retry = 1;
2424                 break;
2425         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2426                 break;
2427         default:
2428                 retry = 1;
2429                 break;
2430         }
2431
2432         if (dev->in_reset)
2433                 retry = 0;
2434
2435         return retry;   /* retry on raid path? */
2436 }
2437
2438 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2439                 struct CommandList *c)
2440 {
2441         struct hpsa_scsi_dev_t *dev = c->device;
2442
2443         /*
2444          * Reset c->scsi_cmd here so that the reset handler will know
2445          * this command has completed.  Then, check to see if the handler is
2446          * waiting for this command, and, if so, wake it.
2447          */
2448         c->scsi_cmd = SCSI_CMD_IDLE;
2449         mb();   /* Declare command idle before checking for pending events. */
2450         if (dev) {
2451                 atomic_dec(&dev->commands_outstanding);
2452                 if (dev->in_reset &&
2453                         atomic_read(&dev->commands_outstanding) <= 0)
2454                         wake_up_all(&h->event_sync_wait_queue);
2455         }
2456 }
2457
2458 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2459                                       struct CommandList *c)
2460 {
2461         hpsa_cmd_resolve_events(h, c);
2462         cmd_tagged_free(h, c);
2463 }
2464
2465 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2466                 struct CommandList *c, struct scsi_cmnd *cmd)
2467 {
2468         hpsa_cmd_resolve_and_free(h, c);
2469         if (cmd && cmd->scsi_done)
2470                 cmd->scsi_done(cmd);
2471 }
2472
2473 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2474 {
2475         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2476         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2477 }
2478
2479 static void process_ioaccel2_completion(struct ctlr_info *h,
2480                 struct CommandList *c, struct scsi_cmnd *cmd,
2481                 struct hpsa_scsi_dev_t *dev)
2482 {
2483         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2484
2485         /* check for good status */
2486         if (likely(c2->error_data.serv_response == 0 &&
2487                         c2->error_data.status == 0)) {
2488                 cmd->result = 0;
2489                 return hpsa_cmd_free_and_done(h, c, cmd);
2490         }
2491
2492         /*
2493          * Any RAID offload error results in retry which will use
2494          * the normal I/O path so the controller can handle whatever is
2495          * wrong.
2496          */
2497         if (is_logical_device(dev) &&
2498                 c2->error_data.serv_response ==
2499                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2500                 if (c2->error_data.status ==
2501                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2502                         dev->offload_enabled = 0;
2503                         dev->offload_to_be_enabled = 0;
2504                 }
2505
2506                 if (dev->in_reset) {
2507                         cmd->result = DID_RESET << 16;
2508                         return hpsa_cmd_free_and_done(h, c, cmd);
2509                 }
2510
2511                 return hpsa_retry_cmd(h, c);
2512         }
2513
2514         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2515                 return hpsa_retry_cmd(h, c);
2516
2517         return hpsa_cmd_free_and_done(h, c, cmd);
2518 }
2519
2520 /* Returns 0 on success, < 0 otherwise. */
2521 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2522                                         struct CommandList *cp)
2523 {
2524         u8 tmf_status = cp->err_info->ScsiStatus;
2525
2526         switch (tmf_status) {
2527         case CISS_TMF_COMPLETE:
2528                 /*
2529                  * CISS_TMF_COMPLETE never happens, instead,
2530                  * ei->CommandStatus == 0 for this case.
2531                  */
2532         case CISS_TMF_SUCCESS:
2533                 return 0;
2534         case CISS_TMF_INVALID_FRAME:
2535         case CISS_TMF_NOT_SUPPORTED:
2536         case CISS_TMF_FAILED:
2537         case CISS_TMF_WRONG_LUN:
2538         case CISS_TMF_OVERLAPPED_TAG:
2539                 break;
2540         default:
2541                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2542                                 tmf_status);
2543                 break;
2544         }
2545         return -tmf_status;
2546 }
2547
2548 static void complete_scsi_command(struct CommandList *cp)
2549 {
2550         struct scsi_cmnd *cmd;
2551         struct ctlr_info *h;
2552         struct ErrorInfo *ei;
2553         struct hpsa_scsi_dev_t *dev;
2554         struct io_accel2_cmd *c2;
2555
2556         u8 sense_key;
2557         u8 asc;      /* additional sense code */
2558         u8 ascq;     /* additional sense code qualifier */
2559         unsigned long sense_data_size;
2560
2561         ei = cp->err_info;
2562         cmd = cp->scsi_cmd;
2563         h = cp->h;
2564
2565         if (!cmd->device) {
2566                 cmd->result = DID_NO_CONNECT << 16;
2567                 return hpsa_cmd_free_and_done(h, cp, cmd);
2568         }
2569
2570         dev = cmd->device->hostdata;
2571         if (!dev) {
2572                 cmd->result = DID_NO_CONNECT << 16;
2573                 return hpsa_cmd_free_and_done(h, cp, cmd);
2574         }
2575         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2576
2577         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2578         if ((cp->cmd_type == CMD_SCSI) &&
2579                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2580                 hpsa_unmap_sg_chain_block(h, cp);
2581
2582         if ((cp->cmd_type == CMD_IOACCEL2) &&
2583                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2584                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2585
2586         cmd->result = (DID_OK << 16);           /* host byte */
2587         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2588
2589         /* SCSI command has already been cleaned up in SML */
2590         if (dev->was_removed) {
2591                 hpsa_cmd_resolve_and_free(h, cp);
2592                 return;
2593         }
2594
2595         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2596                 if (dev->physical_device && dev->expose_device &&
2597                         dev->removed) {
2598                         cmd->result = DID_NO_CONNECT << 16;
2599                         return hpsa_cmd_free_and_done(h, cp, cmd);
2600                 }
2601                 if (likely(cp->phys_disk != NULL))
2602                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2603         }
2604
2605         /*
2606          * We check for lockup status here as it may be set for
2607          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2608          * fail_all_oustanding_cmds()
2609          */
2610         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2611                 /* DID_NO_CONNECT will prevent a retry */
2612                 cmd->result = DID_NO_CONNECT << 16;
2613                 return hpsa_cmd_free_and_done(h, cp, cmd);
2614         }
2615
2616         if (cp->cmd_type == CMD_IOACCEL2)
2617                 return process_ioaccel2_completion(h, cp, cmd, dev);
2618
2619         scsi_set_resid(cmd, ei->ResidualCnt);
2620         if (ei->CommandStatus == 0)
2621                 return hpsa_cmd_free_and_done(h, cp, cmd);
2622
2623         /* For I/O accelerator commands, copy over some fields to the normal
2624          * CISS header used below for error handling.
2625          */
2626         if (cp->cmd_type == CMD_IOACCEL1) {
2627                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2628                 cp->Header.SGList = scsi_sg_count(cmd);
2629                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2630                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2631                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2632                 cp->Header.tag = c->tag;
2633                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2634                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2635
2636                 /* Any RAID offload error results in retry which will use
2637                  * the normal I/O path so the controller can handle whatever's
2638                  * wrong.
2639                  */
2640                 if (is_logical_device(dev)) {
2641                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2642                                 dev->offload_enabled = 0;
2643                         return hpsa_retry_cmd(h, cp);
2644                 }
2645         }
2646
2647         /* an error has occurred */
2648         switch (ei->CommandStatus) {
2649
2650         case CMD_TARGET_STATUS:
2651                 cmd->result |= ei->ScsiStatus;
2652                 /* copy the sense data */
2653                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2654                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2655                 else
2656                         sense_data_size = sizeof(ei->SenseInfo);
2657                 if (ei->SenseLen < sense_data_size)
2658                         sense_data_size = ei->SenseLen;
2659                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2660                 if (ei->ScsiStatus)
2661                         decode_sense_data(ei->SenseInfo, sense_data_size,
2662                                 &sense_key, &asc, &ascq);
2663                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2664                         switch (sense_key) {
2665                         case ABORTED_COMMAND:
2666                                 cmd->result |= DID_SOFT_ERROR << 16;
2667                                 break;
2668                         case UNIT_ATTENTION:
2669                                 if (asc == 0x3F && ascq == 0x0E)
2670                                         h->drv_req_rescan = 1;
2671                                 break;
2672                         case ILLEGAL_REQUEST:
2673                                 if (asc == 0x25 && ascq == 0x00) {
2674                                         dev->removed = 1;
2675                                         cmd->result = DID_NO_CONNECT << 16;
2676                                 }
2677                                 break;
2678                         }
2679                         break;
2680                 }
2681                 /* Problem was not a check condition
2682                  * Pass it up to the upper layers...
2683                  */
2684                 if (ei->ScsiStatus) {
2685                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2686                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2687                                 "Returning result: 0x%x\n",
2688                                 cp, ei->ScsiStatus,
2689                                 sense_key, asc, ascq,
2690                                 cmd->result);
2691                 } else {  /* scsi status is zero??? How??? */
2692                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2693                                 "Returning no connection.\n", cp),
2694
2695                         /* Ordinarily, this case should never happen,
2696                          * but there is a bug in some released firmware
2697                          * revisions that allows it to happen if, for
2698                          * example, a 4100 backplane loses power and
2699                          * the tape drive is in it.  We assume that
2700                          * it's a fatal error of some kind because we
2701                          * can't show that it wasn't. We will make it
2702                          * look like selection timeout since that is
2703                          * the most common reason for this to occur,
2704                          * and it's severe enough.
2705                          */
2706
2707                         cmd->result = DID_NO_CONNECT << 16;
2708                 }
2709                 break;
2710
2711         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2712                 break;
2713         case CMD_DATA_OVERRUN:
2714                 dev_warn(&h->pdev->dev,
2715                         "CDB %16phN data overrun\n", cp->Request.CDB);
2716                 break;
2717         case CMD_INVALID: {
2718                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2719                 print_cmd(cp); */
2720                 /* We get CMD_INVALID if you address a non-existent device
2721                  * instead of a selection timeout (no response).  You will
2722                  * see this if you yank out a drive, then try to access it.
2723                  * This is kind of a shame because it means that any other
2724                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2725                  * missing target. */
2726                 cmd->result = DID_NO_CONNECT << 16;
2727         }
2728                 break;
2729         case CMD_PROTOCOL_ERR:
2730                 cmd->result = DID_ERROR << 16;
2731                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2732                                 cp->Request.CDB);
2733                 break;
2734         case CMD_HARDWARE_ERR:
2735                 cmd->result = DID_ERROR << 16;
2736                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2737                         cp->Request.CDB);
2738                 break;
2739         case CMD_CONNECTION_LOST:
2740                 cmd->result = DID_ERROR << 16;
2741                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2742                         cp->Request.CDB);
2743                 break;
2744         case CMD_ABORTED:
2745                 cmd->result = DID_ABORT << 16;
2746                 break;
2747         case CMD_ABORT_FAILED:
2748                 cmd->result = DID_ERROR << 16;
2749                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2750                         cp->Request.CDB);
2751                 break;
2752         case CMD_UNSOLICITED_ABORT:
2753                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2754                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2755                         cp->Request.CDB);
2756                 break;
2757         case CMD_TIMEOUT:
2758                 cmd->result = DID_TIME_OUT << 16;
2759                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2760                         cp->Request.CDB);
2761                 break;
2762         case CMD_UNABORTABLE:
2763                 cmd->result = DID_ERROR << 16;
2764                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2765                 break;
2766         case CMD_TMF_STATUS:
2767                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2768                         cmd->result = DID_ERROR << 16;
2769                 break;
2770         case CMD_IOACCEL_DISABLED:
2771                 /* This only handles the direct pass-through case since RAID
2772                  * offload is handled above.  Just attempt a retry.
2773                  */
2774                 cmd->result = DID_SOFT_ERROR << 16;
2775                 dev_warn(&h->pdev->dev,
2776                                 "cp %p had HP SSD Smart Path error\n", cp);
2777                 break;
2778         default:
2779                 cmd->result = DID_ERROR << 16;
2780                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2781                                 cp, ei->CommandStatus);
2782         }
2783
2784         return hpsa_cmd_free_and_done(h, cp, cmd);
2785 }
2786
2787 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2788                 int sg_used, enum dma_data_direction data_direction)
2789 {
2790         int i;
2791
2792         for (i = 0; i < sg_used; i++)
2793                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2794                                 le32_to_cpu(c->SG[i].Len),
2795                                 data_direction);
2796 }
2797
2798 static int hpsa_map_one(struct pci_dev *pdev,
2799                 struct CommandList *cp,
2800                 unsigned char *buf,
2801                 size_t buflen,
2802                 enum dma_data_direction data_direction)
2803 {
2804         u64 addr64;
2805
2806         if (buflen == 0 || data_direction == DMA_NONE) {
2807                 cp->Header.SGList = 0;
2808                 cp->Header.SGTotal = cpu_to_le16(0);
2809                 return 0;
2810         }
2811
2812         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2813         if (dma_mapping_error(&pdev->dev, addr64)) {
2814                 /* Prevent subsequent unmap of something never mapped */
2815                 cp->Header.SGList = 0;
2816                 cp->Header.SGTotal = cpu_to_le16(0);
2817                 return -1;
2818         }
2819         cp->SG[0].Addr = cpu_to_le64(addr64);
2820         cp->SG[0].Len = cpu_to_le32(buflen);
2821         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2822         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2823         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2824         return 0;
2825 }
2826
2827 #define NO_TIMEOUT ((unsigned long) -1)
2828 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2829 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2830         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2831 {
2832         DECLARE_COMPLETION_ONSTACK(wait);
2833
2834         c->waiting = &wait;
2835         __enqueue_cmd_and_start_io(h, c, reply_queue);
2836         if (timeout_msecs == NO_TIMEOUT) {
2837                 /* TODO: get rid of this no-timeout thing */
2838                 wait_for_completion_io(&wait);
2839                 return IO_OK;
2840         }
2841         if (!wait_for_completion_io_timeout(&wait,
2842                                         msecs_to_jiffies(timeout_msecs))) {
2843                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2844                 return -ETIMEDOUT;
2845         }
2846         return IO_OK;
2847 }
2848
2849 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2850                                    int reply_queue, unsigned long timeout_msecs)
2851 {
2852         if (unlikely(lockup_detected(h))) {
2853                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2854                 return IO_OK;
2855         }
2856         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2857 }
2858
2859 static u32 lockup_detected(struct ctlr_info *h)
2860 {
2861         int cpu;
2862         u32 rc, *lockup_detected;
2863
2864         cpu = get_cpu();
2865         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2866         rc = *lockup_detected;
2867         put_cpu();
2868         return rc;
2869 }
2870
2871 #define MAX_DRIVER_CMD_RETRIES 25
2872 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2873                 struct CommandList *c, enum dma_data_direction data_direction,
2874                 unsigned long timeout_msecs)
2875 {
2876         int backoff_time = 10, retry_count = 0;
2877         int rc;
2878
2879         do {
2880                 memset(c->err_info, 0, sizeof(*c->err_info));
2881                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2882                                                   timeout_msecs);
2883                 if (rc)
2884                         break;
2885                 retry_count++;
2886                 if (retry_count > 3) {
2887                         msleep(backoff_time);
2888                         if (backoff_time < 1000)
2889                                 backoff_time *= 2;
2890                 }
2891         } while ((check_for_unit_attention(h, c) ||
2892                         check_for_busy(h, c)) &&
2893                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2894         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2895         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2896                 rc = -EIO;
2897         return rc;
2898 }
2899
2900 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2901                                 struct CommandList *c)
2902 {
2903         const u8 *cdb = c->Request.CDB;
2904         const u8 *lun = c->Header.LUN.LunAddrBytes;
2905
2906         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2907                  txt, lun, cdb);
2908 }
2909
2910 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2911                         struct CommandList *cp)
2912 {
2913         const struct ErrorInfo *ei = cp->err_info;
2914         struct device *d = &cp->h->pdev->dev;
2915         u8 sense_key, asc, ascq;
2916         int sense_len;
2917
2918         switch (ei->CommandStatus) {
2919         case CMD_TARGET_STATUS:
2920                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2921                         sense_len = sizeof(ei->SenseInfo);
2922                 else
2923                         sense_len = ei->SenseLen;
2924                 decode_sense_data(ei->SenseInfo, sense_len,
2925                                         &sense_key, &asc, &ascq);
2926                 hpsa_print_cmd(h, "SCSI status", cp);
2927                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2928                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2929                                 sense_key, asc, ascq);
2930                 else
2931                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2932                 if (ei->ScsiStatus == 0)
2933                         dev_warn(d, "SCSI status is abnormally zero.  "
2934                         "(probably indicates selection timeout "
2935                         "reported incorrectly due to a known "
2936                         "firmware bug, circa July, 2001.)\n");
2937                 break;
2938         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2939                 break;
2940         case CMD_DATA_OVERRUN:
2941                 hpsa_print_cmd(h, "overrun condition", cp);
2942                 break;
2943         case CMD_INVALID: {
2944                 /* controller unfortunately reports SCSI passthru's
2945                  * to non-existent targets as invalid commands.
2946                  */
2947                 hpsa_print_cmd(h, "invalid command", cp);
2948                 dev_warn(d, "probably means device no longer present\n");
2949                 }
2950                 break;
2951         case CMD_PROTOCOL_ERR:
2952                 hpsa_print_cmd(h, "protocol error", cp);
2953                 break;
2954         case CMD_HARDWARE_ERR:
2955                 hpsa_print_cmd(h, "hardware error", cp);
2956                 break;
2957         case CMD_CONNECTION_LOST:
2958                 hpsa_print_cmd(h, "connection lost", cp);
2959                 break;
2960         case CMD_ABORTED:
2961                 hpsa_print_cmd(h, "aborted", cp);
2962                 break;
2963         case CMD_ABORT_FAILED:
2964                 hpsa_print_cmd(h, "abort failed", cp);
2965                 break;
2966         case CMD_UNSOLICITED_ABORT:
2967                 hpsa_print_cmd(h, "unsolicited abort", cp);
2968                 break;
2969         case CMD_TIMEOUT:
2970                 hpsa_print_cmd(h, "timed out", cp);
2971                 break;
2972         case CMD_UNABORTABLE:
2973                 hpsa_print_cmd(h, "unabortable", cp);
2974                 break;
2975         case CMD_CTLR_LOCKUP:
2976                 hpsa_print_cmd(h, "controller lockup detected", cp);
2977                 break;
2978         default:
2979                 hpsa_print_cmd(h, "unknown status", cp);
2980                 dev_warn(d, "Unknown command status %x\n",
2981                                 ei->CommandStatus);
2982         }
2983 }
2984
2985 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2986                                         u8 page, u8 *buf, size_t bufsize)
2987 {
2988         int rc = IO_OK;
2989         struct CommandList *c;
2990         struct ErrorInfo *ei;
2991
2992         c = cmd_alloc(h);
2993         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2994                         page, scsi3addr, TYPE_CMD)) {
2995                 rc = -1;
2996                 goto out;
2997         }
2998         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2999                         NO_TIMEOUT);
3000         if (rc)
3001                 goto out;
3002         ei = c->err_info;
3003         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3004                 hpsa_scsi_interpret_error(h, c);
3005                 rc = -1;
3006         }
3007 out:
3008         cmd_free(h, c);
3009         return rc;
3010 }
3011
3012 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3013                                                 u8 *scsi3addr)
3014 {
3015         u8 *buf;
3016         u64 sa = 0;
3017         int rc = 0;
3018
3019         buf = kzalloc(1024, GFP_KERNEL);
3020         if (!buf)
3021                 return 0;
3022
3023         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3024                                         buf, 1024);
3025
3026         if (rc)
3027                 goto out;
3028
3029         sa = get_unaligned_be64(buf+12);
3030
3031 out:
3032         kfree(buf);
3033         return sa;
3034 }
3035
3036 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3037                         u16 page, unsigned char *buf,
3038                         unsigned char bufsize)
3039 {
3040         int rc = IO_OK;
3041         struct CommandList *c;
3042         struct ErrorInfo *ei;
3043
3044         c = cmd_alloc(h);
3045
3046         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3047                         page, scsi3addr, TYPE_CMD)) {
3048                 rc = -1;
3049                 goto out;
3050         }
3051         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3052                         NO_TIMEOUT);
3053         if (rc)
3054                 goto out;
3055         ei = c->err_info;
3056         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3057                 hpsa_scsi_interpret_error(h, c);
3058                 rc = -1;
3059         }
3060 out:
3061         cmd_free(h, c);
3062         return rc;
3063 }
3064
3065 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3066         u8 reset_type, int reply_queue)
3067 {
3068         int rc = IO_OK;
3069         struct CommandList *c;
3070         struct ErrorInfo *ei;
3071
3072         c = cmd_alloc(h);
3073         c->device = dev;
3074
3075         /* fill_cmd can't fail here, no data buffer to map. */
3076         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3077         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3078         if (rc) {
3079                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3080                 goto out;
3081         }
3082         /* no unmap needed here because no data xfer. */
3083
3084         ei = c->err_info;
3085         if (ei->CommandStatus != 0) {
3086                 hpsa_scsi_interpret_error(h, c);
3087                 rc = -1;
3088         }
3089 out:
3090         cmd_free(h, c);
3091         return rc;
3092 }
3093
3094 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3095                                struct hpsa_scsi_dev_t *dev,
3096                                unsigned char *scsi3addr)
3097 {
3098         int i;
3099         bool match = false;
3100         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3101         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3102
3103         if (hpsa_is_cmd_idle(c))
3104                 return false;
3105
3106         switch (c->cmd_type) {
3107         case CMD_SCSI:
3108         case CMD_IOCTL_PEND:
3109                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3110                                 sizeof(c->Header.LUN.LunAddrBytes));
3111                 break;
3112
3113         case CMD_IOACCEL1:
3114         case CMD_IOACCEL2:
3115                 if (c->phys_disk == dev) {
3116                         /* HBA mode match */
3117                         match = true;
3118                 } else {
3119                         /* Possible RAID mode -- check each phys dev. */
3120                         /* FIXME:  Do we need to take out a lock here?  If
3121                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3122                          * instead. */
3123                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3124                                 /* FIXME: an alternate test might be
3125                                  *
3126                                  * match = dev->phys_disk[i]->ioaccel_handle
3127                                  *              == c2->scsi_nexus;      */
3128                                 match = dev->phys_disk[i] == c->phys_disk;
3129                         }
3130                 }
3131                 break;
3132
3133         case IOACCEL2_TMF:
3134                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3135                         match = dev->phys_disk[i]->ioaccel_handle ==
3136                                         le32_to_cpu(ac->it_nexus);
3137                 }
3138                 break;
3139
3140         case 0:         /* The command is in the middle of being initialized. */
3141                 match = false;
3142                 break;
3143
3144         default:
3145                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3146                         c->cmd_type);
3147                 BUG();
3148         }
3149
3150         return match;
3151 }
3152
3153 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3154         u8 reset_type, int reply_queue)
3155 {
3156         int rc = 0;
3157
3158         /* We can really only handle one reset at a time */
3159         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3160                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3161                 return -EINTR;
3162         }
3163
3164         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3165         if (!rc) {
3166                 /* incremented by sending the reset request */
3167                 atomic_dec(&dev->commands_outstanding);
3168                 wait_event(h->event_sync_wait_queue,
3169                         atomic_read(&dev->commands_outstanding) <= 0 ||
3170                         lockup_detected(h));
3171         }
3172
3173         if (unlikely(lockup_detected(h))) {
3174                 dev_warn(&h->pdev->dev,
3175                          "Controller lockup detected during reset wait\n");
3176                 rc = -ENODEV;
3177         }
3178
3179         if (!rc)
3180                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3181
3182         mutex_unlock(&h->reset_mutex);
3183         return rc;
3184 }
3185
3186 static void hpsa_get_raid_level(struct ctlr_info *h,
3187         unsigned char *scsi3addr, unsigned char *raid_level)
3188 {
3189         int rc;
3190         unsigned char *buf;
3191
3192         *raid_level = RAID_UNKNOWN;
3193         buf = kzalloc(64, GFP_KERNEL);
3194         if (!buf)
3195                 return;
3196
3197         if (!hpsa_vpd_page_supported(h, scsi3addr,
3198                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3199                 goto exit;
3200
3201         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203
3204         if (rc == 0)
3205                 *raid_level = buf[8];
3206         if (*raid_level > RAID_UNKNOWN)
3207                 *raid_level = RAID_UNKNOWN;
3208 exit:
3209         kfree(buf);
3210         return;
3211 }
3212
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216                                 struct raid_map_data *map_buff)
3217 {
3218         struct raid_map_disk_data *dd = &map_buff->data[0];
3219         int map, row, col;
3220         u16 map_cnt, row_cnt, disks_per_row;
3221
3222         if (rc != 0)
3223                 return;
3224
3225         /* Show details only if debugging has been activated. */
3226         if (h->raid_offload_debug < 2)
3227                 return;
3228
3229         dev_info(&h->pdev->dev, "structure_size = %u\n",
3230                                 le32_to_cpu(map_buff->structure_size));
3231         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232                         le32_to_cpu(map_buff->volume_blk_size));
3233         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234                         le64_to_cpu(map_buff->volume_blk_cnt));
3235         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236                         map_buff->phys_blk_shift);
3237         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238                         map_buff->parity_rotation_shift);
3239         dev_info(&h->pdev->dev, "strip_size = %u\n",
3240                         le16_to_cpu(map_buff->strip_size));
3241         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242                         le64_to_cpu(map_buff->disk_starting_blk));
3243         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244                         le64_to_cpu(map_buff->disk_blk_cnt));
3245         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246                         le16_to_cpu(map_buff->data_disks_per_row));
3247         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248                         le16_to_cpu(map_buff->metadata_disks_per_row));
3249         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250                         le16_to_cpu(map_buff->row_cnt));
3251         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252                         le16_to_cpu(map_buff->layout_map_count));
3253         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254                         le16_to_cpu(map_buff->flags));
3255         dev_info(&h->pdev->dev, "encryption = %s\n",
3256                         le16_to_cpu(map_buff->flags) &
3257                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258         dev_info(&h->pdev->dev, "dekindex = %u\n",
3259                         le16_to_cpu(map_buff->dekindex));
3260         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261         for (map = 0; map < map_cnt; map++) {
3262                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3263                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3264                 for (row = 0; row < row_cnt; row++) {
3265                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266                         disks_per_row =
3267                                 le16_to_cpu(map_buff->data_disks_per_row);
3268                         for (col = 0; col < disks_per_row; col++, dd++)
3269                                 dev_info(&h->pdev->dev,
3270                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3271                                         col, dd->ioaccel_handle,
3272                                         dd->xor_mult[0], dd->xor_mult[1]);
3273                         disks_per_row =
3274                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3275                         for (col = 0; col < disks_per_row; col++, dd++)
3276                                 dev_info(&h->pdev->dev,
3277                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3278                                         col, dd->ioaccel_handle,
3279                                         dd->xor_mult[0], dd->xor_mult[1]);
3280                 }
3281         }
3282 }
3283 #else
3284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285                         __attribute__((unused)) int rc,
3286                         __attribute__((unused)) struct raid_map_data *map_buff)
3287 {
3288 }
3289 #endif
3290
3291 static int hpsa_get_raid_map(struct ctlr_info *h,
3292         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293 {
3294         int rc = 0;
3295         struct CommandList *c;
3296         struct ErrorInfo *ei;
3297
3298         c = cmd_alloc(h);
3299
3300         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301                         sizeof(this_device->raid_map), 0,
3302                         scsi3addr, TYPE_CMD)) {
3303                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304                 cmd_free(h, c);
3305                 return -1;
3306         }
3307         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3308                         NO_TIMEOUT);
3309         if (rc)
3310                 goto out;
3311         ei = c->err_info;
3312         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313                 hpsa_scsi_interpret_error(h, c);
3314                 rc = -1;
3315                 goto out;
3316         }
3317         cmd_free(h, c);
3318
3319         /* @todo in the future, dynamically allocate RAID map memory */
3320         if (le32_to_cpu(this_device->raid_map.structure_size) >
3321                                 sizeof(this_device->raid_map)) {
3322                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323                 rc = -1;
3324         }
3325         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326         return rc;
3327 out:
3328         cmd_free(h, c);
3329         return rc;
3330 }
3331
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333                 unsigned char scsi3addr[], u16 bmic_device_index,
3334                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335 {
3336         int rc = IO_OK;
3337         struct CommandList *c;
3338         struct ErrorInfo *ei;
3339
3340         c = cmd_alloc(h);
3341
3342         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343                 0, RAID_CTLR_LUNID, TYPE_CMD);
3344         if (rc)
3345                 goto out;
3346
3347         c->Request.CDB[2] = bmic_device_index & 0xff;
3348         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349
3350         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3351                         NO_TIMEOUT);
3352         if (rc)
3353                 goto out;
3354         ei = c->err_info;
3355         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356                 hpsa_scsi_interpret_error(h, c);
3357                 rc = -1;
3358         }
3359 out:
3360         cmd_free(h, c);
3361         return rc;
3362 }
3363
3364 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365         struct bmic_identify_controller *buf, size_t bufsize)
3366 {
3367         int rc = IO_OK;
3368         struct CommandList *c;
3369         struct ErrorInfo *ei;
3370
3371         c = cmd_alloc(h);
3372
3373         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374                 0, RAID_CTLR_LUNID, TYPE_CMD);
3375         if (rc)
3376                 goto out;
3377
3378         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3379                         NO_TIMEOUT);
3380         if (rc)
3381                 goto out;
3382         ei = c->err_info;
3383         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384                 hpsa_scsi_interpret_error(h, c);
3385                 rc = -1;
3386         }
3387 out:
3388         cmd_free(h, c);
3389         return rc;
3390 }
3391
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393                 unsigned char scsi3addr[], u16 bmic_device_index,
3394                 struct bmic_identify_physical_device *buf, size_t bufsize)
3395 {
3396         int rc = IO_OK;
3397         struct CommandList *c;
3398         struct ErrorInfo *ei;
3399
3400         c = cmd_alloc(h);
3401         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402                 0, RAID_CTLR_LUNID, TYPE_CMD);
3403         if (rc)
3404                 goto out;
3405
3406         c->Request.CDB[2] = bmic_device_index & 0xff;
3407         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408
3409         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3410                                                 NO_TIMEOUT);
3411         ei = c->err_info;
3412         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413                 hpsa_scsi_interpret_error(h, c);
3414                 rc = -1;
3415         }
3416 out:
3417         cmd_free(h, c);
3418
3419         return rc;
3420 }
3421
3422 /*
3423  * get enclosure information
3424  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426  * Uses id_physical_device to determine the box_index.
3427  */
3428 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429                         unsigned char *scsi3addr,
3430                         struct ReportExtendedLUNdata *rlep, int rle_index,
3431                         struct hpsa_scsi_dev_t *encl_dev)
3432 {
3433         int rc = -1;
3434         struct CommandList *c = NULL;
3435         struct ErrorInfo *ei = NULL;
3436         struct bmic_sense_storage_box_params *bssbp = NULL;
3437         struct bmic_identify_physical_device *id_phys = NULL;
3438         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439         u16 bmic_device_index = 0;
3440
3441         encl_dev->eli =
3442                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3443
3444         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3445
3446         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447                 rc = IO_OK;
3448                 goto out;
3449         }
3450
3451         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452                 rc = IO_OK;
3453                 goto out;
3454         }
3455
3456         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457         if (!bssbp)
3458                 goto out;
3459
3460         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461         if (!id_phys)
3462                 goto out;
3463
3464         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465                                                 id_phys, sizeof(*id_phys));
3466         if (rc) {
3467                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468                         __func__, encl_dev->external, bmic_device_index);
3469                 goto out;
3470         }
3471
3472         c = cmd_alloc(h);
3473
3474         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476
3477         if (rc)
3478                 goto out;
3479
3480         if (id_phys->phys_connector[1] == 'E')
3481                 c->Request.CDB[5] = id_phys->box_index;
3482         else
3483                 c->Request.CDB[5] = 0;
3484
3485         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3486                                                 NO_TIMEOUT);
3487         if (rc)
3488                 goto out;
3489
3490         ei = c->err_info;
3491         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492                 rc = -1;
3493                 goto out;
3494         }
3495
3496         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499
3500         rc = IO_OK;
3501 out:
3502         kfree(bssbp);
3503         kfree(id_phys);
3504
3505         if (c)
3506                 cmd_free(h, c);
3507
3508         if (rc != IO_OK)
3509                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510                         "Error, could not get enclosure information");
3511 }
3512
3513 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514                                                 unsigned char *scsi3addr)
3515 {
3516         struct ReportExtendedLUNdata *physdev;
3517         u32 nphysicals;
3518         u64 sa = 0;
3519         int i;
3520
3521         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522         if (!physdev)
3523                 return 0;
3524
3525         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527                 kfree(physdev);
3528                 return 0;
3529         }
3530         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531
3532         for (i = 0; i < nphysicals; i++)
3533                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535                         break;
3536                 }
3537
3538         kfree(physdev);
3539
3540         return sa;
3541 }
3542
3543 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544                                         struct hpsa_scsi_dev_t *dev)
3545 {
3546         int rc;
3547         u64 sa = 0;
3548
3549         if (is_hba_lunid(scsi3addr)) {
3550                 struct bmic_sense_subsystem_info *ssi;
3551
3552                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553                 if (!ssi)
3554                         return;
3555
3556                 rc = hpsa_bmic_sense_subsystem_information(h,
3557                                         scsi3addr, 0, ssi, sizeof(*ssi));
3558                 if (rc == 0) {
3559                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560                         h->sas_address = sa;
3561                 }
3562
3563                 kfree(ssi);
3564         } else
3565                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566
3567         dev->sas_address = sa;
3568 }
3569
3570 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571         struct ReportExtendedLUNdata *physdev)
3572 {
3573         u32 nphysicals;
3574         int i;
3575
3576         if (h->discovery_polling)
3577                 return;
3578
3579         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580
3581         for (i = 0; i < nphysicals; i++) {
3582                 if (physdev->LUN[i].device_type ==
3583                         BMIC_DEVICE_TYPE_CONTROLLER
3584                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3585                         dev_info(&h->pdev->dev,
3586                                 "External controller present, activate discovery polling and disable rld caching\n");
3587                         hpsa_disable_rld_caching(h);
3588                         h->discovery_polling = 1;
3589                         break;
3590                 }
3591         }
3592 }
3593
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596         unsigned char scsi3addr[], u8 page)
3597 {
3598         int rc;
3599         int i;
3600         int pages;
3601         unsigned char *buf, bufsize;
3602
3603         buf = kzalloc(256, GFP_KERNEL);
3604         if (!buf)
3605                 return false;
3606
3607         /* Get the size of the page list first */
3608         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610                                 buf, HPSA_VPD_HEADER_SZ);
3611         if (rc != 0)
3612                 goto exit_unsupported;
3613         pages = buf[3];
3614         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3616         else
3617                 bufsize = 255;
3618
3619         /* Get the whole VPD page list */
3620         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622                                 buf, bufsize);
3623         if (rc != 0)
3624                 goto exit_unsupported;
3625
3626         pages = buf[3];
3627         for (i = 1; i <= pages; i++)
3628                 if (buf[3 + i] == page)
3629                         goto exit_supported;
3630 exit_unsupported:
3631         kfree(buf);
3632         return false;
3633 exit_supported:
3634         kfree(buf);
3635         return true;
3636 }
3637
3638 /*
3639  * Called during a scan operation.
3640  * Sets ioaccel status on the new device list, not the existing device list
3641  *
3642  * The device list used during I/O will be updated later in
3643  * adjust_hpsa_scsi_table.
3644  */
3645 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647 {
3648         int rc;
3649         unsigned char *buf;
3650         u8 ioaccel_status;
3651
3652         this_device->offload_config = 0;
3653         this_device->offload_enabled = 0;
3654         this_device->offload_to_be_enabled = 0;
3655
3656         buf = kzalloc(64, GFP_KERNEL);
3657         if (!buf)
3658                 return;
3659         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660                 goto out;
3661         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663         if (rc != 0)
3664                 goto out;
3665
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670         this_device->offload_config =
3671                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672         if (this_device->offload_config) {
3673                 this_device->offload_to_be_enabled =
3674                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676                         this_device->offload_to_be_enabled = 0;
3677         }
3678
3679 out:
3680         kfree(buf);
3681         return;
3682 }
3683
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686         unsigned char *device_id, int index, int buflen)
3687 {
3688         int rc;
3689         unsigned char *buf;
3690
3691         /* Does controller have VPD for device id? */
3692         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693                 return 1; /* not supported */
3694
3695         buf = kzalloc(64, GFP_KERNEL);
3696         if (!buf)
3697                 return -ENOMEM;
3698
3699         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701         if (rc == 0) {
3702                 if (buflen > 16)
3703                         buflen = 16;
3704                 memcpy(device_id, &buf[8], buflen);
3705         }
3706
3707         kfree(buf);
3708
3709         return rc; /*0 - got id,  otherwise, didn't */
3710 }
3711
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713                 void *buf, int bufsize,
3714                 int extended_response)
3715 {
3716         int rc = IO_OK;
3717         struct CommandList *c;
3718         unsigned char scsi3addr[8];
3719         struct ErrorInfo *ei;
3720
3721         c = cmd_alloc(h);
3722
3723         /* address the controller */
3724         memset(scsi3addr, 0, sizeof(scsi3addr));
3725         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727                 rc = -EAGAIN;
3728                 goto out;
3729         }
3730         if (extended_response)
3731                 c->Request.CDB[1] = extended_response;
3732         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3733                         NO_TIMEOUT);
3734         if (rc)
3735                 goto out;
3736         ei = c->err_info;
3737         if (ei->CommandStatus != 0 &&
3738             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739                 hpsa_scsi_interpret_error(h, c);
3740                 rc = -EIO;
3741         } else {
3742                 struct ReportLUNdata *rld = buf;
3743
3744                 if (rld->extended_response_flag != extended_response) {
3745                         if (!h->legacy_board) {
3746                                 dev_err(&h->pdev->dev,
3747                                         "report luns requested format %u, got %u\n",
3748                                         extended_response,
3749                                         rld->extended_response_flag);
3750                                 rc = -EINVAL;
3751                         } else
3752                                 rc = -EOPNOTSUPP;
3753                 }
3754         }
3755 out:
3756         cmd_free(h, c);
3757         return rc;
3758 }
3759
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761                 struct ReportExtendedLUNdata *buf, int bufsize)
3762 {
3763         int rc;
3764         struct ReportLUNdata *lbuf;
3765
3766         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767                                       HPSA_REPORT_PHYS_EXTENDED);
3768         if (!rc || rc != -EOPNOTSUPP)
3769                 return rc;
3770
3771         /* REPORT PHYS EXTENDED is not supported */
3772         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773         if (!lbuf)
3774                 return -ENOMEM;
3775
3776         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777         if (!rc) {
3778                 int i;
3779                 u32 nphys;
3780
3781                 /* Copy ReportLUNdata header */
3782                 memcpy(buf, lbuf, 8);
3783                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784                 for (i = 0; i < nphys; i++)
3785                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786         }
3787         kfree(lbuf);
3788         return rc;
3789 }
3790
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792                 struct ReportLUNdata *buf, int bufsize)
3793 {
3794         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795 }
3796
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798         int bus, int target, int lun)
3799 {
3800         device->bus = bus;
3801         device->target = target;
3802         device->lun = lun;
3803 }
3804
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info *h,
3807                                         unsigned char scsi3addr[])
3808 {
3809         int rc;
3810         int status;
3811         int size;
3812         unsigned char *buf;
3813
3814         buf = kzalloc(64, GFP_KERNEL);
3815         if (!buf)
3816                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817
3818         /* Does controller have VPD for logical volume status? */
3819         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820                 goto exit_failed;
3821
3822         /* Get the size of the VPD return buffer */
3823         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824                                         buf, HPSA_VPD_HEADER_SZ);
3825         if (rc != 0)
3826                 goto exit_failed;
3827         size = buf[3];
3828
3829         /* Now get the whole VPD buffer */
3830         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831                                         buf, size + HPSA_VPD_HEADER_SZ);
3832         if (rc != 0)
3833                 goto exit_failed;
3834         status = buf[4]; /* status byte */
3835
3836         kfree(buf);
3837         return status;
3838 exit_failed:
3839         kfree(buf);
3840         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 }
3842
3843 /* Determine offline status of a volume.
3844  * Return either:
3845  *  0 (not offline)
3846  *  0xff (offline for unknown reasons)
3847  *  # (integer code indicating one of several NOT READY states
3848  *     describing why a volume is to be kept offline)
3849  */
3850 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851                                         unsigned char scsi3addr[])
3852 {
3853         struct CommandList *c;
3854         unsigned char *sense;
3855         u8 sense_key, asc, ascq;
3856         int sense_len;
3857         int rc, ldstat = 0;
3858         u16 cmd_status;
3859         u8 scsi_status;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863
3864         c = cmd_alloc(h);
3865
3866         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868                                         NO_TIMEOUT);
3869         if (rc) {
3870                 cmd_free(h, c);
3871                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872         }
3873         sense = c->err_info->SenseInfo;
3874         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875                 sense_len = sizeof(c->err_info->SenseInfo);
3876         else
3877                 sense_len = c->err_info->SenseLen;
3878         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879         cmd_status = c->err_info->CommandStatus;
3880         scsi_status = c->err_info->ScsiStatus;
3881         cmd_free(h, c);
3882
3883         /* Determine the reason for not ready state */
3884         ldstat = hpsa_get_volume_status(h, scsi3addr);
3885
3886         /* Keep volume offline in certain cases: */
3887         switch (ldstat) {
3888         case HPSA_LV_FAILED:
3889         case HPSA_LV_UNDERGOING_ERASE:
3890         case HPSA_LV_NOT_AVAILABLE:
3891         case HPSA_LV_UNDERGOING_RPI:
3892         case HPSA_LV_PENDING_RPI:
3893         case HPSA_LV_ENCRYPTED_NO_KEY:
3894         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895         case HPSA_LV_UNDERGOING_ENCRYPTION:
3896         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898                 return ldstat;
3899         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900                 /* If VPD status page isn't available,
3901                  * use ASC/ASCQ to determine state
3902                  */
3903                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905                         return ldstat;
3906                 break;
3907         default:
3908                 break;
3909         }
3910         return HPSA_LV_OK;
3911 }
3912
3913 static int hpsa_update_device_info(struct ctlr_info *h,
3914         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915         unsigned char *is_OBDR_device)
3916 {
3917
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922
3923         unsigned char *inq_buff;
3924         unsigned char *obdr_sig;
3925         int rc = 0;
3926
3927         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928         if (!inq_buff) {
3929                 rc = -ENOMEM;
3930                 goto bail_out;
3931         }
3932
3933         /* Do an inquiry to the device to see what it is. */
3934         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936                 dev_err(&h->pdev->dev,
3937                         "%s: inquiry failed, device will be skipped.\n",
3938                         __func__);
3939                 rc = HPSA_INQUIRY_FAILED;
3940                 goto bail_out;
3941         }
3942
3943         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945
3946         this_device->devtype = (inq_buff[0] & 0x1f);
3947         memcpy(this_device->scsi3addr, scsi3addr, 8);
3948         memcpy(this_device->vendor, &inq_buff[8],
3949                 sizeof(this_device->vendor));
3950         memcpy(this_device->model, &inq_buff[16],
3951                 sizeof(this_device->model));
3952         this_device->rev = inq_buff[2];
3953         memset(this_device->device_id, 0,
3954                 sizeof(this_device->device_id));
3955         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956                 sizeof(this_device->device_id)) < 0) {
3957                 dev_err(&h->pdev->dev,
3958                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3959                         h->ctlr, __func__,
3960                         h->scsi_host->host_no,
3961                         this_device->bus, this_device->target,
3962                         this_device->lun,
3963                         scsi_device_type(this_device->devtype),
3964                         this_device->model);
3965                 rc = HPSA_LV_FAILED;
3966                 goto bail_out;
3967         }
3968
3969         if ((this_device->devtype == TYPE_DISK ||
3970                 this_device->devtype == TYPE_ZBC) &&
3971                 is_logical_dev_addr_mode(scsi3addr)) {
3972                 unsigned char volume_offline;
3973
3974                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3975                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3976                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3977                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3978                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3979                     h->legacy_board) {
3980                         /*
3981                          * Legacy boards might not support volume status
3982                          */
3983                         dev_info(&h->pdev->dev,
3984                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3985                                  this_device->target, this_device->lun);
3986                         volume_offline = 0;
3987                 }
3988                 this_device->volume_offline = volume_offline;
3989                 if (volume_offline == HPSA_LV_FAILED) {
3990                         rc = HPSA_LV_FAILED;
3991                         dev_err(&h->pdev->dev,
3992                                 "%s: LV failed, device will be skipped.\n",
3993                                 __func__);
3994                         goto bail_out;
3995                 }
3996         } else {
3997                 this_device->raid_level = RAID_UNKNOWN;
3998                 this_device->offload_config = 0;
3999                 this_device->offload_enabled = 0;
4000                 this_device->offload_to_be_enabled = 0;
4001                 this_device->hba_ioaccel_enabled = 0;
4002                 this_device->volume_offline = 0;
4003                 this_device->queue_depth = h->nr_cmds;
4004         }
4005
4006         if (this_device->external)
4007                 this_device->queue_depth = EXTERNAL_QD;
4008
4009         if (is_OBDR_device) {
4010                 /* See if this is a One-Button-Disaster-Recovery device
4011                  * by looking for "$DR-10" at offset 43 in inquiry data.
4012                  */
4013                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4014                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4015                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4016                                                 OBDR_SIG_LEN) == 0);
4017         }
4018         kfree(inq_buff);
4019         return 0;
4020
4021 bail_out:
4022         kfree(inq_buff);
4023         return rc;
4024 }
4025
4026 /*
4027  * Helper function to assign bus, target, lun mapping of devices.
4028  * Logical drive target and lun are assigned at this time, but
4029  * physical device lun and target assignment are deferred (assigned
4030  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4031 */
4032 static void figure_bus_target_lun(struct ctlr_info *h,
4033         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4034 {
4035         u32 lunid = get_unaligned_le32(lunaddrbytes);
4036
4037         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4038                 /* physical device, target and lun filled in later */
4039                 if (is_hba_lunid(lunaddrbytes)) {
4040                         int bus = HPSA_HBA_BUS;
4041
4042                         if (!device->rev)
4043                                 bus = HPSA_LEGACY_HBA_BUS;
4044                         hpsa_set_bus_target_lun(device,
4045                                         bus, 0, lunid & 0x3fff);
4046                 } else
4047                         /* defer target, lun assignment for physical devices */
4048                         hpsa_set_bus_target_lun(device,
4049                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4050                 return;
4051         }
4052         /* It's a logical device */
4053         if (device->external) {
4054                 hpsa_set_bus_target_lun(device,
4055                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4056                         lunid & 0x00ff);
4057                 return;
4058         }
4059         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4060                                 0, lunid & 0x3fff);
4061 }
4062
4063 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4064         int i, int nphysicals, int nlocal_logicals)
4065 {
4066         /* In report logicals, local logicals are listed first,
4067         * then any externals.
4068         */
4069         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4070
4071         if (i == raid_ctlr_position)
4072                 return 0;
4073
4074         if (i < logicals_start)
4075                 return 0;
4076
4077         /* i is in logicals range, but still within local logicals */
4078         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4079                 return 0;
4080
4081         return 1; /* it's an external lun */
4082 }
4083
4084 /*
4085  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4086  * logdev.  The number of luns in physdev and logdev are returned in
4087  * *nphysicals and *nlogicals, respectively.
4088  * Returns 0 on success, -1 otherwise.
4089  */
4090 static int hpsa_gather_lun_info(struct ctlr_info *h,
4091         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4092         struct ReportLUNdata *logdev, u32 *nlogicals)
4093 {
4094         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4095                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4096                 return -1;
4097         }
4098         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4099         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4100                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4101                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4102                 *nphysicals = HPSA_MAX_PHYS_LUN;
4103         }
4104         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4105                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4106                 return -1;
4107         }
4108         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4109         /* Reject Logicals in excess of our max capability. */
4110         if (*nlogicals > HPSA_MAX_LUN) {
4111                 dev_warn(&h->pdev->dev,
4112                         "maximum logical LUNs (%d) exceeded.  "
4113                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4114                         *nlogicals - HPSA_MAX_LUN);
4115                 *nlogicals = HPSA_MAX_LUN;
4116         }
4117         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4118                 dev_warn(&h->pdev->dev,
4119                         "maximum logical + physical LUNs (%d) exceeded. "
4120                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4121                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4122                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4123         }
4124         return 0;
4125 }
4126
4127 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4128         int i, int nphysicals, int nlogicals,
4129         struct ReportExtendedLUNdata *physdev_list,
4130         struct ReportLUNdata *logdev_list)
4131 {
4132         /* Helper function, figure out where the LUN ID info is coming from
4133          * given index i, lists of physical and logical devices, where in
4134          * the list the raid controller is supposed to appear (first or last)
4135          */
4136
4137         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4138         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4139
4140         if (i == raid_ctlr_position)
4141                 return RAID_CTLR_LUNID;
4142
4143         if (i < logicals_start)
4144                 return &physdev_list->LUN[i -
4145                                 (raid_ctlr_position == 0)].lunid[0];
4146
4147         if (i < last_device)
4148                 return &logdev_list->LUN[i - nphysicals -
4149                         (raid_ctlr_position == 0)][0];
4150         BUG();
4151         return NULL;
4152 }
4153
4154 /* get physical drive ioaccel handle and queue depth */
4155 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4156                 struct hpsa_scsi_dev_t *dev,
4157                 struct ReportExtendedLUNdata *rlep, int rle_index,
4158                 struct bmic_identify_physical_device *id_phys)
4159 {
4160         int rc;
4161         struct ext_report_lun_entry *rle;
4162
4163         rle = &rlep->LUN[rle_index];
4164
4165         dev->ioaccel_handle = rle->ioaccel_handle;
4166         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4167                 dev->hba_ioaccel_enabled = 1;
4168         memset(id_phys, 0, sizeof(*id_phys));
4169         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4170                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4171                         sizeof(*id_phys));
4172         if (!rc)
4173                 /* Reserve space for FW operations */
4174 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4175 #define DRIVE_QUEUE_DEPTH 7
4176                 dev->queue_depth =
4177                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4178                                 DRIVE_CMDS_RESERVED_FOR_FW;
4179         else
4180                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4181 }
4182
4183 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4184         struct ReportExtendedLUNdata *rlep, int rle_index,
4185         struct bmic_identify_physical_device *id_phys)
4186 {
4187         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4188
4189         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4190                 this_device->hba_ioaccel_enabled = 1;
4191
4192         memcpy(&this_device->active_path_index,
4193                 &id_phys->active_path_number,
4194                 sizeof(this_device->active_path_index));
4195         memcpy(&this_device->path_map,
4196                 &id_phys->redundant_path_present_map,
4197                 sizeof(this_device->path_map));
4198         memcpy(&this_device->box,
4199                 &id_phys->alternate_paths_phys_box_on_port,
4200                 sizeof(this_device->box));
4201         memcpy(&this_device->phys_connector,
4202                 &id_phys->alternate_paths_phys_connector,
4203                 sizeof(this_device->phys_connector));
4204         memcpy(&this_device->bay,
4205                 &id_phys->phys_bay_in_box,
4206                 sizeof(this_device->bay));
4207 }
4208
4209 /* get number of local logical disks. */
4210 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4211         struct bmic_identify_controller *id_ctlr,
4212         u32 *nlocals)
4213 {
4214         int rc;
4215
4216         if (!id_ctlr) {
4217                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4218                         __func__);
4219                 return -ENOMEM;
4220         }
4221         memset(id_ctlr, 0, sizeof(*id_ctlr));
4222         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4223         if (!rc)
4224                 if (id_ctlr->configured_logical_drive_count < 255)
4225                         *nlocals = id_ctlr->configured_logical_drive_count;
4226                 else
4227                         *nlocals = le16_to_cpu(
4228                                         id_ctlr->extended_logical_unit_count);
4229         else
4230                 *nlocals = -1;
4231         return rc;
4232 }
4233
4234 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4235 {
4236         struct bmic_identify_physical_device *id_phys;
4237         bool is_spare = false;
4238         int rc;
4239
4240         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4241         if (!id_phys)
4242                 return false;
4243
4244         rc = hpsa_bmic_id_physical_device(h,
4245                                         lunaddrbytes,
4246                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4247                                         id_phys, sizeof(*id_phys));
4248         if (rc == 0)
4249                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4250
4251         kfree(id_phys);
4252         return is_spare;
4253 }
4254
4255 #define RPL_DEV_FLAG_NON_DISK                           0x1
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4257 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4258
4259 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4260
4261 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4262                                 struct ext_report_lun_entry *rle)
4263 {
4264         u8 device_flags;
4265         u8 device_type;
4266
4267         if (!MASKED_DEVICE(lunaddrbytes))
4268                 return false;
4269
4270         device_flags = rle->device_flags;
4271         device_type = rle->device_type;
4272
4273         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4274                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4275                         return false;
4276                 return true;
4277         }
4278
4279         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4280                 return false;
4281
4282         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4283                 return false;
4284
4285         /*
4286          * Spares may be spun down, we do not want to
4287          * do an Inquiry to a RAID set spare drive as
4288          * that would have them spun up, that is a
4289          * performance hit because I/O to the RAID device
4290          * stops while the spin up occurs which can take
4291          * over 50 seconds.
4292          */
4293         if (hpsa_is_disk_spare(h, lunaddrbytes))
4294                 return true;
4295
4296         return false;
4297 }
4298
4299 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4300 {
4301         /* the idea here is we could get notified
4302          * that some devices have changed, so we do a report
4303          * physical luns and report logical luns cmd, and adjust
4304          * our list of devices accordingly.
4305          *
4306          * The scsi3addr's of devices won't change so long as the
4307          * adapter is not reset.  That means we can rescan and
4308          * tell which devices we already know about, vs. new
4309          * devices, vs.  disappearing devices.
4310          */
4311         struct ReportExtendedLUNdata *physdev_list = NULL;
4312         struct ReportLUNdata *logdev_list = NULL;
4313         struct bmic_identify_physical_device *id_phys = NULL;
4314         struct bmic_identify_controller *id_ctlr = NULL;
4315         u32 nphysicals = 0;
4316         u32 nlogicals = 0;
4317         u32 nlocal_logicals = 0;
4318         u32 ndev_allocated = 0;
4319         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4320         int ncurrent = 0;
4321         int i, n_ext_target_devs, ndevs_to_allocate;
4322         int raid_ctlr_position;
4323         bool physical_device;
4324         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4325
4326         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4327         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4328         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4329         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4330         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4331         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4332
4333         if (!currentsd || !physdev_list || !logdev_list ||
4334                 !tmpdevice || !id_phys || !id_ctlr) {
4335                 dev_err(&h->pdev->dev, "out of memory\n");
4336                 goto out;
4337         }
4338         memset(lunzerobits, 0, sizeof(lunzerobits));
4339
4340         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4341
4342         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4343                         logdev_list, &nlogicals)) {
4344                 h->drv_req_rescan = 1;
4345                 goto out;
4346         }
4347
4348         /* Set number of local logicals (non PTRAID) */
4349         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4350                 dev_warn(&h->pdev->dev,
4351                         "%s: Can't determine number of local logical devices.\n",
4352                         __func__);
4353         }
4354
4355         /* We might see up to the maximum number of logical and physical disks
4356          * plus external target devices, and a device for the local RAID
4357          * controller.
4358          */
4359         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4360
4361         hpsa_ext_ctrl_present(h, physdev_list);
4362
4363         /* Allocate the per device structures */
4364         for (i = 0; i < ndevs_to_allocate; i++) {
4365                 if (i >= HPSA_MAX_DEVICES) {
4366                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4367                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4368                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4369                         break;
4370                 }
4371
4372                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4373                 if (!currentsd[i]) {
4374                         h->drv_req_rescan = 1;
4375                         goto out;
4376                 }
4377                 ndev_allocated++;
4378         }
4379
4380         if (is_scsi_rev_5(h))
4381                 raid_ctlr_position = 0;
4382         else
4383                 raid_ctlr_position = nphysicals + nlogicals;
4384
4385         /* adjust our table of devices */
4386         n_ext_target_devs = 0;
4387         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4388                 u8 *lunaddrbytes, is_OBDR = 0;
4389                 int rc = 0;
4390                 int phys_dev_index = i - (raid_ctlr_position == 0);
4391                 bool skip_device = false;
4392
4393                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4394
4395                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4396
4397                 /* Figure out where the LUN ID info is coming from */
4398                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4399                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4400
4401                 /* Determine if this is a lun from an external target array */
4402                 tmpdevice->external =
4403                         figure_external_status(h, raid_ctlr_position, i,
4404                                                 nphysicals, nlocal_logicals);
4405
4406                 /*
4407                  * Skip over some devices such as a spare.
4408                  */
4409                 if (!tmpdevice->external && physical_device) {
4410                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4411                                         &physdev_list->LUN[phys_dev_index]);
4412                         if (skip_device)
4413                                 continue;
4414                 }
4415
4416                 /* Get device type, vendor, model, device id, raid_map */
4417                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4418                                                         &is_OBDR);
4419                 if (rc == -ENOMEM) {
4420                         dev_warn(&h->pdev->dev,
4421                                 "Out of memory, rescan deferred.\n");
4422                         h->drv_req_rescan = 1;
4423                         goto out;
4424                 }
4425                 if (rc) {
4426                         h->drv_req_rescan = 1;
4427                         continue;
4428                 }
4429
4430                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4431                 this_device = currentsd[ncurrent];
4432
4433                 *this_device = *tmpdevice;
4434                 this_device->physical_device = physical_device;
4435
4436                 /*
4437                  * Expose all devices except for physical devices that
4438                  * are masked.
4439                  */
4440                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4441                         this_device->expose_device = 0;
4442                 else
4443                         this_device->expose_device = 1;
4444
4445
4446                 /*
4447                  * Get the SAS address for physical devices that are exposed.
4448                  */
4449                 if (this_device->physical_device && this_device->expose_device)
4450                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4451
4452                 switch (this_device->devtype) {
4453                 case TYPE_ROM:
4454                         /* We don't *really* support actual CD-ROM devices,
4455                          * just "One Button Disaster Recovery" tape drive
4456                          * which temporarily pretends to be a CD-ROM drive.
4457                          * So we check that the device is really an OBDR tape
4458                          * device by checking for "$DR-10" in bytes 43-48 of
4459                          * the inquiry data.
4460                          */
4461                         if (is_OBDR)
4462                                 ncurrent++;
4463                         break;
4464                 case TYPE_DISK:
4465                 case TYPE_ZBC:
4466                         if (this_device->physical_device) {
4467                                 /* The disk is in HBA mode. */
4468                                 /* Never use RAID mapper in HBA mode. */
4469                                 this_device->offload_enabled = 0;
4470                                 hpsa_get_ioaccel_drive_info(h, this_device,
4471                                         physdev_list, phys_dev_index, id_phys);
4472                                 hpsa_get_path_info(this_device,
4473                                         physdev_list, phys_dev_index, id_phys);
4474                         }
4475                         ncurrent++;
4476                         break;
4477                 case TYPE_TAPE:
4478                 case TYPE_MEDIUM_CHANGER:
4479                         ncurrent++;
4480                         break;
4481                 case TYPE_ENCLOSURE:
4482                         if (!this_device->external)
4483                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4484                                                 physdev_list, phys_dev_index,
4485                                                 this_device);
4486                         ncurrent++;
4487                         break;
4488                 case TYPE_RAID:
4489                         /* Only present the Smartarray HBA as a RAID controller.
4490                          * If it's a RAID controller other than the HBA itself
4491                          * (an external RAID controller, MSA500 or similar)
4492                          * don't present it.
4493                          */
4494                         if (!is_hba_lunid(lunaddrbytes))
4495                                 break;
4496                         ncurrent++;
4497                         break;
4498                 default:
4499                         break;
4500                 }
4501                 if (ncurrent >= HPSA_MAX_DEVICES)
4502                         break;
4503         }
4504
4505         if (h->sas_host == NULL) {
4506                 int rc = 0;
4507
4508                 rc = hpsa_add_sas_host(h);
4509                 if (rc) {
4510                         dev_warn(&h->pdev->dev,
4511                                 "Could not add sas host %d\n", rc);
4512                         goto out;
4513                 }
4514         }
4515
4516         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4517 out:
4518         kfree(tmpdevice);
4519         for (i = 0; i < ndev_allocated; i++)
4520                 kfree(currentsd[i]);
4521         kfree(currentsd);
4522         kfree(physdev_list);
4523         kfree(logdev_list);
4524         kfree(id_ctlr);
4525         kfree(id_phys);
4526 }
4527
4528 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4529                                    struct scatterlist *sg)
4530 {
4531         u64 addr64 = (u64) sg_dma_address(sg);
4532         unsigned int len = sg_dma_len(sg);
4533
4534         desc->Addr = cpu_to_le64(addr64);
4535         desc->Len = cpu_to_le32(len);
4536         desc->Ext = 0;
4537 }
4538
4539 /*
4540  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4541  * dma mapping  and fills in the scatter gather entries of the
4542  * hpsa command, cp.
4543  */
4544 static int hpsa_scatter_gather(struct ctlr_info *h,
4545                 struct CommandList *cp,
4546                 struct scsi_cmnd *cmd)
4547 {
4548         struct scatterlist *sg;
4549         int use_sg, i, sg_limit, chained, last_sg;
4550         struct SGDescriptor *curr_sg;
4551
4552         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4553
4554         use_sg = scsi_dma_map(cmd);
4555         if (use_sg < 0)
4556                 return use_sg;
4557
4558         if (!use_sg)
4559                 goto sglist_finished;
4560
4561         /*
4562          * If the number of entries is greater than the max for a single list,
4563          * then we have a chained list; we will set up all but one entry in the
4564          * first list (the last entry is saved for link information);
4565          * otherwise, we don't have a chained list and we'll set up at each of
4566          * the entries in the one list.
4567          */
4568         curr_sg = cp->SG;
4569         chained = use_sg > h->max_cmd_sg_entries;
4570         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4571         last_sg = scsi_sg_count(cmd) - 1;
4572         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4573                 hpsa_set_sg_descriptor(curr_sg, sg);
4574                 curr_sg++;
4575         }
4576
4577         if (chained) {
4578                 /*
4579                  * Continue with the chained list.  Set curr_sg to the chained
4580                  * list.  Modify the limit to the total count less the entries
4581                  * we've already set up.  Resume the scan at the list entry
4582                  * where the previous loop left off.
4583                  */
4584                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4585                 sg_limit = use_sg - sg_limit;
4586                 for_each_sg(sg, sg, sg_limit, i) {
4587                         hpsa_set_sg_descriptor(curr_sg, sg);
4588                         curr_sg++;
4589                 }
4590         }
4591
4592         /* Back the pointer up to the last entry and mark it as "last". */
4593         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4594
4595         if (use_sg + chained > h->maxSG)
4596                 h->maxSG = use_sg + chained;
4597
4598         if (chained) {
4599                 cp->Header.SGList = h->max_cmd_sg_entries;
4600                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4601                 if (hpsa_map_sg_chain_block(h, cp)) {
4602                         scsi_dma_unmap(cmd);
4603                         return -1;
4604                 }
4605                 return 0;
4606         }
4607
4608 sglist_finished:
4609
4610         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4611         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4612         return 0;
4613 }
4614
4615 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4616                                                 u8 *cdb, int cdb_len,
4617                                                 const char *func)
4618 {
4619         dev_warn(&h->pdev->dev,
4620                  "%s: Blocking zero-length request: CDB:%*phN\n",
4621                  func, cdb_len, cdb);
4622 }
4623
4624 #define IO_ACCEL_INELIGIBLE 1
4625 /* zero-length transfers trigger hardware errors. */
4626 static bool is_zero_length_transfer(u8 *cdb)
4627 {
4628         u32 block_cnt;
4629
4630         /* Block zero-length transfer sizes on certain commands. */
4631         switch (cdb[0]) {
4632         case READ_10:
4633         case WRITE_10:
4634         case VERIFY:            /* 0x2F */
4635         case WRITE_VERIFY:      /* 0x2E */
4636                 block_cnt = get_unaligned_be16(&cdb[7]);
4637                 break;
4638         case READ_12:
4639         case WRITE_12:
4640         case VERIFY_12: /* 0xAF */
4641         case WRITE_VERIFY_12:   /* 0xAE */
4642                 block_cnt = get_unaligned_be32(&cdb[6]);
4643                 break;
4644         case READ_16:
4645         case WRITE_16:
4646         case VERIFY_16:         /* 0x8F */
4647                 block_cnt = get_unaligned_be32(&cdb[10]);
4648                 break;
4649         default:
4650                 return false;
4651         }
4652
4653         return block_cnt == 0;
4654 }
4655
4656 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4657 {
4658         int is_write = 0;
4659         u32 block;
4660         u32 block_cnt;
4661
4662         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4663         switch (cdb[0]) {
4664         case WRITE_6:
4665         case WRITE_12:
4666                 is_write = 1;
4667                 /* fall through */
4668         case READ_6:
4669         case READ_12:
4670                 if (*cdb_len == 6) {
4671                         block = (((cdb[1] & 0x1F) << 16) |
4672                                 (cdb[2] << 8) |
4673                                 cdb[3]);
4674                         block_cnt = cdb[4];
4675                         if (block_cnt == 0)
4676                                 block_cnt = 256;
4677                 } else {
4678                         BUG_ON(*cdb_len != 12);
4679                         block = get_unaligned_be32(&cdb[2]);
4680                         block_cnt = get_unaligned_be32(&cdb[6]);
4681                 }
4682                 if (block_cnt > 0xffff)
4683                         return IO_ACCEL_INELIGIBLE;
4684
4685                 cdb[0] = is_write ? WRITE_10 : READ_10;
4686                 cdb[1] = 0;
4687                 cdb[2] = (u8) (block >> 24);
4688                 cdb[3] = (u8) (block >> 16);
4689                 cdb[4] = (u8) (block >> 8);
4690                 cdb[5] = (u8) (block);
4691                 cdb[6] = 0;
4692                 cdb[7] = (u8) (block_cnt >> 8);
4693                 cdb[8] = (u8) (block_cnt);
4694                 cdb[9] = 0;
4695                 *cdb_len = 10;
4696                 break;
4697         }
4698         return 0;
4699 }
4700
4701 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4702         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4703         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4704 {
4705         struct scsi_cmnd *cmd = c->scsi_cmd;
4706         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4707         unsigned int len;
4708         unsigned int total_len = 0;
4709         struct scatterlist *sg;
4710         u64 addr64;
4711         int use_sg, i;
4712         struct SGDescriptor *curr_sg;
4713         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4714
4715         /* TODO: implement chaining support */
4716         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4717                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4718                 return IO_ACCEL_INELIGIBLE;
4719         }
4720
4721         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4722
4723         if (is_zero_length_transfer(cdb)) {
4724                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4725                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4726                 return IO_ACCEL_INELIGIBLE;
4727         }
4728
4729         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4730                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4731                 return IO_ACCEL_INELIGIBLE;
4732         }
4733
4734         c->cmd_type = CMD_IOACCEL1;
4735
4736         /* Adjust the DMA address to point to the accelerated command buffer */
4737         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4738                                 (c->cmdindex * sizeof(*cp));
4739         BUG_ON(c->busaddr & 0x0000007F);
4740
4741         use_sg = scsi_dma_map(cmd);
4742         if (use_sg < 0) {
4743                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4744                 return use_sg;
4745         }
4746
4747         if (use_sg) {
4748                 curr_sg = cp->SG;
4749                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4750                         addr64 = (u64) sg_dma_address(sg);
4751                         len  = sg_dma_len(sg);
4752                         total_len += len;
4753                         curr_sg->Addr = cpu_to_le64(addr64);
4754                         curr_sg->Len = cpu_to_le32(len);
4755                         curr_sg->Ext = cpu_to_le32(0);
4756                         curr_sg++;
4757                 }
4758                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4759
4760                 switch (cmd->sc_data_direction) {
4761                 case DMA_TO_DEVICE:
4762                         control |= IOACCEL1_CONTROL_DATA_OUT;
4763                         break;
4764                 case DMA_FROM_DEVICE:
4765                         control |= IOACCEL1_CONTROL_DATA_IN;
4766                         break;
4767                 case DMA_NONE:
4768                         control |= IOACCEL1_CONTROL_NODATAXFER;
4769                         break;
4770                 default:
4771                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4772                         cmd->sc_data_direction);
4773                         BUG();
4774                         break;
4775                 }
4776         } else {
4777                 control |= IOACCEL1_CONTROL_NODATAXFER;
4778         }
4779
4780         c->Header.SGList = use_sg;
4781         /* Fill out the command structure to submit */
4782         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4783         cp->transfer_len = cpu_to_le32(total_len);
4784         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4785                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4786         cp->control = cpu_to_le32(control);
4787         memcpy(cp->CDB, cdb, cdb_len);
4788         memcpy(cp->CISS_LUN, scsi3addr, 8);
4789         /* Tag was already set at init time. */
4790         enqueue_cmd_and_start_io(h, c);
4791         return 0;
4792 }
4793
4794 /*
4795  * Queue a command directly to a device behind the controller using the
4796  * I/O accelerator path.
4797  */
4798 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4799         struct CommandList *c)
4800 {
4801         struct scsi_cmnd *cmd = c->scsi_cmd;
4802         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4803
4804         if (!dev)
4805                 return -1;
4806
4807         c->phys_disk = dev;
4808
4809         if (dev->in_reset)
4810                 return -1;
4811
4812         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4813                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4814 }
4815
4816 /*
4817  * Set encryption parameters for the ioaccel2 request
4818  */
4819 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4820         struct CommandList *c, struct io_accel2_cmd *cp)
4821 {
4822         struct scsi_cmnd *cmd = c->scsi_cmd;
4823         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4824         struct raid_map_data *map = &dev->raid_map;
4825         u64 first_block;
4826
4827         /* Are we doing encryption on this device */
4828         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4829                 return;
4830         /* Set the data encryption key index. */
4831         cp->dekindex = map->dekindex;
4832
4833         /* Set the encryption enable flag, encoded into direction field. */
4834         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4835
4836         /* Set encryption tweak values based on logical block address
4837          * If block size is 512, tweak value is LBA.
4838          * For other block sizes, tweak is (LBA * block size)/ 512)
4839          */
4840         switch (cmd->cmnd[0]) {
4841         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4842         case READ_6:
4843         case WRITE_6:
4844                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4845                                 (cmd->cmnd[2] << 8) |
4846                                 cmd->cmnd[3]);
4847                 break;
4848         case WRITE_10:
4849         case READ_10:
4850         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4851         case WRITE_12:
4852         case READ_12:
4853                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4854                 break;
4855         case WRITE_16:
4856         case READ_16:
4857                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4858                 break;
4859         default:
4860                 dev_err(&h->pdev->dev,
4861                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4862                         __func__, cmd->cmnd[0]);
4863                 BUG();
4864                 break;
4865         }
4866
4867         if (le32_to_cpu(map->volume_blk_size) != 512)
4868                 first_block = first_block *
4869                                 le32_to_cpu(map->volume_blk_size)/512;
4870
4871         cp->tweak_lower = cpu_to_le32(first_block);
4872         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4873 }
4874
4875 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4876         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4877         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4878 {
4879         struct scsi_cmnd *cmd = c->scsi_cmd;
4880         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4881         struct ioaccel2_sg_element *curr_sg;
4882         int use_sg, i;
4883         struct scatterlist *sg;
4884         u64 addr64;
4885         u32 len;
4886         u32 total_len = 0;
4887
4888         if (!cmd->device)
4889                 return -1;
4890
4891         if (!cmd->device->hostdata)
4892                 return -1;
4893
4894         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4895
4896         if (is_zero_length_transfer(cdb)) {
4897                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4898                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4899                 return IO_ACCEL_INELIGIBLE;
4900         }
4901
4902         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4903                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4904                 return IO_ACCEL_INELIGIBLE;
4905         }
4906
4907         c->cmd_type = CMD_IOACCEL2;
4908         /* Adjust the DMA address to point to the accelerated command buffer */
4909         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4910                                 (c->cmdindex * sizeof(*cp));
4911         BUG_ON(c->busaddr & 0x0000007F);
4912
4913         memset(cp, 0, sizeof(*cp));
4914         cp->IU_type = IOACCEL2_IU_TYPE;
4915
4916         use_sg = scsi_dma_map(cmd);
4917         if (use_sg < 0) {
4918                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4919                 return use_sg;
4920         }
4921
4922         if (use_sg) {
4923                 curr_sg = cp->sg;
4924                 if (use_sg > h->ioaccel_maxsg) {
4925                         addr64 = le64_to_cpu(
4926                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4927                         curr_sg->address = cpu_to_le64(addr64);
4928                         curr_sg->length = 0;
4929                         curr_sg->reserved[0] = 0;
4930                         curr_sg->reserved[1] = 0;
4931                         curr_sg->reserved[2] = 0;
4932                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4933
4934                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4935                 }
4936                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4937                         addr64 = (u64) sg_dma_address(sg);
4938                         len  = sg_dma_len(sg);
4939                         total_len += len;
4940                         curr_sg->address = cpu_to_le64(addr64);
4941                         curr_sg->length = cpu_to_le32(len);
4942                         curr_sg->reserved[0] = 0;
4943                         curr_sg->reserved[1] = 0;
4944                         curr_sg->reserved[2] = 0;
4945                         curr_sg->chain_indicator = 0;
4946                         curr_sg++;
4947                 }
4948
4949                 /*
4950                  * Set the last s/g element bit
4951                  */
4952                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4953
4954                 switch (cmd->sc_data_direction) {
4955                 case DMA_TO_DEVICE:
4956                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4957                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4958                         break;
4959                 case DMA_FROM_DEVICE:
4960                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4961                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4962                         break;
4963                 case DMA_NONE:
4964                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4966                         break;
4967                 default:
4968                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4969                                 cmd->sc_data_direction);
4970                         BUG();
4971                         break;
4972                 }
4973         } else {
4974                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4976         }
4977
4978         /* Set encryption parameters, if necessary */
4979         set_encrypt_ioaccel2(h, c, cp);
4980
4981         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4982         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4983         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4984
4985         cp->data_len = cpu_to_le32(total_len);
4986         cp->err_ptr = cpu_to_le64(c->busaddr +
4987                         offsetof(struct io_accel2_cmd, error_data));
4988         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4989
4990         /* fill in sg elements */
4991         if (use_sg > h->ioaccel_maxsg) {
4992                 cp->sg_count = 1;
4993                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4994                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4995                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4996                         scsi_dma_unmap(cmd);
4997                         return -1;
4998                 }
4999         } else
5000                 cp->sg_count = (u8) use_sg;
5001
5002         if (phys_disk->in_reset) {
5003                 cmd->result = DID_RESET << 16;
5004                 return -1;
5005         }
5006
5007         enqueue_cmd_and_start_io(h, c);
5008         return 0;
5009 }
5010
5011 /*
5012  * Queue a command to the correct I/O accelerator path.
5013  */
5014 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5015         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5016         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5017 {
5018         if (!c->scsi_cmd->device)
5019                 return -1;
5020
5021         if (!c->scsi_cmd->device->hostdata)
5022                 return -1;
5023
5024         if (phys_disk->in_reset)
5025                 return -1;
5026
5027         /* Try to honor the device's queue depth */
5028         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5029                                         phys_disk->queue_depth) {
5030                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5031                 return IO_ACCEL_INELIGIBLE;
5032         }
5033         if (h->transMethod & CFGTBL_Trans_io_accel1)
5034                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5035                                                 cdb, cdb_len, scsi3addr,
5036                                                 phys_disk);
5037         else
5038                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5039                                                 cdb, cdb_len, scsi3addr,
5040                                                 phys_disk);
5041 }
5042
5043 static void raid_map_helper(struct raid_map_data *map,
5044                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5045 {
5046         if (offload_to_mirror == 0)  {
5047                 /* use physical disk in the first mirrored group. */
5048                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5049                 return;
5050         }
5051         do {
5052                 /* determine mirror group that *map_index indicates */
5053                 *current_group = *map_index /
5054                         le16_to_cpu(map->data_disks_per_row);
5055                 if (offload_to_mirror == *current_group)
5056                         continue;
5057                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5058                         /* select map index from next group */
5059                         *map_index += le16_to_cpu(map->data_disks_per_row);
5060                         (*current_group)++;
5061                 } else {
5062                         /* select map index from first group */
5063                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5064                         *current_group = 0;
5065                 }
5066         } while (offload_to_mirror != *current_group);
5067 }
5068
5069 /*
5070  * Attempt to perform offload RAID mapping for a logical volume I/O.
5071  */
5072 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5073         struct CommandList *c)
5074 {
5075         struct scsi_cmnd *cmd = c->scsi_cmd;
5076         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5077         struct raid_map_data *map = &dev->raid_map;
5078         struct raid_map_disk_data *dd = &map->data[0];
5079         int is_write = 0;
5080         u32 map_index;
5081         u64 first_block, last_block;
5082         u32 block_cnt;
5083         u32 blocks_per_row;
5084         u64 first_row, last_row;
5085         u32 first_row_offset, last_row_offset;
5086         u32 first_column, last_column;
5087         u64 r0_first_row, r0_last_row;
5088         u32 r5or6_blocks_per_row;
5089         u64 r5or6_first_row, r5or6_last_row;
5090         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5091         u32 r5or6_first_column, r5or6_last_column;
5092         u32 total_disks_per_row;
5093         u32 stripesize;
5094         u32 first_group, last_group, current_group;
5095         u32 map_row;
5096         u32 disk_handle;
5097         u64 disk_block;
5098         u32 disk_block_cnt;
5099         u8 cdb[16];
5100         u8 cdb_len;
5101         u16 strip_size;
5102 #if BITS_PER_LONG == 32
5103         u64 tmpdiv;
5104 #endif
5105         int offload_to_mirror;
5106
5107         if (!dev)
5108                 return -1;
5109
5110         if (dev->in_reset)
5111                 return -1;
5112
5113         /* check for valid opcode, get LBA and block count */
5114         switch (cmd->cmnd[0]) {
5115         case WRITE_6:
5116                 is_write = 1;
5117                 /* fall through */
5118         case READ_6:
5119                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120                                 (cmd->cmnd[2] << 8) |
5121                                 cmd->cmnd[3]);
5122                 block_cnt = cmd->cmnd[4];
5123                 if (block_cnt == 0)
5124                         block_cnt = 256;
5125                 break;
5126         case WRITE_10:
5127                 is_write = 1;
5128                 /* fall through */
5129         case READ_10:
5130                 first_block =
5131                         (((u64) cmd->cmnd[2]) << 24) |
5132                         (((u64) cmd->cmnd[3]) << 16) |
5133                         (((u64) cmd->cmnd[4]) << 8) |
5134                         cmd->cmnd[5];
5135                 block_cnt =
5136                         (((u32) cmd->cmnd[7]) << 8) |
5137                         cmd->cmnd[8];
5138                 break;
5139         case WRITE_12:
5140                 is_write = 1;
5141                 /* fall through */
5142         case READ_12:
5143                 first_block =
5144                         (((u64) cmd->cmnd[2]) << 24) |
5145                         (((u64) cmd->cmnd[3]) << 16) |
5146                         (((u64) cmd->cmnd[4]) << 8) |
5147                         cmd->cmnd[5];
5148                 block_cnt =
5149                         (((u32) cmd->cmnd[6]) << 24) |
5150                         (((u32) cmd->cmnd[7]) << 16) |
5151                         (((u32) cmd->cmnd[8]) << 8) |
5152                 cmd->cmnd[9];
5153                 break;
5154         case WRITE_16:
5155                 is_write = 1;
5156                 /* fall through */
5157         case READ_16:
5158                 first_block =
5159                         (((u64) cmd->cmnd[2]) << 56) |
5160                         (((u64) cmd->cmnd[3]) << 48) |
5161                         (((u64) cmd->cmnd[4]) << 40) |
5162                         (((u64) cmd->cmnd[5]) << 32) |
5163                         (((u64) cmd->cmnd[6]) << 24) |
5164                         (((u64) cmd->cmnd[7]) << 16) |
5165                         (((u64) cmd->cmnd[8]) << 8) |
5166                         cmd->cmnd[9];
5167                 block_cnt =
5168                         (((u32) cmd->cmnd[10]) << 24) |
5169                         (((u32) cmd->cmnd[11]) << 16) |
5170                         (((u32) cmd->cmnd[12]) << 8) |
5171                         cmd->cmnd[13];
5172                 break;
5173         default:
5174                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175         }
5176         last_block = first_block + block_cnt - 1;
5177
5178         /* check for write to non-RAID-0 */
5179         if (is_write && dev->raid_level != 0)
5180                 return IO_ACCEL_INELIGIBLE;
5181
5182         /* check for invalid block or wraparound */
5183         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184                 last_block < first_block)
5185                 return IO_ACCEL_INELIGIBLE;
5186
5187         /* calculate stripe information for the request */
5188         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189                                 le16_to_cpu(map->strip_size);
5190         strip_size = le16_to_cpu(map->strip_size);
5191 #if BITS_PER_LONG == 32
5192         tmpdiv = first_block;
5193         (void) do_div(tmpdiv, blocks_per_row);
5194         first_row = tmpdiv;
5195         tmpdiv = last_block;
5196         (void) do_div(tmpdiv, blocks_per_row);
5197         last_row = tmpdiv;
5198         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200         tmpdiv = first_row_offset;
5201         (void) do_div(tmpdiv, strip_size);
5202         first_column = tmpdiv;
5203         tmpdiv = last_row_offset;
5204         (void) do_div(tmpdiv, strip_size);
5205         last_column = tmpdiv;
5206 #else
5207         first_row = first_block / blocks_per_row;
5208         last_row = last_block / blocks_per_row;
5209         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211         first_column = first_row_offset / strip_size;
5212         last_column = last_row_offset / strip_size;
5213 #endif
5214
5215         /* if this isn't a single row/column then give to the controller */
5216         if ((first_row != last_row) || (first_column != last_column))
5217                 return IO_ACCEL_INELIGIBLE;
5218
5219         /* proceeding with driver mapping */
5220         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221                                 le16_to_cpu(map->metadata_disks_per_row);
5222         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223                                 le16_to_cpu(map->row_cnt);
5224         map_index = (map_row * total_disks_per_row) + first_column;
5225
5226         switch (dev->raid_level) {
5227         case HPSA_RAID_0:
5228                 break; /* nothing special to do */
5229         case HPSA_RAID_1:
5230                 /* Handles load balance across RAID 1 members.
5231                  * (2-drive R1 and R10 with even # of drives.)
5232                  * Appropriate for SSDs, not optimal for HDDs
5233                  */
5234                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235                 if (dev->offload_to_mirror)
5236                         map_index += le16_to_cpu(map->data_disks_per_row);
5237                 dev->offload_to_mirror = !dev->offload_to_mirror;
5238                 break;
5239         case HPSA_RAID_ADM:
5240                 /* Handles N-way mirrors  (R1-ADM)
5241                  * and R10 with # of drives divisible by 3.)
5242                  */
5243                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244
5245                 offload_to_mirror = dev->offload_to_mirror;
5246                 raid_map_helper(map, offload_to_mirror,
5247                                 &map_index, &current_group);
5248                 /* set mirror group to use next time */
5249                 offload_to_mirror =
5250                         (offload_to_mirror >=
5251                         le16_to_cpu(map->layout_map_count) - 1)
5252                         ? 0 : offload_to_mirror + 1;
5253                 dev->offload_to_mirror = offload_to_mirror;
5254                 /* Avoid direct use of dev->offload_to_mirror within this
5255                  * function since multiple threads might simultaneously
5256                  * increment it beyond the range of dev->layout_map_count -1.
5257                  */
5258                 break;
5259         case HPSA_RAID_5:
5260         case HPSA_RAID_6:
5261                 if (le16_to_cpu(map->layout_map_count) <= 1)
5262                         break;
5263
5264                 /* Verify first and last block are in same RAID group */
5265                 r5or6_blocks_per_row =
5266                         le16_to_cpu(map->strip_size) *
5267                         le16_to_cpu(map->data_disks_per_row);
5268                 BUG_ON(r5or6_blocks_per_row == 0);
5269                 stripesize = r5or6_blocks_per_row *
5270                         le16_to_cpu(map->layout_map_count);
5271 #if BITS_PER_LONG == 32
5272                 tmpdiv = first_block;
5273                 first_group = do_div(tmpdiv, stripesize);
5274                 tmpdiv = first_group;
5275                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5276                 first_group = tmpdiv;
5277                 tmpdiv = last_block;
5278                 last_group = do_div(tmpdiv, stripesize);
5279                 tmpdiv = last_group;
5280                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5281                 last_group = tmpdiv;
5282 #else
5283                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285 #endif
5286                 if (first_group != last_group)
5287                         return IO_ACCEL_INELIGIBLE;
5288
5289                 /* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291                 tmpdiv = first_block;
5292                 (void) do_div(tmpdiv, stripesize);
5293                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294                 tmpdiv = last_block;
5295                 (void) do_div(tmpdiv, stripesize);
5296                 r5or6_last_row = r0_last_row = tmpdiv;
5297 #else
5298                 first_row = r5or6_first_row = r0_first_row =
5299                                                 first_block / stripesize;
5300                 r5or6_last_row = r0_last_row = last_block / stripesize;
5301 #endif
5302                 if (r5or6_first_row != r5or6_last_row)
5303                         return IO_ACCEL_INELIGIBLE;
5304
5305
5306                 /* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308                 tmpdiv = first_block;
5309                 first_row_offset = do_div(tmpdiv, stripesize);
5310                 tmpdiv = first_row_offset;
5311                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312                 r5or6_first_row_offset = first_row_offset;
5313                 tmpdiv = last_block;
5314                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315                 tmpdiv = r5or6_last_row_offset;
5316                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317                 tmpdiv = r5or6_first_row_offset;
5318                 (void) do_div(tmpdiv, map->strip_size);
5319                 first_column = r5or6_first_column = tmpdiv;
5320                 tmpdiv = r5or6_last_row_offset;
5321                 (void) do_div(tmpdiv, map->strip_size);
5322                 r5or6_last_column = tmpdiv;
5323 #else
5324                 first_row_offset = r5or6_first_row_offset =
5325                         (u32)((first_block % stripesize) %
5326                                                 r5or6_blocks_per_row);
5327
5328                 r5or6_last_row_offset =
5329                         (u32)((last_block % stripesize) %
5330                                                 r5or6_blocks_per_row);
5331
5332                 first_column = r5or6_first_column =
5333                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334                 r5or6_last_column =
5335                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336 #endif
5337                 if (r5or6_first_column != r5or6_last_column)
5338                         return IO_ACCEL_INELIGIBLE;
5339
5340                 /* Request is eligible */
5341                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342                         le16_to_cpu(map->row_cnt);
5343
5344                 map_index = (first_group *
5345                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346                         (map_row * total_disks_per_row) + first_column;
5347                 break;
5348         default:
5349                 return IO_ACCEL_INELIGIBLE;
5350         }
5351
5352         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353                 return IO_ACCEL_INELIGIBLE;
5354
5355         c->phys_disk = dev->phys_disk[map_index];
5356         if (!c->phys_disk)
5357                 return IO_ACCEL_INELIGIBLE;
5358
5359         disk_handle = dd[map_index].ioaccel_handle;
5360         disk_block = le64_to_cpu(map->disk_starting_blk) +
5361                         first_row * le16_to_cpu(map->strip_size) +
5362                         (first_row_offset - first_column *
5363                         le16_to_cpu(map->strip_size));
5364         disk_block_cnt = block_cnt;
5365
5366         /* handle differing logical/physical block sizes */
5367         if (map->phys_blk_shift) {
5368                 disk_block <<= map->phys_blk_shift;
5369                 disk_block_cnt <<= map->phys_blk_shift;
5370         }
5371         BUG_ON(disk_block_cnt > 0xffff);
5372
5373         /* build the new CDB for the physical disk I/O */
5374         if (disk_block > 0xffffffff) {
5375                 cdb[0] = is_write ? WRITE_16 : READ_16;
5376                 cdb[1] = 0;
5377                 cdb[2] = (u8) (disk_block >> 56);
5378                 cdb[3] = (u8) (disk_block >> 48);
5379                 cdb[4] = (u8) (disk_block >> 40);
5380                 cdb[5] = (u8) (disk_block >> 32);
5381                 cdb[6] = (u8) (disk_block >> 24);
5382                 cdb[7] = (u8) (disk_block >> 16);
5383                 cdb[8] = (u8) (disk_block >> 8);
5384                 cdb[9] = (u8) (disk_block);
5385                 cdb[10] = (u8) (disk_block_cnt >> 24);
5386                 cdb[11] = (u8) (disk_block_cnt >> 16);
5387                 cdb[12] = (u8) (disk_block_cnt >> 8);
5388                 cdb[13] = (u8) (disk_block_cnt);
5389                 cdb[14] = 0;
5390                 cdb[15] = 0;
5391                 cdb_len = 16;
5392         } else {
5393                 cdb[0] = is_write ? WRITE_10 : READ_10;
5394                 cdb[1] = 0;
5395                 cdb[2] = (u8) (disk_block >> 24);
5396                 cdb[3] = (u8) (disk_block >> 16);
5397                 cdb[4] = (u8) (disk_block >> 8);
5398                 cdb[5] = (u8) (disk_block);
5399                 cdb[6] = 0;
5400                 cdb[7] = (u8) (disk_block_cnt >> 8);
5401                 cdb[8] = (u8) (disk_block_cnt);
5402                 cdb[9] = 0;
5403                 cdb_len = 10;
5404         }
5405         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406                                                 dev->scsi3addr,
5407                                                 dev->phys_disk[map_index]);
5408 }
5409
5410 /*
5411  * Submit commands down the "normal" RAID stack path
5412  * All callers to hpsa_ciss_submit must check lockup_detected
5413  * beforehand, before (opt.) and after calling cmd_alloc
5414  */
5415 static int hpsa_ciss_submit(struct ctlr_info *h,
5416         struct CommandList *c, struct scsi_cmnd *cmd,
5417         struct hpsa_scsi_dev_t *dev)
5418 {
5419         cmd->host_scribble = (unsigned char *) c;
5420         c->cmd_type = CMD_SCSI;
5421         c->scsi_cmd = cmd;
5422         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5423         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5424         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425
5426         /* Fill in the request block... */
5427
5428         c->Request.Timeout = 0;
5429         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430         c->Request.CDBLen = cmd->cmd_len;
5431         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432         switch (cmd->sc_data_direction) {
5433         case DMA_TO_DEVICE:
5434                 c->Request.type_attr_dir =
5435                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436                 break;
5437         case DMA_FROM_DEVICE:
5438                 c->Request.type_attr_dir =
5439                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440                 break;
5441         case DMA_NONE:
5442                 c->Request.type_attr_dir =
5443                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444                 break;
5445         case DMA_BIDIRECTIONAL:
5446                 /* This can happen if a buggy application does a scsi passthru
5447                  * and sets both inlen and outlen to non-zero. ( see
5448                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449                  */
5450
5451                 c->Request.type_attr_dir =
5452                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453                 /* This is technically wrong, and hpsa controllers should
5454                  * reject it with CMD_INVALID, which is the most correct
5455                  * response, but non-fibre backends appear to let it
5456                  * slide by, and give the same results as if this field
5457                  * were set correctly.  Either way is acceptable for
5458                  * our purposes here.
5459                  */
5460
5461                 break;
5462
5463         default:
5464                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465                         cmd->sc_data_direction);
5466                 BUG();
5467                 break;
5468         }
5469
5470         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471                 hpsa_cmd_resolve_and_free(h, c);
5472                 return SCSI_MLQUEUE_HOST_BUSY;
5473         }
5474
5475         if (dev->in_reset) {
5476                 hpsa_cmd_resolve_and_free(h, c);
5477                 return SCSI_MLQUEUE_HOST_BUSY;
5478         }
5479
5480         enqueue_cmd_and_start_io(h, c);
5481         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5482         return 0;
5483 }
5484
5485 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5486                                 struct CommandList *c)
5487 {
5488         dma_addr_t cmd_dma_handle, err_dma_handle;
5489
5490         /* Zero out all of commandlist except the last field, refcount */
5491         memset(c, 0, offsetof(struct CommandList, refcount));
5492         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5493         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5494         c->err_info = h->errinfo_pool + index;
5495         memset(c->err_info, 0, sizeof(*c->err_info));
5496         err_dma_handle = h->errinfo_pool_dhandle
5497             + index * sizeof(*c->err_info);
5498         c->cmdindex = index;
5499         c->busaddr = (u32) cmd_dma_handle;
5500         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5501         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5502         c->h = h;
5503         c->scsi_cmd = SCSI_CMD_IDLE;
5504 }
5505
5506 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5507 {
5508         int i;
5509
5510         for (i = 0; i < h->nr_cmds; i++) {
5511                 struct CommandList *c = h->cmd_pool + i;
5512
5513                 hpsa_cmd_init(h, i, c);
5514                 atomic_set(&c->refcount, 0);
5515         }
5516 }
5517
5518 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5519                                 struct CommandList *c)
5520 {
5521         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5522
5523         BUG_ON(c->cmdindex != index);
5524
5525         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5526         memset(c->err_info, 0, sizeof(*c->err_info));
5527         c->busaddr = (u32) cmd_dma_handle;
5528 }
5529
5530 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5531                 struct CommandList *c, struct scsi_cmnd *cmd)
5532 {
5533         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5534         int rc = IO_ACCEL_INELIGIBLE;
5535
5536         if (!dev)
5537                 return SCSI_MLQUEUE_HOST_BUSY;
5538
5539         if (dev->in_reset)
5540                 return SCSI_MLQUEUE_HOST_BUSY;
5541
5542         if (hpsa_simple_mode)
5543                 return IO_ACCEL_INELIGIBLE;
5544
5545         cmd->host_scribble = (unsigned char *) c;
5546
5547         if (dev->offload_enabled) {
5548                 hpsa_cmd_init(h, c->cmdindex, c);
5549                 c->cmd_type = CMD_SCSI;
5550                 c->scsi_cmd = cmd;
5551                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5552                 if (rc < 0)     /* scsi_dma_map failed. */
5553                         rc = SCSI_MLQUEUE_HOST_BUSY;
5554         } else if (dev->hba_ioaccel_enabled) {
5555                 hpsa_cmd_init(h, c->cmdindex, c);
5556                 c->cmd_type = CMD_SCSI;
5557                 c->scsi_cmd = cmd;
5558                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5559                 if (rc < 0)     /* scsi_dma_map failed. */
5560                         rc = SCSI_MLQUEUE_HOST_BUSY;
5561         }
5562         return rc;
5563 }
5564
5565 static void hpsa_command_resubmit_worker(struct work_struct *work)
5566 {
5567         struct scsi_cmnd *cmd;
5568         struct hpsa_scsi_dev_t *dev;
5569         struct CommandList *c = container_of(work, struct CommandList, work);
5570
5571         cmd = c->scsi_cmd;
5572         dev = cmd->device->hostdata;
5573         if (!dev) {
5574                 cmd->result = DID_NO_CONNECT << 16;
5575                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5576         }
5577
5578         if (dev->in_reset) {
5579                 cmd->result = DID_RESET << 16;
5580                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5581         }
5582
5583         if (c->cmd_type == CMD_IOACCEL2) {
5584                 struct ctlr_info *h = c->h;
5585                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5586                 int rc;
5587
5588                 if (c2->error_data.serv_response ==
5589                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5590                         rc = hpsa_ioaccel_submit(h, c, cmd);
5591                         if (rc == 0)
5592                                 return;
5593                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5594                                 /*
5595                                  * If we get here, it means dma mapping failed.
5596                                  * Try again via scsi mid layer, which will
5597                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5598                                  */
5599                                 cmd->result = DID_IMM_RETRY << 16;
5600                                 return hpsa_cmd_free_and_done(h, c, cmd);
5601                         }
5602                         /* else, fall thru and resubmit down CISS path */
5603                 }
5604         }
5605         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5606         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5607                 /*
5608                  * If we get here, it means dma mapping failed. Try
5609                  * again via scsi mid layer, which will then get
5610                  * SCSI_MLQUEUE_HOST_BUSY.
5611                  *
5612                  * hpsa_ciss_submit will have already freed c
5613                  * if it encountered a dma mapping failure.
5614                  */
5615                 cmd->result = DID_IMM_RETRY << 16;
5616                 cmd->scsi_done(cmd);
5617         }
5618 }
5619
5620 /* Running in struct Scsi_Host->host_lock less mode */
5621 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5622 {
5623         struct ctlr_info *h;
5624         struct hpsa_scsi_dev_t *dev;
5625         struct CommandList *c;
5626         int rc = 0;
5627
5628         /* Get the ptr to our adapter structure out of cmd->host. */
5629         h = sdev_to_hba(cmd->device);
5630
5631         BUG_ON(cmd->request->tag < 0);
5632
5633         dev = cmd->device->hostdata;
5634         if (!dev) {
5635                 cmd->result = DID_NO_CONNECT << 16;
5636                 cmd->scsi_done(cmd);
5637                 return 0;
5638         }
5639
5640         if (dev->removed) {
5641                 cmd->result = DID_NO_CONNECT << 16;
5642                 cmd->scsi_done(cmd);
5643                 return 0;
5644         }
5645
5646         if (unlikely(lockup_detected(h))) {
5647                 cmd->result = DID_NO_CONNECT << 16;
5648                 cmd->scsi_done(cmd);
5649                 return 0;
5650         }
5651
5652         if (dev->in_reset)
5653                 return SCSI_MLQUEUE_DEVICE_BUSY;
5654
5655         c = cmd_tagged_alloc(h, cmd);
5656         if (c == NULL)
5657                 return SCSI_MLQUEUE_DEVICE_BUSY;
5658
5659         /*
5660          * This is necessary because the SML doesn't zero out this field during
5661          * error recovery.
5662          */
5663         cmd->result = 0;
5664
5665         /*
5666          * Call alternate submit routine for I/O accelerated commands.
5667          * Retries always go down the normal I/O path.
5668          */
5669         if (likely(cmd->retries == 0 &&
5670                         !blk_rq_is_passthrough(cmd->request) &&
5671                         h->acciopath_status)) {
5672                 rc = hpsa_ioaccel_submit(h, c, cmd);
5673                 if (rc == 0)
5674                         return 0;
5675                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5676                         hpsa_cmd_resolve_and_free(h, c);
5677                         return SCSI_MLQUEUE_HOST_BUSY;
5678                 }
5679         }
5680         return hpsa_ciss_submit(h, c, cmd, dev);
5681 }
5682
5683 static void hpsa_scan_complete(struct ctlr_info *h)
5684 {
5685         unsigned long flags;
5686
5687         spin_lock_irqsave(&h->scan_lock, flags);
5688         h->scan_finished = 1;
5689         wake_up(&h->scan_wait_queue);
5690         spin_unlock_irqrestore(&h->scan_lock, flags);
5691 }
5692
5693 static void hpsa_scan_start(struct Scsi_Host *sh)
5694 {
5695         struct ctlr_info *h = shost_to_hba(sh);
5696         unsigned long flags;
5697
5698         /*
5699          * Don't let rescans be initiated on a controller known to be locked
5700          * up.  If the controller locks up *during* a rescan, that thread is
5701          * probably hosed, but at least we can prevent new rescan threads from
5702          * piling up on a locked up controller.
5703          */
5704         if (unlikely(lockup_detected(h)))
5705                 return hpsa_scan_complete(h);
5706
5707         /*
5708          * If a scan is already waiting to run, no need to add another
5709          */
5710         spin_lock_irqsave(&h->scan_lock, flags);
5711         if (h->scan_waiting) {
5712                 spin_unlock_irqrestore(&h->scan_lock, flags);
5713                 return;
5714         }
5715
5716         spin_unlock_irqrestore(&h->scan_lock, flags);
5717
5718         /* wait until any scan already in progress is finished. */
5719         while (1) {
5720                 spin_lock_irqsave(&h->scan_lock, flags);
5721                 if (h->scan_finished)
5722                         break;
5723                 h->scan_waiting = 1;
5724                 spin_unlock_irqrestore(&h->scan_lock, flags);
5725                 wait_event(h->scan_wait_queue, h->scan_finished);
5726                 /* Note: We don't need to worry about a race between this
5727                  * thread and driver unload because the midlayer will
5728                  * have incremented the reference count, so unload won't
5729                  * happen if we're in here.
5730                  */
5731         }
5732         h->scan_finished = 0; /* mark scan as in progress */
5733         h->scan_waiting = 0;
5734         spin_unlock_irqrestore(&h->scan_lock, flags);
5735
5736         if (unlikely(lockup_detected(h)))
5737                 return hpsa_scan_complete(h);
5738
5739         /*
5740          * Do the scan after a reset completion
5741          */
5742         spin_lock_irqsave(&h->reset_lock, flags);
5743         if (h->reset_in_progress) {
5744                 h->drv_req_rescan = 1;
5745                 spin_unlock_irqrestore(&h->reset_lock, flags);
5746                 hpsa_scan_complete(h);
5747                 return;
5748         }
5749         spin_unlock_irqrestore(&h->reset_lock, flags);
5750
5751         hpsa_update_scsi_devices(h);
5752
5753         hpsa_scan_complete(h);
5754 }
5755
5756 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5757 {
5758         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5759
5760         if (!logical_drive)
5761                 return -ENODEV;
5762
5763         if (qdepth < 1)
5764                 qdepth = 1;
5765         else if (qdepth > logical_drive->queue_depth)
5766                 qdepth = logical_drive->queue_depth;
5767
5768         return scsi_change_queue_depth(sdev, qdepth);
5769 }
5770
5771 static int hpsa_scan_finished(struct Scsi_Host *sh,
5772         unsigned long elapsed_time)
5773 {
5774         struct ctlr_info *h = shost_to_hba(sh);
5775         unsigned long flags;
5776         int finished;
5777
5778         spin_lock_irqsave(&h->scan_lock, flags);
5779         finished = h->scan_finished;
5780         spin_unlock_irqrestore(&h->scan_lock, flags);
5781         return finished;
5782 }
5783
5784 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5785 {
5786         struct Scsi_Host *sh;
5787
5788         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5789         if (sh == NULL) {
5790                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5791                 return -ENOMEM;
5792         }
5793
5794         sh->io_port = 0;
5795         sh->n_io_port = 0;
5796         sh->this_id = -1;
5797         sh->max_channel = 3;
5798         sh->max_cmd_len = MAX_COMMAND_SIZE;
5799         sh->max_lun = HPSA_MAX_LUN;
5800         sh->max_id = HPSA_MAX_LUN;
5801         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5802         sh->cmd_per_lun = sh->can_queue;
5803         sh->sg_tablesize = h->maxsgentries;
5804         sh->transportt = hpsa_sas_transport_template;
5805         sh->hostdata[0] = (unsigned long) h;
5806         sh->irq = pci_irq_vector(h->pdev, 0);
5807         sh->unique_id = sh->irq;
5808
5809         h->scsi_host = sh;
5810         return 0;
5811 }
5812
5813 static int hpsa_scsi_add_host(struct ctlr_info *h)
5814 {
5815         int rv;
5816
5817         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5818         if (rv) {
5819                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5820                 return rv;
5821         }
5822         scsi_scan_host(h->scsi_host);
5823         return 0;
5824 }
5825
5826 /*
5827  * The block layer has already gone to the trouble of picking out a unique,
5828  * small-integer tag for this request.  We use an offset from that value as
5829  * an index to select our command block.  (The offset allows us to reserve the
5830  * low-numbered entries for our own uses.)
5831  */
5832 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5833 {
5834         int idx = scmd->request->tag;
5835
5836         if (idx < 0)
5837                 return idx;
5838
5839         /* Offset to leave space for internal cmds. */
5840         return idx += HPSA_NRESERVED_CMDS;
5841 }
5842
5843 /*
5844  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5845  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5846  */
5847 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5848                                 struct CommandList *c, unsigned char lunaddr[],
5849                                 int reply_queue)
5850 {
5851         int rc;
5852
5853         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5854         (void) fill_cmd(c, TEST_UNIT_READY, h,
5855                         NULL, 0, 0, lunaddr, TYPE_CMD);
5856         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5857         if (rc)
5858                 return rc;
5859         /* no unmap needed here because no data xfer. */
5860
5861         /* Check if the unit is already ready. */
5862         if (c->err_info->CommandStatus == CMD_SUCCESS)
5863                 return 0;
5864
5865         /*
5866          * The first command sent after reset will receive "unit attention" to
5867          * indicate that the LUN has been reset...this is actually what we're
5868          * looking for (but, success is good too).
5869          */
5870         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5871                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5872                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5873                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5874                 return 0;
5875
5876         return 1;
5877 }
5878
5879 /*
5880  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5881  * returns zero when the unit is ready, and non-zero when giving up.
5882  */
5883 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5884                                 struct CommandList *c,
5885                                 unsigned char lunaddr[], int reply_queue)
5886 {
5887         int rc;
5888         int count = 0;
5889         int waittime = 1; /* seconds */
5890
5891         /* Send test unit ready until device ready, or give up. */
5892         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5893
5894                 /*
5895                  * Wait for a bit.  do this first, because if we send
5896                  * the TUR right away, the reset will just abort it.
5897                  */
5898                 msleep(1000 * waittime);
5899
5900                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5901                 if (!rc)
5902                         break;
5903
5904                 /* Increase wait time with each try, up to a point. */
5905                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5906                         waittime *= 2;
5907
5908                 dev_warn(&h->pdev->dev,
5909                          "waiting %d secs for device to become ready.\n",
5910                          waittime);
5911         }
5912
5913         return rc;
5914 }
5915
5916 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5917                                            unsigned char lunaddr[],
5918                                            int reply_queue)
5919 {
5920         int first_queue;
5921         int last_queue;
5922         int rq;
5923         int rc = 0;
5924         struct CommandList *c;
5925
5926         c = cmd_alloc(h);
5927
5928         /*
5929          * If no specific reply queue was requested, then send the TUR
5930          * repeatedly, requesting a reply on each reply queue; otherwise execute
5931          * the loop exactly once using only the specified queue.
5932          */
5933         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5934                 first_queue = 0;
5935                 last_queue = h->nreply_queues - 1;
5936         } else {
5937                 first_queue = reply_queue;
5938                 last_queue = reply_queue;
5939         }
5940
5941         for (rq = first_queue; rq <= last_queue; rq++) {
5942                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5943                 if (rc)
5944                         break;
5945         }
5946
5947         if (rc)
5948                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5949         else
5950                 dev_warn(&h->pdev->dev, "device is ready.\n");
5951
5952         cmd_free(h, c);
5953         return rc;
5954 }
5955
5956 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5957  * complaining.  Doing a host- or bus-reset can't do anything good here.
5958  */
5959 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5960 {
5961         int rc = SUCCESS;
5962         int i;
5963         struct ctlr_info *h;
5964         struct hpsa_scsi_dev_t *dev = NULL;
5965         u8 reset_type;
5966         char msg[48];
5967         unsigned long flags;
5968
5969         /* find the controller to which the command to be aborted was sent */
5970         h = sdev_to_hba(scsicmd->device);
5971         if (h == NULL) /* paranoia */
5972                 return FAILED;
5973
5974         spin_lock_irqsave(&h->reset_lock, flags);
5975         h->reset_in_progress = 1;
5976         spin_unlock_irqrestore(&h->reset_lock, flags);
5977
5978         if (lockup_detected(h)) {
5979                 rc = FAILED;
5980                 goto return_reset_status;
5981         }
5982
5983         dev = scsicmd->device->hostdata;
5984         if (!dev) {
5985                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5986                 rc = FAILED;
5987                 goto return_reset_status;
5988         }
5989
5990         if (dev->devtype == TYPE_ENCLOSURE) {
5991                 rc = SUCCESS;
5992                 goto return_reset_status;
5993         }
5994
5995         /* if controller locked up, we can guarantee command won't complete */
5996         if (lockup_detected(h)) {
5997                 snprintf(msg, sizeof(msg),
5998                          "cmd %d RESET FAILED, lockup detected",
5999                          hpsa_get_cmd_index(scsicmd));
6000                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6001                 rc = FAILED;
6002                 goto return_reset_status;
6003         }
6004
6005         /* this reset request might be the result of a lockup; check */
6006         if (detect_controller_lockup(h)) {
6007                 snprintf(msg, sizeof(msg),
6008                          "cmd %d RESET FAILED, new lockup detected",
6009                          hpsa_get_cmd_index(scsicmd));
6010                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6011                 rc = FAILED;
6012                 goto return_reset_status;
6013         }
6014
6015         /* Do not attempt on controller */
6016         if (is_hba_lunid(dev->scsi3addr)) {
6017                 rc = SUCCESS;
6018                 goto return_reset_status;
6019         }
6020
6021         if (is_logical_dev_addr_mode(dev->scsi3addr))
6022                 reset_type = HPSA_DEVICE_RESET_MSG;
6023         else
6024                 reset_type = HPSA_PHYS_TARGET_RESET;
6025
6026         sprintf(msg, "resetting %s",
6027                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6028         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6029
6030         /*
6031          * wait to see if any commands will complete before sending reset
6032          */
6033         dev->in_reset = true; /* block any new cmds from OS for this device */
6034         for (i = 0; i < 10; i++) {
6035                 if (atomic_read(&dev->commands_outstanding) > 0)
6036                         msleep(1000);
6037                 else
6038                         break;
6039         }
6040
6041         /* send a reset to the SCSI LUN which the command was sent to */
6042         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6043         if (rc == 0)
6044                 rc = SUCCESS;
6045         else
6046                 rc = FAILED;
6047
6048         sprintf(msg, "reset %s %s",
6049                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6050                 rc == SUCCESS ? "completed successfully" : "failed");
6051         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6052
6053 return_reset_status:
6054         spin_lock_irqsave(&h->reset_lock, flags);
6055         h->reset_in_progress = 0;
6056         if (dev)
6057                 dev->in_reset = false;
6058         spin_unlock_irqrestore(&h->reset_lock, flags);
6059         return rc;
6060 }
6061
6062 /*
6063  * For operations with an associated SCSI command, a command block is allocated
6064  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6065  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6066  * the complement, although cmd_free() may be called instead.
6067  */
6068 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6069                                             struct scsi_cmnd *scmd)
6070 {
6071         int idx = hpsa_get_cmd_index(scmd);
6072         struct CommandList *c = h->cmd_pool + idx;
6073
6074         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6075                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6076                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6077                 /* The index value comes from the block layer, so if it's out of
6078                  * bounds, it's probably not our bug.
6079                  */
6080                 BUG();
6081         }
6082
6083         if (unlikely(!hpsa_is_cmd_idle(c))) {
6084                 /*
6085                  * We expect that the SCSI layer will hand us a unique tag
6086                  * value.  Thus, there should never be a collision here between
6087                  * two requests...because if the selected command isn't idle
6088                  * then someone is going to be very disappointed.
6089                  */
6090                 if (idx != h->last_collision_tag) { /* Print once per tag */
6091                         dev_warn(&h->pdev->dev,
6092                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6093                         if (scmd)
6094                                 scsi_print_command(scmd);
6095                         h->last_collision_tag = idx;
6096                 }
6097                 return NULL;
6098         }
6099
6100         atomic_inc(&c->refcount);
6101
6102         hpsa_cmd_partial_init(h, idx, c);
6103         return c;
6104 }
6105
6106 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6107 {
6108         /*
6109          * Release our reference to the block.  We don't need to do anything
6110          * else to free it, because it is accessed by index.
6111          */
6112         (void)atomic_dec(&c->refcount);
6113 }
6114
6115 /*
6116  * For operations that cannot sleep, a command block is allocated at init,
6117  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6118  * which ones are free or in use.  Lock must be held when calling this.
6119  * cmd_free() is the complement.
6120  * This function never gives up and returns NULL.  If it hangs,
6121  * another thread must call cmd_free() to free some tags.
6122  */
6123
6124 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6125 {
6126         struct CommandList *c;
6127         int refcount, i;
6128         int offset = 0;
6129
6130         /*
6131          * There is some *extremely* small but non-zero chance that that
6132          * multiple threads could get in here, and one thread could
6133          * be scanning through the list of bits looking for a free
6134          * one, but the free ones are always behind him, and other
6135          * threads sneak in behind him and eat them before he can
6136          * get to them, so that while there is always a free one, a
6137          * very unlucky thread might be starved anyway, never able to
6138          * beat the other threads.  In reality, this happens so
6139          * infrequently as to be indistinguishable from never.
6140          *
6141          * Note that we start allocating commands before the SCSI host structure
6142          * is initialized.  Since the search starts at bit zero, this
6143          * all works, since we have at least one command structure available;
6144          * however, it means that the structures with the low indexes have to be
6145          * reserved for driver-initiated requests, while requests from the block
6146          * layer will use the higher indexes.
6147          */
6148
6149         for (;;) {
6150                 i = find_next_zero_bit(h->cmd_pool_bits,
6151                                         HPSA_NRESERVED_CMDS,
6152                                         offset);
6153                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6154                         offset = 0;
6155                         continue;
6156                 }
6157                 c = h->cmd_pool + i;
6158                 refcount = atomic_inc_return(&c->refcount);
6159                 if (unlikely(refcount > 1)) {
6160                         cmd_free(h, c); /* already in use */
6161                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6162                         continue;
6163                 }
6164                 set_bit(i & (BITS_PER_LONG - 1),
6165                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6166                 break; /* it's ours now. */
6167         }
6168         hpsa_cmd_partial_init(h, i, c);
6169         c->device = NULL;
6170         return c;
6171 }
6172
6173 /*
6174  * This is the complementary operation to cmd_alloc().  Note, however, in some
6175  * corner cases it may also be used to free blocks allocated by
6176  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6177  * the clear-bit is harmless.
6178  */
6179 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6180 {
6181         if (atomic_dec_and_test(&c->refcount)) {
6182                 int i;
6183
6184                 i = c - h->cmd_pool;
6185                 clear_bit(i & (BITS_PER_LONG - 1),
6186                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6187         }
6188 }
6189
6190 #ifdef CONFIG_COMPAT
6191
6192 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6193         void __user *arg)
6194 {
6195         IOCTL32_Command_struct __user *arg32 =
6196             (IOCTL32_Command_struct __user *) arg;
6197         IOCTL_Command_struct arg64;
6198         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6199         int err;
6200         u32 cp;
6201
6202         memset(&arg64, 0, sizeof(arg64));
6203         err = 0;
6204         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6205                            sizeof(arg64.LUN_info));
6206         err |= copy_from_user(&arg64.Request, &arg32->Request,
6207                            sizeof(arg64.Request));
6208         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6209                            sizeof(arg64.error_info));
6210         err |= get_user(arg64.buf_size, &arg32->buf_size);
6211         err |= get_user(cp, &arg32->buf);
6212         arg64.buf = compat_ptr(cp);
6213         err |= copy_to_user(p, &arg64, sizeof(arg64));
6214
6215         if (err)
6216                 return -EFAULT;
6217
6218         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6219         if (err)
6220                 return err;
6221         err |= copy_in_user(&arg32->error_info, &p->error_info,
6222                          sizeof(arg32->error_info));
6223         if (err)
6224                 return -EFAULT;
6225         return err;
6226 }
6227
6228 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6229         unsigned int cmd, void __user *arg)
6230 {
6231         BIG_IOCTL32_Command_struct __user *arg32 =
6232             (BIG_IOCTL32_Command_struct __user *) arg;
6233         BIG_IOCTL_Command_struct arg64;
6234         BIG_IOCTL_Command_struct __user *p =
6235             compat_alloc_user_space(sizeof(arg64));
6236         int err;
6237         u32 cp;
6238
6239         memset(&arg64, 0, sizeof(arg64));
6240         err = 0;
6241         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6242                            sizeof(arg64.LUN_info));
6243         err |= copy_from_user(&arg64.Request, &arg32->Request,
6244                            sizeof(arg64.Request));
6245         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6246                            sizeof(arg64.error_info));
6247         err |= get_user(arg64.buf_size, &arg32->buf_size);
6248         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6249         err |= get_user(cp, &arg32->buf);
6250         arg64.buf = compat_ptr(cp);
6251         err |= copy_to_user(p, &arg64, sizeof(arg64));
6252
6253         if (err)
6254                 return -EFAULT;
6255
6256         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6257         if (err)
6258                 return err;
6259         err |= copy_in_user(&arg32->error_info, &p->error_info,
6260                          sizeof(arg32->error_info));
6261         if (err)
6262                 return -EFAULT;
6263         return err;
6264 }
6265
6266 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6267                              void __user *arg)
6268 {
6269         switch (cmd) {
6270         case CCISS_GETPCIINFO:
6271         case CCISS_GETINTINFO:
6272         case CCISS_SETINTINFO:
6273         case CCISS_GETNODENAME:
6274         case CCISS_SETNODENAME:
6275         case CCISS_GETHEARTBEAT:
6276         case CCISS_GETBUSTYPES:
6277         case CCISS_GETFIRMVER:
6278         case CCISS_GETDRIVVER:
6279         case CCISS_REVALIDVOLS:
6280         case CCISS_DEREGDISK:
6281         case CCISS_REGNEWDISK:
6282         case CCISS_REGNEWD:
6283         case CCISS_RESCANDISK:
6284         case CCISS_GETLUNINFO:
6285                 return hpsa_ioctl(dev, cmd, arg);
6286
6287         case CCISS_PASSTHRU32:
6288                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6289         case CCISS_BIG_PASSTHRU32:
6290                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6291
6292         default:
6293                 return -ENOIOCTLCMD;
6294         }
6295 }
6296 #endif
6297
6298 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6299 {
6300         struct hpsa_pci_info pciinfo;
6301
6302         if (!argp)
6303                 return -EINVAL;
6304         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6305         pciinfo.bus = h->pdev->bus->number;
6306         pciinfo.dev_fn = h->pdev->devfn;
6307         pciinfo.board_id = h->board_id;
6308         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6309                 return -EFAULT;
6310         return 0;
6311 }
6312
6313 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6314 {
6315         DriverVer_type DriverVer;
6316         unsigned char vmaj, vmin, vsubmin;
6317         int rc;
6318
6319         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6320                 &vmaj, &vmin, &vsubmin);
6321         if (rc != 3) {
6322                 dev_info(&h->pdev->dev, "driver version string '%s' "
6323                         "unrecognized.", HPSA_DRIVER_VERSION);
6324                 vmaj = 0;
6325                 vmin = 0;
6326                 vsubmin = 0;
6327         }
6328         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6329         if (!argp)
6330                 return -EINVAL;
6331         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6332                 return -EFAULT;
6333         return 0;
6334 }
6335
6336 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6337 {
6338         IOCTL_Command_struct iocommand;
6339         struct CommandList *c;
6340         char *buff = NULL;
6341         u64 temp64;
6342         int rc = 0;
6343
6344         if (!argp)
6345                 return -EINVAL;
6346         if (!capable(CAP_SYS_RAWIO))
6347                 return -EPERM;
6348         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6349                 return -EFAULT;
6350         if ((iocommand.buf_size < 1) &&
6351             (iocommand.Request.Type.Direction != XFER_NONE)) {
6352                 return -EINVAL;
6353         }
6354         if (iocommand.buf_size > 0) {
6355                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6356                 if (buff == NULL)
6357                         return -ENOMEM;
6358                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6359                         /* Copy the data into the buffer we created */
6360                         if (copy_from_user(buff, iocommand.buf,
6361                                 iocommand.buf_size)) {
6362                                 rc = -EFAULT;
6363                                 goto out_kfree;
6364                         }
6365                 } else {
6366                         memset(buff, 0, iocommand.buf_size);
6367                 }
6368         }
6369         c = cmd_alloc(h);
6370
6371         /* Fill in the command type */
6372         c->cmd_type = CMD_IOCTL_PEND;
6373         c->scsi_cmd = SCSI_CMD_BUSY;
6374         /* Fill in Command Header */
6375         c->Header.ReplyQueue = 0; /* unused in simple mode */
6376         if (iocommand.buf_size > 0) {   /* buffer to fill */
6377                 c->Header.SGList = 1;
6378                 c->Header.SGTotal = cpu_to_le16(1);
6379         } else  { /* no buffers to fill */
6380                 c->Header.SGList = 0;
6381                 c->Header.SGTotal = cpu_to_le16(0);
6382         }
6383         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6384
6385         /* Fill in Request block */
6386         memcpy(&c->Request, &iocommand.Request,
6387                 sizeof(c->Request));
6388
6389         /* Fill in the scatter gather information */
6390         if (iocommand.buf_size > 0) {
6391                 temp64 = dma_map_single(&h->pdev->dev, buff,
6392                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6393                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6394                         c->SG[0].Addr = cpu_to_le64(0);
6395                         c->SG[0].Len = cpu_to_le32(0);
6396                         rc = -ENOMEM;
6397                         goto out;
6398                 }
6399                 c->SG[0].Addr = cpu_to_le64(temp64);
6400                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6401                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6402         }
6403         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6404                                         NO_TIMEOUT);
6405         if (iocommand.buf_size > 0)
6406                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6407         check_ioctl_unit_attention(h, c);
6408         if (rc) {
6409                 rc = -EIO;
6410                 goto out;
6411         }
6412
6413         /* Copy the error information out */
6414         memcpy(&iocommand.error_info, c->err_info,
6415                 sizeof(iocommand.error_info));
6416         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6417                 rc = -EFAULT;
6418                 goto out;
6419         }
6420         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6421                 iocommand.buf_size > 0) {
6422                 /* Copy the data out of the buffer we created */
6423                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6424                         rc = -EFAULT;
6425                         goto out;
6426                 }
6427         }
6428 out:
6429         cmd_free(h, c);
6430 out_kfree:
6431         kfree(buff);
6432         return rc;
6433 }
6434
6435 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6436 {
6437         BIG_IOCTL_Command_struct *ioc;
6438         struct CommandList *c;
6439         unsigned char **buff = NULL;
6440         int *buff_size = NULL;
6441         u64 temp64;
6442         BYTE sg_used = 0;
6443         int status = 0;
6444         u32 left;
6445         u32 sz;
6446         BYTE __user *data_ptr;
6447
6448         if (!argp)
6449                 return -EINVAL;
6450         if (!capable(CAP_SYS_RAWIO))
6451                 return -EPERM;
6452         ioc = vmemdup_user(argp, sizeof(*ioc));
6453         if (IS_ERR(ioc)) {
6454                 status = PTR_ERR(ioc);
6455                 goto cleanup1;
6456         }
6457         if ((ioc->buf_size < 1) &&
6458             (ioc->Request.Type.Direction != XFER_NONE)) {
6459                 status = -EINVAL;
6460                 goto cleanup1;
6461         }
6462         /* Check kmalloc limits  using all SGs */
6463         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6464                 status = -EINVAL;
6465                 goto cleanup1;
6466         }
6467         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6468                 status = -EINVAL;
6469                 goto cleanup1;
6470         }
6471         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6472         if (!buff) {
6473                 status = -ENOMEM;
6474                 goto cleanup1;
6475         }
6476         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6477         if (!buff_size) {
6478                 status = -ENOMEM;
6479                 goto cleanup1;
6480         }
6481         left = ioc->buf_size;
6482         data_ptr = ioc->buf;
6483         while (left) {
6484                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6485                 buff_size[sg_used] = sz;
6486                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6487                 if (buff[sg_used] == NULL) {
6488                         status = -ENOMEM;
6489                         goto cleanup1;
6490                 }
6491                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6492                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6493                                 status = -EFAULT;
6494                                 goto cleanup1;
6495                         }
6496                 } else
6497                         memset(buff[sg_used], 0, sz);
6498                 left -= sz;
6499                 data_ptr += sz;
6500                 sg_used++;
6501         }
6502         c = cmd_alloc(h);
6503
6504         c->cmd_type = CMD_IOCTL_PEND;
6505         c->scsi_cmd = SCSI_CMD_BUSY;
6506         c->Header.ReplyQueue = 0;
6507         c->Header.SGList = (u8) sg_used;
6508         c->Header.SGTotal = cpu_to_le16(sg_used);
6509         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6510         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6511         if (ioc->buf_size > 0) {
6512                 int i;
6513                 for (i = 0; i < sg_used; i++) {
6514                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6515                                     buff_size[i], DMA_BIDIRECTIONAL);
6516                         if (dma_mapping_error(&h->pdev->dev,
6517                                                         (dma_addr_t) temp64)) {
6518                                 c->SG[i].Addr = cpu_to_le64(0);
6519                                 c->SG[i].Len = cpu_to_le32(0);
6520                                 hpsa_pci_unmap(h->pdev, c, i,
6521                                         DMA_BIDIRECTIONAL);
6522                                 status = -ENOMEM;
6523                                 goto cleanup0;
6524                         }
6525                         c->SG[i].Addr = cpu_to_le64(temp64);
6526                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6527                         c->SG[i].Ext = cpu_to_le32(0);
6528                 }
6529                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6530         }
6531         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6532                                                 NO_TIMEOUT);
6533         if (sg_used)
6534                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6535         check_ioctl_unit_attention(h, c);
6536         if (status) {
6537                 status = -EIO;
6538                 goto cleanup0;
6539         }
6540
6541         /* Copy the error information out */
6542         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6543         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6544                 status = -EFAULT;
6545                 goto cleanup0;
6546         }
6547         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6548                 int i;
6549
6550                 /* Copy the data out of the buffer we created */
6551                 BYTE __user *ptr = ioc->buf;
6552                 for (i = 0; i < sg_used; i++) {
6553                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6554                                 status = -EFAULT;
6555                                 goto cleanup0;
6556                         }
6557                         ptr += buff_size[i];
6558                 }
6559         }
6560         status = 0;
6561 cleanup0:
6562         cmd_free(h, c);
6563 cleanup1:
6564         if (buff) {
6565                 int i;
6566
6567                 for (i = 0; i < sg_used; i++)
6568                         kfree(buff[i]);
6569                 kfree(buff);
6570         }
6571         kfree(buff_size);
6572         kvfree(ioc);
6573         return status;
6574 }
6575
6576 static void check_ioctl_unit_attention(struct ctlr_info *h,
6577         struct CommandList *c)
6578 {
6579         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6580                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6581                 (void) check_for_unit_attention(h, c);
6582 }
6583
6584 /*
6585  * ioctl
6586  */
6587 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6588                       void __user *arg)
6589 {
6590         struct ctlr_info *h;
6591         void __user *argp = (void __user *)arg;
6592         int rc;
6593
6594         h = sdev_to_hba(dev);
6595
6596         switch (cmd) {
6597         case CCISS_DEREGDISK:
6598         case CCISS_REGNEWDISK:
6599         case CCISS_REGNEWD:
6600                 hpsa_scan_start(h->scsi_host);
6601                 return 0;
6602         case CCISS_GETPCIINFO:
6603                 return hpsa_getpciinfo_ioctl(h, argp);
6604         case CCISS_GETDRIVVER:
6605                 return hpsa_getdrivver_ioctl(h, argp);
6606         case CCISS_PASSTHRU:
6607                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6608                         return -EAGAIN;
6609                 rc = hpsa_passthru_ioctl(h, argp);
6610                 atomic_inc(&h->passthru_cmds_avail);
6611                 return rc;
6612         case CCISS_BIG_PASSTHRU:
6613                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6614                         return -EAGAIN;
6615                 rc = hpsa_big_passthru_ioctl(h, argp);
6616                 atomic_inc(&h->passthru_cmds_avail);
6617                 return rc;
6618         default:
6619                 return -ENOTTY;
6620         }
6621 }
6622
6623 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6624 {
6625         struct CommandList *c;
6626
6627         c = cmd_alloc(h);
6628
6629         /* fill_cmd can't fail here, no data buffer to map */
6630         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6631                 RAID_CTLR_LUNID, TYPE_MSG);
6632         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6633         c->waiting = NULL;
6634         enqueue_cmd_and_start_io(h, c);
6635         /* Don't wait for completion, the reset won't complete.  Don't free
6636          * the command either.  This is the last command we will send before
6637          * re-initializing everything, so it doesn't matter and won't leak.
6638          */
6639         return;
6640 }
6641
6642 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6643         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6644         int cmd_type)
6645 {
6646         enum dma_data_direction dir = DMA_NONE;
6647
6648         c->cmd_type = CMD_IOCTL_PEND;
6649         c->scsi_cmd = SCSI_CMD_BUSY;
6650         c->Header.ReplyQueue = 0;
6651         if (buff != NULL && size > 0) {
6652                 c->Header.SGList = 1;
6653                 c->Header.SGTotal = cpu_to_le16(1);
6654         } else {
6655                 c->Header.SGList = 0;
6656                 c->Header.SGTotal = cpu_to_le16(0);
6657         }
6658         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6659
6660         if (cmd_type == TYPE_CMD) {
6661                 switch (cmd) {
6662                 case HPSA_INQUIRY:
6663                         /* are we trying to read a vital product page */
6664                         if (page_code & VPD_PAGE) {
6665                                 c->Request.CDB[1] = 0x01;
6666                                 c->Request.CDB[2] = (page_code & 0xff);
6667                         }
6668                         c->Request.CDBLen = 6;
6669                         c->Request.type_attr_dir =
6670                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6671                         c->Request.Timeout = 0;
6672                         c->Request.CDB[0] = HPSA_INQUIRY;
6673                         c->Request.CDB[4] = size & 0xFF;
6674                         break;
6675                 case RECEIVE_DIAGNOSTIC:
6676                         c->Request.CDBLen = 6;
6677                         c->Request.type_attr_dir =
6678                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6679                         c->Request.Timeout = 0;
6680                         c->Request.CDB[0] = cmd;
6681                         c->Request.CDB[1] = 1;
6682                         c->Request.CDB[2] = 1;
6683                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6684                         c->Request.CDB[4] = size & 0xFF;
6685                         break;
6686                 case HPSA_REPORT_LOG:
6687                 case HPSA_REPORT_PHYS:
6688                         /* Talking to controller so It's a physical command
6689                            mode = 00 target = 0.  Nothing to write.
6690                          */
6691                         c->Request.CDBLen = 12;
6692                         c->Request.type_attr_dir =
6693                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6694                         c->Request.Timeout = 0;
6695                         c->Request.CDB[0] = cmd;
6696                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6697                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6698                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6699                         c->Request.CDB[9] = size & 0xFF;
6700                         break;
6701                 case BMIC_SENSE_DIAG_OPTIONS:
6702                         c->Request.CDBLen = 16;
6703                         c->Request.type_attr_dir =
6704                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705                         c->Request.Timeout = 0;
6706                         /* Spec says this should be BMIC_WRITE */
6707                         c->Request.CDB[0] = BMIC_READ;
6708                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6709                         break;
6710                 case BMIC_SET_DIAG_OPTIONS:
6711                         c->Request.CDBLen = 16;
6712                         c->Request.type_attr_dir =
6713                                         TYPE_ATTR_DIR(cmd_type,
6714                                                 ATTR_SIMPLE, XFER_WRITE);
6715                         c->Request.Timeout = 0;
6716                         c->Request.CDB[0] = BMIC_WRITE;
6717                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6718                         break;
6719                 case HPSA_CACHE_FLUSH:
6720                         c->Request.CDBLen = 12;
6721                         c->Request.type_attr_dir =
6722                                         TYPE_ATTR_DIR(cmd_type,
6723                                                 ATTR_SIMPLE, XFER_WRITE);
6724                         c->Request.Timeout = 0;
6725                         c->Request.CDB[0] = BMIC_WRITE;
6726                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6727                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6728                         c->Request.CDB[8] = size & 0xFF;
6729                         break;
6730                 case TEST_UNIT_READY:
6731                         c->Request.CDBLen = 6;
6732                         c->Request.type_attr_dir =
6733                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6734                         c->Request.Timeout = 0;
6735                         break;
6736                 case HPSA_GET_RAID_MAP:
6737                         c->Request.CDBLen = 12;
6738                         c->Request.type_attr_dir =
6739                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6740                         c->Request.Timeout = 0;
6741                         c->Request.CDB[0] = HPSA_CISS_READ;
6742                         c->Request.CDB[1] = cmd;
6743                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6744                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6745                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6746                         c->Request.CDB[9] = size & 0xFF;
6747                         break;
6748                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6749                         c->Request.CDBLen = 10;
6750                         c->Request.type_attr_dir =
6751                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6752                         c->Request.Timeout = 0;
6753                         c->Request.CDB[0] = BMIC_READ;
6754                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6755                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6756                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6757                         break;
6758                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6759                         c->Request.CDBLen = 10;
6760                         c->Request.type_attr_dir =
6761                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6762                         c->Request.Timeout = 0;
6763                         c->Request.CDB[0] = BMIC_READ;
6764                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6765                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6766                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6767                         break;
6768                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6769                         c->Request.CDBLen = 10;
6770                         c->Request.type_attr_dir =
6771                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6772                         c->Request.Timeout = 0;
6773                         c->Request.CDB[0] = BMIC_READ;
6774                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6775                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6776                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6777                         break;
6778                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6779                         c->Request.CDBLen = 10;
6780                         c->Request.type_attr_dir =
6781                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6782                         c->Request.Timeout = 0;
6783                         c->Request.CDB[0] = BMIC_READ;
6784                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6785                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6786                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6787                         break;
6788                 case BMIC_IDENTIFY_CONTROLLER:
6789                         c->Request.CDBLen = 10;
6790                         c->Request.type_attr_dir =
6791                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6792                         c->Request.Timeout = 0;
6793                         c->Request.CDB[0] = BMIC_READ;
6794                         c->Request.CDB[1] = 0;
6795                         c->Request.CDB[2] = 0;
6796                         c->Request.CDB[3] = 0;
6797                         c->Request.CDB[4] = 0;
6798                         c->Request.CDB[5] = 0;
6799                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6800                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6801                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6802                         c->Request.CDB[9] = 0;
6803                         break;
6804                 default:
6805                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6806                         BUG();
6807                 }
6808         } else if (cmd_type == TYPE_MSG) {
6809                 switch (cmd) {
6810
6811                 case  HPSA_PHYS_TARGET_RESET:
6812                         c->Request.CDBLen = 16;
6813                         c->Request.type_attr_dir =
6814                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6815                         c->Request.Timeout = 0; /* Don't time out */
6816                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6817                         c->Request.CDB[0] = HPSA_RESET;
6818                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6819                         /* Physical target reset needs no control bytes 4-7*/
6820                         c->Request.CDB[4] = 0x00;
6821                         c->Request.CDB[5] = 0x00;
6822                         c->Request.CDB[6] = 0x00;
6823                         c->Request.CDB[7] = 0x00;
6824                         break;
6825                 case  HPSA_DEVICE_RESET_MSG:
6826                         c->Request.CDBLen = 16;
6827                         c->Request.type_attr_dir =
6828                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6829                         c->Request.Timeout = 0; /* Don't time out */
6830                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6831                         c->Request.CDB[0] =  cmd;
6832                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6833                         /* If bytes 4-7 are zero, it means reset the */
6834                         /* LunID device */
6835                         c->Request.CDB[4] = 0x00;
6836                         c->Request.CDB[5] = 0x00;
6837                         c->Request.CDB[6] = 0x00;
6838                         c->Request.CDB[7] = 0x00;
6839                         break;
6840                 default:
6841                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6842                                 cmd);
6843                         BUG();
6844                 }
6845         } else {
6846                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6847                 BUG();
6848         }
6849
6850         switch (GET_DIR(c->Request.type_attr_dir)) {
6851         case XFER_READ:
6852                 dir = DMA_FROM_DEVICE;
6853                 break;
6854         case XFER_WRITE:
6855                 dir = DMA_TO_DEVICE;
6856                 break;
6857         case XFER_NONE:
6858                 dir = DMA_NONE;
6859                 break;
6860         default:
6861                 dir = DMA_BIDIRECTIONAL;
6862         }
6863         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6864                 return -1;
6865         return 0;
6866 }
6867
6868 /*
6869  * Map (physical) PCI mem into (virtual) kernel space
6870  */
6871 static void __iomem *remap_pci_mem(ulong base, ulong size)
6872 {
6873         ulong page_base = ((ulong) base) & PAGE_MASK;
6874         ulong page_offs = ((ulong) base) - page_base;
6875         void __iomem *page_remapped = ioremap_nocache(page_base,
6876                 page_offs + size);
6877
6878         return page_remapped ? (page_remapped + page_offs) : NULL;
6879 }
6880
6881 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6882 {
6883         return h->access.command_completed(h, q);
6884 }
6885
6886 static inline bool interrupt_pending(struct ctlr_info *h)
6887 {
6888         return h->access.intr_pending(h);
6889 }
6890
6891 static inline long interrupt_not_for_us(struct ctlr_info *h)
6892 {
6893         return (h->access.intr_pending(h) == 0) ||
6894                 (h->interrupts_enabled == 0);
6895 }
6896
6897 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6898         u32 raw_tag)
6899 {
6900         if (unlikely(tag_index >= h->nr_cmds)) {
6901                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6902                 return 1;
6903         }
6904         return 0;
6905 }
6906
6907 static inline void finish_cmd(struct CommandList *c)
6908 {
6909         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6910         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6911                         || c->cmd_type == CMD_IOACCEL2))
6912                 complete_scsi_command(c);
6913         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6914                 complete(c->waiting);
6915 }
6916
6917 /* process completion of an indexed ("direct lookup") command */
6918 static inline void process_indexed_cmd(struct ctlr_info *h,
6919         u32 raw_tag)
6920 {
6921         u32 tag_index;
6922         struct CommandList *c;
6923
6924         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6925         if (!bad_tag(h, tag_index, raw_tag)) {
6926                 c = h->cmd_pool + tag_index;
6927                 finish_cmd(c);
6928         }
6929 }
6930
6931 /* Some controllers, like p400, will give us one interrupt
6932  * after a soft reset, even if we turned interrupts off.
6933  * Only need to check for this in the hpsa_xxx_discard_completions
6934  * functions.
6935  */
6936 static int ignore_bogus_interrupt(struct ctlr_info *h)
6937 {
6938         if (likely(!reset_devices))
6939                 return 0;
6940
6941         if (likely(h->interrupts_enabled))
6942                 return 0;
6943
6944         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6945                 "(known firmware bug.)  Ignoring.\n");
6946
6947         return 1;
6948 }
6949
6950 /*
6951  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6952  * Relies on (h-q[x] == x) being true for x such that
6953  * 0 <= x < MAX_REPLY_QUEUES.
6954  */
6955 static struct ctlr_info *queue_to_hba(u8 *queue)
6956 {
6957         return container_of((queue - *queue), struct ctlr_info, q[0]);
6958 }
6959
6960 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6961 {
6962         struct ctlr_info *h = queue_to_hba(queue);
6963         u8 q = *(u8 *) queue;
6964         u32 raw_tag;
6965
6966         if (ignore_bogus_interrupt(h))
6967                 return IRQ_NONE;
6968
6969         if (interrupt_not_for_us(h))
6970                 return IRQ_NONE;
6971         h->last_intr_timestamp = get_jiffies_64();
6972         while (interrupt_pending(h)) {
6973                 raw_tag = get_next_completion(h, q);
6974                 while (raw_tag != FIFO_EMPTY)
6975                         raw_tag = next_command(h, q);
6976         }
6977         return IRQ_HANDLED;
6978 }
6979
6980 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6981 {
6982         struct ctlr_info *h = queue_to_hba(queue);
6983         u32 raw_tag;
6984         u8 q = *(u8 *) queue;
6985
6986         if (ignore_bogus_interrupt(h))
6987                 return IRQ_NONE;
6988
6989         h->last_intr_timestamp = get_jiffies_64();
6990         raw_tag = get_next_completion(h, q);
6991         while (raw_tag != FIFO_EMPTY)
6992                 raw_tag = next_command(h, q);
6993         return IRQ_HANDLED;
6994 }
6995
6996 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6997 {
6998         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6999         u32 raw_tag;
7000         u8 q = *(u8 *) queue;
7001
7002         if (interrupt_not_for_us(h))
7003                 return IRQ_NONE;
7004         h->last_intr_timestamp = get_jiffies_64();
7005         while (interrupt_pending(h)) {
7006                 raw_tag = get_next_completion(h, q);
7007                 while (raw_tag != FIFO_EMPTY) {
7008                         process_indexed_cmd(h, raw_tag);
7009                         raw_tag = next_command(h, q);
7010                 }
7011         }
7012         return IRQ_HANDLED;
7013 }
7014
7015 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7016 {
7017         struct ctlr_info *h = queue_to_hba(queue);
7018         u32 raw_tag;
7019         u8 q = *(u8 *) queue;
7020
7021         h->last_intr_timestamp = get_jiffies_64();
7022         raw_tag = get_next_completion(h, q);
7023         while (raw_tag != FIFO_EMPTY) {
7024                 process_indexed_cmd(h, raw_tag);
7025                 raw_tag = next_command(h, q);
7026         }
7027         return IRQ_HANDLED;
7028 }
7029
7030 /* Send a message CDB to the firmware. Careful, this only works
7031  * in simple mode, not performant mode due to the tag lookup.
7032  * We only ever use this immediately after a controller reset.
7033  */
7034 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7035                         unsigned char type)
7036 {
7037         struct Command {
7038                 struct CommandListHeader CommandHeader;
7039                 struct RequestBlock Request;
7040                 struct ErrDescriptor ErrorDescriptor;
7041         };
7042         struct Command *cmd;
7043         static const size_t cmd_sz = sizeof(*cmd) +
7044                                         sizeof(cmd->ErrorDescriptor);
7045         dma_addr_t paddr64;
7046         __le32 paddr32;
7047         u32 tag;
7048         void __iomem *vaddr;
7049         int i, err;
7050
7051         vaddr = pci_ioremap_bar(pdev, 0);
7052         if (vaddr == NULL)
7053                 return -ENOMEM;
7054
7055         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7056          * CCISS commands, so they must be allocated from the lower 4GiB of
7057          * memory.
7058          */
7059         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7060         if (err) {
7061                 iounmap(vaddr);
7062                 return err;
7063         }
7064
7065         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7066         if (cmd == NULL) {
7067                 iounmap(vaddr);
7068                 return -ENOMEM;
7069         }
7070
7071         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7072          * although there's no guarantee, we assume that the address is at
7073          * least 4-byte aligned (most likely, it's page-aligned).
7074          */
7075         paddr32 = cpu_to_le32(paddr64);
7076
7077         cmd->CommandHeader.ReplyQueue = 0;
7078         cmd->CommandHeader.SGList = 0;
7079         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7080         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7081         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7082
7083         cmd->Request.CDBLen = 16;
7084         cmd->Request.type_attr_dir =
7085                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7086         cmd->Request.Timeout = 0; /* Don't time out */
7087         cmd->Request.CDB[0] = opcode;
7088         cmd->Request.CDB[1] = type;
7089         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7090         cmd->ErrorDescriptor.Addr =
7091                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7092         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7093
7094         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7095
7096         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7097                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7098                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7099                         break;
7100                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7101         }
7102
7103         iounmap(vaddr);
7104
7105         /* we leak the DMA buffer here ... no choice since the controller could
7106          *  still complete the command.
7107          */
7108         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7109                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7110                         opcode, type);
7111                 return -ETIMEDOUT;
7112         }
7113
7114         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7115
7116         if (tag & HPSA_ERROR_BIT) {
7117                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7118                         opcode, type);
7119                 return -EIO;
7120         }
7121
7122         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7123                 opcode, type);
7124         return 0;
7125 }
7126
7127 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7128
7129 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7130         void __iomem *vaddr, u32 use_doorbell)
7131 {
7132
7133         if (use_doorbell) {
7134                 /* For everything after the P600, the PCI power state method
7135                  * of resetting the controller doesn't work, so we have this
7136                  * other way using the doorbell register.
7137                  */
7138                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7139                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7140
7141                 /* PMC hardware guys tell us we need a 10 second delay after
7142                  * doorbell reset and before any attempt to talk to the board
7143                  * at all to ensure that this actually works and doesn't fall
7144                  * over in some weird corner cases.
7145                  */
7146                 msleep(10000);
7147         } else { /* Try to do it the PCI power state way */
7148
7149                 /* Quoting from the Open CISS Specification: "The Power
7150                  * Management Control/Status Register (CSR) controls the power
7151                  * state of the device.  The normal operating state is D0,
7152                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7153                  * the controller, place the interface device in D3 then to D0,
7154                  * this causes a secondary PCI reset which will reset the
7155                  * controller." */
7156
7157                 int rc = 0;
7158
7159                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7160
7161                 /* enter the D3hot power management state */
7162                 rc = pci_set_power_state(pdev, PCI_D3hot);
7163                 if (rc)
7164                         return rc;
7165
7166                 msleep(500);
7167
7168                 /* enter the D0 power management state */
7169                 rc = pci_set_power_state(pdev, PCI_D0);
7170                 if (rc)
7171                         return rc;
7172
7173                 /*
7174                  * The P600 requires a small delay when changing states.
7175                  * Otherwise we may think the board did not reset and we bail.
7176                  * This for kdump only and is particular to the P600.
7177                  */
7178                 msleep(500);
7179         }
7180         return 0;
7181 }
7182
7183 static void init_driver_version(char *driver_version, int len)
7184 {
7185         memset(driver_version, 0, len);
7186         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7187 }
7188
7189 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7190 {
7191         char *driver_version;
7192         int i, size = sizeof(cfgtable->driver_version);
7193
7194         driver_version = kmalloc(size, GFP_KERNEL);
7195         if (!driver_version)
7196                 return -ENOMEM;
7197
7198         init_driver_version(driver_version, size);
7199         for (i = 0; i < size; i++)
7200                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7201         kfree(driver_version);
7202         return 0;
7203 }
7204
7205 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7206                                           unsigned char *driver_ver)
7207 {
7208         int i;
7209
7210         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7211                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7212 }
7213
7214 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7215 {
7216
7217         char *driver_ver, *old_driver_ver;
7218         int rc, size = sizeof(cfgtable->driver_version);
7219
7220         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7221         if (!old_driver_ver)
7222                 return -ENOMEM;
7223         driver_ver = old_driver_ver + size;
7224
7225         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7226          * should have been changed, otherwise we know the reset failed.
7227          */
7228         init_driver_version(old_driver_ver, size);
7229         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7230         rc = !memcmp(driver_ver, old_driver_ver, size);
7231         kfree(old_driver_ver);
7232         return rc;
7233 }
7234 /* This does a hard reset of the controller using PCI power management
7235  * states or the using the doorbell register.
7236  */
7237 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7238 {
7239         u64 cfg_offset;
7240         u32 cfg_base_addr;
7241         u64 cfg_base_addr_index;
7242         void __iomem *vaddr;
7243         unsigned long paddr;
7244         u32 misc_fw_support;
7245         int rc;
7246         struct CfgTable __iomem *cfgtable;
7247         u32 use_doorbell;
7248         u16 command_register;
7249
7250         /* For controllers as old as the P600, this is very nearly
7251          * the same thing as
7252          *
7253          * pci_save_state(pci_dev);
7254          * pci_set_power_state(pci_dev, PCI_D3hot);
7255          * pci_set_power_state(pci_dev, PCI_D0);
7256          * pci_restore_state(pci_dev);
7257          *
7258          * For controllers newer than the P600, the pci power state
7259          * method of resetting doesn't work so we have another way
7260          * using the doorbell register.
7261          */
7262
7263         if (!ctlr_is_resettable(board_id)) {
7264                 dev_warn(&pdev->dev, "Controller not resettable\n");
7265                 return -ENODEV;
7266         }
7267
7268         /* if controller is soft- but not hard resettable... */
7269         if (!ctlr_is_hard_resettable(board_id))
7270                 return -ENOTSUPP; /* try soft reset later. */
7271
7272         /* Save the PCI command register */
7273         pci_read_config_word(pdev, 4, &command_register);
7274         pci_save_state(pdev);
7275
7276         /* find the first memory BAR, so we can find the cfg table */
7277         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7278         if (rc)
7279                 return rc;
7280         vaddr = remap_pci_mem(paddr, 0x250);
7281         if (!vaddr)
7282                 return -ENOMEM;
7283
7284         /* find cfgtable in order to check if reset via doorbell is supported */
7285         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7286                                         &cfg_base_addr_index, &cfg_offset);
7287         if (rc)
7288                 goto unmap_vaddr;
7289         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7290                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7291         if (!cfgtable) {
7292                 rc = -ENOMEM;
7293                 goto unmap_vaddr;
7294         }
7295         rc = write_driver_ver_to_cfgtable(cfgtable);
7296         if (rc)
7297                 goto unmap_cfgtable;
7298
7299         /* If reset via doorbell register is supported, use that.
7300          * There are two such methods.  Favor the newest method.
7301          */
7302         misc_fw_support = readl(&cfgtable->misc_fw_support);
7303         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7304         if (use_doorbell) {
7305                 use_doorbell = DOORBELL_CTLR_RESET2;
7306         } else {
7307                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7308                 if (use_doorbell) {
7309                         dev_warn(&pdev->dev,
7310                                 "Soft reset not supported. Firmware update is required.\n");
7311                         rc = -ENOTSUPP; /* try soft reset */
7312                         goto unmap_cfgtable;
7313                 }
7314         }
7315
7316         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7317         if (rc)
7318                 goto unmap_cfgtable;
7319
7320         pci_restore_state(pdev);
7321         pci_write_config_word(pdev, 4, command_register);
7322
7323         /* Some devices (notably the HP Smart Array 5i Controller)
7324            need a little pause here */
7325         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7326
7327         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7328         if (rc) {
7329                 dev_warn(&pdev->dev,
7330                         "Failed waiting for board to become ready after hard reset\n");
7331                 goto unmap_cfgtable;
7332         }
7333
7334         rc = controller_reset_failed(vaddr);
7335         if (rc < 0)
7336                 goto unmap_cfgtable;
7337         if (rc) {
7338                 dev_warn(&pdev->dev, "Unable to successfully reset "
7339                         "controller. Will try soft reset.\n");
7340                 rc = -ENOTSUPP;
7341         } else {
7342                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7343         }
7344
7345 unmap_cfgtable:
7346         iounmap(cfgtable);
7347
7348 unmap_vaddr:
7349         iounmap(vaddr);
7350         return rc;
7351 }
7352
7353 /*
7354  *  We cannot read the structure directly, for portability we must use
7355  *   the io functions.
7356  *   This is for debug only.
7357  */
7358 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7359 {
7360 #ifdef HPSA_DEBUG
7361         int i;
7362         char temp_name[17];
7363
7364         dev_info(dev, "Controller Configuration information\n");
7365         dev_info(dev, "------------------------------------\n");
7366         for (i = 0; i < 4; i++)
7367                 temp_name[i] = readb(&(tb->Signature[i]));
7368         temp_name[4] = '\0';
7369         dev_info(dev, "   Signature = %s\n", temp_name);
7370         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7371         dev_info(dev, "   Transport methods supported = 0x%x\n",
7372                readl(&(tb->TransportSupport)));
7373         dev_info(dev, "   Transport methods active = 0x%x\n",
7374                readl(&(tb->TransportActive)));
7375         dev_info(dev, "   Requested transport Method = 0x%x\n",
7376                readl(&(tb->HostWrite.TransportRequest)));
7377         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7378                readl(&(tb->HostWrite.CoalIntDelay)));
7379         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7380                readl(&(tb->HostWrite.CoalIntCount)));
7381         dev_info(dev, "   Max outstanding commands = %d\n",
7382                readl(&(tb->CmdsOutMax)));
7383         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7384         for (i = 0; i < 16; i++)
7385                 temp_name[i] = readb(&(tb->ServerName[i]));
7386         temp_name[16] = '\0';
7387         dev_info(dev, "   Server Name = %s\n", temp_name);
7388         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7389                 readl(&(tb->HeartBeat)));
7390 #endif                          /* HPSA_DEBUG */
7391 }
7392
7393 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7394 {
7395         int i, offset, mem_type, bar_type;
7396
7397         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7398                 return 0;
7399         offset = 0;
7400         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7401                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7402                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7403                         offset += 4;
7404                 else {
7405                         mem_type = pci_resource_flags(pdev, i) &
7406                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7407                         switch (mem_type) {
7408                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7409                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7410                                 offset += 4;    /* 32 bit */
7411                                 break;
7412                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7413                                 offset += 8;
7414                                 break;
7415                         default:        /* reserved in PCI 2.2 */
7416                                 dev_warn(&pdev->dev,
7417                                        "base address is invalid\n");
7418                                 return -1;
7419                                 break;
7420                         }
7421                 }
7422                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7423                         return i + 1;
7424         }
7425         return -1;
7426 }
7427
7428 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7429 {
7430         pci_free_irq_vectors(h->pdev);
7431         h->msix_vectors = 0;
7432 }
7433
7434 static void hpsa_setup_reply_map(struct ctlr_info *h)
7435 {
7436         const struct cpumask *mask;
7437         unsigned int queue, cpu;
7438
7439         for (queue = 0; queue < h->msix_vectors; queue++) {
7440                 mask = pci_irq_get_affinity(h->pdev, queue);
7441                 if (!mask)
7442                         goto fallback;
7443
7444                 for_each_cpu(cpu, mask)
7445                         h->reply_map[cpu] = queue;
7446         }
7447         return;
7448
7449 fallback:
7450         for_each_possible_cpu(cpu)
7451                 h->reply_map[cpu] = 0;
7452 }
7453
7454 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7455  * controllers that are capable. If not, we use legacy INTx mode.
7456  */
7457 static int hpsa_interrupt_mode(struct ctlr_info *h)
7458 {
7459         unsigned int flags = PCI_IRQ_LEGACY;
7460         int ret;
7461
7462         /* Some boards advertise MSI but don't really support it */
7463         switch (h->board_id) {
7464         case 0x40700E11:
7465         case 0x40800E11:
7466         case 0x40820E11:
7467         case 0x40830E11:
7468                 break;
7469         default:
7470                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7471                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7472                 if (ret > 0) {
7473                         h->msix_vectors = ret;
7474                         return 0;
7475                 }
7476
7477                 flags |= PCI_IRQ_MSI;
7478                 break;
7479         }
7480
7481         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7482         if (ret < 0)
7483                 return ret;
7484         return 0;
7485 }
7486
7487 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7488                                 bool *legacy_board)
7489 {
7490         int i;
7491         u32 subsystem_vendor_id, subsystem_device_id;
7492
7493         subsystem_vendor_id = pdev->subsystem_vendor;
7494         subsystem_device_id = pdev->subsystem_device;
7495         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7496                     subsystem_vendor_id;
7497
7498         if (legacy_board)
7499                 *legacy_board = false;
7500         for (i = 0; i < ARRAY_SIZE(products); i++)
7501                 if (*board_id == products[i].board_id) {
7502                         if (products[i].access != &SA5A_access &&
7503                             products[i].access != &SA5B_access)
7504                                 return i;
7505                         dev_warn(&pdev->dev,
7506                                  "legacy board ID: 0x%08x\n",
7507                                  *board_id);
7508                         if (legacy_board)
7509                             *legacy_board = true;
7510                         return i;
7511                 }
7512
7513         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7514         if (legacy_board)
7515                 *legacy_board = true;
7516         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7517 }
7518
7519 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7520                                     unsigned long *memory_bar)
7521 {
7522         int i;
7523
7524         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7525                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7526                         /* addressing mode bits already removed */
7527                         *memory_bar = pci_resource_start(pdev, i);
7528                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7529                                 *memory_bar);
7530                         return 0;
7531                 }
7532         dev_warn(&pdev->dev, "no memory BAR found\n");
7533         return -ENODEV;
7534 }
7535
7536 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7537                                      int wait_for_ready)
7538 {
7539         int i, iterations;
7540         u32 scratchpad;
7541         if (wait_for_ready)
7542                 iterations = HPSA_BOARD_READY_ITERATIONS;
7543         else
7544                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7545
7546         for (i = 0; i < iterations; i++) {
7547                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7548                 if (wait_for_ready) {
7549                         if (scratchpad == HPSA_FIRMWARE_READY)
7550                                 return 0;
7551                 } else {
7552                         if (scratchpad != HPSA_FIRMWARE_READY)
7553                                 return 0;
7554                 }
7555                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7556         }
7557         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7558         return -ENODEV;
7559 }
7560
7561 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7562                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7563                                u64 *cfg_offset)
7564 {
7565         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7566         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7567         *cfg_base_addr &= (u32) 0x0000ffff;
7568         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7569         if (*cfg_base_addr_index == -1) {
7570                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7571                 return -ENODEV;
7572         }
7573         return 0;
7574 }
7575
7576 static void hpsa_free_cfgtables(struct ctlr_info *h)
7577 {
7578         if (h->transtable) {
7579                 iounmap(h->transtable);
7580                 h->transtable = NULL;
7581         }
7582         if (h->cfgtable) {
7583                 iounmap(h->cfgtable);
7584                 h->cfgtable = NULL;
7585         }
7586 }
7587
7588 /* Find and map CISS config table and transfer table
7589 + * several items must be unmapped (freed) later
7590 + * */
7591 static int hpsa_find_cfgtables(struct ctlr_info *h)
7592 {
7593         u64 cfg_offset;
7594         u32 cfg_base_addr;
7595         u64 cfg_base_addr_index;
7596         u32 trans_offset;
7597         int rc;
7598
7599         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7600                 &cfg_base_addr_index, &cfg_offset);
7601         if (rc)
7602                 return rc;
7603         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7604                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7605         if (!h->cfgtable) {
7606                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7607                 return -ENOMEM;
7608         }
7609         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7610         if (rc)
7611                 return rc;
7612         /* Find performant mode table. */
7613         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7614         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7615                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7616                                 sizeof(*h->transtable));
7617         if (!h->transtable) {
7618                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7619                 hpsa_free_cfgtables(h);
7620                 return -ENOMEM;
7621         }
7622         return 0;
7623 }
7624
7625 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7626 {
7627 #define MIN_MAX_COMMANDS 16
7628         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7629
7630         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7631
7632         /* Limit commands in memory limited kdump scenario. */
7633         if (reset_devices && h->max_commands > 32)
7634                 h->max_commands = 32;
7635
7636         if (h->max_commands < MIN_MAX_COMMANDS) {
7637                 dev_warn(&h->pdev->dev,
7638                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7639                         h->max_commands,
7640                         MIN_MAX_COMMANDS);
7641                 h->max_commands = MIN_MAX_COMMANDS;
7642         }
7643 }
7644
7645 /* If the controller reports that the total max sg entries is greater than 512,
7646  * then we know that chained SG blocks work.  (Original smart arrays did not
7647  * support chained SG blocks and would return zero for max sg entries.)
7648  */
7649 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7650 {
7651         return h->maxsgentries > 512;
7652 }
7653
7654 /* Interrogate the hardware for some limits:
7655  * max commands, max SG elements without chaining, and with chaining,
7656  * SG chain block size, etc.
7657  */
7658 static void hpsa_find_board_params(struct ctlr_info *h)
7659 {
7660         hpsa_get_max_perf_mode_cmds(h);
7661         h->nr_cmds = h->max_commands;
7662         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7663         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7664         if (hpsa_supports_chained_sg_blocks(h)) {
7665                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7666                 h->max_cmd_sg_entries = 32;
7667                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7668                 h->maxsgentries--; /* save one for chain pointer */
7669         } else {
7670                 /*
7671                  * Original smart arrays supported at most 31 s/g entries
7672                  * embedded inline in the command (trying to use more
7673                  * would lock up the controller)
7674                  */
7675                 h->max_cmd_sg_entries = 31;
7676                 h->maxsgentries = 31; /* default to traditional values */
7677                 h->chainsize = 0;
7678         }
7679
7680         /* Find out what task management functions are supported and cache */
7681         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7682         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7683                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7684         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7685                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7686         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7687                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7688 }
7689
7690 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7691 {
7692         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7693                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7694                 return false;
7695         }
7696         return true;
7697 }
7698
7699 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7700 {
7701         u32 driver_support;
7702
7703         driver_support = readl(&(h->cfgtable->driver_support));
7704         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7705 #ifdef CONFIG_X86
7706         driver_support |= ENABLE_SCSI_PREFETCH;
7707 #endif
7708         driver_support |= ENABLE_UNIT_ATTN;
7709         writel(driver_support, &(h->cfgtable->driver_support));
7710 }
7711
7712 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7713  * in a prefetch beyond physical memory.
7714  */
7715 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7716 {
7717         u32 dma_prefetch;
7718
7719         if (h->board_id != 0x3225103C)
7720                 return;
7721         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7722         dma_prefetch |= 0x8000;
7723         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7724 }
7725
7726 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7727 {
7728         int i;
7729         u32 doorbell_value;
7730         unsigned long flags;
7731         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7732         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7733                 spin_lock_irqsave(&h->lock, flags);
7734                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7735                 spin_unlock_irqrestore(&h->lock, flags);
7736                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7737                         goto done;
7738                 /* delay and try again */
7739                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7740         }
7741         return -ENODEV;
7742 done:
7743         return 0;
7744 }
7745
7746 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7747 {
7748         int i;
7749         u32 doorbell_value;
7750         unsigned long flags;
7751
7752         /* under certain very rare conditions, this can take awhile.
7753          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7754          * as we enter this code.)
7755          */
7756         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7757                 if (h->remove_in_progress)
7758                         goto done;
7759                 spin_lock_irqsave(&h->lock, flags);
7760                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7761                 spin_unlock_irqrestore(&h->lock, flags);
7762                 if (!(doorbell_value & CFGTBL_ChangeReq))
7763                         goto done;
7764                 /* delay and try again */
7765                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7766         }
7767         return -ENODEV;
7768 done:
7769         return 0;
7770 }
7771
7772 /* return -ENODEV or other reason on error, 0 on success */
7773 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7774 {
7775         u32 trans_support;
7776
7777         trans_support = readl(&(h->cfgtable->TransportSupport));
7778         if (!(trans_support & SIMPLE_MODE))
7779                 return -ENOTSUPP;
7780
7781         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7782
7783         /* Update the field, and then ring the doorbell */
7784         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7785         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7786         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7787         if (hpsa_wait_for_mode_change_ack(h))
7788                 goto error;
7789         print_cfg_table(&h->pdev->dev, h->cfgtable);
7790         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7791                 goto error;
7792         h->transMethod = CFGTBL_Trans_Simple;
7793         return 0;
7794 error:
7795         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7796         return -ENODEV;
7797 }
7798
7799 /* free items allocated or mapped by hpsa_pci_init */
7800 static void hpsa_free_pci_init(struct ctlr_info *h)
7801 {
7802         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7803         iounmap(h->vaddr);                      /* pci_init 3 */
7804         h->vaddr = NULL;
7805         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7806         /*
7807          * call pci_disable_device before pci_release_regions per
7808          * Documentation/driver-api/pci/pci.rst
7809          */
7810         pci_disable_device(h->pdev);            /* pci_init 1 */
7811         pci_release_regions(h->pdev);           /* pci_init 2 */
7812 }
7813
7814 /* several items must be freed later */
7815 static int hpsa_pci_init(struct ctlr_info *h)
7816 {
7817         int prod_index, err;
7818         bool legacy_board;
7819
7820         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7821         if (prod_index < 0)
7822                 return prod_index;
7823         h->product_name = products[prod_index].product_name;
7824         h->access = *(products[prod_index].access);
7825         h->legacy_board = legacy_board;
7826         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7827                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7828
7829         err = pci_enable_device(h->pdev);
7830         if (err) {
7831                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7832                 pci_disable_device(h->pdev);
7833                 return err;
7834         }
7835
7836         err = pci_request_regions(h->pdev, HPSA);
7837         if (err) {
7838                 dev_err(&h->pdev->dev,
7839                         "failed to obtain PCI resources\n");
7840                 pci_disable_device(h->pdev);
7841                 return err;
7842         }
7843
7844         pci_set_master(h->pdev);
7845
7846         err = hpsa_interrupt_mode(h);
7847         if (err)
7848                 goto clean1;
7849
7850         /* setup mapping between CPU and reply queue */
7851         hpsa_setup_reply_map(h);
7852
7853         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7854         if (err)
7855                 goto clean2;    /* intmode+region, pci */
7856         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7857         if (!h->vaddr) {
7858                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7859                 err = -ENOMEM;
7860                 goto clean2;    /* intmode+region, pci */
7861         }
7862         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7863         if (err)
7864                 goto clean3;    /* vaddr, intmode+region, pci */
7865         err = hpsa_find_cfgtables(h);
7866         if (err)
7867                 goto clean3;    /* vaddr, intmode+region, pci */
7868         hpsa_find_board_params(h);
7869
7870         if (!hpsa_CISS_signature_present(h)) {
7871                 err = -ENODEV;
7872                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7873         }
7874         hpsa_set_driver_support_bits(h);
7875         hpsa_p600_dma_prefetch_quirk(h);
7876         err = hpsa_enter_simple_mode(h);
7877         if (err)
7878                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7879         return 0;
7880
7881 clean4: /* cfgtables, vaddr, intmode+region, pci */
7882         hpsa_free_cfgtables(h);
7883 clean3: /* vaddr, intmode+region, pci */
7884         iounmap(h->vaddr);
7885         h->vaddr = NULL;
7886 clean2: /* intmode+region, pci */
7887         hpsa_disable_interrupt_mode(h);
7888 clean1:
7889         /*
7890          * call pci_disable_device before pci_release_regions per
7891          * Documentation/driver-api/pci/pci.rst
7892          */
7893         pci_disable_device(h->pdev);
7894         pci_release_regions(h->pdev);
7895         return err;
7896 }
7897
7898 static void hpsa_hba_inquiry(struct ctlr_info *h)
7899 {
7900         int rc;
7901
7902 #define HBA_INQUIRY_BYTE_COUNT 64
7903         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7904         if (!h->hba_inquiry_data)
7905                 return;
7906         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7907                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7908         if (rc != 0) {
7909                 kfree(h->hba_inquiry_data);
7910                 h->hba_inquiry_data = NULL;
7911         }
7912 }
7913
7914 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7915 {
7916         int rc, i;
7917         void __iomem *vaddr;
7918
7919         if (!reset_devices)
7920                 return 0;
7921
7922         /* kdump kernel is loading, we don't know in which state is
7923          * the pci interface. The dev->enable_cnt is equal zero
7924          * so we call enable+disable, wait a while and switch it on.
7925          */
7926         rc = pci_enable_device(pdev);
7927         if (rc) {
7928                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7929                 return -ENODEV;
7930         }
7931         pci_disable_device(pdev);
7932         msleep(260);                    /* a randomly chosen number */
7933         rc = pci_enable_device(pdev);
7934         if (rc) {
7935                 dev_warn(&pdev->dev, "failed to enable device.\n");
7936                 return -ENODEV;
7937         }
7938
7939         pci_set_master(pdev);
7940
7941         vaddr = pci_ioremap_bar(pdev, 0);
7942         if (vaddr == NULL) {
7943                 rc = -ENOMEM;
7944                 goto out_disable;
7945         }
7946         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7947         iounmap(vaddr);
7948
7949         /* Reset the controller with a PCI power-cycle or via doorbell */
7950         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7951
7952         /* -ENOTSUPP here means we cannot reset the controller
7953          * but it's already (and still) up and running in
7954          * "performant mode".  Or, it might be 640x, which can't reset
7955          * due to concerns about shared bbwc between 6402/6404 pair.
7956          */
7957         if (rc)
7958                 goto out_disable;
7959
7960         /* Now try to get the controller to respond to a no-op */
7961         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7962         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7963                 if (hpsa_noop(pdev) == 0)
7964                         break;
7965                 else
7966                         dev_warn(&pdev->dev, "no-op failed%s\n",
7967                                         (i < 11 ? "; re-trying" : ""));
7968         }
7969
7970 out_disable:
7971
7972         pci_disable_device(pdev);
7973         return rc;
7974 }
7975
7976 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7977 {
7978         kfree(h->cmd_pool_bits);
7979         h->cmd_pool_bits = NULL;
7980         if (h->cmd_pool) {
7981                 dma_free_coherent(&h->pdev->dev,
7982                                 h->nr_cmds * sizeof(struct CommandList),
7983                                 h->cmd_pool,
7984                                 h->cmd_pool_dhandle);
7985                 h->cmd_pool = NULL;
7986                 h->cmd_pool_dhandle = 0;
7987         }
7988         if (h->errinfo_pool) {
7989                 dma_free_coherent(&h->pdev->dev,
7990                                 h->nr_cmds * sizeof(struct ErrorInfo),
7991                                 h->errinfo_pool,
7992                                 h->errinfo_pool_dhandle);
7993                 h->errinfo_pool = NULL;
7994                 h->errinfo_pool_dhandle = 0;
7995         }
7996 }
7997
7998 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7999 {
8000         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8001                                    sizeof(unsigned long),
8002                                    GFP_KERNEL);
8003         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8004                     h->nr_cmds * sizeof(*h->cmd_pool),
8005                     &h->cmd_pool_dhandle, GFP_KERNEL);
8006         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8007                     h->nr_cmds * sizeof(*h->errinfo_pool),
8008                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8009         if ((h->cmd_pool_bits == NULL)
8010             || (h->cmd_pool == NULL)
8011             || (h->errinfo_pool == NULL)) {
8012                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8013                 goto clean_up;
8014         }
8015         hpsa_preinitialize_commands(h);
8016         return 0;
8017 clean_up:
8018         hpsa_free_cmd_pool(h);
8019         return -ENOMEM;
8020 }
8021
8022 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8023 static void hpsa_free_irqs(struct ctlr_info *h)
8024 {
8025         int i;
8026         int irq_vector = 0;
8027
8028         if (hpsa_simple_mode)
8029                 irq_vector = h->intr_mode;
8030
8031         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8032                 /* Single reply queue, only one irq to free */
8033                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8034                                 &h->q[h->intr_mode]);
8035                 h->q[h->intr_mode] = 0;
8036                 return;
8037         }
8038
8039         for (i = 0; i < h->msix_vectors; i++) {
8040                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8041                 h->q[i] = 0;
8042         }
8043         for (; i < MAX_REPLY_QUEUES; i++)
8044                 h->q[i] = 0;
8045 }
8046
8047 /* returns 0 on success; cleans up and returns -Enn on error */
8048 static int hpsa_request_irqs(struct ctlr_info *h,
8049         irqreturn_t (*msixhandler)(int, void *),
8050         irqreturn_t (*intxhandler)(int, void *))
8051 {
8052         int rc, i;
8053         int irq_vector = 0;
8054
8055         if (hpsa_simple_mode)
8056                 irq_vector = h->intr_mode;
8057
8058         /*
8059          * initialize h->q[x] = x so that interrupt handlers know which
8060          * queue to process.
8061          */
8062         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8063                 h->q[i] = (u8) i;
8064
8065         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8066                 /* If performant mode and MSI-X, use multiple reply queues */
8067                 for (i = 0; i < h->msix_vectors; i++) {
8068                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8069                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8070                                         0, h->intrname[i],
8071                                         &h->q[i]);
8072                         if (rc) {
8073                                 int j;
8074
8075                                 dev_err(&h->pdev->dev,
8076                                         "failed to get irq %d for %s\n",
8077                                        pci_irq_vector(h->pdev, i), h->devname);
8078                                 for (j = 0; j < i; j++) {
8079                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8080                                         h->q[j] = 0;
8081                                 }
8082                                 for (; j < MAX_REPLY_QUEUES; j++)
8083                                         h->q[j] = 0;
8084                                 return rc;
8085                         }
8086                 }
8087         } else {
8088                 /* Use single reply pool */
8089                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8090                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8091                                 h->msix_vectors ? "x" : "");
8092                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8093                                 msixhandler, 0,
8094                                 h->intrname[0],
8095                                 &h->q[h->intr_mode]);
8096                 } else {
8097                         sprintf(h->intrname[h->intr_mode],
8098                                 "%s-intx", h->devname);
8099                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8100                                 intxhandler, IRQF_SHARED,
8101                                 h->intrname[0],
8102                                 &h->q[h->intr_mode]);
8103                 }
8104         }
8105         if (rc) {
8106                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8107                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8108                 hpsa_free_irqs(h);
8109                 return -ENODEV;
8110         }
8111         return 0;
8112 }
8113
8114 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8115 {
8116         int rc;
8117         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8118
8119         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8120         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8121         if (rc) {
8122                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8123                 return rc;
8124         }
8125
8126         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8127         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8128         if (rc) {
8129                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8130                         "after soft reset.\n");
8131                 return rc;
8132         }
8133
8134         return 0;
8135 }
8136
8137 static void hpsa_free_reply_queues(struct ctlr_info *h)
8138 {
8139         int i;
8140
8141         for (i = 0; i < h->nreply_queues; i++) {
8142                 if (!h->reply_queue[i].head)
8143                         continue;
8144                 dma_free_coherent(&h->pdev->dev,
8145                                         h->reply_queue_size,
8146                                         h->reply_queue[i].head,
8147                                         h->reply_queue[i].busaddr);
8148                 h->reply_queue[i].head = NULL;
8149                 h->reply_queue[i].busaddr = 0;
8150         }
8151         h->reply_queue_size = 0;
8152 }
8153
8154 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8155 {
8156         hpsa_free_performant_mode(h);           /* init_one 7 */
8157         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8158         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8159         hpsa_free_irqs(h);                      /* init_one 4 */
8160         scsi_host_put(h->scsi_host);            /* init_one 3 */
8161         h->scsi_host = NULL;                    /* init_one 3 */
8162         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8163         free_percpu(h->lockup_detected);        /* init_one 2 */
8164         h->lockup_detected = NULL;              /* init_one 2 */
8165         if (h->resubmit_wq) {
8166                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8167                 h->resubmit_wq = NULL;
8168         }
8169         if (h->rescan_ctlr_wq) {
8170                 destroy_workqueue(h->rescan_ctlr_wq);
8171                 h->rescan_ctlr_wq = NULL;
8172         }
8173         if (h->monitor_ctlr_wq) {
8174                 destroy_workqueue(h->monitor_ctlr_wq);
8175                 h->monitor_ctlr_wq = NULL;
8176         }
8177
8178         kfree(h);                               /* init_one 1 */
8179 }
8180
8181 /* Called when controller lockup detected. */
8182 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8183 {
8184         int i, refcount;
8185         struct CommandList *c;
8186         int failcount = 0;
8187
8188         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8189         for (i = 0; i < h->nr_cmds; i++) {
8190                 c = h->cmd_pool + i;
8191                 refcount = atomic_inc_return(&c->refcount);
8192                 if (refcount > 1) {
8193                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8194                         finish_cmd(c);
8195                         atomic_dec(&h->commands_outstanding);
8196                         failcount++;
8197                 }
8198                 cmd_free(h, c);
8199         }
8200         dev_warn(&h->pdev->dev,
8201                 "failed %d commands in fail_all\n", failcount);
8202 }
8203
8204 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8205 {
8206         int cpu;
8207
8208         for_each_online_cpu(cpu) {
8209                 u32 *lockup_detected;
8210                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8211                 *lockup_detected = value;
8212         }
8213         wmb(); /* be sure the per-cpu variables are out to memory */
8214 }
8215
8216 static void controller_lockup_detected(struct ctlr_info *h)
8217 {
8218         unsigned long flags;
8219         u32 lockup_detected;
8220
8221         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8222         spin_lock_irqsave(&h->lock, flags);
8223         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8224         if (!lockup_detected) {
8225                 /* no heartbeat, but controller gave us a zero. */
8226                 dev_warn(&h->pdev->dev,
8227                         "lockup detected after %d but scratchpad register is zero\n",
8228                         h->heartbeat_sample_interval / HZ);
8229                 lockup_detected = 0xffffffff;
8230         }
8231         set_lockup_detected_for_all_cpus(h, lockup_detected);
8232         spin_unlock_irqrestore(&h->lock, flags);
8233         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8234                         lockup_detected, h->heartbeat_sample_interval / HZ);
8235         if (lockup_detected == 0xffff0000) {
8236                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8237                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8238         }
8239         pci_disable_device(h->pdev);
8240         fail_all_outstanding_cmds(h);
8241 }
8242
8243 static int detect_controller_lockup(struct ctlr_info *h)
8244 {
8245         u64 now;
8246         u32 heartbeat;
8247         unsigned long flags;
8248
8249         now = get_jiffies_64();
8250         /* If we've received an interrupt recently, we're ok. */
8251         if (time_after64(h->last_intr_timestamp +
8252                                 (h->heartbeat_sample_interval), now))
8253                 return false;
8254
8255         /*
8256          * If we've already checked the heartbeat recently, we're ok.
8257          * This could happen if someone sends us a signal. We
8258          * otherwise don't care about signals in this thread.
8259          */
8260         if (time_after64(h->last_heartbeat_timestamp +
8261                                 (h->heartbeat_sample_interval), now))
8262                 return false;
8263
8264         /* If heartbeat has not changed since we last looked, we're not ok. */
8265         spin_lock_irqsave(&h->lock, flags);
8266         heartbeat = readl(&h->cfgtable->HeartBeat);
8267         spin_unlock_irqrestore(&h->lock, flags);
8268         if (h->last_heartbeat == heartbeat) {
8269                 controller_lockup_detected(h);
8270                 return true;
8271         }
8272
8273         /* We're ok. */
8274         h->last_heartbeat = heartbeat;
8275         h->last_heartbeat_timestamp = now;
8276         return false;
8277 }
8278
8279 /*
8280  * Set ioaccel status for all ioaccel volumes.
8281  *
8282  * Called from monitor controller worker (hpsa_event_monitor_worker)
8283  *
8284  * A Volume (or Volumes that comprise an Array set may be undergoing a
8285  * transformation, so we will be turning off ioaccel for all volumes that
8286  * make up the Array.
8287  */
8288 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8289 {
8290         int rc;
8291         int i;
8292         u8 ioaccel_status;
8293         unsigned char *buf;
8294         struct hpsa_scsi_dev_t *device;
8295
8296         if (!h)
8297                 return;
8298
8299         buf = kmalloc(64, GFP_KERNEL);
8300         if (!buf)
8301                 return;
8302
8303         /*
8304          * Run through current device list used during I/O requests.
8305          */
8306         for (i = 0; i < h->ndevices; i++) {
8307                 device = h->dev[i];
8308
8309                 if (!device)
8310                         continue;
8311                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8312                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8313                         continue;
8314
8315                 memset(buf, 0, 64);
8316
8317                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8318                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8319                                         buf, 64);
8320                 if (rc != 0)
8321                         continue;
8322
8323                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8324                 device->offload_config =
8325                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8326                 if (device->offload_config)
8327                         device->offload_to_be_enabled =
8328                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8329
8330                 /*
8331                  * Immediately turn off ioaccel for any volume the
8332                  * controller tells us to. Some of the reasons could be:
8333                  *    transformation - change to the LVs of an Array.
8334                  *    degraded volume - component failure
8335                  *
8336                  * If ioaccel is to be re-enabled, re-enable later during the
8337                  * scan operation so the driver can get a fresh raidmap
8338                  * before turning ioaccel back on.
8339                  *
8340                  */
8341                 if (!device->offload_to_be_enabled)
8342                         device->offload_enabled = 0;
8343         }
8344
8345         kfree(buf);
8346 }
8347
8348 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8349 {
8350         char *event_type;
8351
8352         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8353                 return;
8354
8355         /* Ask the controller to clear the events we're handling. */
8356         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8357                         | CFGTBL_Trans_io_accel2)) &&
8358                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8359                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8360
8361                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8362                         event_type = "state change";
8363                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8364                         event_type = "configuration change";
8365                 /* Stop sending new RAID offload reqs via the IO accelerator */
8366                 scsi_block_requests(h->scsi_host);
8367                 hpsa_set_ioaccel_status(h);
8368                 hpsa_drain_accel_commands(h);
8369                 /* Set 'accelerator path config change' bit */
8370                 dev_warn(&h->pdev->dev,
8371                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8372                         h->events, event_type);
8373                 writel(h->events, &(h->cfgtable->clear_event_notify));
8374                 /* Set the "clear event notify field update" bit 6 */
8375                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8376                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8377                 hpsa_wait_for_clear_event_notify_ack(h);
8378                 scsi_unblock_requests(h->scsi_host);
8379         } else {
8380                 /* Acknowledge controller notification events. */
8381                 writel(h->events, &(h->cfgtable->clear_event_notify));
8382                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8383                 hpsa_wait_for_clear_event_notify_ack(h);
8384         }
8385         return;
8386 }
8387
8388 /* Check a register on the controller to see if there are configuration
8389  * changes (added/changed/removed logical drives, etc.) which mean that
8390  * we should rescan the controller for devices.
8391  * Also check flag for driver-initiated rescan.
8392  */
8393 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8394 {
8395         if (h->drv_req_rescan) {
8396                 h->drv_req_rescan = 0;
8397                 return 1;
8398         }
8399
8400         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8401                 return 0;
8402
8403         h->events = readl(&(h->cfgtable->event_notify));
8404         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8405 }
8406
8407 /*
8408  * Check if any of the offline devices have become ready
8409  */
8410 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8411 {
8412         unsigned long flags;
8413         struct offline_device_entry *d;
8414         struct list_head *this, *tmp;
8415
8416         spin_lock_irqsave(&h->offline_device_lock, flags);
8417         list_for_each_safe(this, tmp, &h->offline_device_list) {
8418                 d = list_entry(this, struct offline_device_entry,
8419                                 offline_list);
8420                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8421                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8422                         spin_lock_irqsave(&h->offline_device_lock, flags);
8423                         list_del(&d->offline_list);
8424                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8425                         return 1;
8426                 }
8427                 spin_lock_irqsave(&h->offline_device_lock, flags);
8428         }
8429         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8430         return 0;
8431 }
8432
8433 static int hpsa_luns_changed(struct ctlr_info *h)
8434 {
8435         int rc = 1; /* assume there are changes */
8436         struct ReportLUNdata *logdev = NULL;
8437
8438         /* if we can't find out if lun data has changed,
8439          * assume that it has.
8440          */
8441
8442         if (!h->lastlogicals)
8443                 return rc;
8444
8445         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8446         if (!logdev)
8447                 return rc;
8448
8449         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8450                 dev_warn(&h->pdev->dev,
8451                         "report luns failed, can't track lun changes.\n");
8452                 goto out;
8453         }
8454         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8455                 dev_info(&h->pdev->dev,
8456                         "Lun changes detected.\n");
8457                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8458                 goto out;
8459         } else
8460                 rc = 0; /* no changes detected. */
8461 out:
8462         kfree(logdev);
8463         return rc;
8464 }
8465
8466 static void hpsa_perform_rescan(struct ctlr_info *h)
8467 {
8468         struct Scsi_Host *sh = NULL;
8469         unsigned long flags;
8470
8471         /*
8472          * Do the scan after the reset
8473          */
8474         spin_lock_irqsave(&h->reset_lock, flags);
8475         if (h->reset_in_progress) {
8476                 h->drv_req_rescan = 1;
8477                 spin_unlock_irqrestore(&h->reset_lock, flags);
8478                 return;
8479         }
8480         spin_unlock_irqrestore(&h->reset_lock, flags);
8481
8482         sh = scsi_host_get(h->scsi_host);
8483         if (sh != NULL) {
8484                 hpsa_scan_start(sh);
8485                 scsi_host_put(sh);
8486                 h->drv_req_rescan = 0;
8487         }
8488 }
8489
8490 /*
8491  * watch for controller events
8492  */
8493 static void hpsa_event_monitor_worker(struct work_struct *work)
8494 {
8495         struct ctlr_info *h = container_of(to_delayed_work(work),
8496                                         struct ctlr_info, event_monitor_work);
8497         unsigned long flags;
8498
8499         spin_lock_irqsave(&h->lock, flags);
8500         if (h->remove_in_progress) {
8501                 spin_unlock_irqrestore(&h->lock, flags);
8502                 return;
8503         }
8504         spin_unlock_irqrestore(&h->lock, flags);
8505
8506         if (hpsa_ctlr_needs_rescan(h)) {
8507                 hpsa_ack_ctlr_events(h);
8508                 hpsa_perform_rescan(h);
8509         }
8510
8511         spin_lock_irqsave(&h->lock, flags);
8512         if (!h->remove_in_progress)
8513                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8514                                 HPSA_EVENT_MONITOR_INTERVAL);
8515         spin_unlock_irqrestore(&h->lock, flags);
8516 }
8517
8518 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8519 {
8520         unsigned long flags;
8521         struct ctlr_info *h = container_of(to_delayed_work(work),
8522                                         struct ctlr_info, rescan_ctlr_work);
8523
8524         spin_lock_irqsave(&h->lock, flags);
8525         if (h->remove_in_progress) {
8526                 spin_unlock_irqrestore(&h->lock, flags);
8527                 return;
8528         }
8529         spin_unlock_irqrestore(&h->lock, flags);
8530
8531         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8532                 hpsa_perform_rescan(h);
8533         } else if (h->discovery_polling) {
8534                 if (hpsa_luns_changed(h)) {
8535                         dev_info(&h->pdev->dev,
8536                                 "driver discovery polling rescan.\n");
8537                         hpsa_perform_rescan(h);
8538                 }
8539         }
8540         spin_lock_irqsave(&h->lock, flags);
8541         if (!h->remove_in_progress)
8542                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8543                                 h->heartbeat_sample_interval);
8544         spin_unlock_irqrestore(&h->lock, flags);
8545 }
8546
8547 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8548 {
8549         unsigned long flags;
8550         struct ctlr_info *h = container_of(to_delayed_work(work),
8551                                         struct ctlr_info, monitor_ctlr_work);
8552
8553         detect_controller_lockup(h);
8554         if (lockup_detected(h))
8555                 return;
8556
8557         spin_lock_irqsave(&h->lock, flags);
8558         if (!h->remove_in_progress)
8559                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8560                                 h->heartbeat_sample_interval);
8561         spin_unlock_irqrestore(&h->lock, flags);
8562 }
8563
8564 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8565                                                 char *name)
8566 {
8567         struct workqueue_struct *wq = NULL;
8568
8569         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8570         if (!wq)
8571                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8572
8573         return wq;
8574 }
8575
8576 static void hpda_free_ctlr_info(struct ctlr_info *h)
8577 {
8578         kfree(h->reply_map);
8579         kfree(h);
8580 }
8581
8582 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8583 {
8584         struct ctlr_info *h;
8585
8586         h = kzalloc(sizeof(*h), GFP_KERNEL);
8587         if (!h)
8588                 return NULL;
8589
8590         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8591         if (!h->reply_map) {
8592                 kfree(h);
8593                 return NULL;
8594         }
8595         return h;
8596 }
8597
8598 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8599 {
8600         int dac, rc;
8601         struct ctlr_info *h;
8602         int try_soft_reset = 0;
8603         unsigned long flags;
8604         u32 board_id;
8605
8606         if (number_of_controllers == 0)
8607                 printk(KERN_INFO DRIVER_NAME "\n");
8608
8609         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8610         if (rc < 0) {
8611                 dev_warn(&pdev->dev, "Board ID not found\n");
8612                 return rc;
8613         }
8614
8615         rc = hpsa_init_reset_devices(pdev, board_id);
8616         if (rc) {
8617                 if (rc != -ENOTSUPP)
8618                         return rc;
8619                 /* If the reset fails in a particular way (it has no way to do
8620                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8621                  * a soft reset once we get the controller configured up to the
8622                  * point that it can accept a command.
8623                  */
8624                 try_soft_reset = 1;
8625                 rc = 0;
8626         }
8627
8628 reinit_after_soft_reset:
8629
8630         /* Command structures must be aligned on a 32-byte boundary because
8631          * the 5 lower bits of the address are used by the hardware. and by
8632          * the driver.  See comments in hpsa.h for more info.
8633          */
8634         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8635         h = hpda_alloc_ctlr_info();
8636         if (!h) {
8637                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8638                 return -ENOMEM;
8639         }
8640
8641         h->pdev = pdev;
8642
8643         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8644         INIT_LIST_HEAD(&h->offline_device_list);
8645         spin_lock_init(&h->lock);
8646         spin_lock_init(&h->offline_device_lock);
8647         spin_lock_init(&h->scan_lock);
8648         spin_lock_init(&h->reset_lock);
8649         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8650
8651         /* Allocate and clear per-cpu variable lockup_detected */
8652         h->lockup_detected = alloc_percpu(u32);
8653         if (!h->lockup_detected) {
8654                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8655                 rc = -ENOMEM;
8656                 goto clean1;    /* aer/h */
8657         }
8658         set_lockup_detected_for_all_cpus(h, 0);
8659
8660         rc = hpsa_pci_init(h);
8661         if (rc)
8662                 goto clean2;    /* lu, aer/h */
8663
8664         /* relies on h-> settings made by hpsa_pci_init, including
8665          * interrupt_mode h->intr */
8666         rc = hpsa_scsi_host_alloc(h);
8667         if (rc)
8668                 goto clean2_5;  /* pci, lu, aer/h */
8669
8670         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8671         h->ctlr = number_of_controllers;
8672         number_of_controllers++;
8673
8674         /* configure PCI DMA stuff */
8675         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8676         if (rc == 0) {
8677                 dac = 1;
8678         } else {
8679                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8680                 if (rc == 0) {
8681                         dac = 0;
8682                 } else {
8683                         dev_err(&pdev->dev, "no suitable DMA available\n");
8684                         goto clean3;    /* shost, pci, lu, aer/h */
8685                 }
8686         }
8687
8688         /* make sure the board interrupts are off */
8689         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8690
8691         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8692         if (rc)
8693                 goto clean3;    /* shost, pci, lu, aer/h */
8694         rc = hpsa_alloc_cmd_pool(h);
8695         if (rc)
8696                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8697         rc = hpsa_alloc_sg_chain_blocks(h);
8698         if (rc)
8699                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8700         init_waitqueue_head(&h->scan_wait_queue);
8701         init_waitqueue_head(&h->event_sync_wait_queue);
8702         mutex_init(&h->reset_mutex);
8703         h->scan_finished = 1; /* no scan currently in progress */
8704         h->scan_waiting = 0;
8705
8706         pci_set_drvdata(pdev, h);
8707         h->ndevices = 0;
8708
8709         spin_lock_init(&h->devlock);
8710         rc = hpsa_put_ctlr_into_performant_mode(h);
8711         if (rc)
8712                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8713
8714         /* create the resubmit workqueue */
8715         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8716         if (!h->rescan_ctlr_wq) {
8717                 rc = -ENOMEM;
8718                 goto clean7;
8719         }
8720
8721         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8722         if (!h->resubmit_wq) {
8723                 rc = -ENOMEM;
8724                 goto clean7;    /* aer/h */
8725         }
8726
8727         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8728         if (!h->monitor_ctlr_wq) {
8729                 rc = -ENOMEM;
8730                 goto clean7;
8731         }
8732
8733         /*
8734          * At this point, the controller is ready to take commands.
8735          * Now, if reset_devices and the hard reset didn't work, try
8736          * the soft reset and see if that works.
8737          */
8738         if (try_soft_reset) {
8739
8740                 /* This is kind of gross.  We may or may not get a completion
8741                  * from the soft reset command, and if we do, then the value
8742                  * from the fifo may or may not be valid.  So, we wait 10 secs
8743                  * after the reset throwing away any completions we get during
8744                  * that time.  Unregister the interrupt handler and register
8745                  * fake ones to scoop up any residual completions.
8746                  */
8747                 spin_lock_irqsave(&h->lock, flags);
8748                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8749                 spin_unlock_irqrestore(&h->lock, flags);
8750                 hpsa_free_irqs(h);
8751                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8752                                         hpsa_intx_discard_completions);
8753                 if (rc) {
8754                         dev_warn(&h->pdev->dev,
8755                                 "Failed to request_irq after soft reset.\n");
8756                         /*
8757                          * cannot goto clean7 or free_irqs will be called
8758                          * again. Instead, do its work
8759                          */
8760                         hpsa_free_performant_mode(h);   /* clean7 */
8761                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8762                         hpsa_free_cmd_pool(h);          /* clean5 */
8763                         /*
8764                          * skip hpsa_free_irqs(h) clean4 since that
8765                          * was just called before request_irqs failed
8766                          */
8767                         goto clean3;
8768                 }
8769
8770                 rc = hpsa_kdump_soft_reset(h);
8771                 if (rc)
8772                         /* Neither hard nor soft reset worked, we're hosed. */
8773                         goto clean7;
8774
8775                 dev_info(&h->pdev->dev, "Board READY.\n");
8776                 dev_info(&h->pdev->dev,
8777                         "Waiting for stale completions to drain.\n");
8778                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8779                 msleep(10000);
8780                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8781
8782                 rc = controller_reset_failed(h->cfgtable);
8783                 if (rc)
8784                         dev_info(&h->pdev->dev,
8785                                 "Soft reset appears to have failed.\n");
8786
8787                 /* since the controller's reset, we have to go back and re-init
8788                  * everything.  Easiest to just forget what we've done and do it
8789                  * all over again.
8790                  */
8791                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8792                 try_soft_reset = 0;
8793                 if (rc)
8794                         /* don't goto clean, we already unallocated */
8795                         return -ENODEV;
8796
8797                 goto reinit_after_soft_reset;
8798         }
8799
8800         /* Enable Accelerated IO path at driver layer */
8801         h->acciopath_status = 1;
8802         /* Disable discovery polling.*/
8803         h->discovery_polling = 0;
8804
8805
8806         /* Turn the interrupts on so we can service requests */
8807         h->access.set_intr_mask(h, HPSA_INTR_ON);
8808
8809         hpsa_hba_inquiry(h);
8810
8811         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8812         if (!h->lastlogicals)
8813                 dev_info(&h->pdev->dev,
8814                         "Can't track change to report lun data\n");
8815
8816         /* hook into SCSI subsystem */
8817         rc = hpsa_scsi_add_host(h);
8818         if (rc)
8819                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8820
8821         /* Monitor the controller for firmware lockups */
8822         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8823         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8824         schedule_delayed_work(&h->monitor_ctlr_work,
8825                                 h->heartbeat_sample_interval);
8826         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8827         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8828                                 h->heartbeat_sample_interval);
8829         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8830         schedule_delayed_work(&h->event_monitor_work,
8831                                 HPSA_EVENT_MONITOR_INTERVAL);
8832         return 0;
8833
8834 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8835         hpsa_free_performant_mode(h);
8836         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8837 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8838         hpsa_free_sg_chain_blocks(h);
8839 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8840         hpsa_free_cmd_pool(h);
8841 clean4: /* irq, shost, pci, lu, aer/h */
8842         hpsa_free_irqs(h);
8843 clean3: /* shost, pci, lu, aer/h */
8844         scsi_host_put(h->scsi_host);
8845         h->scsi_host = NULL;
8846 clean2_5: /* pci, lu, aer/h */
8847         hpsa_free_pci_init(h);
8848 clean2: /* lu, aer/h */
8849         if (h->lockup_detected) {
8850                 free_percpu(h->lockup_detected);
8851                 h->lockup_detected = NULL;
8852         }
8853 clean1: /* wq/aer/h */
8854         if (h->resubmit_wq) {
8855                 destroy_workqueue(h->resubmit_wq);
8856                 h->resubmit_wq = NULL;
8857         }
8858         if (h->rescan_ctlr_wq) {
8859                 destroy_workqueue(h->rescan_ctlr_wq);
8860                 h->rescan_ctlr_wq = NULL;
8861         }
8862         if (h->monitor_ctlr_wq) {
8863                 destroy_workqueue(h->monitor_ctlr_wq);
8864                 h->monitor_ctlr_wq = NULL;
8865         }
8866         kfree(h);
8867         return rc;
8868 }
8869
8870 static void hpsa_flush_cache(struct ctlr_info *h)
8871 {
8872         char *flush_buf;
8873         struct CommandList *c;
8874         int rc;
8875
8876         if (unlikely(lockup_detected(h)))
8877                 return;
8878         flush_buf = kzalloc(4, GFP_KERNEL);
8879         if (!flush_buf)
8880                 return;
8881
8882         c = cmd_alloc(h);
8883
8884         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8885                 RAID_CTLR_LUNID, TYPE_CMD)) {
8886                 goto out;
8887         }
8888         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8889                         DEFAULT_TIMEOUT);
8890         if (rc)
8891                 goto out;
8892         if (c->err_info->CommandStatus != 0)
8893 out:
8894                 dev_warn(&h->pdev->dev,
8895                         "error flushing cache on controller\n");
8896         cmd_free(h, c);
8897         kfree(flush_buf);
8898 }
8899
8900 /* Make controller gather fresh report lun data each time we
8901  * send down a report luns request
8902  */
8903 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8904 {
8905         u32 *options;
8906         struct CommandList *c;
8907         int rc;
8908
8909         /* Don't bother trying to set diag options if locked up */
8910         if (unlikely(h->lockup_detected))
8911                 return;
8912
8913         options = kzalloc(sizeof(*options), GFP_KERNEL);
8914         if (!options)
8915                 return;
8916
8917         c = cmd_alloc(h);
8918
8919         /* first, get the current diag options settings */
8920         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8921                 RAID_CTLR_LUNID, TYPE_CMD))
8922                 goto errout;
8923
8924         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8925                         NO_TIMEOUT);
8926         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8927                 goto errout;
8928
8929         /* Now, set the bit for disabling the RLD caching */
8930         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8931
8932         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8933                 RAID_CTLR_LUNID, TYPE_CMD))
8934                 goto errout;
8935
8936         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8937                         NO_TIMEOUT);
8938         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8939                 goto errout;
8940
8941         /* Now verify that it got set: */
8942         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8943                 RAID_CTLR_LUNID, TYPE_CMD))
8944                 goto errout;
8945
8946         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8947                         NO_TIMEOUT);
8948         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8949                 goto errout;
8950
8951         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8952                 goto out;
8953
8954 errout:
8955         dev_err(&h->pdev->dev,
8956                         "Error: failed to disable report lun data caching.\n");
8957 out:
8958         cmd_free(h, c);
8959         kfree(options);
8960 }
8961
8962 static void __hpsa_shutdown(struct pci_dev *pdev)
8963 {
8964         struct ctlr_info *h;
8965
8966         h = pci_get_drvdata(pdev);
8967         /* Turn board interrupts off  and send the flush cache command
8968          * sendcmd will turn off interrupt, and send the flush...
8969          * To write all data in the battery backed cache to disks
8970          */
8971         hpsa_flush_cache(h);
8972         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8973         hpsa_free_irqs(h);                      /* init_one 4 */
8974         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8975 }
8976
8977 static void hpsa_shutdown(struct pci_dev *pdev)
8978 {
8979         __hpsa_shutdown(pdev);
8980         pci_disable_device(pdev);
8981 }
8982
8983 static void hpsa_free_device_info(struct ctlr_info *h)
8984 {
8985         int i;
8986
8987         for (i = 0; i < h->ndevices; i++) {
8988                 kfree(h->dev[i]);
8989                 h->dev[i] = NULL;
8990         }
8991 }
8992
8993 static void hpsa_remove_one(struct pci_dev *pdev)
8994 {
8995         struct ctlr_info *h;
8996         unsigned long flags;
8997
8998         if (pci_get_drvdata(pdev) == NULL) {
8999                 dev_err(&pdev->dev, "unable to remove device\n");
9000                 return;
9001         }
9002         h = pci_get_drvdata(pdev);
9003
9004         /* Get rid of any controller monitoring work items */
9005         spin_lock_irqsave(&h->lock, flags);
9006         h->remove_in_progress = 1;
9007         spin_unlock_irqrestore(&h->lock, flags);
9008         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9009         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9010         cancel_delayed_work_sync(&h->event_monitor_work);
9011         destroy_workqueue(h->rescan_ctlr_wq);
9012         destroy_workqueue(h->resubmit_wq);
9013         destroy_workqueue(h->monitor_ctlr_wq);
9014
9015         hpsa_delete_sas_host(h);
9016
9017         /*
9018          * Call before disabling interrupts.
9019          * scsi_remove_host can trigger I/O operations especially
9020          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9021          * operations which cannot complete and will hang the system.
9022          */
9023         if (h->scsi_host)
9024                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9025         /* includes hpsa_free_irqs - init_one 4 */
9026         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9027         __hpsa_shutdown(pdev);
9028
9029         hpsa_free_device_info(h);               /* scan */
9030
9031         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9032         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9033         hpsa_free_ioaccel2_sg_chain_blocks(h);
9034         hpsa_free_performant_mode(h);                   /* init_one 7 */
9035         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9036         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9037         kfree(h->lastlogicals);
9038
9039         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9040
9041         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9042         h->scsi_host = NULL;                            /* init_one 3 */
9043
9044         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9045         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9046
9047         free_percpu(h->lockup_detected);                /* init_one 2 */
9048         h->lockup_detected = NULL;                      /* init_one 2 */
9049         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9050
9051         hpda_free_ctlr_info(h);                         /* init_one 1 */
9052 }
9053
9054 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9055         __attribute__((unused)) pm_message_t state)
9056 {
9057         return -ENOSYS;
9058 }
9059
9060 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9061 {
9062         return -ENOSYS;
9063 }
9064
9065 static struct pci_driver hpsa_pci_driver = {
9066         .name = HPSA,
9067         .probe = hpsa_init_one,
9068         .remove = hpsa_remove_one,
9069         .id_table = hpsa_pci_device_id, /* id_table */
9070         .shutdown = hpsa_shutdown,
9071         .suspend = hpsa_suspend,
9072         .resume = hpsa_resume,
9073 };
9074
9075 /* Fill in bucket_map[], given nsgs (the max number of
9076  * scatter gather elements supported) and bucket[],
9077  * which is an array of 8 integers.  The bucket[] array
9078  * contains 8 different DMA transfer sizes (in 16
9079  * byte increments) which the controller uses to fetch
9080  * commands.  This function fills in bucket_map[], which
9081  * maps a given number of scatter gather elements to one of
9082  * the 8 DMA transfer sizes.  The point of it is to allow the
9083  * controller to only do as much DMA as needed to fetch the
9084  * command, with the DMA transfer size encoded in the lower
9085  * bits of the command address.
9086  */
9087 static void  calc_bucket_map(int bucket[], int num_buckets,
9088         int nsgs, int min_blocks, u32 *bucket_map)
9089 {
9090         int i, j, b, size;
9091
9092         /* Note, bucket_map must have nsgs+1 entries. */
9093         for (i = 0; i <= nsgs; i++) {
9094                 /* Compute size of a command with i SG entries */
9095                 size = i + min_blocks;
9096                 b = num_buckets; /* Assume the biggest bucket */
9097                 /* Find the bucket that is just big enough */
9098                 for (j = 0; j < num_buckets; j++) {
9099                         if (bucket[j] >= size) {
9100                                 b = j;
9101                                 break;
9102                         }
9103                 }
9104                 /* for a command with i SG entries, use bucket b. */
9105                 bucket_map[i] = b;
9106         }
9107 }
9108
9109 /*
9110  * return -ENODEV on err, 0 on success (or no action)
9111  * allocates numerous items that must be freed later
9112  */
9113 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9114 {
9115         int i;
9116         unsigned long register_value;
9117         unsigned long transMethod = CFGTBL_Trans_Performant |
9118                         (trans_support & CFGTBL_Trans_use_short_tags) |
9119                                 CFGTBL_Trans_enable_directed_msix |
9120                         (trans_support & (CFGTBL_Trans_io_accel1 |
9121                                 CFGTBL_Trans_io_accel2));
9122         struct access_method access = SA5_performant_access;
9123
9124         /* This is a bit complicated.  There are 8 registers on
9125          * the controller which we write to to tell it 8 different
9126          * sizes of commands which there may be.  It's a way of
9127          * reducing the DMA done to fetch each command.  Encoded into
9128          * each command's tag are 3 bits which communicate to the controller
9129          * which of the eight sizes that command fits within.  The size of
9130          * each command depends on how many scatter gather entries there are.
9131          * Each SG entry requires 16 bytes.  The eight registers are programmed
9132          * with the number of 16-byte blocks a command of that size requires.
9133          * The smallest command possible requires 5 such 16 byte blocks.
9134          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9135          * blocks.  Note, this only extends to the SG entries contained
9136          * within the command block, and does not extend to chained blocks
9137          * of SG elements.   bft[] contains the eight values we write to
9138          * the registers.  They are not evenly distributed, but have more
9139          * sizes for small commands, and fewer sizes for larger commands.
9140          */
9141         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9142 #define MIN_IOACCEL2_BFT_ENTRY 5
9143 #define HPSA_IOACCEL2_HEADER_SZ 4
9144         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9145                         13, 14, 15, 16, 17, 18, 19,
9146                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9147         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9148         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9149         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9150                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9151         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9152         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9153         /*  5 = 1 s/g entry or 4k
9154          *  6 = 2 s/g entry or 8k
9155          *  8 = 4 s/g entry or 16k
9156          * 10 = 6 s/g entry or 24k
9157          */
9158
9159         /* If the controller supports either ioaccel method then
9160          * we can also use the RAID stack submit path that does not
9161          * perform the superfluous readl() after each command submission.
9162          */
9163         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9164                 access = SA5_performant_access_no_read;
9165
9166         /* Controller spec: zero out this buffer. */
9167         for (i = 0; i < h->nreply_queues; i++)
9168                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9169
9170         bft[7] = SG_ENTRIES_IN_CMD + 4;
9171         calc_bucket_map(bft, ARRAY_SIZE(bft),
9172                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9173         for (i = 0; i < 8; i++)
9174                 writel(bft[i], &h->transtable->BlockFetch[i]);
9175
9176         /* size of controller ring buffer */
9177         writel(h->max_commands, &h->transtable->RepQSize);
9178         writel(h->nreply_queues, &h->transtable->RepQCount);
9179         writel(0, &h->transtable->RepQCtrAddrLow32);
9180         writel(0, &h->transtable->RepQCtrAddrHigh32);
9181
9182         for (i = 0; i < h->nreply_queues; i++) {
9183                 writel(0, &h->transtable->RepQAddr[i].upper);
9184                 writel(h->reply_queue[i].busaddr,
9185                         &h->transtable->RepQAddr[i].lower);
9186         }
9187
9188         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9189         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9190         /*
9191          * enable outbound interrupt coalescing in accelerator mode;
9192          */
9193         if (trans_support & CFGTBL_Trans_io_accel1) {
9194                 access = SA5_ioaccel_mode1_access;
9195                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9196                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9197         } else
9198                 if (trans_support & CFGTBL_Trans_io_accel2)
9199                         access = SA5_ioaccel_mode2_access;
9200         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9201         if (hpsa_wait_for_mode_change_ack(h)) {
9202                 dev_err(&h->pdev->dev,
9203                         "performant mode problem - doorbell timeout\n");
9204                 return -ENODEV;
9205         }
9206         register_value = readl(&(h->cfgtable->TransportActive));
9207         if (!(register_value & CFGTBL_Trans_Performant)) {
9208                 dev_err(&h->pdev->dev,
9209                         "performant mode problem - transport not active\n");
9210                 return -ENODEV;
9211         }
9212         /* Change the access methods to the performant access methods */
9213         h->access = access;
9214         h->transMethod = transMethod;
9215
9216         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9217                 (trans_support & CFGTBL_Trans_io_accel2)))
9218                 return 0;
9219
9220         if (trans_support & CFGTBL_Trans_io_accel1) {
9221                 /* Set up I/O accelerator mode */
9222                 for (i = 0; i < h->nreply_queues; i++) {
9223                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9224                         h->reply_queue[i].current_entry =
9225                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9226                 }
9227                 bft[7] = h->ioaccel_maxsg + 8;
9228                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9229                                 h->ioaccel1_blockFetchTable);
9230
9231                 /* initialize all reply queue entries to unused */
9232                 for (i = 0; i < h->nreply_queues; i++)
9233                         memset(h->reply_queue[i].head,
9234                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9235                                 h->reply_queue_size);
9236
9237                 /* set all the constant fields in the accelerator command
9238                  * frames once at init time to save CPU cycles later.
9239                  */
9240                 for (i = 0; i < h->nr_cmds; i++) {
9241                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9242
9243                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9244                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9245                                         (i * sizeof(struct ErrorInfo)));
9246                         cp->err_info_len = sizeof(struct ErrorInfo);
9247                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9248                         cp->host_context_flags =
9249                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9250                         cp->timeout_sec = 0;
9251                         cp->ReplyQueue = 0;
9252                         cp->tag =
9253                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9254                         cp->host_addr =
9255                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9256                                         (i * sizeof(struct io_accel1_cmd)));
9257                 }
9258         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9259                 u64 cfg_offset, cfg_base_addr_index;
9260                 u32 bft2_offset, cfg_base_addr;
9261                 int rc;
9262
9263                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9264                         &cfg_base_addr_index, &cfg_offset);
9265                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9266                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9267                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9268                                 4, h->ioaccel2_blockFetchTable);
9269                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9270                 BUILD_BUG_ON(offsetof(struct CfgTable,
9271                                 io_accel_request_size_offset) != 0xb8);
9272                 h->ioaccel2_bft2_regs =
9273                         remap_pci_mem(pci_resource_start(h->pdev,
9274                                         cfg_base_addr_index) +
9275                                         cfg_offset + bft2_offset,
9276                                         ARRAY_SIZE(bft2) *
9277                                         sizeof(*h->ioaccel2_bft2_regs));
9278                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9279                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9280         }
9281         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9282         if (hpsa_wait_for_mode_change_ack(h)) {
9283                 dev_err(&h->pdev->dev,
9284                         "performant mode problem - enabling ioaccel mode\n");
9285                 return -ENODEV;
9286         }
9287         return 0;
9288 }
9289
9290 /* Free ioaccel1 mode command blocks and block fetch table */
9291 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9292 {
9293         if (h->ioaccel_cmd_pool) {
9294                 pci_free_consistent(h->pdev,
9295                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9296                         h->ioaccel_cmd_pool,
9297                         h->ioaccel_cmd_pool_dhandle);
9298                 h->ioaccel_cmd_pool = NULL;
9299                 h->ioaccel_cmd_pool_dhandle = 0;
9300         }
9301         kfree(h->ioaccel1_blockFetchTable);
9302         h->ioaccel1_blockFetchTable = NULL;
9303 }
9304
9305 /* Allocate ioaccel1 mode command blocks and block fetch table */
9306 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9307 {
9308         h->ioaccel_maxsg =
9309                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9310         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9311                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9312
9313         /* Command structures must be aligned on a 128-byte boundary
9314          * because the 7 lower bits of the address are used by the
9315          * hardware.
9316          */
9317         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9318                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9319         h->ioaccel_cmd_pool =
9320                 dma_alloc_coherent(&h->pdev->dev,
9321                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9322                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9323
9324         h->ioaccel1_blockFetchTable =
9325                 kmalloc(((h->ioaccel_maxsg + 1) *
9326                                 sizeof(u32)), GFP_KERNEL);
9327
9328         if ((h->ioaccel_cmd_pool == NULL) ||
9329                 (h->ioaccel1_blockFetchTable == NULL))
9330                 goto clean_up;
9331
9332         memset(h->ioaccel_cmd_pool, 0,
9333                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9334         return 0;
9335
9336 clean_up:
9337         hpsa_free_ioaccel1_cmd_and_bft(h);
9338         return -ENOMEM;
9339 }
9340
9341 /* Free ioaccel2 mode command blocks and block fetch table */
9342 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9343 {
9344         hpsa_free_ioaccel2_sg_chain_blocks(h);
9345
9346         if (h->ioaccel2_cmd_pool) {
9347                 pci_free_consistent(h->pdev,
9348                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9349                         h->ioaccel2_cmd_pool,
9350                         h->ioaccel2_cmd_pool_dhandle);
9351                 h->ioaccel2_cmd_pool = NULL;
9352                 h->ioaccel2_cmd_pool_dhandle = 0;
9353         }
9354         kfree(h->ioaccel2_blockFetchTable);
9355         h->ioaccel2_blockFetchTable = NULL;
9356 }
9357
9358 /* Allocate ioaccel2 mode command blocks and block fetch table */
9359 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9360 {
9361         int rc;
9362
9363         /* Allocate ioaccel2 mode command blocks and block fetch table */
9364
9365         h->ioaccel_maxsg =
9366                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9367         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9368                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9369
9370         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9371                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9372         h->ioaccel2_cmd_pool =
9373                 dma_alloc_coherent(&h->pdev->dev,
9374                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9375                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9376
9377         h->ioaccel2_blockFetchTable =
9378                 kmalloc(((h->ioaccel_maxsg + 1) *
9379                                 sizeof(u32)), GFP_KERNEL);
9380
9381         if ((h->ioaccel2_cmd_pool == NULL) ||
9382                 (h->ioaccel2_blockFetchTable == NULL)) {
9383                 rc = -ENOMEM;
9384                 goto clean_up;
9385         }
9386
9387         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9388         if (rc)
9389                 goto clean_up;
9390
9391         memset(h->ioaccel2_cmd_pool, 0,
9392                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9393         return 0;
9394
9395 clean_up:
9396         hpsa_free_ioaccel2_cmd_and_bft(h);
9397         return rc;
9398 }
9399
9400 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9401 static void hpsa_free_performant_mode(struct ctlr_info *h)
9402 {
9403         kfree(h->blockFetchTable);
9404         h->blockFetchTable = NULL;
9405         hpsa_free_reply_queues(h);
9406         hpsa_free_ioaccel1_cmd_and_bft(h);
9407         hpsa_free_ioaccel2_cmd_and_bft(h);
9408 }
9409
9410 /* return -ENODEV on error, 0 on success (or no action)
9411  * allocates numerous items that must be freed later
9412  */
9413 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9414 {
9415         u32 trans_support;
9416         unsigned long transMethod = CFGTBL_Trans_Performant |
9417                                         CFGTBL_Trans_use_short_tags;
9418         int i, rc;
9419
9420         if (hpsa_simple_mode)
9421                 return 0;
9422
9423         trans_support = readl(&(h->cfgtable->TransportSupport));
9424         if (!(trans_support & PERFORMANT_MODE))
9425                 return 0;
9426
9427         /* Check for I/O accelerator mode support */
9428         if (trans_support & CFGTBL_Trans_io_accel1) {
9429                 transMethod |= CFGTBL_Trans_io_accel1 |
9430                                 CFGTBL_Trans_enable_directed_msix;
9431                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9432                 if (rc)
9433                         return rc;
9434         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9435                 transMethod |= CFGTBL_Trans_io_accel2 |
9436                                 CFGTBL_Trans_enable_directed_msix;
9437                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9438                 if (rc)
9439                         return rc;
9440         }
9441
9442         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9443         hpsa_get_max_perf_mode_cmds(h);
9444         /* Performant mode ring buffer and supporting data structures */
9445         h->reply_queue_size = h->max_commands * sizeof(u64);
9446
9447         for (i = 0; i < h->nreply_queues; i++) {
9448                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9449                                                 h->reply_queue_size,
9450                                                 &h->reply_queue[i].busaddr,
9451                                                 GFP_KERNEL);
9452                 if (!h->reply_queue[i].head) {
9453                         rc = -ENOMEM;
9454                         goto clean1;    /* rq, ioaccel */
9455                 }
9456                 h->reply_queue[i].size = h->max_commands;
9457                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9458                 h->reply_queue[i].current_entry = 0;
9459         }
9460
9461         /* Need a block fetch table for performant mode */
9462         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9463                                 sizeof(u32)), GFP_KERNEL);
9464         if (!h->blockFetchTable) {
9465                 rc = -ENOMEM;
9466                 goto clean1;    /* rq, ioaccel */
9467         }
9468
9469         rc = hpsa_enter_performant_mode(h, trans_support);
9470         if (rc)
9471                 goto clean2;    /* bft, rq, ioaccel */
9472         return 0;
9473
9474 clean2: /* bft, rq, ioaccel */
9475         kfree(h->blockFetchTable);
9476         h->blockFetchTable = NULL;
9477 clean1: /* rq, ioaccel */
9478         hpsa_free_reply_queues(h);
9479         hpsa_free_ioaccel1_cmd_and_bft(h);
9480         hpsa_free_ioaccel2_cmd_and_bft(h);
9481         return rc;
9482 }
9483
9484 static int is_accelerated_cmd(struct CommandList *c)
9485 {
9486         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9487 }
9488
9489 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9490 {
9491         struct CommandList *c = NULL;
9492         int i, accel_cmds_out;
9493         int refcount;
9494
9495         do { /* wait for all outstanding ioaccel commands to drain out */
9496                 accel_cmds_out = 0;
9497                 for (i = 0; i < h->nr_cmds; i++) {
9498                         c = h->cmd_pool + i;
9499                         refcount = atomic_inc_return(&c->refcount);
9500                         if (refcount > 1) /* Command is allocated */
9501                                 accel_cmds_out += is_accelerated_cmd(c);
9502                         cmd_free(h, c);
9503                 }
9504                 if (accel_cmds_out <= 0)
9505                         break;
9506                 msleep(100);
9507         } while (1);
9508 }
9509
9510 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9511                                 struct hpsa_sas_port *hpsa_sas_port)
9512 {
9513         struct hpsa_sas_phy *hpsa_sas_phy;
9514         struct sas_phy *phy;
9515
9516         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9517         if (!hpsa_sas_phy)
9518                 return NULL;
9519
9520         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9521                 hpsa_sas_port->next_phy_index);
9522         if (!phy) {
9523                 kfree(hpsa_sas_phy);
9524                 return NULL;
9525         }
9526
9527         hpsa_sas_port->next_phy_index++;
9528         hpsa_sas_phy->phy = phy;
9529         hpsa_sas_phy->parent_port = hpsa_sas_port;
9530
9531         return hpsa_sas_phy;
9532 }
9533
9534 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9535 {
9536         struct sas_phy *phy = hpsa_sas_phy->phy;
9537
9538         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9539         if (hpsa_sas_phy->added_to_port)
9540                 list_del(&hpsa_sas_phy->phy_list_entry);
9541         sas_phy_delete(phy);
9542         kfree(hpsa_sas_phy);
9543 }
9544
9545 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9546 {
9547         int rc;
9548         struct hpsa_sas_port *hpsa_sas_port;
9549         struct sas_phy *phy;
9550         struct sas_identify *identify;
9551
9552         hpsa_sas_port = hpsa_sas_phy->parent_port;
9553         phy = hpsa_sas_phy->phy;
9554
9555         identify = &phy->identify;
9556         memset(identify, 0, sizeof(*identify));
9557         identify->sas_address = hpsa_sas_port->sas_address;
9558         identify->device_type = SAS_END_DEVICE;
9559         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9560         identify->target_port_protocols = SAS_PROTOCOL_STP;
9561         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9562         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9563         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9564         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9565         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9566
9567         rc = sas_phy_add(hpsa_sas_phy->phy);
9568         if (rc)
9569                 return rc;
9570
9571         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9572         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9573                         &hpsa_sas_port->phy_list_head);
9574         hpsa_sas_phy->added_to_port = true;
9575
9576         return 0;
9577 }
9578
9579 static int
9580         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9581                                 struct sas_rphy *rphy)
9582 {
9583         struct sas_identify *identify;
9584
9585         identify = &rphy->identify;
9586         identify->sas_address = hpsa_sas_port->sas_address;
9587         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9588         identify->target_port_protocols = SAS_PROTOCOL_STP;
9589
9590         return sas_rphy_add(rphy);
9591 }
9592
9593 static struct hpsa_sas_port
9594         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9595                                 u64 sas_address)
9596 {
9597         int rc;
9598         struct hpsa_sas_port *hpsa_sas_port;
9599         struct sas_port *port;
9600
9601         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9602         if (!hpsa_sas_port)
9603                 return NULL;
9604
9605         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9606         hpsa_sas_port->parent_node = hpsa_sas_node;
9607
9608         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9609         if (!port)
9610                 goto free_hpsa_port;
9611
9612         rc = sas_port_add(port);
9613         if (rc)
9614                 goto free_sas_port;
9615
9616         hpsa_sas_port->port = port;
9617         hpsa_sas_port->sas_address = sas_address;
9618         list_add_tail(&hpsa_sas_port->port_list_entry,
9619                         &hpsa_sas_node->port_list_head);
9620
9621         return hpsa_sas_port;
9622
9623 free_sas_port:
9624         sas_port_free(port);
9625 free_hpsa_port:
9626         kfree(hpsa_sas_port);
9627
9628         return NULL;
9629 }
9630
9631 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9632 {
9633         struct hpsa_sas_phy *hpsa_sas_phy;
9634         struct hpsa_sas_phy *next;
9635
9636         list_for_each_entry_safe(hpsa_sas_phy, next,
9637                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9638                 hpsa_free_sas_phy(hpsa_sas_phy);
9639
9640         sas_port_delete(hpsa_sas_port->port);
9641         list_del(&hpsa_sas_port->port_list_entry);
9642         kfree(hpsa_sas_port);
9643 }
9644
9645 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9646 {
9647         struct hpsa_sas_node *hpsa_sas_node;
9648
9649         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9650         if (hpsa_sas_node) {
9651                 hpsa_sas_node->parent_dev = parent_dev;
9652                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9653         }
9654
9655         return hpsa_sas_node;
9656 }
9657
9658 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9659 {
9660         struct hpsa_sas_port *hpsa_sas_port;
9661         struct hpsa_sas_port *next;
9662
9663         if (!hpsa_sas_node)
9664                 return;
9665
9666         list_for_each_entry_safe(hpsa_sas_port, next,
9667                         &hpsa_sas_node->port_list_head, port_list_entry)
9668                 hpsa_free_sas_port(hpsa_sas_port);
9669
9670         kfree(hpsa_sas_node);
9671 }
9672
9673 static struct hpsa_scsi_dev_t
9674         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9675                                         struct sas_rphy *rphy)
9676 {
9677         int i;
9678         struct hpsa_scsi_dev_t *device;
9679
9680         for (i = 0; i < h->ndevices; i++) {
9681                 device = h->dev[i];
9682                 if (!device->sas_port)
9683                         continue;
9684                 if (device->sas_port->rphy == rphy)
9685                         return device;
9686         }
9687
9688         return NULL;
9689 }
9690
9691 static int hpsa_add_sas_host(struct ctlr_info *h)
9692 {
9693         int rc;
9694         struct device *parent_dev;
9695         struct hpsa_sas_node *hpsa_sas_node;
9696         struct hpsa_sas_port *hpsa_sas_port;
9697         struct hpsa_sas_phy *hpsa_sas_phy;
9698
9699         parent_dev = &h->scsi_host->shost_dev;
9700
9701         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9702         if (!hpsa_sas_node)
9703                 return -ENOMEM;
9704
9705         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9706         if (!hpsa_sas_port) {
9707                 rc = -ENODEV;
9708                 goto free_sas_node;
9709         }
9710
9711         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9712         if (!hpsa_sas_phy) {
9713                 rc = -ENODEV;
9714                 goto free_sas_port;
9715         }
9716
9717         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9718         if (rc)
9719                 goto free_sas_phy;
9720
9721         h->sas_host = hpsa_sas_node;
9722
9723         return 0;
9724
9725 free_sas_phy:
9726         hpsa_free_sas_phy(hpsa_sas_phy);
9727 free_sas_port:
9728         hpsa_free_sas_port(hpsa_sas_port);
9729 free_sas_node:
9730         hpsa_free_sas_node(hpsa_sas_node);
9731
9732         return rc;
9733 }
9734
9735 static void hpsa_delete_sas_host(struct ctlr_info *h)
9736 {
9737         hpsa_free_sas_node(h->sas_host);
9738 }
9739
9740 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9741                                 struct hpsa_scsi_dev_t *device)
9742 {
9743         int rc;
9744         struct hpsa_sas_port *hpsa_sas_port;
9745         struct sas_rphy *rphy;
9746
9747         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9748         if (!hpsa_sas_port)
9749                 return -ENOMEM;
9750
9751         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9752         if (!rphy) {
9753                 rc = -ENODEV;
9754                 goto free_sas_port;
9755         }
9756
9757         hpsa_sas_port->rphy = rphy;
9758         device->sas_port = hpsa_sas_port;
9759
9760         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9761         if (rc)
9762                 goto free_sas_port;
9763
9764         return 0;
9765
9766 free_sas_port:
9767         hpsa_free_sas_port(hpsa_sas_port);
9768         device->sas_port = NULL;
9769
9770         return rc;
9771 }
9772
9773 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9774 {
9775         if (device->sas_port) {
9776                 hpsa_free_sas_port(device->sas_port);
9777                 device->sas_port = NULL;
9778         }
9779 }
9780
9781 static int
9782 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9783 {
9784         return 0;
9785 }
9786
9787 static int
9788 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9789 {
9790         struct Scsi_Host *shost = phy_to_shost(rphy);
9791         struct ctlr_info *h;
9792         struct hpsa_scsi_dev_t *sd;
9793
9794         if (!shost)
9795                 return -ENXIO;
9796
9797         h = shost_to_hba(shost);
9798
9799         if (!h)
9800                 return -ENXIO;
9801
9802         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9803         if (!sd)
9804                 return -ENXIO;
9805
9806         *identifier = sd->eli;
9807
9808         return 0;
9809 }
9810
9811 static int
9812 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9813 {
9814         return -ENXIO;
9815 }
9816
9817 static int
9818 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9819 {
9820         return 0;
9821 }
9822
9823 static int
9824 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9825 {
9826         return 0;
9827 }
9828
9829 static int
9830 hpsa_sas_phy_setup(struct sas_phy *phy)
9831 {
9832         return 0;
9833 }
9834
9835 static void
9836 hpsa_sas_phy_release(struct sas_phy *phy)
9837 {
9838 }
9839
9840 static int
9841 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9842 {
9843         return -EINVAL;
9844 }
9845
9846 static struct sas_function_template hpsa_sas_transport_functions = {
9847         .get_linkerrors = hpsa_sas_get_linkerrors,
9848         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9849         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9850         .phy_reset = hpsa_sas_phy_reset,
9851         .phy_enable = hpsa_sas_phy_enable,
9852         .phy_setup = hpsa_sas_phy_setup,
9853         .phy_release = hpsa_sas_phy_release,
9854         .set_phy_speed = hpsa_sas_phy_speed,
9855 };
9856
9857 /*
9858  *  This is it.  Register the PCI driver information for the cards we control
9859  *  the OS will call our registered routines when it finds one of our cards.
9860  */
9861 static int __init hpsa_init(void)
9862 {
9863         int rc;
9864
9865         hpsa_sas_transport_template =
9866                 sas_attach_transport(&hpsa_sas_transport_functions);
9867         if (!hpsa_sas_transport_template)
9868                 return -ENODEV;
9869
9870         rc = pci_register_driver(&hpsa_pci_driver);
9871
9872         if (rc)
9873                 sas_release_transport(hpsa_sas_transport_template);
9874
9875         return rc;
9876 }
9877
9878 static void __exit hpsa_cleanup(void)
9879 {
9880         pci_unregister_driver(&hpsa_pci_driver);
9881         sas_release_transport(hpsa_sas_transport_template);
9882 }
9883
9884 static void __attribute__((unused)) verify_offsets(void)
9885 {
9886 #define VERIFY_OFFSET(member, offset) \
9887         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9888
9889         VERIFY_OFFSET(structure_size, 0);
9890         VERIFY_OFFSET(volume_blk_size, 4);
9891         VERIFY_OFFSET(volume_blk_cnt, 8);
9892         VERIFY_OFFSET(phys_blk_shift, 16);
9893         VERIFY_OFFSET(parity_rotation_shift, 17);
9894         VERIFY_OFFSET(strip_size, 18);
9895         VERIFY_OFFSET(disk_starting_blk, 20);
9896         VERIFY_OFFSET(disk_blk_cnt, 28);
9897         VERIFY_OFFSET(data_disks_per_row, 36);
9898         VERIFY_OFFSET(metadata_disks_per_row, 38);
9899         VERIFY_OFFSET(row_cnt, 40);
9900         VERIFY_OFFSET(layout_map_count, 42);
9901         VERIFY_OFFSET(flags, 44);
9902         VERIFY_OFFSET(dekindex, 46);
9903         /* VERIFY_OFFSET(reserved, 48 */
9904         VERIFY_OFFSET(data, 64);
9905
9906 #undef VERIFY_OFFSET
9907
9908 #define VERIFY_OFFSET(member, offset) \
9909         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9910
9911         VERIFY_OFFSET(IU_type, 0);
9912         VERIFY_OFFSET(direction, 1);
9913         VERIFY_OFFSET(reply_queue, 2);
9914         /* VERIFY_OFFSET(reserved1, 3);  */
9915         VERIFY_OFFSET(scsi_nexus, 4);
9916         VERIFY_OFFSET(Tag, 8);
9917         VERIFY_OFFSET(cdb, 16);
9918         VERIFY_OFFSET(cciss_lun, 32);
9919         VERIFY_OFFSET(data_len, 40);
9920         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9921         VERIFY_OFFSET(sg_count, 45);
9922         /* VERIFY_OFFSET(reserved3 */
9923         VERIFY_OFFSET(err_ptr, 48);
9924         VERIFY_OFFSET(err_len, 56);
9925         /* VERIFY_OFFSET(reserved4  */
9926         VERIFY_OFFSET(sg, 64);
9927
9928 #undef VERIFY_OFFSET
9929
9930 #define VERIFY_OFFSET(member, offset) \
9931         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9932
9933         VERIFY_OFFSET(dev_handle, 0x00);
9934         VERIFY_OFFSET(reserved1, 0x02);
9935         VERIFY_OFFSET(function, 0x03);
9936         VERIFY_OFFSET(reserved2, 0x04);
9937         VERIFY_OFFSET(err_info, 0x0C);
9938         VERIFY_OFFSET(reserved3, 0x10);
9939         VERIFY_OFFSET(err_info_len, 0x12);
9940         VERIFY_OFFSET(reserved4, 0x13);
9941         VERIFY_OFFSET(sgl_offset, 0x14);
9942         VERIFY_OFFSET(reserved5, 0x15);
9943         VERIFY_OFFSET(transfer_len, 0x1C);
9944         VERIFY_OFFSET(reserved6, 0x20);
9945         VERIFY_OFFSET(io_flags, 0x24);
9946         VERIFY_OFFSET(reserved7, 0x26);
9947         VERIFY_OFFSET(LUN, 0x34);
9948         VERIFY_OFFSET(control, 0x3C);
9949         VERIFY_OFFSET(CDB, 0x40);
9950         VERIFY_OFFSET(reserved8, 0x50);
9951         VERIFY_OFFSET(host_context_flags, 0x60);
9952         VERIFY_OFFSET(timeout_sec, 0x62);
9953         VERIFY_OFFSET(ReplyQueue, 0x64);
9954         VERIFY_OFFSET(reserved9, 0x65);
9955         VERIFY_OFFSET(tag, 0x68);
9956         VERIFY_OFFSET(host_addr, 0x70);
9957         VERIFY_OFFSET(CISS_LUN, 0x78);
9958         VERIFY_OFFSET(SG, 0x78 + 8);
9959 #undef VERIFY_OFFSET
9960 }
9961
9962 module_init(hpsa_init);
9963 module_exit(hpsa_cleanup);