Merge branch 'pci/aspm'
[sfrench/cifs-2.6.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81         HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x40700E11, "Smart Array 5300", &SA5A_access},
162         {0x40800E11, "Smart Array 5i", &SA5B_access},
163         {0x40820E11, "Smart Array 532", &SA5B_access},
164         {0x40830E11, "Smart Array 5312", &SA5B_access},
165         {0x409A0E11, "Smart Array 641", &SA5A_access},
166         {0x409B0E11, "Smart Array 642", &SA5A_access},
167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169         {0x40910E11, "Smart Array 6i", &SA5A_access},
170         {0x3225103C, "Smart Array P600", &SA5A_access},
171         {0x3223103C, "Smart Array P800", &SA5A_access},
172         {0x3234103C, "Smart Array P400", &SA5A_access},
173         {0x3235103C, "Smart Array P400i", &SA5A_access},
174         {0x3211103C, "Smart Array E200i", &SA5A_access},
175         {0x3212103C, "Smart Array E200", &SA5A_access},
176         {0x3213103C, "Smart Array E200i", &SA5A_access},
177         {0x3214103C, "Smart Array E200i", &SA5A_access},
178         {0x3215103C, "Smart Array E200i", &SA5A_access},
179         {0x3237103C, "Smart Array E500", &SA5A_access},
180         {0x323D103C, "Smart Array P700m", &SA5A_access},
181         {0x3241103C, "Smart Array P212", &SA5_access},
182         {0x3243103C, "Smart Array P410", &SA5_access},
183         {0x3245103C, "Smart Array P410i", &SA5_access},
184         {0x3247103C, "Smart Array P411", &SA5_access},
185         {0x3249103C, "Smart Array P812", &SA5_access},
186         {0x324A103C, "Smart Array P712m", &SA5_access},
187         {0x324B103C, "Smart Array P711m", &SA5_access},
188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189         {0x3350103C, "Smart Array P222", &SA5_access},
190         {0x3351103C, "Smart Array P420", &SA5_access},
191         {0x3352103C, "Smart Array P421", &SA5_access},
192         {0x3353103C, "Smart Array P822", &SA5_access},
193         {0x3354103C, "Smart Array P420i", &SA5_access},
194         {0x3355103C, "Smart Array P220i", &SA5_access},
195         {0x3356103C, "Smart Array P721m", &SA5_access},
196         {0x1920103C, "Smart Array P430i", &SA5_access},
197         {0x1921103C, "Smart Array P830i", &SA5_access},
198         {0x1922103C, "Smart Array P430", &SA5_access},
199         {0x1923103C, "Smart Array P431", &SA5_access},
200         {0x1924103C, "Smart Array P830", &SA5_access},
201         {0x1925103C, "Smart Array P831", &SA5_access},
202         {0x1926103C, "Smart Array P731m", &SA5_access},
203         {0x1928103C, "Smart Array P230i", &SA5_access},
204         {0x1929103C, "Smart Array P530", &SA5_access},
205         {0x21BD103C, "Smart Array P244br", &SA5_access},
206         {0x21BE103C, "Smart Array P741m", &SA5_access},
207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
210         {0x21C2103C, "Smart Array P440", &SA5_access},
211         {0x21C3103C, "Smart Array P441", &SA5_access},
212         {0x21C4103C, "Smart Array", &SA5_access},
213         {0x21C5103C, "Smart Array P841", &SA5_access},
214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
215         {0x21C7103C, "Smart HBA H240", &SA5_access},
216         {0x21C8103C, "Smart HBA H241", &SA5_access},
217         {0x21C9103C, "Smart Array", &SA5_access},
218         {0x21CA103C, "Smart Array P246br", &SA5_access},
219         {0x21CB103C, "Smart Array P840", &SA5_access},
220         {0x21CC103C, "Smart Array", &SA5_access},
221         {0x21CD103C, "Smart Array", &SA5_access},
222         {0x21CE103C, "Smart HBA", &SA5_access},
223         {0x05809005, "SmartHBA-SA", &SA5_access},
224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241                         struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245                 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256                       void __user *arg);
257
258 #ifdef CONFIG_COMPAT
259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
260         void __user *arg);
261 #endif
262
263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
267                                             struct scsi_cmnd *scmd);
268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
269         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
270         int cmd_type);
271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
274
275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
276 static void hpsa_scan_start(struct Scsi_Host *);
277 static int hpsa_scan_finished(struct Scsi_Host *sh,
278         unsigned long elapsed_time);
279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
280
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
282 static int hpsa_slave_alloc(struct scsi_device *sdev);
283 static int hpsa_slave_configure(struct scsi_device *sdev);
284 static void hpsa_slave_destroy(struct scsi_device *sdev);
285
286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
287 static int check_for_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 static void check_ioctl_unit_attention(struct ctlr_info *h,
290         struct CommandList *c);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket, int num_buckets,
293         int nsgs, int min_blocks, u32 *bucket_map);
294 static void hpsa_free_performant_mode(struct ctlr_info *h);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
296 static inline u32 next_command(struct ctlr_info *h, u8 q);
297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
298                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
299                                u64 *cfg_offset);
300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
301                                     unsigned long *memory_bar);
302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
303                                 bool *legacy_board);
304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
305                                            unsigned char lunaddr[],
306                                            int reply_queue);
307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
308                                      int wait_for_ready);
309 static inline void finish_cmd(struct CommandList *c);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
314 static void hpsa_flush_cache(struct ctlr_info *h);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
316         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
317         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
318 static void hpsa_command_resubmit_worker(struct work_struct *work);
319 static u32 lockup_detected(struct ctlr_info *h);
320 static int detect_controller_lockup(struct ctlr_info *h);
321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
323         struct ReportExtendedLUNdata *buf, int bufsize);
324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
325         unsigned char scsi3addr[], u8 page);
326 static int hpsa_luns_changed(struct ctlr_info *h);
327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
328                                struct hpsa_scsi_dev_t *dev,
329                                unsigned char *scsi3addr);
330
331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
332 {
333         unsigned long *priv = shost_priv(sdev->host);
334         return (struct ctlr_info *) *priv;
335 }
336
337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
338 {
339         unsigned long *priv = shost_priv(sh);
340         return (struct ctlr_info *) *priv;
341 }
342
343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
344 {
345         return c->scsi_cmd == SCSI_CMD_IDLE;
346 }
347
348 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
350                         u8 *sense_key, u8 *asc, u8 *ascq)
351 {
352         struct scsi_sense_hdr sshdr;
353         bool rc;
354
355         *sense_key = -1;
356         *asc = -1;
357         *ascq = -1;
358
359         if (sense_data_len < 1)
360                 return;
361
362         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
363         if (rc) {
364                 *sense_key = sshdr.sense_key;
365                 *asc = sshdr.asc;
366                 *ascq = sshdr.ascq;
367         }
368 }
369
370 static int check_for_unit_attention(struct ctlr_info *h,
371         struct CommandList *c)
372 {
373         u8 sense_key, asc, ascq;
374         int sense_len;
375
376         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
377                 sense_len = sizeof(c->err_info->SenseInfo);
378         else
379                 sense_len = c->err_info->SenseLen;
380
381         decode_sense_data(c->err_info->SenseInfo, sense_len,
382                                 &sense_key, &asc, &ascq);
383         if (sense_key != UNIT_ATTENTION || asc == 0xff)
384                 return 0;
385
386         switch (asc) {
387         case STATE_CHANGED:
388                 dev_warn(&h->pdev->dev,
389                         "%s: a state change detected, command retried\n",
390                         h->devname);
391                 break;
392         case LUN_FAILED:
393                 dev_warn(&h->pdev->dev,
394                         "%s: LUN failure detected\n", h->devname);
395                 break;
396         case REPORT_LUNS_CHANGED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: report LUN data changed\n", h->devname);
399         /*
400          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401          * target (array) devices.
402          */
403                 break;
404         case POWER_OR_RESET:
405                 dev_warn(&h->pdev->dev,
406                         "%s: a power on or device reset detected\n",
407                         h->devname);
408                 break;
409         case UNIT_ATTENTION_CLEARED:
410                 dev_warn(&h->pdev->dev,
411                         "%s: unit attention cleared by another initiator\n",
412                         h->devname);
413                 break;
414         default:
415                 dev_warn(&h->pdev->dev,
416                         "%s: unknown unit attention detected\n",
417                         h->devname);
418                 break;
419         }
420         return 1;
421 }
422
423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
424 {
425         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
426                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
427                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
428                 return 0;
429         dev_warn(&h->pdev->dev, HPSA "device busy");
430         return 1;
431 }
432
433 static u32 lockup_detected(struct ctlr_info *h);
434 static ssize_t host_show_lockup_detected(struct device *dev,
435                 struct device_attribute *attr, char *buf)
436 {
437         int ld;
438         struct ctlr_info *h;
439         struct Scsi_Host *shost = class_to_shost(dev);
440
441         h = shost_to_hba(shost);
442         ld = lockup_detected(h);
443
444         return sprintf(buf, "ld=%d\n", ld);
445 }
446
447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
448                                          struct device_attribute *attr,
449                                          const char *buf, size_t count)
450 {
451         int status, len;
452         struct ctlr_info *h;
453         struct Scsi_Host *shost = class_to_shost(dev);
454         char tmpbuf[10];
455
456         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
457                 return -EACCES;
458         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
459         strncpy(tmpbuf, buf, len);
460         tmpbuf[len] = '\0';
461         if (sscanf(tmpbuf, "%d", &status) != 1)
462                 return -EINVAL;
463         h = shost_to_hba(shost);
464         h->acciopath_status = !!status;
465         dev_warn(&h->pdev->dev,
466                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
467                 h->acciopath_status ? "enabled" : "disabled");
468         return count;
469 }
470
471 static ssize_t host_store_raid_offload_debug(struct device *dev,
472                                          struct device_attribute *attr,
473                                          const char *buf, size_t count)
474 {
475         int debug_level, len;
476         struct ctlr_info *h;
477         struct Scsi_Host *shost = class_to_shost(dev);
478         char tmpbuf[10];
479
480         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481                 return -EACCES;
482         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
483         strncpy(tmpbuf, buf, len);
484         tmpbuf[len] = '\0';
485         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
486                 return -EINVAL;
487         if (debug_level < 0)
488                 debug_level = 0;
489         h = shost_to_hba(shost);
490         h->raid_offload_debug = debug_level;
491         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
492                 h->raid_offload_debug);
493         return count;
494 }
495
496 static ssize_t host_store_rescan(struct device *dev,
497                                  struct device_attribute *attr,
498                                  const char *buf, size_t count)
499 {
500         struct ctlr_info *h;
501         struct Scsi_Host *shost = class_to_shost(dev);
502         h = shost_to_hba(shost);
503         hpsa_scan_start(h->scsi_host);
504         return count;
505 }
506
507 static ssize_t host_show_firmware_revision(struct device *dev,
508              struct device_attribute *attr, char *buf)
509 {
510         struct ctlr_info *h;
511         struct Scsi_Host *shost = class_to_shost(dev);
512         unsigned char *fwrev;
513
514         h = shost_to_hba(shost);
515         if (!h->hba_inquiry_data)
516                 return 0;
517         fwrev = &h->hba_inquiry_data[32];
518         return snprintf(buf, 20, "%c%c%c%c\n",
519                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
520 }
521
522 static ssize_t host_show_commands_outstanding(struct device *dev,
523              struct device_attribute *attr, char *buf)
524 {
525         struct Scsi_Host *shost = class_to_shost(dev);
526         struct ctlr_info *h = shost_to_hba(shost);
527
528         return snprintf(buf, 20, "%d\n",
529                         atomic_read(&h->commands_outstanding));
530 }
531
532 static ssize_t host_show_transport_mode(struct device *dev,
533         struct device_attribute *attr, char *buf)
534 {
535         struct ctlr_info *h;
536         struct Scsi_Host *shost = class_to_shost(dev);
537
538         h = shost_to_hba(shost);
539         return snprintf(buf, 20, "%s\n",
540                 h->transMethod & CFGTBL_Trans_Performant ?
541                         "performant" : "simple");
542 }
543
544 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
545         struct device_attribute *attr, char *buf)
546 {
547         struct ctlr_info *h;
548         struct Scsi_Host *shost = class_to_shost(dev);
549
550         h = shost_to_hba(shost);
551         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
552                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
553 }
554
555 /* List of controllers which cannot be hard reset on kexec with reset_devices */
556 static u32 unresettable_controller[] = {
557         0x324a103C, /* Smart Array P712m */
558         0x324b103C, /* Smart Array P711m */
559         0x3223103C, /* Smart Array P800 */
560         0x3234103C, /* Smart Array P400 */
561         0x3235103C, /* Smart Array P400i */
562         0x3211103C, /* Smart Array E200i */
563         0x3212103C, /* Smart Array E200 */
564         0x3213103C, /* Smart Array E200i */
565         0x3214103C, /* Smart Array E200i */
566         0x3215103C, /* Smart Array E200i */
567         0x3237103C, /* Smart Array E500 */
568         0x323D103C, /* Smart Array P700m */
569         0x40800E11, /* Smart Array 5i */
570         0x409C0E11, /* Smart Array 6400 */
571         0x409D0E11, /* Smart Array 6400 EM */
572         0x40700E11, /* Smart Array 5300 */
573         0x40820E11, /* Smart Array 532 */
574         0x40830E11, /* Smart Array 5312 */
575         0x409A0E11, /* Smart Array 641 */
576         0x409B0E11, /* Smart Array 642 */
577         0x40910E11, /* Smart Array 6i */
578 };
579
580 /* List of controllers which cannot even be soft reset */
581 static u32 soft_unresettable_controller[] = {
582         0x40800E11, /* Smart Array 5i */
583         0x40700E11, /* Smart Array 5300 */
584         0x40820E11, /* Smart Array 532 */
585         0x40830E11, /* Smart Array 5312 */
586         0x409A0E11, /* Smart Array 641 */
587         0x409B0E11, /* Smart Array 642 */
588         0x40910E11, /* Smart Array 6i */
589         /* Exclude 640x boards.  These are two pci devices in one slot
590          * which share a battery backed cache module.  One controls the
591          * cache, the other accesses the cache through the one that controls
592          * it.  If we reset the one controlling the cache, the other will
593          * likely not be happy.  Just forbid resetting this conjoined mess.
594          * The 640x isn't really supported by hpsa anyway.
595          */
596         0x409C0E11, /* Smart Array 6400 */
597         0x409D0E11, /* Smart Array 6400 EM */
598 };
599
600 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
601 {
602         int i;
603
604         for (i = 0; i < nelems; i++)
605                 if (a[i] == board_id)
606                         return 1;
607         return 0;
608 }
609
610 static int ctlr_is_hard_resettable(u32 board_id)
611 {
612         return !board_id_in_array(unresettable_controller,
613                         ARRAY_SIZE(unresettable_controller), board_id);
614 }
615
616 static int ctlr_is_soft_resettable(u32 board_id)
617 {
618         return !board_id_in_array(soft_unresettable_controller,
619                         ARRAY_SIZE(soft_unresettable_controller), board_id);
620 }
621
622 static int ctlr_is_resettable(u32 board_id)
623 {
624         return ctlr_is_hard_resettable(board_id) ||
625                 ctlr_is_soft_resettable(board_id);
626 }
627
628 static ssize_t host_show_resettable(struct device *dev,
629         struct device_attribute *attr, char *buf)
630 {
631         struct ctlr_info *h;
632         struct Scsi_Host *shost = class_to_shost(dev);
633
634         h = shost_to_hba(shost);
635         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
636 }
637
638 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
639 {
640         return (scsi3addr[3] & 0xC0) == 0x40;
641 }
642
643 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
644         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
645 };
646 #define HPSA_RAID_0     0
647 #define HPSA_RAID_4     1
648 #define HPSA_RAID_1     2       /* also used for RAID 10 */
649 #define HPSA_RAID_5     3       /* also used for RAID 50 */
650 #define HPSA_RAID_51    4
651 #define HPSA_RAID_6     5       /* also used for RAID 60 */
652 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
653 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
654 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
655
656 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
657 {
658         return !device->physical_device;
659 }
660
661 static ssize_t raid_level_show(struct device *dev,
662              struct device_attribute *attr, char *buf)
663 {
664         ssize_t l = 0;
665         unsigned char rlevel;
666         struct ctlr_info *h;
667         struct scsi_device *sdev;
668         struct hpsa_scsi_dev_t *hdev;
669         unsigned long flags;
670
671         sdev = to_scsi_device(dev);
672         h = sdev_to_hba(sdev);
673         spin_lock_irqsave(&h->lock, flags);
674         hdev = sdev->hostdata;
675         if (!hdev) {
676                 spin_unlock_irqrestore(&h->lock, flags);
677                 return -ENODEV;
678         }
679
680         /* Is this even a logical drive? */
681         if (!is_logical_device(hdev)) {
682                 spin_unlock_irqrestore(&h->lock, flags);
683                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
684                 return l;
685         }
686
687         rlevel = hdev->raid_level;
688         spin_unlock_irqrestore(&h->lock, flags);
689         if (rlevel > RAID_UNKNOWN)
690                 rlevel = RAID_UNKNOWN;
691         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
692         return l;
693 }
694
695 static ssize_t lunid_show(struct device *dev,
696              struct device_attribute *attr, char *buf)
697 {
698         struct ctlr_info *h;
699         struct scsi_device *sdev;
700         struct hpsa_scsi_dev_t *hdev;
701         unsigned long flags;
702         unsigned char lunid[8];
703
704         sdev = to_scsi_device(dev);
705         h = sdev_to_hba(sdev);
706         spin_lock_irqsave(&h->lock, flags);
707         hdev = sdev->hostdata;
708         if (!hdev) {
709                 spin_unlock_irqrestore(&h->lock, flags);
710                 return -ENODEV;
711         }
712         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
713         spin_unlock_irqrestore(&h->lock, flags);
714         return snprintf(buf, 20, "0x%8phN\n", lunid);
715 }
716
717 static ssize_t unique_id_show(struct device *dev,
718              struct device_attribute *attr, char *buf)
719 {
720         struct ctlr_info *h;
721         struct scsi_device *sdev;
722         struct hpsa_scsi_dev_t *hdev;
723         unsigned long flags;
724         unsigned char sn[16];
725
726         sdev = to_scsi_device(dev);
727         h = sdev_to_hba(sdev);
728         spin_lock_irqsave(&h->lock, flags);
729         hdev = sdev->hostdata;
730         if (!hdev) {
731                 spin_unlock_irqrestore(&h->lock, flags);
732                 return -ENODEV;
733         }
734         memcpy(sn, hdev->device_id, sizeof(sn));
735         spin_unlock_irqrestore(&h->lock, flags);
736         return snprintf(buf, 16 * 2 + 2,
737                         "%02X%02X%02X%02X%02X%02X%02X%02X"
738                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
739                         sn[0], sn[1], sn[2], sn[3],
740                         sn[4], sn[5], sn[6], sn[7],
741                         sn[8], sn[9], sn[10], sn[11],
742                         sn[12], sn[13], sn[14], sn[15]);
743 }
744
745 static ssize_t sas_address_show(struct device *dev,
746               struct device_attribute *attr, char *buf)
747 {
748         struct ctlr_info *h;
749         struct scsi_device *sdev;
750         struct hpsa_scsi_dev_t *hdev;
751         unsigned long flags;
752         u64 sas_address;
753
754         sdev = to_scsi_device(dev);
755         h = sdev_to_hba(sdev);
756         spin_lock_irqsave(&h->lock, flags);
757         hdev = sdev->hostdata;
758         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
759                 spin_unlock_irqrestore(&h->lock, flags);
760                 return -ENODEV;
761         }
762         sas_address = hdev->sas_address;
763         spin_unlock_irqrestore(&h->lock, flags);
764
765         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
766 }
767
768 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
769              struct device_attribute *attr, char *buf)
770 {
771         struct ctlr_info *h;
772         struct scsi_device *sdev;
773         struct hpsa_scsi_dev_t *hdev;
774         unsigned long flags;
775         int offload_enabled;
776
777         sdev = to_scsi_device(dev);
778         h = sdev_to_hba(sdev);
779         spin_lock_irqsave(&h->lock, flags);
780         hdev = sdev->hostdata;
781         if (!hdev) {
782                 spin_unlock_irqrestore(&h->lock, flags);
783                 return -ENODEV;
784         }
785         offload_enabled = hdev->offload_enabled;
786         spin_unlock_irqrestore(&h->lock, flags);
787
788         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
789                 return snprintf(buf, 20, "%d\n", offload_enabled);
790         else
791                 return snprintf(buf, 40, "%s\n",
792                                 "Not applicable for a controller");
793 }
794
795 #define MAX_PATHS 8
796 static ssize_t path_info_show(struct device *dev,
797              struct device_attribute *attr, char *buf)
798 {
799         struct ctlr_info *h;
800         struct scsi_device *sdev;
801         struct hpsa_scsi_dev_t *hdev;
802         unsigned long flags;
803         int i;
804         int output_len = 0;
805         u8 box;
806         u8 bay;
807         u8 path_map_index = 0;
808         char *active;
809         unsigned char phys_connector[2];
810
811         sdev = to_scsi_device(dev);
812         h = sdev_to_hba(sdev);
813         spin_lock_irqsave(&h->devlock, flags);
814         hdev = sdev->hostdata;
815         if (!hdev) {
816                 spin_unlock_irqrestore(&h->devlock, flags);
817                 return -ENODEV;
818         }
819
820         bay = hdev->bay;
821         for (i = 0; i < MAX_PATHS; i++) {
822                 path_map_index = 1<<i;
823                 if (i == hdev->active_path_index)
824                         active = "Active";
825                 else if (hdev->path_map & path_map_index)
826                         active = "Inactive";
827                 else
828                         continue;
829
830                 output_len += scnprintf(buf + output_len,
831                                 PAGE_SIZE - output_len,
832                                 "[%d:%d:%d:%d] %20.20s ",
833                                 h->scsi_host->host_no,
834                                 hdev->bus, hdev->target, hdev->lun,
835                                 scsi_device_type(hdev->devtype));
836
837                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
838                         output_len += scnprintf(buf + output_len,
839                                                 PAGE_SIZE - output_len,
840                                                 "%s\n", active);
841                         continue;
842                 }
843
844                 box = hdev->box[i];
845                 memcpy(&phys_connector, &hdev->phys_connector[i],
846                         sizeof(phys_connector));
847                 if (phys_connector[0] < '0')
848                         phys_connector[0] = '0';
849                 if (phys_connector[1] < '0')
850                         phys_connector[1] = '0';
851                 output_len += scnprintf(buf + output_len,
852                                 PAGE_SIZE - output_len,
853                                 "PORT: %.2s ",
854                                 phys_connector);
855                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
856                         hdev->expose_device) {
857                         if (box == 0 || box == 0xFF) {
858                                 output_len += scnprintf(buf + output_len,
859                                         PAGE_SIZE - output_len,
860                                         "BAY: %hhu %s\n",
861                                         bay, active);
862                         } else {
863                                 output_len += scnprintf(buf + output_len,
864                                         PAGE_SIZE - output_len,
865                                         "BOX: %hhu BAY: %hhu %s\n",
866                                         box, bay, active);
867                         }
868                 } else if (box != 0 && box != 0xFF) {
869                         output_len += scnprintf(buf + output_len,
870                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
871                                 box, active);
872                 } else
873                         output_len += scnprintf(buf + output_len,
874                                 PAGE_SIZE - output_len, "%s\n", active);
875         }
876
877         spin_unlock_irqrestore(&h->devlock, flags);
878         return output_len;
879 }
880
881 static ssize_t host_show_ctlr_num(struct device *dev,
882         struct device_attribute *attr, char *buf)
883 {
884         struct ctlr_info *h;
885         struct Scsi_Host *shost = class_to_shost(dev);
886
887         h = shost_to_hba(shost);
888         return snprintf(buf, 20, "%d\n", h->ctlr);
889 }
890
891 static ssize_t host_show_legacy_board(struct device *dev,
892         struct device_attribute *attr, char *buf)
893 {
894         struct ctlr_info *h;
895         struct Scsi_Host *shost = class_to_shost(dev);
896
897         h = shost_to_hba(shost);
898         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
899 }
900
901 static DEVICE_ATTR_RO(raid_level);
902 static DEVICE_ATTR_RO(lunid);
903 static DEVICE_ATTR_RO(unique_id);
904 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
905 static DEVICE_ATTR_RO(sas_address);
906 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
907                         host_show_hp_ssd_smart_path_enabled, NULL);
908 static DEVICE_ATTR_RO(path_info);
909 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
910                 host_show_hp_ssd_smart_path_status,
911                 host_store_hp_ssd_smart_path_status);
912 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
913                         host_store_raid_offload_debug);
914 static DEVICE_ATTR(firmware_revision, S_IRUGO,
915         host_show_firmware_revision, NULL);
916 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
917         host_show_commands_outstanding, NULL);
918 static DEVICE_ATTR(transport_mode, S_IRUGO,
919         host_show_transport_mode, NULL);
920 static DEVICE_ATTR(resettable, S_IRUGO,
921         host_show_resettable, NULL);
922 static DEVICE_ATTR(lockup_detected, S_IRUGO,
923         host_show_lockup_detected, NULL);
924 static DEVICE_ATTR(ctlr_num, S_IRUGO,
925         host_show_ctlr_num, NULL);
926 static DEVICE_ATTR(legacy_board, S_IRUGO,
927         host_show_legacy_board, NULL);
928
929 static struct device_attribute *hpsa_sdev_attrs[] = {
930         &dev_attr_raid_level,
931         &dev_attr_lunid,
932         &dev_attr_unique_id,
933         &dev_attr_hp_ssd_smart_path_enabled,
934         &dev_attr_path_info,
935         &dev_attr_sas_address,
936         NULL,
937 };
938
939 static struct device_attribute *hpsa_shost_attrs[] = {
940         &dev_attr_rescan,
941         &dev_attr_firmware_revision,
942         &dev_attr_commands_outstanding,
943         &dev_attr_transport_mode,
944         &dev_attr_resettable,
945         &dev_attr_hp_ssd_smart_path_status,
946         &dev_attr_raid_offload_debug,
947         &dev_attr_lockup_detected,
948         &dev_attr_ctlr_num,
949         &dev_attr_legacy_board,
950         NULL,
951 };
952
953 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
954                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
955
956 static struct scsi_host_template hpsa_driver_template = {
957         .module                 = THIS_MODULE,
958         .name                   = HPSA,
959         .proc_name              = HPSA,
960         .queuecommand           = hpsa_scsi_queue_command,
961         .scan_start             = hpsa_scan_start,
962         .scan_finished          = hpsa_scan_finished,
963         .change_queue_depth     = hpsa_change_queue_depth,
964         .this_id                = -1,
965         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
966         .ioctl                  = hpsa_ioctl,
967         .slave_alloc            = hpsa_slave_alloc,
968         .slave_configure        = hpsa_slave_configure,
969         .slave_destroy          = hpsa_slave_destroy,
970 #ifdef CONFIG_COMPAT
971         .compat_ioctl           = hpsa_compat_ioctl,
972 #endif
973         .sdev_attrs = hpsa_sdev_attrs,
974         .shost_attrs = hpsa_shost_attrs,
975         .max_sectors = 2048,
976         .no_write_same = 1,
977 };
978
979 static inline u32 next_command(struct ctlr_info *h, u8 q)
980 {
981         u32 a;
982         struct reply_queue_buffer *rq = &h->reply_queue[q];
983
984         if (h->transMethod & CFGTBL_Trans_io_accel1)
985                 return h->access.command_completed(h, q);
986
987         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
988                 return h->access.command_completed(h, q);
989
990         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
991                 a = rq->head[rq->current_entry];
992                 rq->current_entry++;
993                 atomic_dec(&h->commands_outstanding);
994         } else {
995                 a = FIFO_EMPTY;
996         }
997         /* Check for wraparound */
998         if (rq->current_entry == h->max_commands) {
999                 rq->current_entry = 0;
1000                 rq->wraparound ^= 1;
1001         }
1002         return a;
1003 }
1004
1005 /*
1006  * There are some special bits in the bus address of the
1007  * command that we have to set for the controller to know
1008  * how to process the command:
1009  *
1010  * Normal performant mode:
1011  * bit 0: 1 means performant mode, 0 means simple mode.
1012  * bits 1-3 = block fetch table entry
1013  * bits 4-6 = command type (== 0)
1014  *
1015  * ioaccel1 mode:
1016  * bit 0 = "performant mode" bit.
1017  * bits 1-3 = block fetch table entry
1018  * bits 4-6 = command type (== 110)
1019  * (command type is needed because ioaccel1 mode
1020  * commands are submitted through the same register as normal
1021  * mode commands, so this is how the controller knows whether
1022  * the command is normal mode or ioaccel1 mode.)
1023  *
1024  * ioaccel2 mode:
1025  * bit 0 = "performant mode" bit.
1026  * bits 1-4 = block fetch table entry (note extra bit)
1027  * bits 4-6 = not needed, because ioaccel2 mode has
1028  * a separate special register for submitting commands.
1029  */
1030
1031 /*
1032  * set_performant_mode: Modify the tag for cciss performant
1033  * set bit 0 for pull model, bits 3-1 for block fetch
1034  * register number
1035  */
1036 #define DEFAULT_REPLY_QUEUE (-1)
1037 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1038                                         int reply_queue)
1039 {
1040         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1041                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1042                 if (unlikely(!h->msix_vectors))
1043                         return;
1044                 c->Header.ReplyQueue = reply_queue;
1045         }
1046 }
1047
1048 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1049                                                 struct CommandList *c,
1050                                                 int reply_queue)
1051 {
1052         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1053
1054         /*
1055          * Tell the controller to post the reply to the queue for this
1056          * processor.  This seems to give the best I/O throughput.
1057          */
1058         cp->ReplyQueue = reply_queue;
1059         /*
1060          * Set the bits in the address sent down to include:
1061          *  - performant mode bit (bit 0)
1062          *  - pull count (bits 1-3)
1063          *  - command type (bits 4-6)
1064          */
1065         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1066                                         IOACCEL1_BUSADDR_CMDTYPE;
1067 }
1068
1069 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1070                                                 struct CommandList *c,
1071                                                 int reply_queue)
1072 {
1073         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1074                 &h->ioaccel2_cmd_pool[c->cmdindex];
1075
1076         /* Tell the controller to post the reply to the queue for this
1077          * processor.  This seems to give the best I/O throughput.
1078          */
1079         cp->reply_queue = reply_queue;
1080         /* Set the bits in the address sent down to include:
1081          *  - performant mode bit not used in ioaccel mode 2
1082          *  - pull count (bits 0-3)
1083          *  - command type isn't needed for ioaccel2
1084          */
1085         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1086 }
1087
1088 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1089                                                 struct CommandList *c,
1090                                                 int reply_queue)
1091 {
1092         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1093
1094         /*
1095          * Tell the controller to post the reply to the queue for this
1096          * processor.  This seems to give the best I/O throughput.
1097          */
1098         cp->reply_queue = reply_queue;
1099         /*
1100          * Set the bits in the address sent down to include:
1101          *  - performant mode bit not used in ioaccel mode 2
1102          *  - pull count (bits 0-3)
1103          *  - command type isn't needed for ioaccel2
1104          */
1105         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1106 }
1107
1108 static int is_firmware_flash_cmd(u8 *cdb)
1109 {
1110         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1111 }
1112
1113 /*
1114  * During firmware flash, the heartbeat register may not update as frequently
1115  * as it should.  So we dial down lockup detection during firmware flash. and
1116  * dial it back up when firmware flash completes.
1117  */
1118 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1119 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1120 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1121 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1122                 struct CommandList *c)
1123 {
1124         if (!is_firmware_flash_cmd(c->Request.CDB))
1125                 return;
1126         atomic_inc(&h->firmware_flash_in_progress);
1127         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1128 }
1129
1130 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1131                 struct CommandList *c)
1132 {
1133         if (is_firmware_flash_cmd(c->Request.CDB) &&
1134                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1135                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1136 }
1137
1138 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1139         struct CommandList *c, int reply_queue)
1140 {
1141         dial_down_lockup_detection_during_fw_flash(h, c);
1142         atomic_inc(&h->commands_outstanding);
1143         if (c->device)
1144                 atomic_inc(&c->device->commands_outstanding);
1145
1146         reply_queue = h->reply_map[raw_smp_processor_id()];
1147         switch (c->cmd_type) {
1148         case CMD_IOACCEL1:
1149                 set_ioaccel1_performant_mode(h, c, reply_queue);
1150                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1151                 break;
1152         case CMD_IOACCEL2:
1153                 set_ioaccel2_performant_mode(h, c, reply_queue);
1154                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1155                 break;
1156         case IOACCEL2_TMF:
1157                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1158                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1159                 break;
1160         default:
1161                 set_performant_mode(h, c, reply_queue);
1162                 h->access.submit_command(h, c);
1163         }
1164 }
1165
1166 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1167 {
1168         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1169 }
1170
1171 static inline int is_hba_lunid(unsigned char scsi3addr[])
1172 {
1173         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1174 }
1175
1176 static inline int is_scsi_rev_5(struct ctlr_info *h)
1177 {
1178         if (!h->hba_inquiry_data)
1179                 return 0;
1180         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1181                 return 1;
1182         return 0;
1183 }
1184
1185 static int hpsa_find_target_lun(struct ctlr_info *h,
1186         unsigned char scsi3addr[], int bus, int *target, int *lun)
1187 {
1188         /* finds an unused bus, target, lun for a new physical device
1189          * assumes h->devlock is held
1190          */
1191         int i, found = 0;
1192         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1193
1194         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1195
1196         for (i = 0; i < h->ndevices; i++) {
1197                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1198                         __set_bit(h->dev[i]->target, lun_taken);
1199         }
1200
1201         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1202         if (i < HPSA_MAX_DEVICES) {
1203                 /* *bus = 1; */
1204                 *target = i;
1205                 *lun = 0;
1206                 found = 1;
1207         }
1208         return !found;
1209 }
1210
1211 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1212         struct hpsa_scsi_dev_t *dev, char *description)
1213 {
1214 #define LABEL_SIZE 25
1215         char label[LABEL_SIZE];
1216
1217         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1218                 return;
1219
1220         switch (dev->devtype) {
1221         case TYPE_RAID:
1222                 snprintf(label, LABEL_SIZE, "controller");
1223                 break;
1224         case TYPE_ENCLOSURE:
1225                 snprintf(label, LABEL_SIZE, "enclosure");
1226                 break;
1227         case TYPE_DISK:
1228         case TYPE_ZBC:
1229                 if (dev->external)
1230                         snprintf(label, LABEL_SIZE, "external");
1231                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1232                         snprintf(label, LABEL_SIZE, "%s",
1233                                 raid_label[PHYSICAL_DRIVE]);
1234                 else
1235                         snprintf(label, LABEL_SIZE, "RAID-%s",
1236                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1237                                 raid_label[dev->raid_level]);
1238                 break;
1239         case TYPE_ROM:
1240                 snprintf(label, LABEL_SIZE, "rom");
1241                 break;
1242         case TYPE_TAPE:
1243                 snprintf(label, LABEL_SIZE, "tape");
1244                 break;
1245         case TYPE_MEDIUM_CHANGER:
1246                 snprintf(label, LABEL_SIZE, "changer");
1247                 break;
1248         default:
1249                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1250                 break;
1251         }
1252
1253         dev_printk(level, &h->pdev->dev,
1254                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1255                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1256                         description,
1257                         scsi_device_type(dev->devtype),
1258                         dev->vendor,
1259                         dev->model,
1260                         label,
1261                         dev->offload_config ? '+' : '-',
1262                         dev->offload_to_be_enabled ? '+' : '-',
1263                         dev->expose_device);
1264 }
1265
1266 /* Add an entry into h->dev[] array. */
1267 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1268                 struct hpsa_scsi_dev_t *device,
1269                 struct hpsa_scsi_dev_t *added[], int *nadded)
1270 {
1271         /* assumes h->devlock is held */
1272         int n = h->ndevices;
1273         int i;
1274         unsigned char addr1[8], addr2[8];
1275         struct hpsa_scsi_dev_t *sd;
1276
1277         if (n >= HPSA_MAX_DEVICES) {
1278                 dev_err(&h->pdev->dev, "too many devices, some will be "
1279                         "inaccessible.\n");
1280                 return -1;
1281         }
1282
1283         /* physical devices do not have lun or target assigned until now. */
1284         if (device->lun != -1)
1285                 /* Logical device, lun is already assigned. */
1286                 goto lun_assigned;
1287
1288         /* If this device a non-zero lun of a multi-lun device
1289          * byte 4 of the 8-byte LUN addr will contain the logical
1290          * unit no, zero otherwise.
1291          */
1292         if (device->scsi3addr[4] == 0) {
1293                 /* This is not a non-zero lun of a multi-lun device */
1294                 if (hpsa_find_target_lun(h, device->scsi3addr,
1295                         device->bus, &device->target, &device->lun) != 0)
1296                         return -1;
1297                 goto lun_assigned;
1298         }
1299
1300         /* This is a non-zero lun of a multi-lun device.
1301          * Search through our list and find the device which
1302          * has the same 8 byte LUN address, excepting byte 4 and 5.
1303          * Assign the same bus and target for this new LUN.
1304          * Use the logical unit number from the firmware.
1305          */
1306         memcpy(addr1, device->scsi3addr, 8);
1307         addr1[4] = 0;
1308         addr1[5] = 0;
1309         for (i = 0; i < n; i++) {
1310                 sd = h->dev[i];
1311                 memcpy(addr2, sd->scsi3addr, 8);
1312                 addr2[4] = 0;
1313                 addr2[5] = 0;
1314                 /* differ only in byte 4 and 5? */
1315                 if (memcmp(addr1, addr2, 8) == 0) {
1316                         device->bus = sd->bus;
1317                         device->target = sd->target;
1318                         device->lun = device->scsi3addr[4];
1319                         break;
1320                 }
1321         }
1322         if (device->lun == -1) {
1323                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1324                         " suspect firmware bug or unsupported hardware "
1325                         "configuration.\n");
1326                 return -1;
1327         }
1328
1329 lun_assigned:
1330
1331         h->dev[n] = device;
1332         h->ndevices++;
1333         added[*nadded] = device;
1334         (*nadded)++;
1335         hpsa_show_dev_msg(KERN_INFO, h, device,
1336                 device->expose_device ? "added" : "masked");
1337         return 0;
1338 }
1339
1340 /*
1341  * Called during a scan operation.
1342  *
1343  * Update an entry in h->dev[] array.
1344  */
1345 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1346         int entry, struct hpsa_scsi_dev_t *new_entry)
1347 {
1348         /* assumes h->devlock is held */
1349         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1350
1351         /* Raid level changed. */
1352         h->dev[entry]->raid_level = new_entry->raid_level;
1353
1354         /*
1355          * ioacccel_handle may have changed for a dual domain disk
1356          */
1357         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1358
1359         /* Raid offload parameters changed.  Careful about the ordering. */
1360         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1361                 /*
1362                  * if drive is newly offload_enabled, we want to copy the
1363                  * raid map data first.  If previously offload_enabled and
1364                  * offload_config were set, raid map data had better be
1365                  * the same as it was before. If raid map data has changed
1366                  * then it had better be the case that
1367                  * h->dev[entry]->offload_enabled is currently 0.
1368                  */
1369                 h->dev[entry]->raid_map = new_entry->raid_map;
1370                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371         }
1372         if (new_entry->offload_to_be_enabled) {
1373                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1375         }
1376         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1377         h->dev[entry]->offload_config = new_entry->offload_config;
1378         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1379         h->dev[entry]->queue_depth = new_entry->queue_depth;
1380
1381         /*
1382          * We can turn off ioaccel offload now, but need to delay turning
1383          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1384          * can't do that until all the devices are updated.
1385          */
1386         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1387
1388         /*
1389          * turn ioaccel off immediately if told to do so.
1390          */
1391         if (!new_entry->offload_to_be_enabled)
1392                 h->dev[entry]->offload_enabled = 0;
1393
1394         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1395 }
1396
1397 /* Replace an entry from h->dev[] array. */
1398 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1399         int entry, struct hpsa_scsi_dev_t *new_entry,
1400         struct hpsa_scsi_dev_t *added[], int *nadded,
1401         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1402 {
1403         /* assumes h->devlock is held */
1404         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1405         removed[*nremoved] = h->dev[entry];
1406         (*nremoved)++;
1407
1408         /*
1409          * New physical devices won't have target/lun assigned yet
1410          * so we need to preserve the values in the slot we are replacing.
1411          */
1412         if (new_entry->target == -1) {
1413                 new_entry->target = h->dev[entry]->target;
1414                 new_entry->lun = h->dev[entry]->lun;
1415         }
1416
1417         h->dev[entry] = new_entry;
1418         added[*nadded] = new_entry;
1419         (*nadded)++;
1420
1421         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1422 }
1423
1424 /* Remove an entry from h->dev[] array. */
1425 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1426         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1427 {
1428         /* assumes h->devlock is held */
1429         int i;
1430         struct hpsa_scsi_dev_t *sd;
1431
1432         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1433
1434         sd = h->dev[entry];
1435         removed[*nremoved] = h->dev[entry];
1436         (*nremoved)++;
1437
1438         for (i = entry; i < h->ndevices-1; i++)
1439                 h->dev[i] = h->dev[i+1];
1440         h->ndevices--;
1441         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1442 }
1443
1444 #define SCSI3ADDR_EQ(a, b) ( \
1445         (a)[7] == (b)[7] && \
1446         (a)[6] == (b)[6] && \
1447         (a)[5] == (b)[5] && \
1448         (a)[4] == (b)[4] && \
1449         (a)[3] == (b)[3] && \
1450         (a)[2] == (b)[2] && \
1451         (a)[1] == (b)[1] && \
1452         (a)[0] == (b)[0])
1453
1454 static void fixup_botched_add(struct ctlr_info *h,
1455         struct hpsa_scsi_dev_t *added)
1456 {
1457         /* called when scsi_add_device fails in order to re-adjust
1458          * h->dev[] to match the mid layer's view.
1459          */
1460         unsigned long flags;
1461         int i, j;
1462
1463         spin_lock_irqsave(&h->lock, flags);
1464         for (i = 0; i < h->ndevices; i++) {
1465                 if (h->dev[i] == added) {
1466                         for (j = i; j < h->ndevices-1; j++)
1467                                 h->dev[j] = h->dev[j+1];
1468                         h->ndevices--;
1469                         break;
1470                 }
1471         }
1472         spin_unlock_irqrestore(&h->lock, flags);
1473         kfree(added);
1474 }
1475
1476 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1477         struct hpsa_scsi_dev_t *dev2)
1478 {
1479         /* we compare everything except lun and target as these
1480          * are not yet assigned.  Compare parts likely
1481          * to differ first
1482          */
1483         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1484                 sizeof(dev1->scsi3addr)) != 0)
1485                 return 0;
1486         if (memcmp(dev1->device_id, dev2->device_id,
1487                 sizeof(dev1->device_id)) != 0)
1488                 return 0;
1489         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1492                 return 0;
1493         if (dev1->devtype != dev2->devtype)
1494                 return 0;
1495         if (dev1->bus != dev2->bus)
1496                 return 0;
1497         return 1;
1498 }
1499
1500 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1501         struct hpsa_scsi_dev_t *dev2)
1502 {
1503         /* Device attributes that can change, but don't mean
1504          * that the device is a different device, nor that the OS
1505          * needs to be told anything about the change.
1506          */
1507         if (dev1->raid_level != dev2->raid_level)
1508                 return 1;
1509         if (dev1->offload_config != dev2->offload_config)
1510                 return 1;
1511         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1512                 return 1;
1513         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1514                 if (dev1->queue_depth != dev2->queue_depth)
1515                         return 1;
1516         /*
1517          * This can happen for dual domain devices. An active
1518          * path change causes the ioaccel handle to change
1519          *
1520          * for example note the handle differences between p0 and p1
1521          * Device                    WWN               ,WWN hash,Handle
1522          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1523          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1524          */
1525         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1526                 return 1;
1527         return 0;
1528 }
1529
1530 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1531  * and return needle location in *index.  If scsi3addr matches, but not
1532  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1533  * location in *index.
1534  * In the case of a minor device attribute change, such as RAID level, just
1535  * return DEVICE_UPDATED, along with the updated device's location in index.
1536  * If needle not found, return DEVICE_NOT_FOUND.
1537  */
1538 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1539         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1540         int *index)
1541 {
1542         int i;
1543 #define DEVICE_NOT_FOUND 0
1544 #define DEVICE_CHANGED 1
1545 #define DEVICE_SAME 2
1546 #define DEVICE_UPDATED 3
1547         if (needle == NULL)
1548                 return DEVICE_NOT_FOUND;
1549
1550         for (i = 0; i < haystack_size; i++) {
1551                 if (haystack[i] == NULL) /* previously removed. */
1552                         continue;
1553                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1554                         *index = i;
1555                         if (device_is_the_same(needle, haystack[i])) {
1556                                 if (device_updated(needle, haystack[i]))
1557                                         return DEVICE_UPDATED;
1558                                 return DEVICE_SAME;
1559                         } else {
1560                                 /* Keep offline devices offline */
1561                                 if (needle->volume_offline)
1562                                         return DEVICE_NOT_FOUND;
1563                                 return DEVICE_CHANGED;
1564                         }
1565                 }
1566         }
1567         *index = -1;
1568         return DEVICE_NOT_FOUND;
1569 }
1570
1571 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1572                                         unsigned char scsi3addr[])
1573 {
1574         struct offline_device_entry *device;
1575         unsigned long flags;
1576
1577         /* Check to see if device is already on the list */
1578         spin_lock_irqsave(&h->offline_device_lock, flags);
1579         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1580                 if (memcmp(device->scsi3addr, scsi3addr,
1581                         sizeof(device->scsi3addr)) == 0) {
1582                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1583                         return;
1584                 }
1585         }
1586         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587
1588         /* Device is not on the list, add it. */
1589         device = kmalloc(sizeof(*device), GFP_KERNEL);
1590         if (!device)
1591                 return;
1592
1593         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1594         spin_lock_irqsave(&h->offline_device_lock, flags);
1595         list_add_tail(&device->offline_list, &h->offline_device_list);
1596         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 }
1598
1599 /* Print a message explaining various offline volume states */
1600 static void hpsa_show_volume_status(struct ctlr_info *h,
1601         struct hpsa_scsi_dev_t *sd)
1602 {
1603         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1604                 dev_info(&h->pdev->dev,
1605                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1606                         h->scsi_host->host_no,
1607                         sd->bus, sd->target, sd->lun);
1608         switch (sd->volume_offline) {
1609         case HPSA_LV_OK:
1610                 break;
1611         case HPSA_LV_UNDERGOING_ERASE:
1612                 dev_info(&h->pdev->dev,
1613                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1614                         h->scsi_host->host_no,
1615                         sd->bus, sd->target, sd->lun);
1616                 break;
1617         case HPSA_LV_NOT_AVAILABLE:
1618                 dev_info(&h->pdev->dev,
1619                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1620                         h->scsi_host->host_no,
1621                         sd->bus, sd->target, sd->lun);
1622                 break;
1623         case HPSA_LV_UNDERGOING_RPI:
1624                 dev_info(&h->pdev->dev,
1625                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1626                         h->scsi_host->host_no,
1627                         sd->bus, sd->target, sd->lun);
1628                 break;
1629         case HPSA_LV_PENDING_RPI:
1630                 dev_info(&h->pdev->dev,
1631                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1632                         h->scsi_host->host_no,
1633                         sd->bus, sd->target, sd->lun);
1634                 break;
1635         case HPSA_LV_ENCRYPTED_NO_KEY:
1636                 dev_info(&h->pdev->dev,
1637                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1638                         h->scsi_host->host_no,
1639                         sd->bus, sd->target, sd->lun);
1640                 break;
1641         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1642                 dev_info(&h->pdev->dev,
1643                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1644                         h->scsi_host->host_no,
1645                         sd->bus, sd->target, sd->lun);
1646                 break;
1647         case HPSA_LV_UNDERGOING_ENCRYPTION:
1648                 dev_info(&h->pdev->dev,
1649                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1650                         h->scsi_host->host_no,
1651                         sd->bus, sd->target, sd->lun);
1652                 break;
1653         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1654                 dev_info(&h->pdev->dev,
1655                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1656                         h->scsi_host->host_no,
1657                         sd->bus, sd->target, sd->lun);
1658                 break;
1659         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1660                 dev_info(&h->pdev->dev,
1661                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1662                         h->scsi_host->host_no,
1663                         sd->bus, sd->target, sd->lun);
1664                 break;
1665         case HPSA_LV_PENDING_ENCRYPTION:
1666                 dev_info(&h->pdev->dev,
1667                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1668                         h->scsi_host->host_no,
1669                         sd->bus, sd->target, sd->lun);
1670                 break;
1671         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1672                 dev_info(&h->pdev->dev,
1673                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1674                         h->scsi_host->host_no,
1675                         sd->bus, sd->target, sd->lun);
1676                 break;
1677         }
1678 }
1679
1680 /*
1681  * Figure the list of physical drive pointers for a logical drive with
1682  * raid offload configured.
1683  */
1684 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1685                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1686                                 struct hpsa_scsi_dev_t *logical_drive)
1687 {
1688         struct raid_map_data *map = &logical_drive->raid_map;
1689         struct raid_map_disk_data *dd = &map->data[0];
1690         int i, j;
1691         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1692                                 le16_to_cpu(map->metadata_disks_per_row);
1693         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1694                                 le16_to_cpu(map->layout_map_count) *
1695                                 total_disks_per_row;
1696         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1697                                 total_disks_per_row;
1698         int qdepth;
1699
1700         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1701                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1702
1703         logical_drive->nphysical_disks = nraid_map_entries;
1704
1705         qdepth = 0;
1706         for (i = 0; i < nraid_map_entries; i++) {
1707                 logical_drive->phys_disk[i] = NULL;
1708                 if (!logical_drive->offload_config)
1709                         continue;
1710                 for (j = 0; j < ndevices; j++) {
1711                         if (dev[j] == NULL)
1712                                 continue;
1713                         if (dev[j]->devtype != TYPE_DISK &&
1714                             dev[j]->devtype != TYPE_ZBC)
1715                                 continue;
1716                         if (is_logical_device(dev[j]))
1717                                 continue;
1718                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1719                                 continue;
1720
1721                         logical_drive->phys_disk[i] = dev[j];
1722                         if (i < nphys_disk)
1723                                 qdepth = min(h->nr_cmds, qdepth +
1724                                     logical_drive->phys_disk[i]->queue_depth);
1725                         break;
1726                 }
1727
1728                 /*
1729                  * This can happen if a physical drive is removed and
1730                  * the logical drive is degraded.  In that case, the RAID
1731                  * map data will refer to a physical disk which isn't actually
1732                  * present.  And in that case offload_enabled should already
1733                  * be 0, but we'll turn it off here just in case
1734                  */
1735                 if (!logical_drive->phys_disk[i]) {
1736                         dev_warn(&h->pdev->dev,
1737                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1738                                 __func__,
1739                                 h->scsi_host->host_no, logical_drive->bus,
1740                                 logical_drive->target, logical_drive->lun);
1741                         logical_drive->offload_enabled = 0;
1742                         logical_drive->offload_to_be_enabled = 0;
1743                         logical_drive->queue_depth = 8;
1744                 }
1745         }
1746         if (nraid_map_entries)
1747                 /*
1748                  * This is correct for reads, too high for full stripe writes,
1749                  * way too high for partial stripe writes
1750                  */
1751                 logical_drive->queue_depth = qdepth;
1752         else {
1753                 if (logical_drive->external)
1754                         logical_drive->queue_depth = EXTERNAL_QD;
1755                 else
1756                         logical_drive->queue_depth = h->nr_cmds;
1757         }
1758 }
1759
1760 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1761                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1762 {
1763         int i;
1764
1765         for (i = 0; i < ndevices; i++) {
1766                 if (dev[i] == NULL)
1767                         continue;
1768                 if (dev[i]->devtype != TYPE_DISK &&
1769                     dev[i]->devtype != TYPE_ZBC)
1770                         continue;
1771                 if (!is_logical_device(dev[i]))
1772                         continue;
1773
1774                 /*
1775                  * If offload is currently enabled, the RAID map and
1776                  * phys_disk[] assignment *better* not be changing
1777                  * because we would be changing ioaccel phsy_disk[] pointers
1778                  * on a ioaccel volume processing I/O requests.
1779                  *
1780                  * If an ioaccel volume status changed, initially because it was
1781                  * re-configured and thus underwent a transformation, or
1782                  * a drive failed, we would have received a state change
1783                  * request and ioaccel should have been turned off. When the
1784                  * transformation completes, we get another state change
1785                  * request to turn ioaccel back on. In this case, we need
1786                  * to update the ioaccel information.
1787                  *
1788                  * Thus: If it is not currently enabled, but will be after
1789                  * the scan completes, make sure the ioaccel pointers
1790                  * are up to date.
1791                  */
1792
1793                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1794                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1795         }
1796 }
1797
1798 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1799 {
1800         int rc = 0;
1801
1802         if (!h->scsi_host)
1803                 return 1;
1804
1805         if (is_logical_device(device)) /* RAID */
1806                 rc = scsi_add_device(h->scsi_host, device->bus,
1807                                         device->target, device->lun);
1808         else /* HBA */
1809                 rc = hpsa_add_sas_device(h->sas_host, device);
1810
1811         return rc;
1812 }
1813
1814 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1815                                                 struct hpsa_scsi_dev_t *dev)
1816 {
1817         int i;
1818         int count = 0;
1819
1820         for (i = 0; i < h->nr_cmds; i++) {
1821                 struct CommandList *c = h->cmd_pool + i;
1822                 int refcount = atomic_inc_return(&c->refcount);
1823
1824                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1825                                 dev->scsi3addr)) {
1826                         unsigned long flags;
1827
1828                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1829                         if (!hpsa_is_cmd_idle(c))
1830                                 ++count;
1831                         spin_unlock_irqrestore(&h->lock, flags);
1832                 }
1833
1834                 cmd_free(h, c);
1835         }
1836
1837         return count;
1838 }
1839
1840 #define NUM_WAIT 20
1841 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1842                                                 struct hpsa_scsi_dev_t *device)
1843 {
1844         int cmds = 0;
1845         int waits = 0;
1846         int num_wait = NUM_WAIT;
1847
1848         if (device->external)
1849                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1850
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > num_wait)
1856                         break;
1857                 msleep(1000);
1858         }
1859
1860         if (waits > num_wait) {
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1863                         __func__,
1864                         h->scsi_host->host_no,
1865                         device->bus, device->target, device->lun, cmds);
1866         }
1867 }
1868
1869 static void hpsa_remove_device(struct ctlr_info *h,
1870                         struct hpsa_scsi_dev_t *device)
1871 {
1872         struct scsi_device *sdev = NULL;
1873
1874         if (!h->scsi_host)
1875                 return;
1876
1877         /*
1878          * Allow for commands to drain
1879          */
1880         device->removed = 1;
1881         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1882
1883         if (is_logical_device(device)) { /* RAID */
1884                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1885                                                 device->target, device->lun);
1886                 if (sdev) {
1887                         scsi_remove_device(sdev);
1888                         scsi_device_put(sdev);
1889                 } else {
1890                         /*
1891                          * We don't expect to get here.  Future commands
1892                          * to this device will get a selection timeout as
1893                          * if the device were gone.
1894                          */
1895                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1896                                         "didn't find device for removal.");
1897                 }
1898         } else { /* HBA */
1899
1900                 hpsa_remove_sas_device(device);
1901         }
1902 }
1903
1904 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1905         struct hpsa_scsi_dev_t *sd[], int nsds)
1906 {
1907         /* sd contains scsi3 addresses and devtypes, and inquiry
1908          * data.  This function takes what's in sd to be the current
1909          * reality and updates h->dev[] to reflect that reality.
1910          */
1911         int i, entry, device_change, changes = 0;
1912         struct hpsa_scsi_dev_t *csd;
1913         unsigned long flags;
1914         struct hpsa_scsi_dev_t **added, **removed;
1915         int nadded, nremoved;
1916
1917         /*
1918          * A reset can cause a device status to change
1919          * re-schedule the scan to see what happened.
1920          */
1921         spin_lock_irqsave(&h->reset_lock, flags);
1922         if (h->reset_in_progress) {
1923                 h->drv_req_rescan = 1;
1924                 spin_unlock_irqrestore(&h->reset_lock, flags);
1925                 return;
1926         }
1927         spin_unlock_irqrestore(&h->reset_lock, flags);
1928
1929         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1930         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1931
1932         if (!added || !removed) {
1933                 dev_warn(&h->pdev->dev, "out of memory in "
1934                         "adjust_hpsa_scsi_table\n");
1935                 goto free_and_out;
1936         }
1937
1938         spin_lock_irqsave(&h->devlock, flags);
1939
1940         /* find any devices in h->dev[] that are not in
1941          * sd[] and remove them from h->dev[], and for any
1942          * devices which have changed, remove the old device
1943          * info and add the new device info.
1944          * If minor device attributes change, just update
1945          * the existing device structure.
1946          */
1947         i = 0;
1948         nremoved = 0;
1949         nadded = 0;
1950         while (i < h->ndevices) {
1951                 csd = h->dev[i];
1952                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1953                 if (device_change == DEVICE_NOT_FOUND) {
1954                         changes++;
1955                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1956                         continue; /* remove ^^^, hence i not incremented */
1957                 } else if (device_change == DEVICE_CHANGED) {
1958                         changes++;
1959                         hpsa_scsi_replace_entry(h, i, sd[entry],
1960                                 added, &nadded, removed, &nremoved);
1961                         /* Set it to NULL to prevent it from being freed
1962                          * at the bottom of hpsa_update_scsi_devices()
1963                          */
1964                         sd[entry] = NULL;
1965                 } else if (device_change == DEVICE_UPDATED) {
1966                         hpsa_scsi_update_entry(h, i, sd[entry]);
1967                 }
1968                 i++;
1969         }
1970
1971         /* Now, make sure every device listed in sd[] is also
1972          * listed in h->dev[], adding them if they aren't found
1973          */
1974
1975         for (i = 0; i < nsds; i++) {
1976                 if (!sd[i]) /* if already added above. */
1977                         continue;
1978
1979                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1980                  * as the SCSI mid-layer does not handle such devices well.
1981                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1982                  * at 160Hz, and prevents the system from coming up.
1983                  */
1984                 if (sd[i]->volume_offline) {
1985                         hpsa_show_volume_status(h, sd[i]);
1986                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1987                         continue;
1988                 }
1989
1990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1991                                         h->ndevices, &entry);
1992                 if (device_change == DEVICE_NOT_FOUND) {
1993                         changes++;
1994                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1995                                 break;
1996                         sd[i] = NULL; /* prevent from being freed later. */
1997                 } else if (device_change == DEVICE_CHANGED) {
1998                         /* should never happen... */
1999                         changes++;
2000                         dev_warn(&h->pdev->dev,
2001                                 "device unexpectedly changed.\n");
2002                         /* but if it does happen, we just ignore that device */
2003                 }
2004         }
2005         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2006
2007         /*
2008          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2009          * any logical drives that need it enabled.
2010          *
2011          * The raid map should be current by now.
2012          *
2013          * We are updating the device list used for I/O requests.
2014          */
2015         for (i = 0; i < h->ndevices; i++) {
2016                 if (h->dev[i] == NULL)
2017                         continue;
2018                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2019         }
2020
2021         spin_unlock_irqrestore(&h->devlock, flags);
2022
2023         /* Monitor devices which are in one of several NOT READY states to be
2024          * brought online later. This must be done without holding h->devlock,
2025          * so don't touch h->dev[]
2026          */
2027         for (i = 0; i < nsds; i++) {
2028                 if (!sd[i]) /* if already added above. */
2029                         continue;
2030                 if (sd[i]->volume_offline)
2031                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2032         }
2033
2034         /* Don't notify scsi mid layer of any changes the first time through
2035          * (or if there are no changes) scsi_scan_host will do it later the
2036          * first time through.
2037          */
2038         if (!changes)
2039                 goto free_and_out;
2040
2041         /* Notify scsi mid layer of any removed devices */
2042         for (i = 0; i < nremoved; i++) {
2043                 if (removed[i] == NULL)
2044                         continue;
2045                 if (removed[i]->expose_device)
2046                         hpsa_remove_device(h, removed[i]);
2047                 kfree(removed[i]);
2048                 removed[i] = NULL;
2049         }
2050
2051         /* Notify scsi mid layer of any added devices */
2052         for (i = 0; i < nadded; i++) {
2053                 int rc = 0;
2054
2055                 if (added[i] == NULL)
2056                         continue;
2057                 if (!(added[i]->expose_device))
2058                         continue;
2059                 rc = hpsa_add_device(h, added[i]);
2060                 if (!rc)
2061                         continue;
2062                 dev_warn(&h->pdev->dev,
2063                         "addition failed %d, device not added.", rc);
2064                 /* now we have to remove it from h->dev,
2065                  * since it didn't get added to scsi mid layer
2066                  */
2067                 fixup_botched_add(h, added[i]);
2068                 h->drv_req_rescan = 1;
2069         }
2070
2071 free_and_out:
2072         kfree(added);
2073         kfree(removed);
2074 }
2075
2076 /*
2077  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2078  * Assume's h->devlock is held.
2079  */
2080 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2081         int bus, int target, int lun)
2082 {
2083         int i;
2084         struct hpsa_scsi_dev_t *sd;
2085
2086         for (i = 0; i < h->ndevices; i++) {
2087                 sd = h->dev[i];
2088                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2089                         return sd;
2090         }
2091         return NULL;
2092 }
2093
2094 static int hpsa_slave_alloc(struct scsi_device *sdev)
2095 {
2096         struct hpsa_scsi_dev_t *sd = NULL;
2097         unsigned long flags;
2098         struct ctlr_info *h;
2099
2100         h = sdev_to_hba(sdev);
2101         spin_lock_irqsave(&h->devlock, flags);
2102         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2103                 struct scsi_target *starget;
2104                 struct sas_rphy *rphy;
2105
2106                 starget = scsi_target(sdev);
2107                 rphy = target_to_rphy(starget);
2108                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2109                 if (sd) {
2110                         sd->target = sdev_id(sdev);
2111                         sd->lun = sdev->lun;
2112                 }
2113         }
2114         if (!sd)
2115                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2116                                         sdev_id(sdev), sdev->lun);
2117
2118         if (sd && sd->expose_device) {
2119                 atomic_set(&sd->ioaccel_cmds_out, 0);
2120                 sdev->hostdata = sd;
2121         } else
2122                 sdev->hostdata = NULL;
2123         spin_unlock_irqrestore(&h->devlock, flags);
2124         return 0;
2125 }
2126
2127 /* configure scsi device based on internal per-device structure */
2128 static int hpsa_slave_configure(struct scsi_device *sdev)
2129 {
2130         struct hpsa_scsi_dev_t *sd;
2131         int queue_depth;
2132
2133         sd = sdev->hostdata;
2134         sdev->no_uld_attach = !sd || !sd->expose_device;
2135
2136         if (sd) {
2137                 sd->was_removed = 0;
2138                 if (sd->external) {
2139                         queue_depth = EXTERNAL_QD;
2140                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2141                         blk_queue_rq_timeout(sdev->request_queue,
2142                                                 HPSA_EH_PTRAID_TIMEOUT);
2143                 } else {
2144                         queue_depth = sd->queue_depth != 0 ?
2145                                         sd->queue_depth : sdev->host->can_queue;
2146                 }
2147         } else
2148                 queue_depth = sdev->host->can_queue;
2149
2150         scsi_change_queue_depth(sdev, queue_depth);
2151
2152         return 0;
2153 }
2154
2155 static void hpsa_slave_destroy(struct scsi_device *sdev)
2156 {
2157         struct hpsa_scsi_dev_t *hdev = NULL;
2158
2159         hdev = sdev->hostdata;
2160
2161         if (hdev)
2162                 hdev->was_removed = 1;
2163 }
2164
2165 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167         int i;
2168
2169         if (!h->ioaccel2_cmd_sg_list)
2170                 return;
2171         for (i = 0; i < h->nr_cmds; i++) {
2172                 kfree(h->ioaccel2_cmd_sg_list[i]);
2173                 h->ioaccel2_cmd_sg_list[i] = NULL;
2174         }
2175         kfree(h->ioaccel2_cmd_sg_list);
2176         h->ioaccel2_cmd_sg_list = NULL;
2177 }
2178
2179 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2180 {
2181         int i;
2182
2183         if (h->chainsize <= 0)
2184                 return 0;
2185
2186         h->ioaccel2_cmd_sg_list =
2187                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2188                                         GFP_KERNEL);
2189         if (!h->ioaccel2_cmd_sg_list)
2190                 return -ENOMEM;
2191         for (i = 0; i < h->nr_cmds; i++) {
2192                 h->ioaccel2_cmd_sg_list[i] =
2193                         kmalloc_array(h->maxsgentries,
2194                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2195                                       GFP_KERNEL);
2196                 if (!h->ioaccel2_cmd_sg_list[i])
2197                         goto clean;
2198         }
2199         return 0;
2200
2201 clean:
2202         hpsa_free_ioaccel2_sg_chain_blocks(h);
2203         return -ENOMEM;
2204 }
2205
2206 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208         int i;
2209
2210         if (!h->cmd_sg_list)
2211                 return;
2212         for (i = 0; i < h->nr_cmds; i++) {
2213                 kfree(h->cmd_sg_list[i]);
2214                 h->cmd_sg_list[i] = NULL;
2215         }
2216         kfree(h->cmd_sg_list);
2217         h->cmd_sg_list = NULL;
2218 }
2219
2220 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2221 {
2222         int i;
2223
2224         if (h->chainsize <= 0)
2225                 return 0;
2226
2227         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2228                                  GFP_KERNEL);
2229         if (!h->cmd_sg_list)
2230                 return -ENOMEM;
2231
2232         for (i = 0; i < h->nr_cmds; i++) {
2233                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2234                                                   sizeof(*h->cmd_sg_list[i]),
2235                                                   GFP_KERNEL);
2236                 if (!h->cmd_sg_list[i])
2237                         goto clean;
2238
2239         }
2240         return 0;
2241
2242 clean:
2243         hpsa_free_sg_chain_blocks(h);
2244         return -ENOMEM;
2245 }
2246
2247 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2248         struct io_accel2_cmd *cp, struct CommandList *c)
2249 {
2250         struct ioaccel2_sg_element *chain_block;
2251         u64 temp64;
2252         u32 chain_size;
2253
2254         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2255         chain_size = le32_to_cpu(cp->sg[0].length);
2256         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2257                                 DMA_TO_DEVICE);
2258         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2259                 /* prevent subsequent unmapping */
2260                 cp->sg->address = 0;
2261                 return -1;
2262         }
2263         cp->sg->address = cpu_to_le64(temp64);
2264         return 0;
2265 }
2266
2267 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2268         struct io_accel2_cmd *cp)
2269 {
2270         struct ioaccel2_sg_element *chain_sg;
2271         u64 temp64;
2272         u32 chain_size;
2273
2274         chain_sg = cp->sg;
2275         temp64 = le64_to_cpu(chain_sg->address);
2276         chain_size = le32_to_cpu(cp->sg[0].length);
2277         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2278 }
2279
2280 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2281         struct CommandList *c)
2282 {
2283         struct SGDescriptor *chain_sg, *chain_block;
2284         u64 temp64;
2285         u32 chain_len;
2286
2287         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2288         chain_block = h->cmd_sg_list[c->cmdindex];
2289         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2290         chain_len = sizeof(*chain_sg) *
2291                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2292         chain_sg->Len = cpu_to_le32(chain_len);
2293         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2294                                 DMA_TO_DEVICE);
2295         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2296                 /* prevent subsequent unmapping */
2297                 chain_sg->Addr = cpu_to_le64(0);
2298                 return -1;
2299         }
2300         chain_sg->Addr = cpu_to_le64(temp64);
2301         return 0;
2302 }
2303
2304 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2305         struct CommandList *c)
2306 {
2307         struct SGDescriptor *chain_sg;
2308
2309         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2310                 return;
2311
2312         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2313         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2314                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2315 }
2316
2317
2318 /* Decode the various types of errors on ioaccel2 path.
2319  * Return 1 for any error that should generate a RAID path retry.
2320  * Return 0 for errors that don't require a RAID path retry.
2321  */
2322 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2323                                         struct CommandList *c,
2324                                         struct scsi_cmnd *cmd,
2325                                         struct io_accel2_cmd *c2,
2326                                         struct hpsa_scsi_dev_t *dev)
2327 {
2328         int data_len;
2329         int retry = 0;
2330         u32 ioaccel2_resid = 0;
2331
2332         switch (c2->error_data.serv_response) {
2333         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2334                 switch (c2->error_data.status) {
2335                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2336                         break;
2337                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2338                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2339                         if (c2->error_data.data_present !=
2340                                         IOACCEL2_SENSE_DATA_PRESENT) {
2341                                 memset(cmd->sense_buffer, 0,
2342                                         SCSI_SENSE_BUFFERSIZE);
2343                                 break;
2344                         }
2345                         /* copy the sense data */
2346                         data_len = c2->error_data.sense_data_len;
2347                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2348                                 data_len = SCSI_SENSE_BUFFERSIZE;
2349                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2350                                 data_len =
2351                                         sizeof(c2->error_data.sense_data_buff);
2352                         memcpy(cmd->sense_buffer,
2353                                 c2->error_data.sense_data_buff, data_len);
2354                         retry = 1;
2355                         break;
2356                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2357                         retry = 1;
2358                         break;
2359                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2360                         retry = 1;
2361                         break;
2362                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2363                         retry = 1;
2364                         break;
2365                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2366                         retry = 1;
2367                         break;
2368                 default:
2369                         retry = 1;
2370                         break;
2371                 }
2372                 break;
2373         case IOACCEL2_SERV_RESPONSE_FAILURE:
2374                 switch (c2->error_data.status) {
2375                 case IOACCEL2_STATUS_SR_IO_ERROR:
2376                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2377                 case IOACCEL2_STATUS_SR_OVERRUN:
2378                         retry = 1;
2379                         break;
2380                 case IOACCEL2_STATUS_SR_UNDERRUN:
2381                         cmd->result = (DID_OK << 16);           /* host byte */
2382                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2383                         ioaccel2_resid = get_unaligned_le32(
2384                                                 &c2->error_data.resid_cnt[0]);
2385                         scsi_set_resid(cmd, ioaccel2_resid);
2386                         break;
2387                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2388                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2389                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2390                         /*
2391                          * Did an HBA disk disappear? We will eventually
2392                          * get a state change event from the controller but
2393                          * in the meantime, we need to tell the OS that the
2394                          * HBA disk is no longer there and stop I/O
2395                          * from going down. This allows the potential re-insert
2396                          * of the disk to get the same device node.
2397                          */
2398                         if (dev->physical_device && dev->expose_device) {
2399                                 cmd->result = DID_NO_CONNECT << 16;
2400                                 dev->removed = 1;
2401                                 h->drv_req_rescan = 1;
2402                                 dev_warn(&h->pdev->dev,
2403                                         "%s: device is gone!\n", __func__);
2404                         } else
2405                                 /*
2406                                  * Retry by sending down the RAID path.
2407                                  * We will get an event from ctlr to
2408                                  * trigger rescan regardless.
2409                                  */
2410                                 retry = 1;
2411                         break;
2412                 default:
2413                         retry = 1;
2414                 }
2415                 break;
2416         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2417                 break;
2418         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2419                 break;
2420         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2421                 retry = 1;
2422                 break;
2423         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2424                 break;
2425         default:
2426                 retry = 1;
2427                 break;
2428         }
2429
2430         if (dev->in_reset)
2431                 retry = 0;
2432
2433         return retry;   /* retry on raid path? */
2434 }
2435
2436 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2437                 struct CommandList *c)
2438 {
2439         struct hpsa_scsi_dev_t *dev = c->device;
2440
2441         /*
2442          * Reset c->scsi_cmd here so that the reset handler will know
2443          * this command has completed.  Then, check to see if the handler is
2444          * waiting for this command, and, if so, wake it.
2445          */
2446         c->scsi_cmd = SCSI_CMD_IDLE;
2447         mb();   /* Declare command idle before checking for pending events. */
2448         if (dev) {
2449                 atomic_dec(&dev->commands_outstanding);
2450                 if (dev->in_reset &&
2451                         atomic_read(&dev->commands_outstanding) <= 0)
2452                         wake_up_all(&h->event_sync_wait_queue);
2453         }
2454 }
2455
2456 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2457                                       struct CommandList *c)
2458 {
2459         hpsa_cmd_resolve_events(h, c);
2460         cmd_tagged_free(h, c);
2461 }
2462
2463 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2464                 struct CommandList *c, struct scsi_cmnd *cmd)
2465 {
2466         hpsa_cmd_resolve_and_free(h, c);
2467         if (cmd && cmd->scsi_done)
2468                 cmd->scsi_done(cmd);
2469 }
2470
2471 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2472 {
2473         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2474         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2475 }
2476
2477 static void process_ioaccel2_completion(struct ctlr_info *h,
2478                 struct CommandList *c, struct scsi_cmnd *cmd,
2479                 struct hpsa_scsi_dev_t *dev)
2480 {
2481         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2482
2483         /* check for good status */
2484         if (likely(c2->error_data.serv_response == 0 &&
2485                         c2->error_data.status == 0))
2486                 return hpsa_cmd_free_and_done(h, c, cmd);
2487
2488         /*
2489          * Any RAID offload error results in retry which will use
2490          * the normal I/O path so the controller can handle whatever is
2491          * wrong.
2492          */
2493         if (is_logical_device(dev) &&
2494                 c2->error_data.serv_response ==
2495                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2496                 if (c2->error_data.status ==
2497                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2498                         dev->offload_enabled = 0;
2499                         dev->offload_to_be_enabled = 0;
2500                 }
2501
2502                 if (dev->in_reset) {
2503                         cmd->result = DID_RESET << 16;
2504                         return hpsa_cmd_free_and_done(h, c, cmd);
2505                 }
2506
2507                 return hpsa_retry_cmd(h, c);
2508         }
2509
2510         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2511                 return hpsa_retry_cmd(h, c);
2512
2513         return hpsa_cmd_free_and_done(h, c, cmd);
2514 }
2515
2516 /* Returns 0 on success, < 0 otherwise. */
2517 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2518                                         struct CommandList *cp)
2519 {
2520         u8 tmf_status = cp->err_info->ScsiStatus;
2521
2522         switch (tmf_status) {
2523         case CISS_TMF_COMPLETE:
2524                 /*
2525                  * CISS_TMF_COMPLETE never happens, instead,
2526                  * ei->CommandStatus == 0 for this case.
2527                  */
2528         case CISS_TMF_SUCCESS:
2529                 return 0;
2530         case CISS_TMF_INVALID_FRAME:
2531         case CISS_TMF_NOT_SUPPORTED:
2532         case CISS_TMF_FAILED:
2533         case CISS_TMF_WRONG_LUN:
2534         case CISS_TMF_OVERLAPPED_TAG:
2535                 break;
2536         default:
2537                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2538                                 tmf_status);
2539                 break;
2540         }
2541         return -tmf_status;
2542 }
2543
2544 static void complete_scsi_command(struct CommandList *cp)
2545 {
2546         struct scsi_cmnd *cmd;
2547         struct ctlr_info *h;
2548         struct ErrorInfo *ei;
2549         struct hpsa_scsi_dev_t *dev;
2550         struct io_accel2_cmd *c2;
2551
2552         u8 sense_key;
2553         u8 asc;      /* additional sense code */
2554         u8 ascq;     /* additional sense code qualifier */
2555         unsigned long sense_data_size;
2556
2557         ei = cp->err_info;
2558         cmd = cp->scsi_cmd;
2559         h = cp->h;
2560
2561         if (!cmd->device) {
2562                 cmd->result = DID_NO_CONNECT << 16;
2563                 return hpsa_cmd_free_and_done(h, cp, cmd);
2564         }
2565
2566         dev = cmd->device->hostdata;
2567         if (!dev) {
2568                 cmd->result = DID_NO_CONNECT << 16;
2569                 return hpsa_cmd_free_and_done(h, cp, cmd);
2570         }
2571         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2572
2573         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2574         if ((cp->cmd_type == CMD_SCSI) &&
2575                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2576                 hpsa_unmap_sg_chain_block(h, cp);
2577
2578         if ((cp->cmd_type == CMD_IOACCEL2) &&
2579                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2580                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2581
2582         cmd->result = (DID_OK << 16);           /* host byte */
2583         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2584
2585         /* SCSI command has already been cleaned up in SML */
2586         if (dev->was_removed) {
2587                 hpsa_cmd_resolve_and_free(h, cp);
2588                 return;
2589         }
2590
2591         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2592                 if (dev->physical_device && dev->expose_device &&
2593                         dev->removed) {
2594                         cmd->result = DID_NO_CONNECT << 16;
2595                         return hpsa_cmd_free_and_done(h, cp, cmd);
2596                 }
2597                 if (likely(cp->phys_disk != NULL))
2598                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2599         }
2600
2601         /*
2602          * We check for lockup status here as it may be set for
2603          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2604          * fail_all_oustanding_cmds()
2605          */
2606         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2607                 /* DID_NO_CONNECT will prevent a retry */
2608                 cmd->result = DID_NO_CONNECT << 16;
2609                 return hpsa_cmd_free_and_done(h, cp, cmd);
2610         }
2611
2612         if (cp->cmd_type == CMD_IOACCEL2)
2613                 return process_ioaccel2_completion(h, cp, cmd, dev);
2614
2615         scsi_set_resid(cmd, ei->ResidualCnt);
2616         if (ei->CommandStatus == 0)
2617                 return hpsa_cmd_free_and_done(h, cp, cmd);
2618
2619         /* For I/O accelerator commands, copy over some fields to the normal
2620          * CISS header used below for error handling.
2621          */
2622         if (cp->cmd_type == CMD_IOACCEL1) {
2623                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2624                 cp->Header.SGList = scsi_sg_count(cmd);
2625                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2626                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2627                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2628                 cp->Header.tag = c->tag;
2629                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2630                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2631
2632                 /* Any RAID offload error results in retry which will use
2633                  * the normal I/O path so the controller can handle whatever's
2634                  * wrong.
2635                  */
2636                 if (is_logical_device(dev)) {
2637                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2638                                 dev->offload_enabled = 0;
2639                         return hpsa_retry_cmd(h, cp);
2640                 }
2641         }
2642
2643         /* an error has occurred */
2644         switch (ei->CommandStatus) {
2645
2646         case CMD_TARGET_STATUS:
2647                 cmd->result |= ei->ScsiStatus;
2648                 /* copy the sense data */
2649                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2650                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2651                 else
2652                         sense_data_size = sizeof(ei->SenseInfo);
2653                 if (ei->SenseLen < sense_data_size)
2654                         sense_data_size = ei->SenseLen;
2655                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2656                 if (ei->ScsiStatus)
2657                         decode_sense_data(ei->SenseInfo, sense_data_size,
2658                                 &sense_key, &asc, &ascq);
2659                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2660                         switch (sense_key) {
2661                         case ABORTED_COMMAND:
2662                                 cmd->result |= DID_SOFT_ERROR << 16;
2663                                 break;
2664                         case UNIT_ATTENTION:
2665                                 if (asc == 0x3F && ascq == 0x0E)
2666                                         h->drv_req_rescan = 1;
2667                                 break;
2668                         case ILLEGAL_REQUEST:
2669                                 if (asc == 0x25 && ascq == 0x00) {
2670                                         dev->removed = 1;
2671                                         cmd->result = DID_NO_CONNECT << 16;
2672                                 }
2673                                 break;
2674                         }
2675                         break;
2676                 }
2677                 /* Problem was not a check condition
2678                  * Pass it up to the upper layers...
2679                  */
2680                 if (ei->ScsiStatus) {
2681                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2682                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2683                                 "Returning result: 0x%x\n",
2684                                 cp, ei->ScsiStatus,
2685                                 sense_key, asc, ascq,
2686                                 cmd->result);
2687                 } else {  /* scsi status is zero??? How??? */
2688                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2689                                 "Returning no connection.\n", cp),
2690
2691                         /* Ordinarily, this case should never happen,
2692                          * but there is a bug in some released firmware
2693                          * revisions that allows it to happen if, for
2694                          * example, a 4100 backplane loses power and
2695                          * the tape drive is in it.  We assume that
2696                          * it's a fatal error of some kind because we
2697                          * can't show that it wasn't. We will make it
2698                          * look like selection timeout since that is
2699                          * the most common reason for this to occur,
2700                          * and it's severe enough.
2701                          */
2702
2703                         cmd->result = DID_NO_CONNECT << 16;
2704                 }
2705                 break;
2706
2707         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2708                 break;
2709         case CMD_DATA_OVERRUN:
2710                 dev_warn(&h->pdev->dev,
2711                         "CDB %16phN data overrun\n", cp->Request.CDB);
2712                 break;
2713         case CMD_INVALID: {
2714                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2715                 print_cmd(cp); */
2716                 /* We get CMD_INVALID if you address a non-existent device
2717                  * instead of a selection timeout (no response).  You will
2718                  * see this if you yank out a drive, then try to access it.
2719                  * This is kind of a shame because it means that any other
2720                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2721                  * missing target. */
2722                 cmd->result = DID_NO_CONNECT << 16;
2723         }
2724                 break;
2725         case CMD_PROTOCOL_ERR:
2726                 cmd->result = DID_ERROR << 16;
2727                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2728                                 cp->Request.CDB);
2729                 break;
2730         case CMD_HARDWARE_ERR:
2731                 cmd->result = DID_ERROR << 16;
2732                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2733                         cp->Request.CDB);
2734                 break;
2735         case CMD_CONNECTION_LOST:
2736                 cmd->result = DID_ERROR << 16;
2737                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2738                         cp->Request.CDB);
2739                 break;
2740         case CMD_ABORTED:
2741                 cmd->result = DID_ABORT << 16;
2742                 break;
2743         case CMD_ABORT_FAILED:
2744                 cmd->result = DID_ERROR << 16;
2745                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2746                         cp->Request.CDB);
2747                 break;
2748         case CMD_UNSOLICITED_ABORT:
2749                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2750                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2751                         cp->Request.CDB);
2752                 break;
2753         case CMD_TIMEOUT:
2754                 cmd->result = DID_TIME_OUT << 16;
2755                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2756                         cp->Request.CDB);
2757                 break;
2758         case CMD_UNABORTABLE:
2759                 cmd->result = DID_ERROR << 16;
2760                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2761                 break;
2762         case CMD_TMF_STATUS:
2763                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2764                         cmd->result = DID_ERROR << 16;
2765                 break;
2766         case CMD_IOACCEL_DISABLED:
2767                 /* This only handles the direct pass-through case since RAID
2768                  * offload is handled above.  Just attempt a retry.
2769                  */
2770                 cmd->result = DID_SOFT_ERROR << 16;
2771                 dev_warn(&h->pdev->dev,
2772                                 "cp %p had HP SSD Smart Path error\n", cp);
2773                 break;
2774         default:
2775                 cmd->result = DID_ERROR << 16;
2776                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2777                                 cp, ei->CommandStatus);
2778         }
2779
2780         return hpsa_cmd_free_and_done(h, cp, cmd);
2781 }
2782
2783 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2784                 int sg_used, enum dma_data_direction data_direction)
2785 {
2786         int i;
2787
2788         for (i = 0; i < sg_used; i++)
2789                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2790                                 le32_to_cpu(c->SG[i].Len),
2791                                 data_direction);
2792 }
2793
2794 static int hpsa_map_one(struct pci_dev *pdev,
2795                 struct CommandList *cp,
2796                 unsigned char *buf,
2797                 size_t buflen,
2798                 enum dma_data_direction data_direction)
2799 {
2800         u64 addr64;
2801
2802         if (buflen == 0 || data_direction == DMA_NONE) {
2803                 cp->Header.SGList = 0;
2804                 cp->Header.SGTotal = cpu_to_le16(0);
2805                 return 0;
2806         }
2807
2808         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2809         if (dma_mapping_error(&pdev->dev, addr64)) {
2810                 /* Prevent subsequent unmap of something never mapped */
2811                 cp->Header.SGList = 0;
2812                 cp->Header.SGTotal = cpu_to_le16(0);
2813                 return -1;
2814         }
2815         cp->SG[0].Addr = cpu_to_le64(addr64);
2816         cp->SG[0].Len = cpu_to_le32(buflen);
2817         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2818         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2819         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2820         return 0;
2821 }
2822
2823 #define NO_TIMEOUT ((unsigned long) -1)
2824 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2825 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2826         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2827 {
2828         DECLARE_COMPLETION_ONSTACK(wait);
2829
2830         c->waiting = &wait;
2831         __enqueue_cmd_and_start_io(h, c, reply_queue);
2832         if (timeout_msecs == NO_TIMEOUT) {
2833                 /* TODO: get rid of this no-timeout thing */
2834                 wait_for_completion_io(&wait);
2835                 return IO_OK;
2836         }
2837         if (!wait_for_completion_io_timeout(&wait,
2838                                         msecs_to_jiffies(timeout_msecs))) {
2839                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2840                 return -ETIMEDOUT;
2841         }
2842         return IO_OK;
2843 }
2844
2845 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2846                                    int reply_queue, unsigned long timeout_msecs)
2847 {
2848         if (unlikely(lockup_detected(h))) {
2849                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2850                 return IO_OK;
2851         }
2852         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2853 }
2854
2855 static u32 lockup_detected(struct ctlr_info *h)
2856 {
2857         int cpu;
2858         u32 rc, *lockup_detected;
2859
2860         cpu = get_cpu();
2861         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2862         rc = *lockup_detected;
2863         put_cpu();
2864         return rc;
2865 }
2866
2867 #define MAX_DRIVER_CMD_RETRIES 25
2868 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2869                 struct CommandList *c, enum dma_data_direction data_direction,
2870                 unsigned long timeout_msecs)
2871 {
2872         int backoff_time = 10, retry_count = 0;
2873         int rc;
2874
2875         do {
2876                 memset(c->err_info, 0, sizeof(*c->err_info));
2877                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2878                                                   timeout_msecs);
2879                 if (rc)
2880                         break;
2881                 retry_count++;
2882                 if (retry_count > 3) {
2883                         msleep(backoff_time);
2884                         if (backoff_time < 1000)
2885                                 backoff_time *= 2;
2886                 }
2887         } while ((check_for_unit_attention(h, c) ||
2888                         check_for_busy(h, c)) &&
2889                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2890         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2891         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2892                 rc = -EIO;
2893         return rc;
2894 }
2895
2896 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2897                                 struct CommandList *c)
2898 {
2899         const u8 *cdb = c->Request.CDB;
2900         const u8 *lun = c->Header.LUN.LunAddrBytes;
2901
2902         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2903                  txt, lun, cdb);
2904 }
2905
2906 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2907                         struct CommandList *cp)
2908 {
2909         const struct ErrorInfo *ei = cp->err_info;
2910         struct device *d = &cp->h->pdev->dev;
2911         u8 sense_key, asc, ascq;
2912         int sense_len;
2913
2914         switch (ei->CommandStatus) {
2915         case CMD_TARGET_STATUS:
2916                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2917                         sense_len = sizeof(ei->SenseInfo);
2918                 else
2919                         sense_len = ei->SenseLen;
2920                 decode_sense_data(ei->SenseInfo, sense_len,
2921                                         &sense_key, &asc, &ascq);
2922                 hpsa_print_cmd(h, "SCSI status", cp);
2923                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2924                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2925                                 sense_key, asc, ascq);
2926                 else
2927                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2928                 if (ei->ScsiStatus == 0)
2929                         dev_warn(d, "SCSI status is abnormally zero.  "
2930                         "(probably indicates selection timeout "
2931                         "reported incorrectly due to a known "
2932                         "firmware bug, circa July, 2001.)\n");
2933                 break;
2934         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2935                 break;
2936         case CMD_DATA_OVERRUN:
2937                 hpsa_print_cmd(h, "overrun condition", cp);
2938                 break;
2939         case CMD_INVALID: {
2940                 /* controller unfortunately reports SCSI passthru's
2941                  * to non-existent targets as invalid commands.
2942                  */
2943                 hpsa_print_cmd(h, "invalid command", cp);
2944                 dev_warn(d, "probably means device no longer present\n");
2945                 }
2946                 break;
2947         case CMD_PROTOCOL_ERR:
2948                 hpsa_print_cmd(h, "protocol error", cp);
2949                 break;
2950         case CMD_HARDWARE_ERR:
2951                 hpsa_print_cmd(h, "hardware error", cp);
2952                 break;
2953         case CMD_CONNECTION_LOST:
2954                 hpsa_print_cmd(h, "connection lost", cp);
2955                 break;
2956         case CMD_ABORTED:
2957                 hpsa_print_cmd(h, "aborted", cp);
2958                 break;
2959         case CMD_ABORT_FAILED:
2960                 hpsa_print_cmd(h, "abort failed", cp);
2961                 break;
2962         case CMD_UNSOLICITED_ABORT:
2963                 hpsa_print_cmd(h, "unsolicited abort", cp);
2964                 break;
2965         case CMD_TIMEOUT:
2966                 hpsa_print_cmd(h, "timed out", cp);
2967                 break;
2968         case CMD_UNABORTABLE:
2969                 hpsa_print_cmd(h, "unabortable", cp);
2970                 break;
2971         case CMD_CTLR_LOCKUP:
2972                 hpsa_print_cmd(h, "controller lockup detected", cp);
2973                 break;
2974         default:
2975                 hpsa_print_cmd(h, "unknown status", cp);
2976                 dev_warn(d, "Unknown command status %x\n",
2977                                 ei->CommandStatus);
2978         }
2979 }
2980
2981 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2982                                         u8 page, u8 *buf, size_t bufsize)
2983 {
2984         int rc = IO_OK;
2985         struct CommandList *c;
2986         struct ErrorInfo *ei;
2987
2988         c = cmd_alloc(h);
2989         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2990                         page, scsi3addr, TYPE_CMD)) {
2991                 rc = -1;
2992                 goto out;
2993         }
2994         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2995                         NO_TIMEOUT);
2996         if (rc)
2997                 goto out;
2998         ei = c->err_info;
2999         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3000                 hpsa_scsi_interpret_error(h, c);
3001                 rc = -1;
3002         }
3003 out:
3004         cmd_free(h, c);
3005         return rc;
3006 }
3007
3008 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3009                                                 u8 *scsi3addr)
3010 {
3011         u8 *buf;
3012         u64 sa = 0;
3013         int rc = 0;
3014
3015         buf = kzalloc(1024, GFP_KERNEL);
3016         if (!buf)
3017                 return 0;
3018
3019         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3020                                         buf, 1024);
3021
3022         if (rc)
3023                 goto out;
3024
3025         sa = get_unaligned_be64(buf+12);
3026
3027 out:
3028         kfree(buf);
3029         return sa;
3030 }
3031
3032 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3033                         u16 page, unsigned char *buf,
3034                         unsigned char bufsize)
3035 {
3036         int rc = IO_OK;
3037         struct CommandList *c;
3038         struct ErrorInfo *ei;
3039
3040         c = cmd_alloc(h);
3041
3042         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3043                         page, scsi3addr, TYPE_CMD)) {
3044                 rc = -1;
3045                 goto out;
3046         }
3047         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3048                         NO_TIMEOUT);
3049         if (rc)
3050                 goto out;
3051         ei = c->err_info;
3052         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3053                 hpsa_scsi_interpret_error(h, c);
3054                 rc = -1;
3055         }
3056 out:
3057         cmd_free(h, c);
3058         return rc;
3059 }
3060
3061 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3062         u8 reset_type, int reply_queue)
3063 {
3064         int rc = IO_OK;
3065         struct CommandList *c;
3066         struct ErrorInfo *ei;
3067
3068         c = cmd_alloc(h);
3069         c->device = dev;
3070
3071         /* fill_cmd can't fail here, no data buffer to map. */
3072         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3073         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3074         if (rc) {
3075                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3076                 goto out;
3077         }
3078         /* no unmap needed here because no data xfer. */
3079
3080         ei = c->err_info;
3081         if (ei->CommandStatus != 0) {
3082                 hpsa_scsi_interpret_error(h, c);
3083                 rc = -1;
3084         }
3085 out:
3086         cmd_free(h, c);
3087         return rc;
3088 }
3089
3090 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3091                                struct hpsa_scsi_dev_t *dev,
3092                                unsigned char *scsi3addr)
3093 {
3094         int i;
3095         bool match = false;
3096         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3097         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3098
3099         if (hpsa_is_cmd_idle(c))
3100                 return false;
3101
3102         switch (c->cmd_type) {
3103         case CMD_SCSI:
3104         case CMD_IOCTL_PEND:
3105                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3106                                 sizeof(c->Header.LUN.LunAddrBytes));
3107                 break;
3108
3109         case CMD_IOACCEL1:
3110         case CMD_IOACCEL2:
3111                 if (c->phys_disk == dev) {
3112                         /* HBA mode match */
3113                         match = true;
3114                 } else {
3115                         /* Possible RAID mode -- check each phys dev. */
3116                         /* FIXME:  Do we need to take out a lock here?  If
3117                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3118                          * instead. */
3119                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3120                                 /* FIXME: an alternate test might be
3121                                  *
3122                                  * match = dev->phys_disk[i]->ioaccel_handle
3123                                  *              == c2->scsi_nexus;      */
3124                                 match = dev->phys_disk[i] == c->phys_disk;
3125                         }
3126                 }
3127                 break;
3128
3129         case IOACCEL2_TMF:
3130                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3131                         match = dev->phys_disk[i]->ioaccel_handle ==
3132                                         le32_to_cpu(ac->it_nexus);
3133                 }
3134                 break;
3135
3136         case 0:         /* The command is in the middle of being initialized. */
3137                 match = false;
3138                 break;
3139
3140         default:
3141                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3142                         c->cmd_type);
3143                 BUG();
3144         }
3145
3146         return match;
3147 }
3148
3149 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3150         u8 reset_type, int reply_queue)
3151 {
3152         int rc = 0;
3153
3154         /* We can really only handle one reset at a time */
3155         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3156                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3157                 return -EINTR;
3158         }
3159
3160         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3161         if (!rc) {
3162                 /* incremented by sending the reset request */
3163                 atomic_dec(&dev->commands_outstanding);
3164                 wait_event(h->event_sync_wait_queue,
3165                         atomic_read(&dev->commands_outstanding) <= 0 ||
3166                         lockup_detected(h));
3167         }
3168
3169         if (unlikely(lockup_detected(h))) {
3170                 dev_warn(&h->pdev->dev,
3171                          "Controller lockup detected during reset wait\n");
3172                 rc = -ENODEV;
3173         }
3174
3175         if (!rc)
3176                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3177
3178         mutex_unlock(&h->reset_mutex);
3179         return rc;
3180 }
3181
3182 static void hpsa_get_raid_level(struct ctlr_info *h,
3183         unsigned char *scsi3addr, unsigned char *raid_level)
3184 {
3185         int rc;
3186         unsigned char *buf;
3187
3188         *raid_level = RAID_UNKNOWN;
3189         buf = kzalloc(64, GFP_KERNEL);
3190         if (!buf)
3191                 return;
3192
3193         if (!hpsa_vpd_page_supported(h, scsi3addr,
3194                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3195                 goto exit;
3196
3197         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3198                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3199
3200         if (rc == 0)
3201                 *raid_level = buf[8];
3202         if (*raid_level > RAID_UNKNOWN)
3203                 *raid_level = RAID_UNKNOWN;
3204 exit:
3205         kfree(buf);
3206         return;
3207 }
3208
3209 #define HPSA_MAP_DEBUG
3210 #ifdef HPSA_MAP_DEBUG
3211 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3212                                 struct raid_map_data *map_buff)
3213 {
3214         struct raid_map_disk_data *dd = &map_buff->data[0];
3215         int map, row, col;
3216         u16 map_cnt, row_cnt, disks_per_row;
3217
3218         if (rc != 0)
3219                 return;
3220
3221         /* Show details only if debugging has been activated. */
3222         if (h->raid_offload_debug < 2)
3223                 return;
3224
3225         dev_info(&h->pdev->dev, "structure_size = %u\n",
3226                                 le32_to_cpu(map_buff->structure_size));
3227         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3228                         le32_to_cpu(map_buff->volume_blk_size));
3229         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3230                         le64_to_cpu(map_buff->volume_blk_cnt));
3231         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3232                         map_buff->phys_blk_shift);
3233         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3234                         map_buff->parity_rotation_shift);
3235         dev_info(&h->pdev->dev, "strip_size = %u\n",
3236                         le16_to_cpu(map_buff->strip_size));
3237         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3238                         le64_to_cpu(map_buff->disk_starting_blk));
3239         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3240                         le64_to_cpu(map_buff->disk_blk_cnt));
3241         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3242                         le16_to_cpu(map_buff->data_disks_per_row));
3243         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3244                         le16_to_cpu(map_buff->metadata_disks_per_row));
3245         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3246                         le16_to_cpu(map_buff->row_cnt));
3247         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3248                         le16_to_cpu(map_buff->layout_map_count));
3249         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3250                         le16_to_cpu(map_buff->flags));
3251         dev_info(&h->pdev->dev, "encryption = %s\n",
3252                         le16_to_cpu(map_buff->flags) &
3253                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3254         dev_info(&h->pdev->dev, "dekindex = %u\n",
3255                         le16_to_cpu(map_buff->dekindex));
3256         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3257         for (map = 0; map < map_cnt; map++) {
3258                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3259                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3260                 for (row = 0; row < row_cnt; row++) {
3261                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3262                         disks_per_row =
3263                                 le16_to_cpu(map_buff->data_disks_per_row);
3264                         for (col = 0; col < disks_per_row; col++, dd++)
3265                                 dev_info(&h->pdev->dev,
3266                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3267                                         col, dd->ioaccel_handle,
3268                                         dd->xor_mult[0], dd->xor_mult[1]);
3269                         disks_per_row =
3270                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3271                         for (col = 0; col < disks_per_row; col++, dd++)
3272                                 dev_info(&h->pdev->dev,
3273                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3274                                         col, dd->ioaccel_handle,
3275                                         dd->xor_mult[0], dd->xor_mult[1]);
3276                 }
3277         }
3278 }
3279 #else
3280 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3281                         __attribute__((unused)) int rc,
3282                         __attribute__((unused)) struct raid_map_data *map_buff)
3283 {
3284 }
3285 #endif
3286
3287 static int hpsa_get_raid_map(struct ctlr_info *h,
3288         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3289 {
3290         int rc = 0;
3291         struct CommandList *c;
3292         struct ErrorInfo *ei;
3293
3294         c = cmd_alloc(h);
3295
3296         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3297                         sizeof(this_device->raid_map), 0,
3298                         scsi3addr, TYPE_CMD)) {
3299                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3300                 cmd_free(h, c);
3301                 return -1;
3302         }
3303         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3304                         NO_TIMEOUT);
3305         if (rc)
3306                 goto out;
3307         ei = c->err_info;
3308         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3309                 hpsa_scsi_interpret_error(h, c);
3310                 rc = -1;
3311                 goto out;
3312         }
3313         cmd_free(h, c);
3314
3315         /* @todo in the future, dynamically allocate RAID map memory */
3316         if (le32_to_cpu(this_device->raid_map.structure_size) >
3317                                 sizeof(this_device->raid_map)) {
3318                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3319                 rc = -1;
3320         }
3321         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3322         return rc;
3323 out:
3324         cmd_free(h, c);
3325         return rc;
3326 }
3327
3328 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3329                 unsigned char scsi3addr[], u16 bmic_device_index,
3330                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3331 {
3332         int rc = IO_OK;
3333         struct CommandList *c;
3334         struct ErrorInfo *ei;
3335
3336         c = cmd_alloc(h);
3337
3338         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3339                 0, RAID_CTLR_LUNID, TYPE_CMD);
3340         if (rc)
3341                 goto out;
3342
3343         c->Request.CDB[2] = bmic_device_index & 0xff;
3344         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3345
3346         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3347                         NO_TIMEOUT);
3348         if (rc)
3349                 goto out;
3350         ei = c->err_info;
3351         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3352                 hpsa_scsi_interpret_error(h, c);
3353                 rc = -1;
3354         }
3355 out:
3356         cmd_free(h, c);
3357         return rc;
3358 }
3359
3360 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3361         struct bmic_identify_controller *buf, size_t bufsize)
3362 {
3363         int rc = IO_OK;
3364         struct CommandList *c;
3365         struct ErrorInfo *ei;
3366
3367         c = cmd_alloc(h);
3368
3369         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3370                 0, RAID_CTLR_LUNID, TYPE_CMD);
3371         if (rc)
3372                 goto out;
3373
3374         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3375                         NO_TIMEOUT);
3376         if (rc)
3377                 goto out;
3378         ei = c->err_info;
3379         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3380                 hpsa_scsi_interpret_error(h, c);
3381                 rc = -1;
3382         }
3383 out:
3384         cmd_free(h, c);
3385         return rc;
3386 }
3387
3388 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3389                 unsigned char scsi3addr[], u16 bmic_device_index,
3390                 struct bmic_identify_physical_device *buf, size_t bufsize)
3391 {
3392         int rc = IO_OK;
3393         struct CommandList *c;
3394         struct ErrorInfo *ei;
3395
3396         c = cmd_alloc(h);
3397         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3398                 0, RAID_CTLR_LUNID, TYPE_CMD);
3399         if (rc)
3400                 goto out;
3401
3402         c->Request.CDB[2] = bmic_device_index & 0xff;
3403         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3404
3405         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3406                                                 NO_TIMEOUT);
3407         ei = c->err_info;
3408         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3409                 hpsa_scsi_interpret_error(h, c);
3410                 rc = -1;
3411         }
3412 out:
3413         cmd_free(h, c);
3414
3415         return rc;
3416 }
3417
3418 /*
3419  * get enclosure information
3420  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3421  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3422  * Uses id_physical_device to determine the box_index.
3423  */
3424 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3425                         unsigned char *scsi3addr,
3426                         struct ReportExtendedLUNdata *rlep, int rle_index,
3427                         struct hpsa_scsi_dev_t *encl_dev)
3428 {
3429         int rc = -1;
3430         struct CommandList *c = NULL;
3431         struct ErrorInfo *ei = NULL;
3432         struct bmic_sense_storage_box_params *bssbp = NULL;
3433         struct bmic_identify_physical_device *id_phys = NULL;
3434         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3435         u16 bmic_device_index = 0;
3436
3437         encl_dev->eli =
3438                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3439
3440         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3441
3442         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3443                 rc = IO_OK;
3444                 goto out;
3445         }
3446
3447         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3448                 rc = IO_OK;
3449                 goto out;
3450         }
3451
3452         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3453         if (!bssbp)
3454                 goto out;
3455
3456         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3457         if (!id_phys)
3458                 goto out;
3459
3460         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3461                                                 id_phys, sizeof(*id_phys));
3462         if (rc) {
3463                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3464                         __func__, encl_dev->external, bmic_device_index);
3465                 goto out;
3466         }
3467
3468         c = cmd_alloc(h);
3469
3470         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3471                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3472
3473         if (rc)
3474                 goto out;
3475
3476         if (id_phys->phys_connector[1] == 'E')
3477                 c->Request.CDB[5] = id_phys->box_index;
3478         else
3479                 c->Request.CDB[5] = 0;
3480
3481         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3482                                                 NO_TIMEOUT);
3483         if (rc)
3484                 goto out;
3485
3486         ei = c->err_info;
3487         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3488                 rc = -1;
3489                 goto out;
3490         }
3491
3492         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3493         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3494                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3495
3496         rc = IO_OK;
3497 out:
3498         kfree(bssbp);
3499         kfree(id_phys);
3500
3501         if (c)
3502                 cmd_free(h, c);
3503
3504         if (rc != IO_OK)
3505                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3506                         "Error, could not get enclosure information");
3507 }
3508
3509 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3510                                                 unsigned char *scsi3addr)
3511 {
3512         struct ReportExtendedLUNdata *physdev;
3513         u32 nphysicals;
3514         u64 sa = 0;
3515         int i;
3516
3517         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3518         if (!physdev)
3519                 return 0;
3520
3521         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3522                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3523                 kfree(physdev);
3524                 return 0;
3525         }
3526         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3527
3528         for (i = 0; i < nphysicals; i++)
3529                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3530                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3531                         break;
3532                 }
3533
3534         kfree(physdev);
3535
3536         return sa;
3537 }
3538
3539 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3540                                         struct hpsa_scsi_dev_t *dev)
3541 {
3542         int rc;
3543         u64 sa = 0;
3544
3545         if (is_hba_lunid(scsi3addr)) {
3546                 struct bmic_sense_subsystem_info *ssi;
3547
3548                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3549                 if (!ssi)
3550                         return;
3551
3552                 rc = hpsa_bmic_sense_subsystem_information(h,
3553                                         scsi3addr, 0, ssi, sizeof(*ssi));
3554                 if (rc == 0) {
3555                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3556                         h->sas_address = sa;
3557                 }
3558
3559                 kfree(ssi);
3560         } else
3561                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3562
3563         dev->sas_address = sa;
3564 }
3565
3566 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3567         struct ReportExtendedLUNdata *physdev)
3568 {
3569         u32 nphysicals;
3570         int i;
3571
3572         if (h->discovery_polling)
3573                 return;
3574
3575         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3576
3577         for (i = 0; i < nphysicals; i++) {
3578                 if (physdev->LUN[i].device_type ==
3579                         BMIC_DEVICE_TYPE_CONTROLLER
3580                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3581                         dev_info(&h->pdev->dev,
3582                                 "External controller present, activate discovery polling and disable rld caching\n");
3583                         hpsa_disable_rld_caching(h);
3584                         h->discovery_polling = 1;
3585                         break;
3586                 }
3587         }
3588 }
3589
3590 /* Get a device id from inquiry page 0x83 */
3591 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3592         unsigned char scsi3addr[], u8 page)
3593 {
3594         int rc;
3595         int i;
3596         int pages;
3597         unsigned char *buf, bufsize;
3598
3599         buf = kzalloc(256, GFP_KERNEL);
3600         if (!buf)
3601                 return false;
3602
3603         /* Get the size of the page list first */
3604         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3605                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3606                                 buf, HPSA_VPD_HEADER_SZ);
3607         if (rc != 0)
3608                 goto exit_unsupported;
3609         pages = buf[3];
3610         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3611                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3612         else
3613                 bufsize = 255;
3614
3615         /* Get the whole VPD page list */
3616         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3617                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3618                                 buf, bufsize);
3619         if (rc != 0)
3620                 goto exit_unsupported;
3621
3622         pages = buf[3];
3623         for (i = 1; i <= pages; i++)
3624                 if (buf[3 + i] == page)
3625                         goto exit_supported;
3626 exit_unsupported:
3627         kfree(buf);
3628         return false;
3629 exit_supported:
3630         kfree(buf);
3631         return true;
3632 }
3633
3634 /*
3635  * Called during a scan operation.
3636  * Sets ioaccel status on the new device list, not the existing device list
3637  *
3638  * The device list used during I/O will be updated later in
3639  * adjust_hpsa_scsi_table.
3640  */
3641 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3642         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3643 {
3644         int rc;
3645         unsigned char *buf;
3646         u8 ioaccel_status;
3647
3648         this_device->offload_config = 0;
3649         this_device->offload_enabled = 0;
3650         this_device->offload_to_be_enabled = 0;
3651
3652         buf = kzalloc(64, GFP_KERNEL);
3653         if (!buf)
3654                 return;
3655         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3656                 goto out;
3657         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3658                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3659         if (rc != 0)
3660                 goto out;
3661
3662 #define IOACCEL_STATUS_BYTE 4
3663 #define OFFLOAD_CONFIGURED_BIT 0x01
3664 #define OFFLOAD_ENABLED_BIT 0x02
3665         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3666         this_device->offload_config =
3667                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3668         if (this_device->offload_config) {
3669                 this_device->offload_to_be_enabled =
3670                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3671                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3672                         this_device->offload_to_be_enabled = 0;
3673         }
3674
3675 out:
3676         kfree(buf);
3677         return;
3678 }
3679
3680 /* Get the device id from inquiry page 0x83 */
3681 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3682         unsigned char *device_id, int index, int buflen)
3683 {
3684         int rc;
3685         unsigned char *buf;
3686
3687         /* Does controller have VPD for device id? */
3688         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3689                 return 1; /* not supported */
3690
3691         buf = kzalloc(64, GFP_KERNEL);
3692         if (!buf)
3693                 return -ENOMEM;
3694
3695         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3696                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3697         if (rc == 0) {
3698                 if (buflen > 16)
3699                         buflen = 16;
3700                 memcpy(device_id, &buf[8], buflen);
3701         }
3702
3703         kfree(buf);
3704
3705         return rc; /*0 - got id,  otherwise, didn't */
3706 }
3707
3708 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3709                 void *buf, int bufsize,
3710                 int extended_response)
3711 {
3712         int rc = IO_OK;
3713         struct CommandList *c;
3714         unsigned char scsi3addr[8];
3715         struct ErrorInfo *ei;
3716
3717         c = cmd_alloc(h);
3718
3719         /* address the controller */
3720         memset(scsi3addr, 0, sizeof(scsi3addr));
3721         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3722                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3723                 rc = -EAGAIN;
3724                 goto out;
3725         }
3726         if (extended_response)
3727                 c->Request.CDB[1] = extended_response;
3728         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3729                         NO_TIMEOUT);
3730         if (rc)
3731                 goto out;
3732         ei = c->err_info;
3733         if (ei->CommandStatus != 0 &&
3734             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3735                 hpsa_scsi_interpret_error(h, c);
3736                 rc = -EIO;
3737         } else {
3738                 struct ReportLUNdata *rld = buf;
3739
3740                 if (rld->extended_response_flag != extended_response) {
3741                         if (!h->legacy_board) {
3742                                 dev_err(&h->pdev->dev,
3743                                         "report luns requested format %u, got %u\n",
3744                                         extended_response,
3745                                         rld->extended_response_flag);
3746                                 rc = -EINVAL;
3747                         } else
3748                                 rc = -EOPNOTSUPP;
3749                 }
3750         }
3751 out:
3752         cmd_free(h, c);
3753         return rc;
3754 }
3755
3756 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3757                 struct ReportExtendedLUNdata *buf, int bufsize)
3758 {
3759         int rc;
3760         struct ReportLUNdata *lbuf;
3761
3762         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3763                                       HPSA_REPORT_PHYS_EXTENDED);
3764         if (!rc || rc != -EOPNOTSUPP)
3765                 return rc;
3766
3767         /* REPORT PHYS EXTENDED is not supported */
3768         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3769         if (!lbuf)
3770                 return -ENOMEM;
3771
3772         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3773         if (!rc) {
3774                 int i;
3775                 u32 nphys;
3776
3777                 /* Copy ReportLUNdata header */
3778                 memcpy(buf, lbuf, 8);
3779                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3780                 for (i = 0; i < nphys; i++)
3781                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3782         }
3783         kfree(lbuf);
3784         return rc;
3785 }
3786
3787 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3788                 struct ReportLUNdata *buf, int bufsize)
3789 {
3790         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3791 }
3792
3793 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3794         int bus, int target, int lun)
3795 {
3796         device->bus = bus;
3797         device->target = target;
3798         device->lun = lun;
3799 }
3800
3801 /* Use VPD inquiry to get details of volume status */
3802 static int hpsa_get_volume_status(struct ctlr_info *h,
3803                                         unsigned char scsi3addr[])
3804 {
3805         int rc;
3806         int status;
3807         int size;
3808         unsigned char *buf;
3809
3810         buf = kzalloc(64, GFP_KERNEL);
3811         if (!buf)
3812                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3813
3814         /* Does controller have VPD for logical volume status? */
3815         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3816                 goto exit_failed;
3817
3818         /* Get the size of the VPD return buffer */
3819         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3820                                         buf, HPSA_VPD_HEADER_SZ);
3821         if (rc != 0)
3822                 goto exit_failed;
3823         size = buf[3];
3824
3825         /* Now get the whole VPD buffer */
3826         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3827                                         buf, size + HPSA_VPD_HEADER_SZ);
3828         if (rc != 0)
3829                 goto exit_failed;
3830         status = buf[4]; /* status byte */
3831
3832         kfree(buf);
3833         return status;
3834 exit_failed:
3835         kfree(buf);
3836         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3837 }
3838
3839 /* Determine offline status of a volume.
3840  * Return either:
3841  *  0 (not offline)
3842  *  0xff (offline for unknown reasons)
3843  *  # (integer code indicating one of several NOT READY states
3844  *     describing why a volume is to be kept offline)
3845  */
3846 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3847                                         unsigned char scsi3addr[])
3848 {
3849         struct CommandList *c;
3850         unsigned char *sense;
3851         u8 sense_key, asc, ascq;
3852         int sense_len;
3853         int rc, ldstat = 0;
3854         u16 cmd_status;
3855         u8 scsi_status;
3856 #define ASC_LUN_NOT_READY 0x04
3857 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3858 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3859
3860         c = cmd_alloc(h);
3861
3862         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3863         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3864                                         NO_TIMEOUT);
3865         if (rc) {
3866                 cmd_free(h, c);
3867                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3868         }
3869         sense = c->err_info->SenseInfo;
3870         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3871                 sense_len = sizeof(c->err_info->SenseInfo);
3872         else
3873                 sense_len = c->err_info->SenseLen;
3874         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3875         cmd_status = c->err_info->CommandStatus;
3876         scsi_status = c->err_info->ScsiStatus;
3877         cmd_free(h, c);
3878
3879         /* Determine the reason for not ready state */
3880         ldstat = hpsa_get_volume_status(h, scsi3addr);
3881
3882         /* Keep volume offline in certain cases: */
3883         switch (ldstat) {
3884         case HPSA_LV_FAILED:
3885         case HPSA_LV_UNDERGOING_ERASE:
3886         case HPSA_LV_NOT_AVAILABLE:
3887         case HPSA_LV_UNDERGOING_RPI:
3888         case HPSA_LV_PENDING_RPI:
3889         case HPSA_LV_ENCRYPTED_NO_KEY:
3890         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3891         case HPSA_LV_UNDERGOING_ENCRYPTION:
3892         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3893         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3894                 return ldstat;
3895         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3896                 /* If VPD status page isn't available,
3897                  * use ASC/ASCQ to determine state
3898                  */
3899                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3900                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3901                         return ldstat;
3902                 break;
3903         default:
3904                 break;
3905         }
3906         return HPSA_LV_OK;
3907 }
3908
3909 static int hpsa_update_device_info(struct ctlr_info *h,
3910         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3911         unsigned char *is_OBDR_device)
3912 {
3913
3914 #define OBDR_SIG_OFFSET 43
3915 #define OBDR_TAPE_SIG "$DR-10"
3916 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3917 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3918
3919         unsigned char *inq_buff;
3920         unsigned char *obdr_sig;
3921         int rc = 0;
3922
3923         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3924         if (!inq_buff) {
3925                 rc = -ENOMEM;
3926                 goto bail_out;
3927         }
3928
3929         /* Do an inquiry to the device to see what it is. */
3930         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3931                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3932                 dev_err(&h->pdev->dev,
3933                         "%s: inquiry failed, device will be skipped.\n",
3934                         __func__);
3935                 rc = HPSA_INQUIRY_FAILED;
3936                 goto bail_out;
3937         }
3938
3939         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3940         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3941
3942         this_device->devtype = (inq_buff[0] & 0x1f);
3943         memcpy(this_device->scsi3addr, scsi3addr, 8);
3944         memcpy(this_device->vendor, &inq_buff[8],
3945                 sizeof(this_device->vendor));
3946         memcpy(this_device->model, &inq_buff[16],
3947                 sizeof(this_device->model));
3948         this_device->rev = inq_buff[2];
3949         memset(this_device->device_id, 0,
3950                 sizeof(this_device->device_id));
3951         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3952                 sizeof(this_device->device_id)) < 0) {
3953                 dev_err(&h->pdev->dev,
3954                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3955                         h->ctlr, __func__,
3956                         h->scsi_host->host_no,
3957                         this_device->bus, this_device->target,
3958                         this_device->lun,
3959                         scsi_device_type(this_device->devtype),
3960                         this_device->model);
3961                 rc = HPSA_LV_FAILED;
3962                 goto bail_out;
3963         }
3964
3965         if ((this_device->devtype == TYPE_DISK ||
3966                 this_device->devtype == TYPE_ZBC) &&
3967                 is_logical_dev_addr_mode(scsi3addr)) {
3968                 unsigned char volume_offline;
3969
3970                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3971                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3972                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3973                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3974                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3975                     h->legacy_board) {
3976                         /*
3977                          * Legacy boards might not support volume status
3978                          */
3979                         dev_info(&h->pdev->dev,
3980                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3981                                  this_device->target, this_device->lun);
3982                         volume_offline = 0;
3983                 }
3984                 this_device->volume_offline = volume_offline;
3985                 if (volume_offline == HPSA_LV_FAILED) {
3986                         rc = HPSA_LV_FAILED;
3987                         dev_err(&h->pdev->dev,
3988                                 "%s: LV failed, device will be skipped.\n",
3989                                 __func__);
3990                         goto bail_out;
3991                 }
3992         } else {
3993                 this_device->raid_level = RAID_UNKNOWN;
3994                 this_device->offload_config = 0;
3995                 this_device->offload_enabled = 0;
3996                 this_device->offload_to_be_enabled = 0;
3997                 this_device->hba_ioaccel_enabled = 0;
3998                 this_device->volume_offline = 0;
3999                 this_device->queue_depth = h->nr_cmds;
4000         }
4001
4002         if (this_device->external)
4003                 this_device->queue_depth = EXTERNAL_QD;
4004
4005         if (is_OBDR_device) {
4006                 /* See if this is a One-Button-Disaster-Recovery device
4007                  * by looking for "$DR-10" at offset 43 in inquiry data.
4008                  */
4009                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4010                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4011                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4012                                                 OBDR_SIG_LEN) == 0);
4013         }
4014         kfree(inq_buff);
4015         return 0;
4016
4017 bail_out:
4018         kfree(inq_buff);
4019         return rc;
4020 }
4021
4022 /*
4023  * Helper function to assign bus, target, lun mapping of devices.
4024  * Logical drive target and lun are assigned at this time, but
4025  * physical device lun and target assignment are deferred (assigned
4026  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4027 */
4028 static void figure_bus_target_lun(struct ctlr_info *h,
4029         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4030 {
4031         u32 lunid = get_unaligned_le32(lunaddrbytes);
4032
4033         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4034                 /* physical device, target and lun filled in later */
4035                 if (is_hba_lunid(lunaddrbytes)) {
4036                         int bus = HPSA_HBA_BUS;
4037
4038                         if (!device->rev)
4039                                 bus = HPSA_LEGACY_HBA_BUS;
4040                         hpsa_set_bus_target_lun(device,
4041                                         bus, 0, lunid & 0x3fff);
4042                 } else
4043                         /* defer target, lun assignment for physical devices */
4044                         hpsa_set_bus_target_lun(device,
4045                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4046                 return;
4047         }
4048         /* It's a logical device */
4049         if (device->external) {
4050                 hpsa_set_bus_target_lun(device,
4051                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4052                         lunid & 0x00ff);
4053                 return;
4054         }
4055         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4056                                 0, lunid & 0x3fff);
4057 }
4058
4059 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4060         int i, int nphysicals, int nlocal_logicals)
4061 {
4062         /* In report logicals, local logicals are listed first,
4063         * then any externals.
4064         */
4065         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4066
4067         if (i == raid_ctlr_position)
4068                 return 0;
4069
4070         if (i < logicals_start)
4071                 return 0;
4072
4073         /* i is in logicals range, but still within local logicals */
4074         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4075                 return 0;
4076
4077         return 1; /* it's an external lun */
4078 }
4079
4080 /*
4081  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4082  * logdev.  The number of luns in physdev and logdev are returned in
4083  * *nphysicals and *nlogicals, respectively.
4084  * Returns 0 on success, -1 otherwise.
4085  */
4086 static int hpsa_gather_lun_info(struct ctlr_info *h,
4087         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4088         struct ReportLUNdata *logdev, u32 *nlogicals)
4089 {
4090         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4091                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4092                 return -1;
4093         }
4094         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4095         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4096                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4097                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4098                 *nphysicals = HPSA_MAX_PHYS_LUN;
4099         }
4100         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4101                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4102                 return -1;
4103         }
4104         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4105         /* Reject Logicals in excess of our max capability. */
4106         if (*nlogicals > HPSA_MAX_LUN) {
4107                 dev_warn(&h->pdev->dev,
4108                         "maximum logical LUNs (%d) exceeded.  "
4109                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4110                         *nlogicals - HPSA_MAX_LUN);
4111                 *nlogicals = HPSA_MAX_LUN;
4112         }
4113         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4114                 dev_warn(&h->pdev->dev,
4115                         "maximum logical + physical LUNs (%d) exceeded. "
4116                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4117                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4118                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4119         }
4120         return 0;
4121 }
4122
4123 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4124         int i, int nphysicals, int nlogicals,
4125         struct ReportExtendedLUNdata *physdev_list,
4126         struct ReportLUNdata *logdev_list)
4127 {
4128         /* Helper function, figure out where the LUN ID info is coming from
4129          * given index i, lists of physical and logical devices, where in
4130          * the list the raid controller is supposed to appear (first or last)
4131          */
4132
4133         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4134         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4135
4136         if (i == raid_ctlr_position)
4137                 return RAID_CTLR_LUNID;
4138
4139         if (i < logicals_start)
4140                 return &physdev_list->LUN[i -
4141                                 (raid_ctlr_position == 0)].lunid[0];
4142
4143         if (i < last_device)
4144                 return &logdev_list->LUN[i - nphysicals -
4145                         (raid_ctlr_position == 0)][0];
4146         BUG();
4147         return NULL;
4148 }
4149
4150 /* get physical drive ioaccel handle and queue depth */
4151 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4152                 struct hpsa_scsi_dev_t *dev,
4153                 struct ReportExtendedLUNdata *rlep, int rle_index,
4154                 struct bmic_identify_physical_device *id_phys)
4155 {
4156         int rc;
4157         struct ext_report_lun_entry *rle;
4158
4159         rle = &rlep->LUN[rle_index];
4160
4161         dev->ioaccel_handle = rle->ioaccel_handle;
4162         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4163                 dev->hba_ioaccel_enabled = 1;
4164         memset(id_phys, 0, sizeof(*id_phys));
4165         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4166                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4167                         sizeof(*id_phys));
4168         if (!rc)
4169                 /* Reserve space for FW operations */
4170 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4171 #define DRIVE_QUEUE_DEPTH 7
4172                 dev->queue_depth =
4173                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4174                                 DRIVE_CMDS_RESERVED_FOR_FW;
4175         else
4176                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4177 }
4178
4179 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4180         struct ReportExtendedLUNdata *rlep, int rle_index,
4181         struct bmic_identify_physical_device *id_phys)
4182 {
4183         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4184
4185         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4186                 this_device->hba_ioaccel_enabled = 1;
4187
4188         memcpy(&this_device->active_path_index,
4189                 &id_phys->active_path_number,
4190                 sizeof(this_device->active_path_index));
4191         memcpy(&this_device->path_map,
4192                 &id_phys->redundant_path_present_map,
4193                 sizeof(this_device->path_map));
4194         memcpy(&this_device->box,
4195                 &id_phys->alternate_paths_phys_box_on_port,
4196                 sizeof(this_device->box));
4197         memcpy(&this_device->phys_connector,
4198                 &id_phys->alternate_paths_phys_connector,
4199                 sizeof(this_device->phys_connector));
4200         memcpy(&this_device->bay,
4201                 &id_phys->phys_bay_in_box,
4202                 sizeof(this_device->bay));
4203 }
4204
4205 /* get number of local logical disks. */
4206 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4207         struct bmic_identify_controller *id_ctlr,
4208         u32 *nlocals)
4209 {
4210         int rc;
4211
4212         if (!id_ctlr) {
4213                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4214                         __func__);
4215                 return -ENOMEM;
4216         }
4217         memset(id_ctlr, 0, sizeof(*id_ctlr));
4218         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4219         if (!rc)
4220                 if (id_ctlr->configured_logical_drive_count < 255)
4221                         *nlocals = id_ctlr->configured_logical_drive_count;
4222                 else
4223                         *nlocals = le16_to_cpu(
4224                                         id_ctlr->extended_logical_unit_count);
4225         else
4226                 *nlocals = -1;
4227         return rc;
4228 }
4229
4230 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4231 {
4232         struct bmic_identify_physical_device *id_phys;
4233         bool is_spare = false;
4234         int rc;
4235
4236         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4237         if (!id_phys)
4238                 return false;
4239
4240         rc = hpsa_bmic_id_physical_device(h,
4241                                         lunaddrbytes,
4242                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4243                                         id_phys, sizeof(*id_phys));
4244         if (rc == 0)
4245                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4246
4247         kfree(id_phys);
4248         return is_spare;
4249 }
4250
4251 #define RPL_DEV_FLAG_NON_DISK                           0x1
4252 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4253 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4254
4255 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4256
4257 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4258                                 struct ext_report_lun_entry *rle)
4259 {
4260         u8 device_flags;
4261         u8 device_type;
4262
4263         if (!MASKED_DEVICE(lunaddrbytes))
4264                 return false;
4265
4266         device_flags = rle->device_flags;
4267         device_type = rle->device_type;
4268
4269         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4270                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4271                         return false;
4272                 return true;
4273         }
4274
4275         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4276                 return false;
4277
4278         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4279                 return false;
4280
4281         /*
4282          * Spares may be spun down, we do not want to
4283          * do an Inquiry to a RAID set spare drive as
4284          * that would have them spun up, that is a
4285          * performance hit because I/O to the RAID device
4286          * stops while the spin up occurs which can take
4287          * over 50 seconds.
4288          */
4289         if (hpsa_is_disk_spare(h, lunaddrbytes))
4290                 return true;
4291
4292         return false;
4293 }
4294
4295 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4296 {
4297         /* the idea here is we could get notified
4298          * that some devices have changed, so we do a report
4299          * physical luns and report logical luns cmd, and adjust
4300          * our list of devices accordingly.
4301          *
4302          * The scsi3addr's of devices won't change so long as the
4303          * adapter is not reset.  That means we can rescan and
4304          * tell which devices we already know about, vs. new
4305          * devices, vs.  disappearing devices.
4306          */
4307         struct ReportExtendedLUNdata *physdev_list = NULL;
4308         struct ReportLUNdata *logdev_list = NULL;
4309         struct bmic_identify_physical_device *id_phys = NULL;
4310         struct bmic_identify_controller *id_ctlr = NULL;
4311         u32 nphysicals = 0;
4312         u32 nlogicals = 0;
4313         u32 nlocal_logicals = 0;
4314         u32 ndev_allocated = 0;
4315         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4316         int ncurrent = 0;
4317         int i, n_ext_target_devs, ndevs_to_allocate;
4318         int raid_ctlr_position;
4319         bool physical_device;
4320         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4321
4322         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4323         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4324         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4325         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4326         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4327         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4328
4329         if (!currentsd || !physdev_list || !logdev_list ||
4330                 !tmpdevice || !id_phys || !id_ctlr) {
4331                 dev_err(&h->pdev->dev, "out of memory\n");
4332                 goto out;
4333         }
4334         memset(lunzerobits, 0, sizeof(lunzerobits));
4335
4336         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4337
4338         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4339                         logdev_list, &nlogicals)) {
4340                 h->drv_req_rescan = 1;
4341                 goto out;
4342         }
4343
4344         /* Set number of local logicals (non PTRAID) */
4345         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4346                 dev_warn(&h->pdev->dev,
4347                         "%s: Can't determine number of local logical devices.\n",
4348                         __func__);
4349         }
4350
4351         /* We might see up to the maximum number of logical and physical disks
4352          * plus external target devices, and a device for the local RAID
4353          * controller.
4354          */
4355         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4356
4357         hpsa_ext_ctrl_present(h, physdev_list);
4358
4359         /* Allocate the per device structures */
4360         for (i = 0; i < ndevs_to_allocate; i++) {
4361                 if (i >= HPSA_MAX_DEVICES) {
4362                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4363                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4364                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4365                         break;
4366                 }
4367
4368                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4369                 if (!currentsd[i]) {
4370                         h->drv_req_rescan = 1;
4371                         goto out;
4372                 }
4373                 ndev_allocated++;
4374         }
4375
4376         if (is_scsi_rev_5(h))
4377                 raid_ctlr_position = 0;
4378         else
4379                 raid_ctlr_position = nphysicals + nlogicals;
4380
4381         /* adjust our table of devices */
4382         n_ext_target_devs = 0;
4383         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4384                 u8 *lunaddrbytes, is_OBDR = 0;
4385                 int rc = 0;
4386                 int phys_dev_index = i - (raid_ctlr_position == 0);
4387                 bool skip_device = false;
4388
4389                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4390
4391                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4392
4393                 /* Figure out where the LUN ID info is coming from */
4394                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4395                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4396
4397                 /* Determine if this is a lun from an external target array */
4398                 tmpdevice->external =
4399                         figure_external_status(h, raid_ctlr_position, i,
4400                                                 nphysicals, nlocal_logicals);
4401
4402                 /*
4403                  * Skip over some devices such as a spare.
4404                  */
4405                 if (!tmpdevice->external && physical_device) {
4406                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4407                                         &physdev_list->LUN[phys_dev_index]);
4408                         if (skip_device)
4409                                 continue;
4410                 }
4411
4412                 /* Get device type, vendor, model, device id, raid_map */
4413                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4414                                                         &is_OBDR);
4415                 if (rc == -ENOMEM) {
4416                         dev_warn(&h->pdev->dev,
4417                                 "Out of memory, rescan deferred.\n");
4418                         h->drv_req_rescan = 1;
4419                         goto out;
4420                 }
4421                 if (rc) {
4422                         h->drv_req_rescan = 1;
4423                         continue;
4424                 }
4425
4426                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4427                 this_device = currentsd[ncurrent];
4428
4429                 *this_device = *tmpdevice;
4430                 this_device->physical_device = physical_device;
4431
4432                 /*
4433                  * Expose all devices except for physical devices that
4434                  * are masked.
4435                  */
4436                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4437                         this_device->expose_device = 0;
4438                 else
4439                         this_device->expose_device = 1;
4440
4441
4442                 /*
4443                  * Get the SAS address for physical devices that are exposed.
4444                  */
4445                 if (this_device->physical_device && this_device->expose_device)
4446                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4447
4448                 switch (this_device->devtype) {
4449                 case TYPE_ROM:
4450                         /* We don't *really* support actual CD-ROM devices,
4451                          * just "One Button Disaster Recovery" tape drive
4452                          * which temporarily pretends to be a CD-ROM drive.
4453                          * So we check that the device is really an OBDR tape
4454                          * device by checking for "$DR-10" in bytes 43-48 of
4455                          * the inquiry data.
4456                          */
4457                         if (is_OBDR)
4458                                 ncurrent++;
4459                         break;
4460                 case TYPE_DISK:
4461                 case TYPE_ZBC:
4462                         if (this_device->physical_device) {
4463                                 /* The disk is in HBA mode. */
4464                                 /* Never use RAID mapper in HBA mode. */
4465                                 this_device->offload_enabled = 0;
4466                                 hpsa_get_ioaccel_drive_info(h, this_device,
4467                                         physdev_list, phys_dev_index, id_phys);
4468                                 hpsa_get_path_info(this_device,
4469                                         physdev_list, phys_dev_index, id_phys);
4470                         }
4471                         ncurrent++;
4472                         break;
4473                 case TYPE_TAPE:
4474                 case TYPE_MEDIUM_CHANGER:
4475                         ncurrent++;
4476                         break;
4477                 case TYPE_ENCLOSURE:
4478                         if (!this_device->external)
4479                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4480                                                 physdev_list, phys_dev_index,
4481                                                 this_device);
4482                         ncurrent++;
4483                         break;
4484                 case TYPE_RAID:
4485                         /* Only present the Smartarray HBA as a RAID controller.
4486                          * If it's a RAID controller other than the HBA itself
4487                          * (an external RAID controller, MSA500 or similar)
4488                          * don't present it.
4489                          */
4490                         if (!is_hba_lunid(lunaddrbytes))
4491                                 break;
4492                         ncurrent++;
4493                         break;
4494                 default:
4495                         break;
4496                 }
4497                 if (ncurrent >= HPSA_MAX_DEVICES)
4498                         break;
4499         }
4500
4501         if (h->sas_host == NULL) {
4502                 int rc = 0;
4503
4504                 rc = hpsa_add_sas_host(h);
4505                 if (rc) {
4506                         dev_warn(&h->pdev->dev,
4507                                 "Could not add sas host %d\n", rc);
4508                         goto out;
4509                 }
4510         }
4511
4512         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4513 out:
4514         kfree(tmpdevice);
4515         for (i = 0; i < ndev_allocated; i++)
4516                 kfree(currentsd[i]);
4517         kfree(currentsd);
4518         kfree(physdev_list);
4519         kfree(logdev_list);
4520         kfree(id_ctlr);
4521         kfree(id_phys);
4522 }
4523
4524 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4525                                    struct scatterlist *sg)
4526 {
4527         u64 addr64 = (u64) sg_dma_address(sg);
4528         unsigned int len = sg_dma_len(sg);
4529
4530         desc->Addr = cpu_to_le64(addr64);
4531         desc->Len = cpu_to_le32(len);
4532         desc->Ext = 0;
4533 }
4534
4535 /*
4536  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4537  * dma mapping  and fills in the scatter gather entries of the
4538  * hpsa command, cp.
4539  */
4540 static int hpsa_scatter_gather(struct ctlr_info *h,
4541                 struct CommandList *cp,
4542                 struct scsi_cmnd *cmd)
4543 {
4544         struct scatterlist *sg;
4545         int use_sg, i, sg_limit, chained, last_sg;
4546         struct SGDescriptor *curr_sg;
4547
4548         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550         use_sg = scsi_dma_map(cmd);
4551         if (use_sg < 0)
4552                 return use_sg;
4553
4554         if (!use_sg)
4555                 goto sglist_finished;
4556
4557         /*
4558          * If the number of entries is greater than the max for a single list,
4559          * then we have a chained list; we will set up all but one entry in the
4560          * first list (the last entry is saved for link information);
4561          * otherwise, we don't have a chained list and we'll set up at each of
4562          * the entries in the one list.
4563          */
4564         curr_sg = cp->SG;
4565         chained = use_sg > h->max_cmd_sg_entries;
4566         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4567         last_sg = scsi_sg_count(cmd) - 1;
4568         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4569                 hpsa_set_sg_descriptor(curr_sg, sg);
4570                 curr_sg++;
4571         }
4572
4573         if (chained) {
4574                 /*
4575                  * Continue with the chained list.  Set curr_sg to the chained
4576                  * list.  Modify the limit to the total count less the entries
4577                  * we've already set up.  Resume the scan at the list entry
4578                  * where the previous loop left off.
4579                  */
4580                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4581                 sg_limit = use_sg - sg_limit;
4582                 for_each_sg(sg, sg, sg_limit, i) {
4583                         hpsa_set_sg_descriptor(curr_sg, sg);
4584                         curr_sg++;
4585                 }
4586         }
4587
4588         /* Back the pointer up to the last entry and mark it as "last". */
4589         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4590
4591         if (use_sg + chained > h->maxSG)
4592                 h->maxSG = use_sg + chained;
4593
4594         if (chained) {
4595                 cp->Header.SGList = h->max_cmd_sg_entries;
4596                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4597                 if (hpsa_map_sg_chain_block(h, cp)) {
4598                         scsi_dma_unmap(cmd);
4599                         return -1;
4600                 }
4601                 return 0;
4602         }
4603
4604 sglist_finished:
4605
4606         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4607         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4608         return 0;
4609 }
4610
4611 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4612                                                 u8 *cdb, int cdb_len,
4613                                                 const char *func)
4614 {
4615         dev_warn(&h->pdev->dev,
4616                  "%s: Blocking zero-length request: CDB:%*phN\n",
4617                  func, cdb_len, cdb);
4618 }
4619
4620 #define IO_ACCEL_INELIGIBLE 1
4621 /* zero-length transfers trigger hardware errors. */
4622 static bool is_zero_length_transfer(u8 *cdb)
4623 {
4624         u32 block_cnt;
4625
4626         /* Block zero-length transfer sizes on certain commands. */
4627         switch (cdb[0]) {
4628         case READ_10:
4629         case WRITE_10:
4630         case VERIFY:            /* 0x2F */
4631         case WRITE_VERIFY:      /* 0x2E */
4632                 block_cnt = get_unaligned_be16(&cdb[7]);
4633                 break;
4634         case READ_12:
4635         case WRITE_12:
4636         case VERIFY_12: /* 0xAF */
4637         case WRITE_VERIFY_12:   /* 0xAE */
4638                 block_cnt = get_unaligned_be32(&cdb[6]);
4639                 break;
4640         case READ_16:
4641         case WRITE_16:
4642         case VERIFY_16:         /* 0x8F */
4643                 block_cnt = get_unaligned_be32(&cdb[10]);
4644                 break;
4645         default:
4646                 return false;
4647         }
4648
4649         return block_cnt == 0;
4650 }
4651
4652 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4653 {
4654         int is_write = 0;
4655         u32 block;
4656         u32 block_cnt;
4657
4658         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4659         switch (cdb[0]) {
4660         case WRITE_6:
4661         case WRITE_12:
4662                 is_write = 1;
4663                 /* fall through */
4664         case READ_6:
4665         case READ_12:
4666                 if (*cdb_len == 6) {
4667                         block = (((cdb[1] & 0x1F) << 16) |
4668                                 (cdb[2] << 8) |
4669                                 cdb[3]);
4670                         block_cnt = cdb[4];
4671                         if (block_cnt == 0)
4672                                 block_cnt = 256;
4673                 } else {
4674                         BUG_ON(*cdb_len != 12);
4675                         block = get_unaligned_be32(&cdb[2]);
4676                         block_cnt = get_unaligned_be32(&cdb[6]);
4677                 }
4678                 if (block_cnt > 0xffff)
4679                         return IO_ACCEL_INELIGIBLE;
4680
4681                 cdb[0] = is_write ? WRITE_10 : READ_10;
4682                 cdb[1] = 0;
4683                 cdb[2] = (u8) (block >> 24);
4684                 cdb[3] = (u8) (block >> 16);
4685                 cdb[4] = (u8) (block >> 8);
4686                 cdb[5] = (u8) (block);
4687                 cdb[6] = 0;
4688                 cdb[7] = (u8) (block_cnt >> 8);
4689                 cdb[8] = (u8) (block_cnt);
4690                 cdb[9] = 0;
4691                 *cdb_len = 10;
4692                 break;
4693         }
4694         return 0;
4695 }
4696
4697 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4698         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4699         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4700 {
4701         struct scsi_cmnd *cmd = c->scsi_cmd;
4702         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4703         unsigned int len;
4704         unsigned int total_len = 0;
4705         struct scatterlist *sg;
4706         u64 addr64;
4707         int use_sg, i;
4708         struct SGDescriptor *curr_sg;
4709         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4710
4711         /* TODO: implement chaining support */
4712         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4713                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4714                 return IO_ACCEL_INELIGIBLE;
4715         }
4716
4717         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4718
4719         if (is_zero_length_transfer(cdb)) {
4720                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4721                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4722                 return IO_ACCEL_INELIGIBLE;
4723         }
4724
4725         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4726                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4727                 return IO_ACCEL_INELIGIBLE;
4728         }
4729
4730         c->cmd_type = CMD_IOACCEL1;
4731
4732         /* Adjust the DMA address to point to the accelerated command buffer */
4733         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4734                                 (c->cmdindex * sizeof(*cp));
4735         BUG_ON(c->busaddr & 0x0000007F);
4736
4737         use_sg = scsi_dma_map(cmd);
4738         if (use_sg < 0) {
4739                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4740                 return use_sg;
4741         }
4742
4743         if (use_sg) {
4744                 curr_sg = cp->SG;
4745                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4746                         addr64 = (u64) sg_dma_address(sg);
4747                         len  = sg_dma_len(sg);
4748                         total_len += len;
4749                         curr_sg->Addr = cpu_to_le64(addr64);
4750                         curr_sg->Len = cpu_to_le32(len);
4751                         curr_sg->Ext = cpu_to_le32(0);
4752                         curr_sg++;
4753                 }
4754                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4755
4756                 switch (cmd->sc_data_direction) {
4757                 case DMA_TO_DEVICE:
4758                         control |= IOACCEL1_CONTROL_DATA_OUT;
4759                         break;
4760                 case DMA_FROM_DEVICE:
4761                         control |= IOACCEL1_CONTROL_DATA_IN;
4762                         break;
4763                 case DMA_NONE:
4764                         control |= IOACCEL1_CONTROL_NODATAXFER;
4765                         break;
4766                 default:
4767                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4768                         cmd->sc_data_direction);
4769                         BUG();
4770                         break;
4771                 }
4772         } else {
4773                 control |= IOACCEL1_CONTROL_NODATAXFER;
4774         }
4775
4776         c->Header.SGList = use_sg;
4777         /* Fill out the command structure to submit */
4778         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4779         cp->transfer_len = cpu_to_le32(total_len);
4780         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4781                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4782         cp->control = cpu_to_le32(control);
4783         memcpy(cp->CDB, cdb, cdb_len);
4784         memcpy(cp->CISS_LUN, scsi3addr, 8);
4785         /* Tag was already set at init time. */
4786         enqueue_cmd_and_start_io(h, c);
4787         return 0;
4788 }
4789
4790 /*
4791  * Queue a command directly to a device behind the controller using the
4792  * I/O accelerator path.
4793  */
4794 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4795         struct CommandList *c)
4796 {
4797         struct scsi_cmnd *cmd = c->scsi_cmd;
4798         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4799
4800         if (!dev)
4801                 return -1;
4802
4803         c->phys_disk = dev;
4804
4805         if (dev->in_reset)
4806                 return -1;
4807
4808         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4809                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4810 }
4811
4812 /*
4813  * Set encryption parameters for the ioaccel2 request
4814  */
4815 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4816         struct CommandList *c, struct io_accel2_cmd *cp)
4817 {
4818         struct scsi_cmnd *cmd = c->scsi_cmd;
4819         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4820         struct raid_map_data *map = &dev->raid_map;
4821         u64 first_block;
4822
4823         /* Are we doing encryption on this device */
4824         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4825                 return;
4826         /* Set the data encryption key index. */
4827         cp->dekindex = map->dekindex;
4828
4829         /* Set the encryption enable flag, encoded into direction field. */
4830         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4831
4832         /* Set encryption tweak values based on logical block address
4833          * If block size is 512, tweak value is LBA.
4834          * For other block sizes, tweak is (LBA * block size)/ 512)
4835          */
4836         switch (cmd->cmnd[0]) {
4837         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4838         case READ_6:
4839         case WRITE_6:
4840                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4841                                 (cmd->cmnd[2] << 8) |
4842                                 cmd->cmnd[3]);
4843                 break;
4844         case WRITE_10:
4845         case READ_10:
4846         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4847         case WRITE_12:
4848         case READ_12:
4849                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4850                 break;
4851         case WRITE_16:
4852         case READ_16:
4853                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4854                 break;
4855         default:
4856                 dev_err(&h->pdev->dev,
4857                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4858                         __func__, cmd->cmnd[0]);
4859                 BUG();
4860                 break;
4861         }
4862
4863         if (le32_to_cpu(map->volume_blk_size) != 512)
4864                 first_block = first_block *
4865                                 le32_to_cpu(map->volume_blk_size)/512;
4866
4867         cp->tweak_lower = cpu_to_le32(first_block);
4868         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4869 }
4870
4871 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4872         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4873         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4874 {
4875         struct scsi_cmnd *cmd = c->scsi_cmd;
4876         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4877         struct ioaccel2_sg_element *curr_sg;
4878         int use_sg, i;
4879         struct scatterlist *sg;
4880         u64 addr64;
4881         u32 len;
4882         u32 total_len = 0;
4883
4884         if (!cmd->device)
4885                 return -1;
4886
4887         if (!cmd->device->hostdata)
4888                 return -1;
4889
4890         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4891
4892         if (is_zero_length_transfer(cdb)) {
4893                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4894                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4895                 return IO_ACCEL_INELIGIBLE;
4896         }
4897
4898         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4899                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4900                 return IO_ACCEL_INELIGIBLE;
4901         }
4902
4903         c->cmd_type = CMD_IOACCEL2;
4904         /* Adjust the DMA address to point to the accelerated command buffer */
4905         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4906                                 (c->cmdindex * sizeof(*cp));
4907         BUG_ON(c->busaddr & 0x0000007F);
4908
4909         memset(cp, 0, sizeof(*cp));
4910         cp->IU_type = IOACCEL2_IU_TYPE;
4911
4912         use_sg = scsi_dma_map(cmd);
4913         if (use_sg < 0) {
4914                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4915                 return use_sg;
4916         }
4917
4918         if (use_sg) {
4919                 curr_sg = cp->sg;
4920                 if (use_sg > h->ioaccel_maxsg) {
4921                         addr64 = le64_to_cpu(
4922                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4923                         curr_sg->address = cpu_to_le64(addr64);
4924                         curr_sg->length = 0;
4925                         curr_sg->reserved[0] = 0;
4926                         curr_sg->reserved[1] = 0;
4927                         curr_sg->reserved[2] = 0;
4928                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4929
4930                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4931                 }
4932                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4933                         addr64 = (u64) sg_dma_address(sg);
4934                         len  = sg_dma_len(sg);
4935                         total_len += len;
4936                         curr_sg->address = cpu_to_le64(addr64);
4937                         curr_sg->length = cpu_to_le32(len);
4938                         curr_sg->reserved[0] = 0;
4939                         curr_sg->reserved[1] = 0;
4940                         curr_sg->reserved[2] = 0;
4941                         curr_sg->chain_indicator = 0;
4942                         curr_sg++;
4943                 }
4944
4945                 /*
4946                  * Set the last s/g element bit
4947                  */
4948                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4949
4950                 switch (cmd->sc_data_direction) {
4951                 case DMA_TO_DEVICE:
4952                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4953                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4954                         break;
4955                 case DMA_FROM_DEVICE:
4956                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4957                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4958                         break;
4959                 case DMA_NONE:
4960                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4961                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4962                         break;
4963                 default:
4964                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4965                                 cmd->sc_data_direction);
4966                         BUG();
4967                         break;
4968                 }
4969         } else {
4970                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4972         }
4973
4974         /* Set encryption parameters, if necessary */
4975         set_encrypt_ioaccel2(h, c, cp);
4976
4977         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4978         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4979         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4980
4981         cp->data_len = cpu_to_le32(total_len);
4982         cp->err_ptr = cpu_to_le64(c->busaddr +
4983                         offsetof(struct io_accel2_cmd, error_data));
4984         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4985
4986         /* fill in sg elements */
4987         if (use_sg > h->ioaccel_maxsg) {
4988                 cp->sg_count = 1;
4989                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4990                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4991                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4992                         scsi_dma_unmap(cmd);
4993                         return -1;
4994                 }
4995         } else
4996                 cp->sg_count = (u8) use_sg;
4997
4998         if (phys_disk->in_reset) {
4999                 cmd->result = DID_RESET << 16;
5000                 return -1;
5001         }
5002
5003         enqueue_cmd_and_start_io(h, c);
5004         return 0;
5005 }
5006
5007 /*
5008  * Queue a command to the correct I/O accelerator path.
5009  */
5010 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5011         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5012         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5013 {
5014         if (!c->scsi_cmd->device)
5015                 return -1;
5016
5017         if (!c->scsi_cmd->device->hostdata)
5018                 return -1;
5019
5020         if (phys_disk->in_reset)
5021                 return -1;
5022
5023         /* Try to honor the device's queue depth */
5024         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5025                                         phys_disk->queue_depth) {
5026                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5027                 return IO_ACCEL_INELIGIBLE;
5028         }
5029         if (h->transMethod & CFGTBL_Trans_io_accel1)
5030                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5031                                                 cdb, cdb_len, scsi3addr,
5032                                                 phys_disk);
5033         else
5034                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5035                                                 cdb, cdb_len, scsi3addr,
5036                                                 phys_disk);
5037 }
5038
5039 static void raid_map_helper(struct raid_map_data *map,
5040                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5041 {
5042         if (offload_to_mirror == 0)  {
5043                 /* use physical disk in the first mirrored group. */
5044                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5045                 return;
5046         }
5047         do {
5048                 /* determine mirror group that *map_index indicates */
5049                 *current_group = *map_index /
5050                         le16_to_cpu(map->data_disks_per_row);
5051                 if (offload_to_mirror == *current_group)
5052                         continue;
5053                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5054                         /* select map index from next group */
5055                         *map_index += le16_to_cpu(map->data_disks_per_row);
5056                         (*current_group)++;
5057                 } else {
5058                         /* select map index from first group */
5059                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5060                         *current_group = 0;
5061                 }
5062         } while (offload_to_mirror != *current_group);
5063 }
5064
5065 /*
5066  * Attempt to perform offload RAID mapping for a logical volume I/O.
5067  */
5068 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5069         struct CommandList *c)
5070 {
5071         struct scsi_cmnd *cmd = c->scsi_cmd;
5072         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5073         struct raid_map_data *map = &dev->raid_map;
5074         struct raid_map_disk_data *dd = &map->data[0];
5075         int is_write = 0;
5076         u32 map_index;
5077         u64 first_block, last_block;
5078         u32 block_cnt;
5079         u32 blocks_per_row;
5080         u64 first_row, last_row;
5081         u32 first_row_offset, last_row_offset;
5082         u32 first_column, last_column;
5083         u64 r0_first_row, r0_last_row;
5084         u32 r5or6_blocks_per_row;
5085         u64 r5or6_first_row, r5or6_last_row;
5086         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5087         u32 r5or6_first_column, r5or6_last_column;
5088         u32 total_disks_per_row;
5089         u32 stripesize;
5090         u32 first_group, last_group, current_group;
5091         u32 map_row;
5092         u32 disk_handle;
5093         u64 disk_block;
5094         u32 disk_block_cnt;
5095         u8 cdb[16];
5096         u8 cdb_len;
5097         u16 strip_size;
5098 #if BITS_PER_LONG == 32
5099         u64 tmpdiv;
5100 #endif
5101         int offload_to_mirror;
5102
5103         if (!dev)
5104                 return -1;
5105
5106         if (dev->in_reset)
5107                 return -1;
5108
5109         /* check for valid opcode, get LBA and block count */
5110         switch (cmd->cmnd[0]) {
5111         case WRITE_6:
5112                 is_write = 1;
5113                 /* fall through */
5114         case READ_6:
5115                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5116                                 (cmd->cmnd[2] << 8) |
5117                                 cmd->cmnd[3]);
5118                 block_cnt = cmd->cmnd[4];
5119                 if (block_cnt == 0)
5120                         block_cnt = 256;
5121                 break;
5122         case WRITE_10:
5123                 is_write = 1;
5124                 /* fall through */
5125         case READ_10:
5126                 first_block =
5127                         (((u64) cmd->cmnd[2]) << 24) |
5128                         (((u64) cmd->cmnd[3]) << 16) |
5129                         (((u64) cmd->cmnd[4]) << 8) |
5130                         cmd->cmnd[5];
5131                 block_cnt =
5132                         (((u32) cmd->cmnd[7]) << 8) |
5133                         cmd->cmnd[8];
5134                 break;
5135         case WRITE_12:
5136                 is_write = 1;
5137                 /* fall through */
5138         case READ_12:
5139                 first_block =
5140                         (((u64) cmd->cmnd[2]) << 24) |
5141                         (((u64) cmd->cmnd[3]) << 16) |
5142                         (((u64) cmd->cmnd[4]) << 8) |
5143                         cmd->cmnd[5];
5144                 block_cnt =
5145                         (((u32) cmd->cmnd[6]) << 24) |
5146                         (((u32) cmd->cmnd[7]) << 16) |
5147                         (((u32) cmd->cmnd[8]) << 8) |
5148                 cmd->cmnd[9];
5149                 break;
5150         case WRITE_16:
5151                 is_write = 1;
5152                 /* fall through */
5153         case READ_16:
5154                 first_block =
5155                         (((u64) cmd->cmnd[2]) << 56) |
5156                         (((u64) cmd->cmnd[3]) << 48) |
5157                         (((u64) cmd->cmnd[4]) << 40) |
5158                         (((u64) cmd->cmnd[5]) << 32) |
5159                         (((u64) cmd->cmnd[6]) << 24) |
5160                         (((u64) cmd->cmnd[7]) << 16) |
5161                         (((u64) cmd->cmnd[8]) << 8) |
5162                         cmd->cmnd[9];
5163                 block_cnt =
5164                         (((u32) cmd->cmnd[10]) << 24) |
5165                         (((u32) cmd->cmnd[11]) << 16) |
5166                         (((u32) cmd->cmnd[12]) << 8) |
5167                         cmd->cmnd[13];
5168                 break;
5169         default:
5170                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5171         }
5172         last_block = first_block + block_cnt - 1;
5173
5174         /* check for write to non-RAID-0 */
5175         if (is_write && dev->raid_level != 0)
5176                 return IO_ACCEL_INELIGIBLE;
5177
5178         /* check for invalid block or wraparound */
5179         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5180                 last_block < first_block)
5181                 return IO_ACCEL_INELIGIBLE;
5182
5183         /* calculate stripe information for the request */
5184         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5185                                 le16_to_cpu(map->strip_size);
5186         strip_size = le16_to_cpu(map->strip_size);
5187 #if BITS_PER_LONG == 32
5188         tmpdiv = first_block;
5189         (void) do_div(tmpdiv, blocks_per_row);
5190         first_row = tmpdiv;
5191         tmpdiv = last_block;
5192         (void) do_div(tmpdiv, blocks_per_row);
5193         last_row = tmpdiv;
5194         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5195         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5196         tmpdiv = first_row_offset;
5197         (void) do_div(tmpdiv, strip_size);
5198         first_column = tmpdiv;
5199         tmpdiv = last_row_offset;
5200         (void) do_div(tmpdiv, strip_size);
5201         last_column = tmpdiv;
5202 #else
5203         first_row = first_block / blocks_per_row;
5204         last_row = last_block / blocks_per_row;
5205         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5206         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5207         first_column = first_row_offset / strip_size;
5208         last_column = last_row_offset / strip_size;
5209 #endif
5210
5211         /* if this isn't a single row/column then give to the controller */
5212         if ((first_row != last_row) || (first_column != last_column))
5213                 return IO_ACCEL_INELIGIBLE;
5214
5215         /* proceeding with driver mapping */
5216         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5217                                 le16_to_cpu(map->metadata_disks_per_row);
5218         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5219                                 le16_to_cpu(map->row_cnt);
5220         map_index = (map_row * total_disks_per_row) + first_column;
5221
5222         switch (dev->raid_level) {
5223         case HPSA_RAID_0:
5224                 break; /* nothing special to do */
5225         case HPSA_RAID_1:
5226                 /* Handles load balance across RAID 1 members.
5227                  * (2-drive R1 and R10 with even # of drives.)
5228                  * Appropriate for SSDs, not optimal for HDDs
5229                  */
5230                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5231                 if (dev->offload_to_mirror)
5232                         map_index += le16_to_cpu(map->data_disks_per_row);
5233                 dev->offload_to_mirror = !dev->offload_to_mirror;
5234                 break;
5235         case HPSA_RAID_ADM:
5236                 /* Handles N-way mirrors  (R1-ADM)
5237                  * and R10 with # of drives divisible by 3.)
5238                  */
5239                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5240
5241                 offload_to_mirror = dev->offload_to_mirror;
5242                 raid_map_helper(map, offload_to_mirror,
5243                                 &map_index, &current_group);
5244                 /* set mirror group to use next time */
5245                 offload_to_mirror =
5246                         (offload_to_mirror >=
5247                         le16_to_cpu(map->layout_map_count) - 1)
5248                         ? 0 : offload_to_mirror + 1;
5249                 dev->offload_to_mirror = offload_to_mirror;
5250                 /* Avoid direct use of dev->offload_to_mirror within this
5251                  * function since multiple threads might simultaneously
5252                  * increment it beyond the range of dev->layout_map_count -1.
5253                  */
5254                 break;
5255         case HPSA_RAID_5:
5256         case HPSA_RAID_6:
5257                 if (le16_to_cpu(map->layout_map_count) <= 1)
5258                         break;
5259
5260                 /* Verify first and last block are in same RAID group */
5261                 r5or6_blocks_per_row =
5262                         le16_to_cpu(map->strip_size) *
5263                         le16_to_cpu(map->data_disks_per_row);
5264                 BUG_ON(r5or6_blocks_per_row == 0);
5265                 stripesize = r5or6_blocks_per_row *
5266                         le16_to_cpu(map->layout_map_count);
5267 #if BITS_PER_LONG == 32
5268                 tmpdiv = first_block;
5269                 first_group = do_div(tmpdiv, stripesize);
5270                 tmpdiv = first_group;
5271                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5272                 first_group = tmpdiv;
5273                 tmpdiv = last_block;
5274                 last_group = do_div(tmpdiv, stripesize);
5275                 tmpdiv = last_group;
5276                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5277                 last_group = tmpdiv;
5278 #else
5279                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5280                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5281 #endif
5282                 if (first_group != last_group)
5283                         return IO_ACCEL_INELIGIBLE;
5284
5285                 /* Verify request is in a single row of RAID 5/6 */
5286 #if BITS_PER_LONG == 32
5287                 tmpdiv = first_block;
5288                 (void) do_div(tmpdiv, stripesize);
5289                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5290                 tmpdiv = last_block;
5291                 (void) do_div(tmpdiv, stripesize);
5292                 r5or6_last_row = r0_last_row = tmpdiv;
5293 #else
5294                 first_row = r5or6_first_row = r0_first_row =
5295                                                 first_block / stripesize;
5296                 r5or6_last_row = r0_last_row = last_block / stripesize;
5297 #endif
5298                 if (r5or6_first_row != r5or6_last_row)
5299                         return IO_ACCEL_INELIGIBLE;
5300
5301
5302                 /* Verify request is in a single column */
5303 #if BITS_PER_LONG == 32
5304                 tmpdiv = first_block;
5305                 first_row_offset = do_div(tmpdiv, stripesize);
5306                 tmpdiv = first_row_offset;
5307                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5308                 r5or6_first_row_offset = first_row_offset;
5309                 tmpdiv = last_block;
5310                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5311                 tmpdiv = r5or6_last_row_offset;
5312                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5313                 tmpdiv = r5or6_first_row_offset;
5314                 (void) do_div(tmpdiv, map->strip_size);
5315                 first_column = r5or6_first_column = tmpdiv;
5316                 tmpdiv = r5or6_last_row_offset;
5317                 (void) do_div(tmpdiv, map->strip_size);
5318                 r5or6_last_column = tmpdiv;
5319 #else
5320                 first_row_offset = r5or6_first_row_offset =
5321                         (u32)((first_block % stripesize) %
5322                                                 r5or6_blocks_per_row);
5323
5324                 r5or6_last_row_offset =
5325                         (u32)((last_block % stripesize) %
5326                                                 r5or6_blocks_per_row);
5327
5328                 first_column = r5or6_first_column =
5329                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5330                 r5or6_last_column =
5331                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5332 #endif
5333                 if (r5or6_first_column != r5or6_last_column)
5334                         return IO_ACCEL_INELIGIBLE;
5335
5336                 /* Request is eligible */
5337                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5338                         le16_to_cpu(map->row_cnt);
5339
5340                 map_index = (first_group *
5341                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5342                         (map_row * total_disks_per_row) + first_column;
5343                 break;
5344         default:
5345                 return IO_ACCEL_INELIGIBLE;
5346         }
5347
5348         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5349                 return IO_ACCEL_INELIGIBLE;
5350
5351         c->phys_disk = dev->phys_disk[map_index];
5352         if (!c->phys_disk)
5353                 return IO_ACCEL_INELIGIBLE;
5354
5355         disk_handle = dd[map_index].ioaccel_handle;
5356         disk_block = le64_to_cpu(map->disk_starting_blk) +
5357                         first_row * le16_to_cpu(map->strip_size) +
5358                         (first_row_offset - first_column *
5359                         le16_to_cpu(map->strip_size));
5360         disk_block_cnt = block_cnt;
5361
5362         /* handle differing logical/physical block sizes */
5363         if (map->phys_blk_shift) {
5364                 disk_block <<= map->phys_blk_shift;
5365                 disk_block_cnt <<= map->phys_blk_shift;
5366         }
5367         BUG_ON(disk_block_cnt > 0xffff);
5368
5369         /* build the new CDB for the physical disk I/O */
5370         if (disk_block > 0xffffffff) {
5371                 cdb[0] = is_write ? WRITE_16 : READ_16;
5372                 cdb[1] = 0;
5373                 cdb[2] = (u8) (disk_block >> 56);
5374                 cdb[3] = (u8) (disk_block >> 48);
5375                 cdb[4] = (u8) (disk_block >> 40);
5376                 cdb[5] = (u8) (disk_block >> 32);
5377                 cdb[6] = (u8) (disk_block >> 24);
5378                 cdb[7] = (u8) (disk_block >> 16);
5379                 cdb[8] = (u8) (disk_block >> 8);
5380                 cdb[9] = (u8) (disk_block);
5381                 cdb[10] = (u8) (disk_block_cnt >> 24);
5382                 cdb[11] = (u8) (disk_block_cnt >> 16);
5383                 cdb[12] = (u8) (disk_block_cnt >> 8);
5384                 cdb[13] = (u8) (disk_block_cnt);
5385                 cdb[14] = 0;
5386                 cdb[15] = 0;
5387                 cdb_len = 16;
5388         } else {
5389                 cdb[0] = is_write ? WRITE_10 : READ_10;
5390                 cdb[1] = 0;
5391                 cdb[2] = (u8) (disk_block >> 24);
5392                 cdb[3] = (u8) (disk_block >> 16);
5393                 cdb[4] = (u8) (disk_block >> 8);
5394                 cdb[5] = (u8) (disk_block);
5395                 cdb[6] = 0;
5396                 cdb[7] = (u8) (disk_block_cnt >> 8);
5397                 cdb[8] = (u8) (disk_block_cnt);
5398                 cdb[9] = 0;
5399                 cdb_len = 10;
5400         }
5401         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5402                                                 dev->scsi3addr,
5403                                                 dev->phys_disk[map_index]);
5404 }
5405
5406 /*
5407  * Submit commands down the "normal" RAID stack path
5408  * All callers to hpsa_ciss_submit must check lockup_detected
5409  * beforehand, before (opt.) and after calling cmd_alloc
5410  */
5411 static int hpsa_ciss_submit(struct ctlr_info *h,
5412         struct CommandList *c, struct scsi_cmnd *cmd,
5413         struct hpsa_scsi_dev_t *dev)
5414 {
5415         cmd->host_scribble = (unsigned char *) c;
5416         c->cmd_type = CMD_SCSI;
5417         c->scsi_cmd = cmd;
5418         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5419         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5420         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5421
5422         /* Fill in the request block... */
5423
5424         c->Request.Timeout = 0;
5425         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5426         c->Request.CDBLen = cmd->cmd_len;
5427         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5428         switch (cmd->sc_data_direction) {
5429         case DMA_TO_DEVICE:
5430                 c->Request.type_attr_dir =
5431                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5432                 break;
5433         case DMA_FROM_DEVICE:
5434                 c->Request.type_attr_dir =
5435                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5436                 break;
5437         case DMA_NONE:
5438                 c->Request.type_attr_dir =
5439                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5440                 break;
5441         case DMA_BIDIRECTIONAL:
5442                 /* This can happen if a buggy application does a scsi passthru
5443                  * and sets both inlen and outlen to non-zero. ( see
5444                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5445                  */
5446
5447                 c->Request.type_attr_dir =
5448                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5449                 /* This is technically wrong, and hpsa controllers should
5450                  * reject it with CMD_INVALID, which is the most correct
5451                  * response, but non-fibre backends appear to let it
5452                  * slide by, and give the same results as if this field
5453                  * were set correctly.  Either way is acceptable for
5454                  * our purposes here.
5455                  */
5456
5457                 break;
5458
5459         default:
5460                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5461                         cmd->sc_data_direction);
5462                 BUG();
5463                 break;
5464         }
5465
5466         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5467                 hpsa_cmd_resolve_and_free(h, c);
5468                 return SCSI_MLQUEUE_HOST_BUSY;
5469         }
5470
5471         if (dev->in_reset) {
5472                 hpsa_cmd_resolve_and_free(h, c);
5473                 return SCSI_MLQUEUE_HOST_BUSY;
5474         }
5475
5476         enqueue_cmd_and_start_io(h, c);
5477         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5478         return 0;
5479 }
5480
5481 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5482                                 struct CommandList *c)
5483 {
5484         dma_addr_t cmd_dma_handle, err_dma_handle;
5485
5486         /* Zero out all of commandlist except the last field, refcount */
5487         memset(c, 0, offsetof(struct CommandList, refcount));
5488         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5489         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5490         c->err_info = h->errinfo_pool + index;
5491         memset(c->err_info, 0, sizeof(*c->err_info));
5492         err_dma_handle = h->errinfo_pool_dhandle
5493             + index * sizeof(*c->err_info);
5494         c->cmdindex = index;
5495         c->busaddr = (u32) cmd_dma_handle;
5496         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5497         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5498         c->h = h;
5499         c->scsi_cmd = SCSI_CMD_IDLE;
5500 }
5501
5502 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5503 {
5504         int i;
5505
5506         for (i = 0; i < h->nr_cmds; i++) {
5507                 struct CommandList *c = h->cmd_pool + i;
5508
5509                 hpsa_cmd_init(h, i, c);
5510                 atomic_set(&c->refcount, 0);
5511         }
5512 }
5513
5514 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5515                                 struct CommandList *c)
5516 {
5517         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5518
5519         BUG_ON(c->cmdindex != index);
5520
5521         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5522         memset(c->err_info, 0, sizeof(*c->err_info));
5523         c->busaddr = (u32) cmd_dma_handle;
5524 }
5525
5526 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5527                 struct CommandList *c, struct scsi_cmnd *cmd)
5528 {
5529         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5530         int rc = IO_ACCEL_INELIGIBLE;
5531
5532         if (!dev)
5533                 return SCSI_MLQUEUE_HOST_BUSY;
5534
5535         if (dev->in_reset)
5536                 return SCSI_MLQUEUE_HOST_BUSY;
5537
5538         if (hpsa_simple_mode)
5539                 return IO_ACCEL_INELIGIBLE;
5540
5541         cmd->host_scribble = (unsigned char *) c;
5542
5543         if (dev->offload_enabled) {
5544                 hpsa_cmd_init(h, c->cmdindex, c);
5545                 c->cmd_type = CMD_SCSI;
5546                 c->scsi_cmd = cmd;
5547                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5548                 if (rc < 0)     /* scsi_dma_map failed. */
5549                         rc = SCSI_MLQUEUE_HOST_BUSY;
5550         } else if (dev->hba_ioaccel_enabled) {
5551                 hpsa_cmd_init(h, c->cmdindex, c);
5552                 c->cmd_type = CMD_SCSI;
5553                 c->scsi_cmd = cmd;
5554                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5555                 if (rc < 0)     /* scsi_dma_map failed. */
5556                         rc = SCSI_MLQUEUE_HOST_BUSY;
5557         }
5558         return rc;
5559 }
5560
5561 static void hpsa_command_resubmit_worker(struct work_struct *work)
5562 {
5563         struct scsi_cmnd *cmd;
5564         struct hpsa_scsi_dev_t *dev;
5565         struct CommandList *c = container_of(work, struct CommandList, work);
5566
5567         cmd = c->scsi_cmd;
5568         dev = cmd->device->hostdata;
5569         if (!dev) {
5570                 cmd->result = DID_NO_CONNECT << 16;
5571                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5572         }
5573
5574         if (dev->in_reset) {
5575                 cmd->result = DID_RESET << 16;
5576                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5577         }
5578
5579         if (c->cmd_type == CMD_IOACCEL2) {
5580                 struct ctlr_info *h = c->h;
5581                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5582                 int rc;
5583
5584                 if (c2->error_data.serv_response ==
5585                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5586                         rc = hpsa_ioaccel_submit(h, c, cmd);
5587                         if (rc == 0)
5588                                 return;
5589                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5590                                 /*
5591                                  * If we get here, it means dma mapping failed.
5592                                  * Try again via scsi mid layer, which will
5593                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5594                                  */
5595                                 cmd->result = DID_IMM_RETRY << 16;
5596                                 return hpsa_cmd_free_and_done(h, c, cmd);
5597                         }
5598                         /* else, fall thru and resubmit down CISS path */
5599                 }
5600         }
5601         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5602         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5603                 /*
5604                  * If we get here, it means dma mapping failed. Try
5605                  * again via scsi mid layer, which will then get
5606                  * SCSI_MLQUEUE_HOST_BUSY.
5607                  *
5608                  * hpsa_ciss_submit will have already freed c
5609                  * if it encountered a dma mapping failure.
5610                  */
5611                 cmd->result = DID_IMM_RETRY << 16;
5612                 cmd->scsi_done(cmd);
5613         }
5614 }
5615
5616 /* Running in struct Scsi_Host->host_lock less mode */
5617 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5618 {
5619         struct ctlr_info *h;
5620         struct hpsa_scsi_dev_t *dev;
5621         struct CommandList *c;
5622         int rc = 0;
5623
5624         /* Get the ptr to our adapter structure out of cmd->host. */
5625         h = sdev_to_hba(cmd->device);
5626
5627         BUG_ON(cmd->request->tag < 0);
5628
5629         dev = cmd->device->hostdata;
5630         if (!dev) {
5631                 cmd->result = DID_NO_CONNECT << 16;
5632                 cmd->scsi_done(cmd);
5633                 return 0;
5634         }
5635
5636         if (dev->removed) {
5637                 cmd->result = DID_NO_CONNECT << 16;
5638                 cmd->scsi_done(cmd);
5639                 return 0;
5640         }
5641
5642         if (unlikely(lockup_detected(h))) {
5643                 cmd->result = DID_NO_CONNECT << 16;
5644                 cmd->scsi_done(cmd);
5645                 return 0;
5646         }
5647
5648         if (dev->in_reset)
5649                 return SCSI_MLQUEUE_DEVICE_BUSY;
5650
5651         c = cmd_tagged_alloc(h, cmd);
5652         if (c == NULL)
5653                 return SCSI_MLQUEUE_DEVICE_BUSY;
5654
5655         /*
5656          * Call alternate submit routine for I/O accelerated commands.
5657          * Retries always go down the normal I/O path.
5658          */
5659         if (likely(cmd->retries == 0 &&
5660                         !blk_rq_is_passthrough(cmd->request) &&
5661                         h->acciopath_status)) {
5662                 rc = hpsa_ioaccel_submit(h, c, cmd);
5663                 if (rc == 0)
5664                         return 0;
5665                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5666                         hpsa_cmd_resolve_and_free(h, c);
5667                         return SCSI_MLQUEUE_HOST_BUSY;
5668                 }
5669         }
5670         return hpsa_ciss_submit(h, c, cmd, dev);
5671 }
5672
5673 static void hpsa_scan_complete(struct ctlr_info *h)
5674 {
5675         unsigned long flags;
5676
5677         spin_lock_irqsave(&h->scan_lock, flags);
5678         h->scan_finished = 1;
5679         wake_up(&h->scan_wait_queue);
5680         spin_unlock_irqrestore(&h->scan_lock, flags);
5681 }
5682
5683 static void hpsa_scan_start(struct Scsi_Host *sh)
5684 {
5685         struct ctlr_info *h = shost_to_hba(sh);
5686         unsigned long flags;
5687
5688         /*
5689          * Don't let rescans be initiated on a controller known to be locked
5690          * up.  If the controller locks up *during* a rescan, that thread is
5691          * probably hosed, but at least we can prevent new rescan threads from
5692          * piling up on a locked up controller.
5693          */
5694         if (unlikely(lockup_detected(h)))
5695                 return hpsa_scan_complete(h);
5696
5697         /*
5698          * If a scan is already waiting to run, no need to add another
5699          */
5700         spin_lock_irqsave(&h->scan_lock, flags);
5701         if (h->scan_waiting) {
5702                 spin_unlock_irqrestore(&h->scan_lock, flags);
5703                 return;
5704         }
5705
5706         spin_unlock_irqrestore(&h->scan_lock, flags);
5707
5708         /* wait until any scan already in progress is finished. */
5709         while (1) {
5710                 spin_lock_irqsave(&h->scan_lock, flags);
5711                 if (h->scan_finished)
5712                         break;
5713                 h->scan_waiting = 1;
5714                 spin_unlock_irqrestore(&h->scan_lock, flags);
5715                 wait_event(h->scan_wait_queue, h->scan_finished);
5716                 /* Note: We don't need to worry about a race between this
5717                  * thread and driver unload because the midlayer will
5718                  * have incremented the reference count, so unload won't
5719                  * happen if we're in here.
5720                  */
5721         }
5722         h->scan_finished = 0; /* mark scan as in progress */
5723         h->scan_waiting = 0;
5724         spin_unlock_irqrestore(&h->scan_lock, flags);
5725
5726         if (unlikely(lockup_detected(h)))
5727                 return hpsa_scan_complete(h);
5728
5729         /*
5730          * Do the scan after a reset completion
5731          */
5732         spin_lock_irqsave(&h->reset_lock, flags);
5733         if (h->reset_in_progress) {
5734                 h->drv_req_rescan = 1;
5735                 spin_unlock_irqrestore(&h->reset_lock, flags);
5736                 hpsa_scan_complete(h);
5737                 return;
5738         }
5739         spin_unlock_irqrestore(&h->reset_lock, flags);
5740
5741         hpsa_update_scsi_devices(h);
5742
5743         hpsa_scan_complete(h);
5744 }
5745
5746 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5747 {
5748         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5749
5750         if (!logical_drive)
5751                 return -ENODEV;
5752
5753         if (qdepth < 1)
5754                 qdepth = 1;
5755         else if (qdepth > logical_drive->queue_depth)
5756                 qdepth = logical_drive->queue_depth;
5757
5758         return scsi_change_queue_depth(sdev, qdepth);
5759 }
5760
5761 static int hpsa_scan_finished(struct Scsi_Host *sh,
5762         unsigned long elapsed_time)
5763 {
5764         struct ctlr_info *h = shost_to_hba(sh);
5765         unsigned long flags;
5766         int finished;
5767
5768         spin_lock_irqsave(&h->scan_lock, flags);
5769         finished = h->scan_finished;
5770         spin_unlock_irqrestore(&h->scan_lock, flags);
5771         return finished;
5772 }
5773
5774 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5775 {
5776         struct Scsi_Host *sh;
5777
5778         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5779         if (sh == NULL) {
5780                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5781                 return -ENOMEM;
5782         }
5783
5784         sh->io_port = 0;
5785         sh->n_io_port = 0;
5786         sh->this_id = -1;
5787         sh->max_channel = 3;
5788         sh->max_cmd_len = MAX_COMMAND_SIZE;
5789         sh->max_lun = HPSA_MAX_LUN;
5790         sh->max_id = HPSA_MAX_LUN;
5791         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5792         sh->cmd_per_lun = sh->can_queue;
5793         sh->sg_tablesize = h->maxsgentries;
5794         sh->transportt = hpsa_sas_transport_template;
5795         sh->hostdata[0] = (unsigned long) h;
5796         sh->irq = pci_irq_vector(h->pdev, 0);
5797         sh->unique_id = sh->irq;
5798
5799         h->scsi_host = sh;
5800         return 0;
5801 }
5802
5803 static int hpsa_scsi_add_host(struct ctlr_info *h)
5804 {
5805         int rv;
5806
5807         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5808         if (rv) {
5809                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5810                 return rv;
5811         }
5812         scsi_scan_host(h->scsi_host);
5813         return 0;
5814 }
5815
5816 /*
5817  * The block layer has already gone to the trouble of picking out a unique,
5818  * small-integer tag for this request.  We use an offset from that value as
5819  * an index to select our command block.  (The offset allows us to reserve the
5820  * low-numbered entries for our own uses.)
5821  */
5822 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5823 {
5824         int idx = scmd->request->tag;
5825
5826         if (idx < 0)
5827                 return idx;
5828
5829         /* Offset to leave space for internal cmds. */
5830         return idx += HPSA_NRESERVED_CMDS;
5831 }
5832
5833 /*
5834  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5835  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5836  */
5837 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5838                                 struct CommandList *c, unsigned char lunaddr[],
5839                                 int reply_queue)
5840 {
5841         int rc;
5842
5843         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5844         (void) fill_cmd(c, TEST_UNIT_READY, h,
5845                         NULL, 0, 0, lunaddr, TYPE_CMD);
5846         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5847         if (rc)
5848                 return rc;
5849         /* no unmap needed here because no data xfer. */
5850
5851         /* Check if the unit is already ready. */
5852         if (c->err_info->CommandStatus == CMD_SUCCESS)
5853                 return 0;
5854
5855         /*
5856          * The first command sent after reset will receive "unit attention" to
5857          * indicate that the LUN has been reset...this is actually what we're
5858          * looking for (but, success is good too).
5859          */
5860         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5861                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5862                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5863                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5864                 return 0;
5865
5866         return 1;
5867 }
5868
5869 /*
5870  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5871  * returns zero when the unit is ready, and non-zero when giving up.
5872  */
5873 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5874                                 struct CommandList *c,
5875                                 unsigned char lunaddr[], int reply_queue)
5876 {
5877         int rc;
5878         int count = 0;
5879         int waittime = 1; /* seconds */
5880
5881         /* Send test unit ready until device ready, or give up. */
5882         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5883
5884                 /*
5885                  * Wait for a bit.  do this first, because if we send
5886                  * the TUR right away, the reset will just abort it.
5887                  */
5888                 msleep(1000 * waittime);
5889
5890                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5891                 if (!rc)
5892                         break;
5893
5894                 /* Increase wait time with each try, up to a point. */
5895                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5896                         waittime *= 2;
5897
5898                 dev_warn(&h->pdev->dev,
5899                          "waiting %d secs for device to become ready.\n",
5900                          waittime);
5901         }
5902
5903         return rc;
5904 }
5905
5906 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5907                                            unsigned char lunaddr[],
5908                                            int reply_queue)
5909 {
5910         int first_queue;
5911         int last_queue;
5912         int rq;
5913         int rc = 0;
5914         struct CommandList *c;
5915
5916         c = cmd_alloc(h);
5917
5918         /*
5919          * If no specific reply queue was requested, then send the TUR
5920          * repeatedly, requesting a reply on each reply queue; otherwise execute
5921          * the loop exactly once using only the specified queue.
5922          */
5923         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5924                 first_queue = 0;
5925                 last_queue = h->nreply_queues - 1;
5926         } else {
5927                 first_queue = reply_queue;
5928                 last_queue = reply_queue;
5929         }
5930
5931         for (rq = first_queue; rq <= last_queue; rq++) {
5932                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5933                 if (rc)
5934                         break;
5935         }
5936
5937         if (rc)
5938                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5939         else
5940                 dev_warn(&h->pdev->dev, "device is ready.\n");
5941
5942         cmd_free(h, c);
5943         return rc;
5944 }
5945
5946 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5947  * complaining.  Doing a host- or bus-reset can't do anything good here.
5948  */
5949 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5950 {
5951         int rc = SUCCESS;
5952         int i;
5953         struct ctlr_info *h;
5954         struct hpsa_scsi_dev_t *dev = NULL;
5955         u8 reset_type;
5956         char msg[48];
5957         unsigned long flags;
5958
5959         /* find the controller to which the command to be aborted was sent */
5960         h = sdev_to_hba(scsicmd->device);
5961         if (h == NULL) /* paranoia */
5962                 return FAILED;
5963
5964         spin_lock_irqsave(&h->reset_lock, flags);
5965         h->reset_in_progress = 1;
5966         spin_unlock_irqrestore(&h->reset_lock, flags);
5967
5968         if (lockup_detected(h)) {
5969                 rc = FAILED;
5970                 goto return_reset_status;
5971         }
5972
5973         dev = scsicmd->device->hostdata;
5974         if (!dev) {
5975                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5976                 rc = FAILED;
5977                 goto return_reset_status;
5978         }
5979
5980         if (dev->devtype == TYPE_ENCLOSURE) {
5981                 rc = SUCCESS;
5982                 goto return_reset_status;
5983         }
5984
5985         /* if controller locked up, we can guarantee command won't complete */
5986         if (lockup_detected(h)) {
5987                 snprintf(msg, sizeof(msg),
5988                          "cmd %d RESET FAILED, lockup detected",
5989                          hpsa_get_cmd_index(scsicmd));
5990                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5991                 rc = FAILED;
5992                 goto return_reset_status;
5993         }
5994
5995         /* this reset request might be the result of a lockup; check */
5996         if (detect_controller_lockup(h)) {
5997                 snprintf(msg, sizeof(msg),
5998                          "cmd %d RESET FAILED, new lockup detected",
5999                          hpsa_get_cmd_index(scsicmd));
6000                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6001                 rc = FAILED;
6002                 goto return_reset_status;
6003         }
6004
6005         /* Do not attempt on controller */
6006         if (is_hba_lunid(dev->scsi3addr)) {
6007                 rc = SUCCESS;
6008                 goto return_reset_status;
6009         }
6010
6011         if (is_logical_dev_addr_mode(dev->scsi3addr))
6012                 reset_type = HPSA_DEVICE_RESET_MSG;
6013         else
6014                 reset_type = HPSA_PHYS_TARGET_RESET;
6015
6016         sprintf(msg, "resetting %s",
6017                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6018         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6019
6020         /*
6021          * wait to see if any commands will complete before sending reset
6022          */
6023         dev->in_reset = true; /* block any new cmds from OS for this device */
6024         for (i = 0; i < 10; i++) {
6025                 if (atomic_read(&dev->commands_outstanding) > 0)
6026                         msleep(1000);
6027                 else
6028                         break;
6029         }
6030
6031         /* send a reset to the SCSI LUN which the command was sent to */
6032         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6033         if (rc == 0)
6034                 rc = SUCCESS;
6035         else
6036                 rc = FAILED;
6037
6038         sprintf(msg, "reset %s %s",
6039                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6040                 rc == SUCCESS ? "completed successfully" : "failed");
6041         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6042
6043 return_reset_status:
6044         spin_lock_irqsave(&h->reset_lock, flags);
6045         h->reset_in_progress = 0;
6046         if (dev)
6047                 dev->in_reset = false;
6048         spin_unlock_irqrestore(&h->reset_lock, flags);
6049         return rc;
6050 }
6051
6052 /*
6053  * For operations with an associated SCSI command, a command block is allocated
6054  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6055  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6056  * the complement, although cmd_free() may be called instead.
6057  */
6058 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6059                                             struct scsi_cmnd *scmd)
6060 {
6061         int idx = hpsa_get_cmd_index(scmd);
6062         struct CommandList *c = h->cmd_pool + idx;
6063
6064         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6065                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6066                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6067                 /* The index value comes from the block layer, so if it's out of
6068                  * bounds, it's probably not our bug.
6069                  */
6070                 BUG();
6071         }
6072
6073         if (unlikely(!hpsa_is_cmd_idle(c))) {
6074                 /*
6075                  * We expect that the SCSI layer will hand us a unique tag
6076                  * value.  Thus, there should never be a collision here between
6077                  * two requests...because if the selected command isn't idle
6078                  * then someone is going to be very disappointed.
6079                  */
6080                 if (idx != h->last_collision_tag) { /* Print once per tag */
6081                         dev_warn(&h->pdev->dev,
6082                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6083                         if (c->scsi_cmd != NULL)
6084                                 scsi_print_command(c->scsi_cmd);
6085                         if (scmd)
6086                                 scsi_print_command(scmd);
6087                         h->last_collision_tag = idx;
6088                 }
6089                 return NULL;
6090         }
6091
6092         atomic_inc(&c->refcount);
6093
6094         hpsa_cmd_partial_init(h, idx, c);
6095         return c;
6096 }
6097
6098 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6099 {
6100         /*
6101          * Release our reference to the block.  We don't need to do anything
6102          * else to free it, because it is accessed by index.
6103          */
6104         (void)atomic_dec(&c->refcount);
6105 }
6106
6107 /*
6108  * For operations that cannot sleep, a command block is allocated at init,
6109  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6110  * which ones are free or in use.  Lock must be held when calling this.
6111  * cmd_free() is the complement.
6112  * This function never gives up and returns NULL.  If it hangs,
6113  * another thread must call cmd_free() to free some tags.
6114  */
6115
6116 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6117 {
6118         struct CommandList *c;
6119         int refcount, i;
6120         int offset = 0;
6121
6122         /*
6123          * There is some *extremely* small but non-zero chance that that
6124          * multiple threads could get in here, and one thread could
6125          * be scanning through the list of bits looking for a free
6126          * one, but the free ones are always behind him, and other
6127          * threads sneak in behind him and eat them before he can
6128          * get to them, so that while there is always a free one, a
6129          * very unlucky thread might be starved anyway, never able to
6130          * beat the other threads.  In reality, this happens so
6131          * infrequently as to be indistinguishable from never.
6132          *
6133          * Note that we start allocating commands before the SCSI host structure
6134          * is initialized.  Since the search starts at bit zero, this
6135          * all works, since we have at least one command structure available;
6136          * however, it means that the structures with the low indexes have to be
6137          * reserved for driver-initiated requests, while requests from the block
6138          * layer will use the higher indexes.
6139          */
6140
6141         for (;;) {
6142                 i = find_next_zero_bit(h->cmd_pool_bits,
6143                                         HPSA_NRESERVED_CMDS,
6144                                         offset);
6145                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6146                         offset = 0;
6147                         continue;
6148                 }
6149                 c = h->cmd_pool + i;
6150                 refcount = atomic_inc_return(&c->refcount);
6151                 if (unlikely(refcount > 1)) {
6152                         cmd_free(h, c); /* already in use */
6153                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6154                         continue;
6155                 }
6156                 set_bit(i & (BITS_PER_LONG - 1),
6157                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6158                 break; /* it's ours now. */
6159         }
6160         hpsa_cmd_partial_init(h, i, c);
6161         c->device = NULL;
6162         return c;
6163 }
6164
6165 /*
6166  * This is the complementary operation to cmd_alloc().  Note, however, in some
6167  * corner cases it may also be used to free blocks allocated by
6168  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6169  * the clear-bit is harmless.
6170  */
6171 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6172 {
6173         if (atomic_dec_and_test(&c->refcount)) {
6174                 int i;
6175
6176                 i = c - h->cmd_pool;
6177                 clear_bit(i & (BITS_PER_LONG - 1),
6178                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6179         }
6180 }
6181
6182 #ifdef CONFIG_COMPAT
6183
6184 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6185         void __user *arg)
6186 {
6187         IOCTL32_Command_struct __user *arg32 =
6188             (IOCTL32_Command_struct __user *) arg;
6189         IOCTL_Command_struct arg64;
6190         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6191         int err;
6192         u32 cp;
6193
6194         memset(&arg64, 0, sizeof(arg64));
6195         err = 0;
6196         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6197                            sizeof(arg64.LUN_info));
6198         err |= copy_from_user(&arg64.Request, &arg32->Request,
6199                            sizeof(arg64.Request));
6200         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6201                            sizeof(arg64.error_info));
6202         err |= get_user(arg64.buf_size, &arg32->buf_size);
6203         err |= get_user(cp, &arg32->buf);
6204         arg64.buf = compat_ptr(cp);
6205         err |= copy_to_user(p, &arg64, sizeof(arg64));
6206
6207         if (err)
6208                 return -EFAULT;
6209
6210         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6211         if (err)
6212                 return err;
6213         err |= copy_in_user(&arg32->error_info, &p->error_info,
6214                          sizeof(arg32->error_info));
6215         if (err)
6216                 return -EFAULT;
6217         return err;
6218 }
6219
6220 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6221         unsigned int cmd, void __user *arg)
6222 {
6223         BIG_IOCTL32_Command_struct __user *arg32 =
6224             (BIG_IOCTL32_Command_struct __user *) arg;
6225         BIG_IOCTL_Command_struct arg64;
6226         BIG_IOCTL_Command_struct __user *p =
6227             compat_alloc_user_space(sizeof(arg64));
6228         int err;
6229         u32 cp;
6230
6231         memset(&arg64, 0, sizeof(arg64));
6232         err = 0;
6233         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6234                            sizeof(arg64.LUN_info));
6235         err |= copy_from_user(&arg64.Request, &arg32->Request,
6236                            sizeof(arg64.Request));
6237         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6238                            sizeof(arg64.error_info));
6239         err |= get_user(arg64.buf_size, &arg32->buf_size);
6240         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6241         err |= get_user(cp, &arg32->buf);
6242         arg64.buf = compat_ptr(cp);
6243         err |= copy_to_user(p, &arg64, sizeof(arg64));
6244
6245         if (err)
6246                 return -EFAULT;
6247
6248         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6249         if (err)
6250                 return err;
6251         err |= copy_in_user(&arg32->error_info, &p->error_info,
6252                          sizeof(arg32->error_info));
6253         if (err)
6254                 return -EFAULT;
6255         return err;
6256 }
6257
6258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6259                              void __user *arg)
6260 {
6261         switch (cmd) {
6262         case CCISS_GETPCIINFO:
6263         case CCISS_GETINTINFO:
6264         case CCISS_SETINTINFO:
6265         case CCISS_GETNODENAME:
6266         case CCISS_SETNODENAME:
6267         case CCISS_GETHEARTBEAT:
6268         case CCISS_GETBUSTYPES:
6269         case CCISS_GETFIRMVER:
6270         case CCISS_GETDRIVVER:
6271         case CCISS_REVALIDVOLS:
6272         case CCISS_DEREGDISK:
6273         case CCISS_REGNEWDISK:
6274         case CCISS_REGNEWD:
6275         case CCISS_RESCANDISK:
6276         case CCISS_GETLUNINFO:
6277                 return hpsa_ioctl(dev, cmd, arg);
6278
6279         case CCISS_PASSTHRU32:
6280                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6281         case CCISS_BIG_PASSTHRU32:
6282                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6283
6284         default:
6285                 return -ENOIOCTLCMD;
6286         }
6287 }
6288 #endif
6289
6290 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6291 {
6292         struct hpsa_pci_info pciinfo;
6293
6294         if (!argp)
6295                 return -EINVAL;
6296         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6297         pciinfo.bus = h->pdev->bus->number;
6298         pciinfo.dev_fn = h->pdev->devfn;
6299         pciinfo.board_id = h->board_id;
6300         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6301                 return -EFAULT;
6302         return 0;
6303 }
6304
6305 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6306 {
6307         DriverVer_type DriverVer;
6308         unsigned char vmaj, vmin, vsubmin;
6309         int rc;
6310
6311         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6312                 &vmaj, &vmin, &vsubmin);
6313         if (rc != 3) {
6314                 dev_info(&h->pdev->dev, "driver version string '%s' "
6315                         "unrecognized.", HPSA_DRIVER_VERSION);
6316                 vmaj = 0;
6317                 vmin = 0;
6318                 vsubmin = 0;
6319         }
6320         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6321         if (!argp)
6322                 return -EINVAL;
6323         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6324                 return -EFAULT;
6325         return 0;
6326 }
6327
6328 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6329 {
6330         IOCTL_Command_struct iocommand;
6331         struct CommandList *c;
6332         char *buff = NULL;
6333         u64 temp64;
6334         int rc = 0;
6335
6336         if (!argp)
6337                 return -EINVAL;
6338         if (!capable(CAP_SYS_RAWIO))
6339                 return -EPERM;
6340         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6341                 return -EFAULT;
6342         if ((iocommand.buf_size < 1) &&
6343             (iocommand.Request.Type.Direction != XFER_NONE)) {
6344                 return -EINVAL;
6345         }
6346         if (iocommand.buf_size > 0) {
6347                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6348                 if (buff == NULL)
6349                         return -ENOMEM;
6350                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6351                         /* Copy the data into the buffer we created */
6352                         if (copy_from_user(buff, iocommand.buf,
6353                                 iocommand.buf_size)) {
6354                                 rc = -EFAULT;
6355                                 goto out_kfree;
6356                         }
6357                 } else {
6358                         memset(buff, 0, iocommand.buf_size);
6359                 }
6360         }
6361         c = cmd_alloc(h);
6362
6363         /* Fill in the command type */
6364         c->cmd_type = CMD_IOCTL_PEND;
6365         c->scsi_cmd = SCSI_CMD_BUSY;
6366         /* Fill in Command Header */
6367         c->Header.ReplyQueue = 0; /* unused in simple mode */
6368         if (iocommand.buf_size > 0) {   /* buffer to fill */
6369                 c->Header.SGList = 1;
6370                 c->Header.SGTotal = cpu_to_le16(1);
6371         } else  { /* no buffers to fill */
6372                 c->Header.SGList = 0;
6373                 c->Header.SGTotal = cpu_to_le16(0);
6374         }
6375         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6376
6377         /* Fill in Request block */
6378         memcpy(&c->Request, &iocommand.Request,
6379                 sizeof(c->Request));
6380
6381         /* Fill in the scatter gather information */
6382         if (iocommand.buf_size > 0) {
6383                 temp64 = dma_map_single(&h->pdev->dev, buff,
6384                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6385                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6386                         c->SG[0].Addr = cpu_to_le64(0);
6387                         c->SG[0].Len = cpu_to_le32(0);
6388                         rc = -ENOMEM;
6389                         goto out;
6390                 }
6391                 c->SG[0].Addr = cpu_to_le64(temp64);
6392                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6393                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6394         }
6395         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6396                                         NO_TIMEOUT);
6397         if (iocommand.buf_size > 0)
6398                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6399         check_ioctl_unit_attention(h, c);
6400         if (rc) {
6401                 rc = -EIO;
6402                 goto out;
6403         }
6404
6405         /* Copy the error information out */
6406         memcpy(&iocommand.error_info, c->err_info,
6407                 sizeof(iocommand.error_info));
6408         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6409                 rc = -EFAULT;
6410                 goto out;
6411         }
6412         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6413                 iocommand.buf_size > 0) {
6414                 /* Copy the data out of the buffer we created */
6415                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6416                         rc = -EFAULT;
6417                         goto out;
6418                 }
6419         }
6420 out:
6421         cmd_free(h, c);
6422 out_kfree:
6423         kfree(buff);
6424         return rc;
6425 }
6426
6427 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6428 {
6429         BIG_IOCTL_Command_struct *ioc;
6430         struct CommandList *c;
6431         unsigned char **buff = NULL;
6432         int *buff_size = NULL;
6433         u64 temp64;
6434         BYTE sg_used = 0;
6435         int status = 0;
6436         u32 left;
6437         u32 sz;
6438         BYTE __user *data_ptr;
6439
6440         if (!argp)
6441                 return -EINVAL;
6442         if (!capable(CAP_SYS_RAWIO))
6443                 return -EPERM;
6444         ioc = vmemdup_user(argp, sizeof(*ioc));
6445         if (IS_ERR(ioc)) {
6446                 status = PTR_ERR(ioc);
6447                 goto cleanup1;
6448         }
6449         if ((ioc->buf_size < 1) &&
6450             (ioc->Request.Type.Direction != XFER_NONE)) {
6451                 status = -EINVAL;
6452                 goto cleanup1;
6453         }
6454         /* Check kmalloc limits  using all SGs */
6455         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6456                 status = -EINVAL;
6457                 goto cleanup1;
6458         }
6459         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6460                 status = -EINVAL;
6461                 goto cleanup1;
6462         }
6463         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6464         if (!buff) {
6465                 status = -ENOMEM;
6466                 goto cleanup1;
6467         }
6468         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6469         if (!buff_size) {
6470                 status = -ENOMEM;
6471                 goto cleanup1;
6472         }
6473         left = ioc->buf_size;
6474         data_ptr = ioc->buf;
6475         while (left) {
6476                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6477                 buff_size[sg_used] = sz;
6478                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6479                 if (buff[sg_used] == NULL) {
6480                         status = -ENOMEM;
6481                         goto cleanup1;
6482                 }
6483                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6484                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6485                                 status = -EFAULT;
6486                                 goto cleanup1;
6487                         }
6488                 } else
6489                         memset(buff[sg_used], 0, sz);
6490                 left -= sz;
6491                 data_ptr += sz;
6492                 sg_used++;
6493         }
6494         c = cmd_alloc(h);
6495
6496         c->cmd_type = CMD_IOCTL_PEND;
6497         c->scsi_cmd = SCSI_CMD_BUSY;
6498         c->Header.ReplyQueue = 0;
6499         c->Header.SGList = (u8) sg_used;
6500         c->Header.SGTotal = cpu_to_le16(sg_used);
6501         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6502         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6503         if (ioc->buf_size > 0) {
6504                 int i;
6505                 for (i = 0; i < sg_used; i++) {
6506                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6507                                     buff_size[i], DMA_BIDIRECTIONAL);
6508                         if (dma_mapping_error(&h->pdev->dev,
6509                                                         (dma_addr_t) temp64)) {
6510                                 c->SG[i].Addr = cpu_to_le64(0);
6511                                 c->SG[i].Len = cpu_to_le32(0);
6512                                 hpsa_pci_unmap(h->pdev, c, i,
6513                                         DMA_BIDIRECTIONAL);
6514                                 status = -ENOMEM;
6515                                 goto cleanup0;
6516                         }
6517                         c->SG[i].Addr = cpu_to_le64(temp64);
6518                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6519                         c->SG[i].Ext = cpu_to_le32(0);
6520                 }
6521                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6522         }
6523         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6524                                                 NO_TIMEOUT);
6525         if (sg_used)
6526                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6527         check_ioctl_unit_attention(h, c);
6528         if (status) {
6529                 status = -EIO;
6530                 goto cleanup0;
6531         }
6532
6533         /* Copy the error information out */
6534         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6535         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6536                 status = -EFAULT;
6537                 goto cleanup0;
6538         }
6539         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6540                 int i;
6541
6542                 /* Copy the data out of the buffer we created */
6543                 BYTE __user *ptr = ioc->buf;
6544                 for (i = 0; i < sg_used; i++) {
6545                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6546                                 status = -EFAULT;
6547                                 goto cleanup0;
6548                         }
6549                         ptr += buff_size[i];
6550                 }
6551         }
6552         status = 0;
6553 cleanup0:
6554         cmd_free(h, c);
6555 cleanup1:
6556         if (buff) {
6557                 int i;
6558
6559                 for (i = 0; i < sg_used; i++)
6560                         kfree(buff[i]);
6561                 kfree(buff);
6562         }
6563         kfree(buff_size);
6564         kvfree(ioc);
6565         return status;
6566 }
6567
6568 static void check_ioctl_unit_attention(struct ctlr_info *h,
6569         struct CommandList *c)
6570 {
6571         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6572                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6573                 (void) check_for_unit_attention(h, c);
6574 }
6575
6576 /*
6577  * ioctl
6578  */
6579 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6580                       void __user *arg)
6581 {
6582         struct ctlr_info *h;
6583         void __user *argp = (void __user *)arg;
6584         int rc;
6585
6586         h = sdev_to_hba(dev);
6587
6588         switch (cmd) {
6589         case CCISS_DEREGDISK:
6590         case CCISS_REGNEWDISK:
6591         case CCISS_REGNEWD:
6592                 hpsa_scan_start(h->scsi_host);
6593                 return 0;
6594         case CCISS_GETPCIINFO:
6595                 return hpsa_getpciinfo_ioctl(h, argp);
6596         case CCISS_GETDRIVVER:
6597                 return hpsa_getdrivver_ioctl(h, argp);
6598         case CCISS_PASSTHRU:
6599                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6600                         return -EAGAIN;
6601                 rc = hpsa_passthru_ioctl(h, argp);
6602                 atomic_inc(&h->passthru_cmds_avail);
6603                 return rc;
6604         case CCISS_BIG_PASSTHRU:
6605                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6606                         return -EAGAIN;
6607                 rc = hpsa_big_passthru_ioctl(h, argp);
6608                 atomic_inc(&h->passthru_cmds_avail);
6609                 return rc;
6610         default:
6611                 return -ENOTTY;
6612         }
6613 }
6614
6615 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6616 {
6617         struct CommandList *c;
6618
6619         c = cmd_alloc(h);
6620
6621         /* fill_cmd can't fail here, no data buffer to map */
6622         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6623                 RAID_CTLR_LUNID, TYPE_MSG);
6624         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6625         c->waiting = NULL;
6626         enqueue_cmd_and_start_io(h, c);
6627         /* Don't wait for completion, the reset won't complete.  Don't free
6628          * the command either.  This is the last command we will send before
6629          * re-initializing everything, so it doesn't matter and won't leak.
6630          */
6631         return;
6632 }
6633
6634 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6635         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6636         int cmd_type)
6637 {
6638         enum dma_data_direction dir = DMA_NONE;
6639
6640         c->cmd_type = CMD_IOCTL_PEND;
6641         c->scsi_cmd = SCSI_CMD_BUSY;
6642         c->Header.ReplyQueue = 0;
6643         if (buff != NULL && size > 0) {
6644                 c->Header.SGList = 1;
6645                 c->Header.SGTotal = cpu_to_le16(1);
6646         } else {
6647                 c->Header.SGList = 0;
6648                 c->Header.SGTotal = cpu_to_le16(0);
6649         }
6650         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6651
6652         if (cmd_type == TYPE_CMD) {
6653                 switch (cmd) {
6654                 case HPSA_INQUIRY:
6655                         /* are we trying to read a vital product page */
6656                         if (page_code & VPD_PAGE) {
6657                                 c->Request.CDB[1] = 0x01;
6658                                 c->Request.CDB[2] = (page_code & 0xff);
6659                         }
6660                         c->Request.CDBLen = 6;
6661                         c->Request.type_attr_dir =
6662                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6663                         c->Request.Timeout = 0;
6664                         c->Request.CDB[0] = HPSA_INQUIRY;
6665                         c->Request.CDB[4] = size & 0xFF;
6666                         break;
6667                 case RECEIVE_DIAGNOSTIC:
6668                         c->Request.CDBLen = 6;
6669                         c->Request.type_attr_dir =
6670                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6671                         c->Request.Timeout = 0;
6672                         c->Request.CDB[0] = cmd;
6673                         c->Request.CDB[1] = 1;
6674                         c->Request.CDB[2] = 1;
6675                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6676                         c->Request.CDB[4] = size & 0xFF;
6677                         break;
6678                 case HPSA_REPORT_LOG:
6679                 case HPSA_REPORT_PHYS:
6680                         /* Talking to controller so It's a physical command
6681                            mode = 00 target = 0.  Nothing to write.
6682                          */
6683                         c->Request.CDBLen = 12;
6684                         c->Request.type_attr_dir =
6685                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6686                         c->Request.Timeout = 0;
6687                         c->Request.CDB[0] = cmd;
6688                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6689                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6690                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6691                         c->Request.CDB[9] = size & 0xFF;
6692                         break;
6693                 case BMIC_SENSE_DIAG_OPTIONS:
6694                         c->Request.CDBLen = 16;
6695                         c->Request.type_attr_dir =
6696                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697                         c->Request.Timeout = 0;
6698                         /* Spec says this should be BMIC_WRITE */
6699                         c->Request.CDB[0] = BMIC_READ;
6700                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6701                         break;
6702                 case BMIC_SET_DIAG_OPTIONS:
6703                         c->Request.CDBLen = 16;
6704                         c->Request.type_attr_dir =
6705                                         TYPE_ATTR_DIR(cmd_type,
6706                                                 ATTR_SIMPLE, XFER_WRITE);
6707                         c->Request.Timeout = 0;
6708                         c->Request.CDB[0] = BMIC_WRITE;
6709                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6710                         break;
6711                 case HPSA_CACHE_FLUSH:
6712                         c->Request.CDBLen = 12;
6713                         c->Request.type_attr_dir =
6714                                         TYPE_ATTR_DIR(cmd_type,
6715                                                 ATTR_SIMPLE, XFER_WRITE);
6716                         c->Request.Timeout = 0;
6717                         c->Request.CDB[0] = BMIC_WRITE;
6718                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6719                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6720                         c->Request.CDB[8] = size & 0xFF;
6721                         break;
6722                 case TEST_UNIT_READY:
6723                         c->Request.CDBLen = 6;
6724                         c->Request.type_attr_dir =
6725                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6726                         c->Request.Timeout = 0;
6727                         break;
6728                 case HPSA_GET_RAID_MAP:
6729                         c->Request.CDBLen = 12;
6730                         c->Request.type_attr_dir =
6731                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732                         c->Request.Timeout = 0;
6733                         c->Request.CDB[0] = HPSA_CISS_READ;
6734                         c->Request.CDB[1] = cmd;
6735                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6736                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6737                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6738                         c->Request.CDB[9] = size & 0xFF;
6739                         break;
6740                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6741                         c->Request.CDBLen = 10;
6742                         c->Request.type_attr_dir =
6743                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6744                         c->Request.Timeout = 0;
6745                         c->Request.CDB[0] = BMIC_READ;
6746                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6747                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6748                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6749                         break;
6750                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6751                         c->Request.CDBLen = 10;
6752                         c->Request.type_attr_dir =
6753                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6754                         c->Request.Timeout = 0;
6755                         c->Request.CDB[0] = BMIC_READ;
6756                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6757                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6758                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6759                         break;
6760                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6761                         c->Request.CDBLen = 10;
6762                         c->Request.type_attr_dir =
6763                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6764                         c->Request.Timeout = 0;
6765                         c->Request.CDB[0] = BMIC_READ;
6766                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6767                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6768                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6769                         break;
6770                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6771                         c->Request.CDBLen = 10;
6772                         c->Request.type_attr_dir =
6773                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6774                         c->Request.Timeout = 0;
6775                         c->Request.CDB[0] = BMIC_READ;
6776                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6777                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6778                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6779                         break;
6780                 case BMIC_IDENTIFY_CONTROLLER:
6781                         c->Request.CDBLen = 10;
6782                         c->Request.type_attr_dir =
6783                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6784                         c->Request.Timeout = 0;
6785                         c->Request.CDB[0] = BMIC_READ;
6786                         c->Request.CDB[1] = 0;
6787                         c->Request.CDB[2] = 0;
6788                         c->Request.CDB[3] = 0;
6789                         c->Request.CDB[4] = 0;
6790                         c->Request.CDB[5] = 0;
6791                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6792                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6793                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6794                         c->Request.CDB[9] = 0;
6795                         break;
6796                 default:
6797                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6798                         BUG();
6799                 }
6800         } else if (cmd_type == TYPE_MSG) {
6801                 switch (cmd) {
6802
6803                 case  HPSA_PHYS_TARGET_RESET:
6804                         c->Request.CDBLen = 16;
6805                         c->Request.type_attr_dir =
6806                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6807                         c->Request.Timeout = 0; /* Don't time out */
6808                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6809                         c->Request.CDB[0] = HPSA_RESET;
6810                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6811                         /* Physical target reset needs no control bytes 4-7*/
6812                         c->Request.CDB[4] = 0x00;
6813                         c->Request.CDB[5] = 0x00;
6814                         c->Request.CDB[6] = 0x00;
6815                         c->Request.CDB[7] = 0x00;
6816                         break;
6817                 case  HPSA_DEVICE_RESET_MSG:
6818                         c->Request.CDBLen = 16;
6819                         c->Request.type_attr_dir =
6820                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6821                         c->Request.Timeout = 0; /* Don't time out */
6822                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6823                         c->Request.CDB[0] =  cmd;
6824                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6825                         /* If bytes 4-7 are zero, it means reset the */
6826                         /* LunID device */
6827                         c->Request.CDB[4] = 0x00;
6828                         c->Request.CDB[5] = 0x00;
6829                         c->Request.CDB[6] = 0x00;
6830                         c->Request.CDB[7] = 0x00;
6831                         break;
6832                 default:
6833                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6834                                 cmd);
6835                         BUG();
6836                 }
6837         } else {
6838                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6839                 BUG();
6840         }
6841
6842         switch (GET_DIR(c->Request.type_attr_dir)) {
6843         case XFER_READ:
6844                 dir = DMA_FROM_DEVICE;
6845                 break;
6846         case XFER_WRITE:
6847                 dir = DMA_TO_DEVICE;
6848                 break;
6849         case XFER_NONE:
6850                 dir = DMA_NONE;
6851                 break;
6852         default:
6853                 dir = DMA_BIDIRECTIONAL;
6854         }
6855         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6856                 return -1;
6857         return 0;
6858 }
6859
6860 /*
6861  * Map (physical) PCI mem into (virtual) kernel space
6862  */
6863 static void __iomem *remap_pci_mem(ulong base, ulong size)
6864 {
6865         ulong page_base = ((ulong) base) & PAGE_MASK;
6866         ulong page_offs = ((ulong) base) - page_base;
6867         void __iomem *page_remapped = ioremap_nocache(page_base,
6868                 page_offs + size);
6869
6870         return page_remapped ? (page_remapped + page_offs) : NULL;
6871 }
6872
6873 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6874 {
6875         return h->access.command_completed(h, q);
6876 }
6877
6878 static inline bool interrupt_pending(struct ctlr_info *h)
6879 {
6880         return h->access.intr_pending(h);
6881 }
6882
6883 static inline long interrupt_not_for_us(struct ctlr_info *h)
6884 {
6885         return (h->access.intr_pending(h) == 0) ||
6886                 (h->interrupts_enabled == 0);
6887 }
6888
6889 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6890         u32 raw_tag)
6891 {
6892         if (unlikely(tag_index >= h->nr_cmds)) {
6893                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6894                 return 1;
6895         }
6896         return 0;
6897 }
6898
6899 static inline void finish_cmd(struct CommandList *c)
6900 {
6901         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6902         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6903                         || c->cmd_type == CMD_IOACCEL2))
6904                 complete_scsi_command(c);
6905         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6906                 complete(c->waiting);
6907 }
6908
6909 /* process completion of an indexed ("direct lookup") command */
6910 static inline void process_indexed_cmd(struct ctlr_info *h,
6911         u32 raw_tag)
6912 {
6913         u32 tag_index;
6914         struct CommandList *c;
6915
6916         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6917         if (!bad_tag(h, tag_index, raw_tag)) {
6918                 c = h->cmd_pool + tag_index;
6919                 finish_cmd(c);
6920         }
6921 }
6922
6923 /* Some controllers, like p400, will give us one interrupt
6924  * after a soft reset, even if we turned interrupts off.
6925  * Only need to check for this in the hpsa_xxx_discard_completions
6926  * functions.
6927  */
6928 static int ignore_bogus_interrupt(struct ctlr_info *h)
6929 {
6930         if (likely(!reset_devices))
6931                 return 0;
6932
6933         if (likely(h->interrupts_enabled))
6934                 return 0;
6935
6936         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6937                 "(known firmware bug.)  Ignoring.\n");
6938
6939         return 1;
6940 }
6941
6942 /*
6943  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6944  * Relies on (h-q[x] == x) being true for x such that
6945  * 0 <= x < MAX_REPLY_QUEUES.
6946  */
6947 static struct ctlr_info *queue_to_hba(u8 *queue)
6948 {
6949         return container_of((queue - *queue), struct ctlr_info, q[0]);
6950 }
6951
6952 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6953 {
6954         struct ctlr_info *h = queue_to_hba(queue);
6955         u8 q = *(u8 *) queue;
6956         u32 raw_tag;
6957
6958         if (ignore_bogus_interrupt(h))
6959                 return IRQ_NONE;
6960
6961         if (interrupt_not_for_us(h))
6962                 return IRQ_NONE;
6963         h->last_intr_timestamp = get_jiffies_64();
6964         while (interrupt_pending(h)) {
6965                 raw_tag = get_next_completion(h, q);
6966                 while (raw_tag != FIFO_EMPTY)
6967                         raw_tag = next_command(h, q);
6968         }
6969         return IRQ_HANDLED;
6970 }
6971
6972 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6973 {
6974         struct ctlr_info *h = queue_to_hba(queue);
6975         u32 raw_tag;
6976         u8 q = *(u8 *) queue;
6977
6978         if (ignore_bogus_interrupt(h))
6979                 return IRQ_NONE;
6980
6981         h->last_intr_timestamp = get_jiffies_64();
6982         raw_tag = get_next_completion(h, q);
6983         while (raw_tag != FIFO_EMPTY)
6984                 raw_tag = next_command(h, q);
6985         return IRQ_HANDLED;
6986 }
6987
6988 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6989 {
6990         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6991         u32 raw_tag;
6992         u8 q = *(u8 *) queue;
6993
6994         if (interrupt_not_for_us(h))
6995                 return IRQ_NONE;
6996         h->last_intr_timestamp = get_jiffies_64();
6997         while (interrupt_pending(h)) {
6998                 raw_tag = get_next_completion(h, q);
6999                 while (raw_tag != FIFO_EMPTY) {
7000                         process_indexed_cmd(h, raw_tag);
7001                         raw_tag = next_command(h, q);
7002                 }
7003         }
7004         return IRQ_HANDLED;
7005 }
7006
7007 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7008 {
7009         struct ctlr_info *h = queue_to_hba(queue);
7010         u32 raw_tag;
7011         u8 q = *(u8 *) queue;
7012
7013         h->last_intr_timestamp = get_jiffies_64();
7014         raw_tag = get_next_completion(h, q);
7015         while (raw_tag != FIFO_EMPTY) {
7016                 process_indexed_cmd(h, raw_tag);
7017                 raw_tag = next_command(h, q);
7018         }
7019         return IRQ_HANDLED;
7020 }
7021
7022 /* Send a message CDB to the firmware. Careful, this only works
7023  * in simple mode, not performant mode due to the tag lookup.
7024  * We only ever use this immediately after a controller reset.
7025  */
7026 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7027                         unsigned char type)
7028 {
7029         struct Command {
7030                 struct CommandListHeader CommandHeader;
7031                 struct RequestBlock Request;
7032                 struct ErrDescriptor ErrorDescriptor;
7033         };
7034         struct Command *cmd;
7035         static const size_t cmd_sz = sizeof(*cmd) +
7036                                         sizeof(cmd->ErrorDescriptor);
7037         dma_addr_t paddr64;
7038         __le32 paddr32;
7039         u32 tag;
7040         void __iomem *vaddr;
7041         int i, err;
7042
7043         vaddr = pci_ioremap_bar(pdev, 0);
7044         if (vaddr == NULL)
7045                 return -ENOMEM;
7046
7047         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7048          * CCISS commands, so they must be allocated from the lower 4GiB of
7049          * memory.
7050          */
7051         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7052         if (err) {
7053                 iounmap(vaddr);
7054                 return err;
7055         }
7056
7057         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7058         if (cmd == NULL) {
7059                 iounmap(vaddr);
7060                 return -ENOMEM;
7061         }
7062
7063         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7064          * although there's no guarantee, we assume that the address is at
7065          * least 4-byte aligned (most likely, it's page-aligned).
7066          */
7067         paddr32 = cpu_to_le32(paddr64);
7068
7069         cmd->CommandHeader.ReplyQueue = 0;
7070         cmd->CommandHeader.SGList = 0;
7071         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7072         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7073         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7074
7075         cmd->Request.CDBLen = 16;
7076         cmd->Request.type_attr_dir =
7077                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7078         cmd->Request.Timeout = 0; /* Don't time out */
7079         cmd->Request.CDB[0] = opcode;
7080         cmd->Request.CDB[1] = type;
7081         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7082         cmd->ErrorDescriptor.Addr =
7083                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7084         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7085
7086         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7087
7088         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7089                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7090                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7091                         break;
7092                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7093         }
7094
7095         iounmap(vaddr);
7096
7097         /* we leak the DMA buffer here ... no choice since the controller could
7098          *  still complete the command.
7099          */
7100         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7101                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7102                         opcode, type);
7103                 return -ETIMEDOUT;
7104         }
7105
7106         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7107
7108         if (tag & HPSA_ERROR_BIT) {
7109                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7110                         opcode, type);
7111                 return -EIO;
7112         }
7113
7114         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7115                 opcode, type);
7116         return 0;
7117 }
7118
7119 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7120
7121 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7122         void __iomem *vaddr, u32 use_doorbell)
7123 {
7124
7125         if (use_doorbell) {
7126                 /* For everything after the P600, the PCI power state method
7127                  * of resetting the controller doesn't work, so we have this
7128                  * other way using the doorbell register.
7129                  */
7130                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7131                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7132
7133                 /* PMC hardware guys tell us we need a 10 second delay after
7134                  * doorbell reset and before any attempt to talk to the board
7135                  * at all to ensure that this actually works and doesn't fall
7136                  * over in some weird corner cases.
7137                  */
7138                 msleep(10000);
7139         } else { /* Try to do it the PCI power state way */
7140
7141                 /* Quoting from the Open CISS Specification: "The Power
7142                  * Management Control/Status Register (CSR) controls the power
7143                  * state of the device.  The normal operating state is D0,
7144                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7145                  * the controller, place the interface device in D3 then to D0,
7146                  * this causes a secondary PCI reset which will reset the
7147                  * controller." */
7148
7149                 int rc = 0;
7150
7151                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7152
7153                 /* enter the D3hot power management state */
7154                 rc = pci_set_power_state(pdev, PCI_D3hot);
7155                 if (rc)
7156                         return rc;
7157
7158                 msleep(500);
7159
7160                 /* enter the D0 power management state */
7161                 rc = pci_set_power_state(pdev, PCI_D0);
7162                 if (rc)
7163                         return rc;
7164
7165                 /*
7166                  * The P600 requires a small delay when changing states.
7167                  * Otherwise we may think the board did not reset and we bail.
7168                  * This for kdump only and is particular to the P600.
7169                  */
7170                 msleep(500);
7171         }
7172         return 0;
7173 }
7174
7175 static void init_driver_version(char *driver_version, int len)
7176 {
7177         memset(driver_version, 0, len);
7178         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7179 }
7180
7181 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7182 {
7183         char *driver_version;
7184         int i, size = sizeof(cfgtable->driver_version);
7185
7186         driver_version = kmalloc(size, GFP_KERNEL);
7187         if (!driver_version)
7188                 return -ENOMEM;
7189
7190         init_driver_version(driver_version, size);
7191         for (i = 0; i < size; i++)
7192                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7193         kfree(driver_version);
7194         return 0;
7195 }
7196
7197 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7198                                           unsigned char *driver_ver)
7199 {
7200         int i;
7201
7202         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7203                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7204 }
7205
7206 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7207 {
7208
7209         char *driver_ver, *old_driver_ver;
7210         int rc, size = sizeof(cfgtable->driver_version);
7211
7212         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7213         if (!old_driver_ver)
7214                 return -ENOMEM;
7215         driver_ver = old_driver_ver + size;
7216
7217         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7218          * should have been changed, otherwise we know the reset failed.
7219          */
7220         init_driver_version(old_driver_ver, size);
7221         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7222         rc = !memcmp(driver_ver, old_driver_ver, size);
7223         kfree(old_driver_ver);
7224         return rc;
7225 }
7226 /* This does a hard reset of the controller using PCI power management
7227  * states or the using the doorbell register.
7228  */
7229 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7230 {
7231         u64 cfg_offset;
7232         u32 cfg_base_addr;
7233         u64 cfg_base_addr_index;
7234         void __iomem *vaddr;
7235         unsigned long paddr;
7236         u32 misc_fw_support;
7237         int rc;
7238         struct CfgTable __iomem *cfgtable;
7239         u32 use_doorbell;
7240         u16 command_register;
7241
7242         /* For controllers as old as the P600, this is very nearly
7243          * the same thing as
7244          *
7245          * pci_save_state(pci_dev);
7246          * pci_set_power_state(pci_dev, PCI_D3hot);
7247          * pci_set_power_state(pci_dev, PCI_D0);
7248          * pci_restore_state(pci_dev);
7249          *
7250          * For controllers newer than the P600, the pci power state
7251          * method of resetting doesn't work so we have another way
7252          * using the doorbell register.
7253          */
7254
7255         if (!ctlr_is_resettable(board_id)) {
7256                 dev_warn(&pdev->dev, "Controller not resettable\n");
7257                 return -ENODEV;
7258         }
7259
7260         /* if controller is soft- but not hard resettable... */
7261         if (!ctlr_is_hard_resettable(board_id))
7262                 return -ENOTSUPP; /* try soft reset later. */
7263
7264         /* Save the PCI command register */
7265         pci_read_config_word(pdev, 4, &command_register);
7266         pci_save_state(pdev);
7267
7268         /* find the first memory BAR, so we can find the cfg table */
7269         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7270         if (rc)
7271                 return rc;
7272         vaddr = remap_pci_mem(paddr, 0x250);
7273         if (!vaddr)
7274                 return -ENOMEM;
7275
7276         /* find cfgtable in order to check if reset via doorbell is supported */
7277         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7278                                         &cfg_base_addr_index, &cfg_offset);
7279         if (rc)
7280                 goto unmap_vaddr;
7281         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7282                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7283         if (!cfgtable) {
7284                 rc = -ENOMEM;
7285                 goto unmap_vaddr;
7286         }
7287         rc = write_driver_ver_to_cfgtable(cfgtable);
7288         if (rc)
7289                 goto unmap_cfgtable;
7290
7291         /* If reset via doorbell register is supported, use that.
7292          * There are two such methods.  Favor the newest method.
7293          */
7294         misc_fw_support = readl(&cfgtable->misc_fw_support);
7295         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7296         if (use_doorbell) {
7297                 use_doorbell = DOORBELL_CTLR_RESET2;
7298         } else {
7299                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7300                 if (use_doorbell) {
7301                         dev_warn(&pdev->dev,
7302                                 "Soft reset not supported. Firmware update is required.\n");
7303                         rc = -ENOTSUPP; /* try soft reset */
7304                         goto unmap_cfgtable;
7305                 }
7306         }
7307
7308         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7309         if (rc)
7310                 goto unmap_cfgtable;
7311
7312         pci_restore_state(pdev);
7313         pci_write_config_word(pdev, 4, command_register);
7314
7315         /* Some devices (notably the HP Smart Array 5i Controller)
7316            need a little pause here */
7317         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7318
7319         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7320         if (rc) {
7321                 dev_warn(&pdev->dev,
7322                         "Failed waiting for board to become ready after hard reset\n");
7323                 goto unmap_cfgtable;
7324         }
7325
7326         rc = controller_reset_failed(vaddr);
7327         if (rc < 0)
7328                 goto unmap_cfgtable;
7329         if (rc) {
7330                 dev_warn(&pdev->dev, "Unable to successfully reset "
7331                         "controller. Will try soft reset.\n");
7332                 rc = -ENOTSUPP;
7333         } else {
7334                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7335         }
7336
7337 unmap_cfgtable:
7338         iounmap(cfgtable);
7339
7340 unmap_vaddr:
7341         iounmap(vaddr);
7342         return rc;
7343 }
7344
7345 /*
7346  *  We cannot read the structure directly, for portability we must use
7347  *   the io functions.
7348  *   This is for debug only.
7349  */
7350 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7351 {
7352 #ifdef HPSA_DEBUG
7353         int i;
7354         char temp_name[17];
7355
7356         dev_info(dev, "Controller Configuration information\n");
7357         dev_info(dev, "------------------------------------\n");
7358         for (i = 0; i < 4; i++)
7359                 temp_name[i] = readb(&(tb->Signature[i]));
7360         temp_name[4] = '\0';
7361         dev_info(dev, "   Signature = %s\n", temp_name);
7362         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7363         dev_info(dev, "   Transport methods supported = 0x%x\n",
7364                readl(&(tb->TransportSupport)));
7365         dev_info(dev, "   Transport methods active = 0x%x\n",
7366                readl(&(tb->TransportActive)));
7367         dev_info(dev, "   Requested transport Method = 0x%x\n",
7368                readl(&(tb->HostWrite.TransportRequest)));
7369         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7370                readl(&(tb->HostWrite.CoalIntDelay)));
7371         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7372                readl(&(tb->HostWrite.CoalIntCount)));
7373         dev_info(dev, "   Max outstanding commands = %d\n",
7374                readl(&(tb->CmdsOutMax)));
7375         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7376         for (i = 0; i < 16; i++)
7377                 temp_name[i] = readb(&(tb->ServerName[i]));
7378         temp_name[16] = '\0';
7379         dev_info(dev, "   Server Name = %s\n", temp_name);
7380         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7381                 readl(&(tb->HeartBeat)));
7382 #endif                          /* HPSA_DEBUG */
7383 }
7384
7385 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7386 {
7387         int i, offset, mem_type, bar_type;
7388
7389         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7390                 return 0;
7391         offset = 0;
7392         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7393                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7394                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7395                         offset += 4;
7396                 else {
7397                         mem_type = pci_resource_flags(pdev, i) &
7398                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7399                         switch (mem_type) {
7400                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7401                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7402                                 offset += 4;    /* 32 bit */
7403                                 break;
7404                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7405                                 offset += 8;
7406                                 break;
7407                         default:        /* reserved in PCI 2.2 */
7408                                 dev_warn(&pdev->dev,
7409                                        "base address is invalid\n");
7410                                 return -1;
7411                                 break;
7412                         }
7413                 }
7414                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7415                         return i + 1;
7416         }
7417         return -1;
7418 }
7419
7420 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7421 {
7422         pci_free_irq_vectors(h->pdev);
7423         h->msix_vectors = 0;
7424 }
7425
7426 static void hpsa_setup_reply_map(struct ctlr_info *h)
7427 {
7428         const struct cpumask *mask;
7429         unsigned int queue, cpu;
7430
7431         for (queue = 0; queue < h->msix_vectors; queue++) {
7432                 mask = pci_irq_get_affinity(h->pdev, queue);
7433                 if (!mask)
7434                         goto fallback;
7435
7436                 for_each_cpu(cpu, mask)
7437                         h->reply_map[cpu] = queue;
7438         }
7439         return;
7440
7441 fallback:
7442         for_each_possible_cpu(cpu)
7443                 h->reply_map[cpu] = 0;
7444 }
7445
7446 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7447  * controllers that are capable. If not, we use legacy INTx mode.
7448  */
7449 static int hpsa_interrupt_mode(struct ctlr_info *h)
7450 {
7451         unsigned int flags = PCI_IRQ_LEGACY;
7452         int ret;
7453
7454         /* Some boards advertise MSI but don't really support it */
7455         switch (h->board_id) {
7456         case 0x40700E11:
7457         case 0x40800E11:
7458         case 0x40820E11:
7459         case 0x40830E11:
7460                 break;
7461         default:
7462                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7463                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7464                 if (ret > 0) {
7465                         h->msix_vectors = ret;
7466                         return 0;
7467                 }
7468
7469                 flags |= PCI_IRQ_MSI;
7470                 break;
7471         }
7472
7473         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7474         if (ret < 0)
7475                 return ret;
7476         return 0;
7477 }
7478
7479 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7480                                 bool *legacy_board)
7481 {
7482         int i;
7483         u32 subsystem_vendor_id, subsystem_device_id;
7484
7485         subsystem_vendor_id = pdev->subsystem_vendor;
7486         subsystem_device_id = pdev->subsystem_device;
7487         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7488                     subsystem_vendor_id;
7489
7490         if (legacy_board)
7491                 *legacy_board = false;
7492         for (i = 0; i < ARRAY_SIZE(products); i++)
7493                 if (*board_id == products[i].board_id) {
7494                         if (products[i].access != &SA5A_access &&
7495                             products[i].access != &SA5B_access)
7496                                 return i;
7497                         dev_warn(&pdev->dev,
7498                                  "legacy board ID: 0x%08x\n",
7499                                  *board_id);
7500                         if (legacy_board)
7501                             *legacy_board = true;
7502                         return i;
7503                 }
7504
7505         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7506         if (legacy_board)
7507                 *legacy_board = true;
7508         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7509 }
7510
7511 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7512                                     unsigned long *memory_bar)
7513 {
7514         int i;
7515
7516         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7517                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7518                         /* addressing mode bits already removed */
7519                         *memory_bar = pci_resource_start(pdev, i);
7520                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7521                                 *memory_bar);
7522                         return 0;
7523                 }
7524         dev_warn(&pdev->dev, "no memory BAR found\n");
7525         return -ENODEV;
7526 }
7527
7528 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7529                                      int wait_for_ready)
7530 {
7531         int i, iterations;
7532         u32 scratchpad;
7533         if (wait_for_ready)
7534                 iterations = HPSA_BOARD_READY_ITERATIONS;
7535         else
7536                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7537
7538         for (i = 0; i < iterations; i++) {
7539                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7540                 if (wait_for_ready) {
7541                         if (scratchpad == HPSA_FIRMWARE_READY)
7542                                 return 0;
7543                 } else {
7544                         if (scratchpad != HPSA_FIRMWARE_READY)
7545                                 return 0;
7546                 }
7547                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7548         }
7549         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7550         return -ENODEV;
7551 }
7552
7553 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7554                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7555                                u64 *cfg_offset)
7556 {
7557         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7558         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7559         *cfg_base_addr &= (u32) 0x0000ffff;
7560         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7561         if (*cfg_base_addr_index == -1) {
7562                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7563                 return -ENODEV;
7564         }
7565         return 0;
7566 }
7567
7568 static void hpsa_free_cfgtables(struct ctlr_info *h)
7569 {
7570         if (h->transtable) {
7571                 iounmap(h->transtable);
7572                 h->transtable = NULL;
7573         }
7574         if (h->cfgtable) {
7575                 iounmap(h->cfgtable);
7576                 h->cfgtable = NULL;
7577         }
7578 }
7579
7580 /* Find and map CISS config table and transfer table
7581 + * several items must be unmapped (freed) later
7582 + * */
7583 static int hpsa_find_cfgtables(struct ctlr_info *h)
7584 {
7585         u64 cfg_offset;
7586         u32 cfg_base_addr;
7587         u64 cfg_base_addr_index;
7588         u32 trans_offset;
7589         int rc;
7590
7591         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7592                 &cfg_base_addr_index, &cfg_offset);
7593         if (rc)
7594                 return rc;
7595         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7596                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7597         if (!h->cfgtable) {
7598                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7599                 return -ENOMEM;
7600         }
7601         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7602         if (rc)
7603                 return rc;
7604         /* Find performant mode table. */
7605         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7606         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7607                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7608                                 sizeof(*h->transtable));
7609         if (!h->transtable) {
7610                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7611                 hpsa_free_cfgtables(h);
7612                 return -ENOMEM;
7613         }
7614         return 0;
7615 }
7616
7617 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7618 {
7619 #define MIN_MAX_COMMANDS 16
7620         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7621
7622         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7623
7624         /* Limit commands in memory limited kdump scenario. */
7625         if (reset_devices && h->max_commands > 32)
7626                 h->max_commands = 32;
7627
7628         if (h->max_commands < MIN_MAX_COMMANDS) {
7629                 dev_warn(&h->pdev->dev,
7630                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7631                         h->max_commands,
7632                         MIN_MAX_COMMANDS);
7633                 h->max_commands = MIN_MAX_COMMANDS;
7634         }
7635 }
7636
7637 /* If the controller reports that the total max sg entries is greater than 512,
7638  * then we know that chained SG blocks work.  (Original smart arrays did not
7639  * support chained SG blocks and would return zero for max sg entries.)
7640  */
7641 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7642 {
7643         return h->maxsgentries > 512;
7644 }
7645
7646 /* Interrogate the hardware for some limits:
7647  * max commands, max SG elements without chaining, and with chaining,
7648  * SG chain block size, etc.
7649  */
7650 static void hpsa_find_board_params(struct ctlr_info *h)
7651 {
7652         hpsa_get_max_perf_mode_cmds(h);
7653         h->nr_cmds = h->max_commands;
7654         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7655         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7656         if (hpsa_supports_chained_sg_blocks(h)) {
7657                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7658                 h->max_cmd_sg_entries = 32;
7659                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7660                 h->maxsgentries--; /* save one for chain pointer */
7661         } else {
7662                 /*
7663                  * Original smart arrays supported at most 31 s/g entries
7664                  * embedded inline in the command (trying to use more
7665                  * would lock up the controller)
7666                  */
7667                 h->max_cmd_sg_entries = 31;
7668                 h->maxsgentries = 31; /* default to traditional values */
7669                 h->chainsize = 0;
7670         }
7671
7672         /* Find out what task management functions are supported and cache */
7673         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7674         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7675                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7676         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7677                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7678         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7679                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7680 }
7681
7682 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7683 {
7684         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7685                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7686                 return false;
7687         }
7688         return true;
7689 }
7690
7691 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7692 {
7693         u32 driver_support;
7694
7695         driver_support = readl(&(h->cfgtable->driver_support));
7696         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7697 #ifdef CONFIG_X86
7698         driver_support |= ENABLE_SCSI_PREFETCH;
7699 #endif
7700         driver_support |= ENABLE_UNIT_ATTN;
7701         writel(driver_support, &(h->cfgtable->driver_support));
7702 }
7703
7704 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7705  * in a prefetch beyond physical memory.
7706  */
7707 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7708 {
7709         u32 dma_prefetch;
7710
7711         if (h->board_id != 0x3225103C)
7712                 return;
7713         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7714         dma_prefetch |= 0x8000;
7715         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7716 }
7717
7718 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7719 {
7720         int i;
7721         u32 doorbell_value;
7722         unsigned long flags;
7723         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7724         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7725                 spin_lock_irqsave(&h->lock, flags);
7726                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7727                 spin_unlock_irqrestore(&h->lock, flags);
7728                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7729                         goto done;
7730                 /* delay and try again */
7731                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7732         }
7733         return -ENODEV;
7734 done:
7735         return 0;
7736 }
7737
7738 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7739 {
7740         int i;
7741         u32 doorbell_value;
7742         unsigned long flags;
7743
7744         /* under certain very rare conditions, this can take awhile.
7745          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7746          * as we enter this code.)
7747          */
7748         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7749                 if (h->remove_in_progress)
7750                         goto done;
7751                 spin_lock_irqsave(&h->lock, flags);
7752                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7753                 spin_unlock_irqrestore(&h->lock, flags);
7754                 if (!(doorbell_value & CFGTBL_ChangeReq))
7755                         goto done;
7756                 /* delay and try again */
7757                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7758         }
7759         return -ENODEV;
7760 done:
7761         return 0;
7762 }
7763
7764 /* return -ENODEV or other reason on error, 0 on success */
7765 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7766 {
7767         u32 trans_support;
7768
7769         trans_support = readl(&(h->cfgtable->TransportSupport));
7770         if (!(trans_support & SIMPLE_MODE))
7771                 return -ENOTSUPP;
7772
7773         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7774
7775         /* Update the field, and then ring the doorbell */
7776         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7777         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7778         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7779         if (hpsa_wait_for_mode_change_ack(h))
7780                 goto error;
7781         print_cfg_table(&h->pdev->dev, h->cfgtable);
7782         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7783                 goto error;
7784         h->transMethod = CFGTBL_Trans_Simple;
7785         return 0;
7786 error:
7787         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7788         return -ENODEV;
7789 }
7790
7791 /* free items allocated or mapped by hpsa_pci_init */
7792 static void hpsa_free_pci_init(struct ctlr_info *h)
7793 {
7794         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7795         iounmap(h->vaddr);                      /* pci_init 3 */
7796         h->vaddr = NULL;
7797         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7798         /*
7799          * call pci_disable_device before pci_release_regions per
7800          * Documentation/PCI/pci.rst
7801          */
7802         pci_disable_device(h->pdev);            /* pci_init 1 */
7803         pci_release_regions(h->pdev);           /* pci_init 2 */
7804 }
7805
7806 /* several items must be freed later */
7807 static int hpsa_pci_init(struct ctlr_info *h)
7808 {
7809         int prod_index, err;
7810         bool legacy_board;
7811
7812         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7813         if (prod_index < 0)
7814                 return prod_index;
7815         h->product_name = products[prod_index].product_name;
7816         h->access = *(products[prod_index].access);
7817         h->legacy_board = legacy_board;
7818         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7819                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7820
7821         err = pci_enable_device(h->pdev);
7822         if (err) {
7823                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7824                 pci_disable_device(h->pdev);
7825                 return err;
7826         }
7827
7828         err = pci_request_regions(h->pdev, HPSA);
7829         if (err) {
7830                 dev_err(&h->pdev->dev,
7831                         "failed to obtain PCI resources\n");
7832                 pci_disable_device(h->pdev);
7833                 return err;
7834         }
7835
7836         pci_set_master(h->pdev);
7837
7838         err = hpsa_interrupt_mode(h);
7839         if (err)
7840                 goto clean1;
7841
7842         /* setup mapping between CPU and reply queue */
7843         hpsa_setup_reply_map(h);
7844
7845         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7846         if (err)
7847                 goto clean2;    /* intmode+region, pci */
7848         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7849         if (!h->vaddr) {
7850                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7851                 err = -ENOMEM;
7852                 goto clean2;    /* intmode+region, pci */
7853         }
7854         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7855         if (err)
7856                 goto clean3;    /* vaddr, intmode+region, pci */
7857         err = hpsa_find_cfgtables(h);
7858         if (err)
7859                 goto clean3;    /* vaddr, intmode+region, pci */
7860         hpsa_find_board_params(h);
7861
7862         if (!hpsa_CISS_signature_present(h)) {
7863                 err = -ENODEV;
7864                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7865         }
7866         hpsa_set_driver_support_bits(h);
7867         hpsa_p600_dma_prefetch_quirk(h);
7868         err = hpsa_enter_simple_mode(h);
7869         if (err)
7870                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7871         return 0;
7872
7873 clean4: /* cfgtables, vaddr, intmode+region, pci */
7874         hpsa_free_cfgtables(h);
7875 clean3: /* vaddr, intmode+region, pci */
7876         iounmap(h->vaddr);
7877         h->vaddr = NULL;
7878 clean2: /* intmode+region, pci */
7879         hpsa_disable_interrupt_mode(h);
7880 clean1:
7881         /*
7882          * call pci_disable_device before pci_release_regions per
7883          * Documentation/PCI/pci.rst
7884          */
7885         pci_disable_device(h->pdev);
7886         pci_release_regions(h->pdev);
7887         return err;
7888 }
7889
7890 static void hpsa_hba_inquiry(struct ctlr_info *h)
7891 {
7892         int rc;
7893
7894 #define HBA_INQUIRY_BYTE_COUNT 64
7895         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7896         if (!h->hba_inquiry_data)
7897                 return;
7898         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7899                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7900         if (rc != 0) {
7901                 kfree(h->hba_inquiry_data);
7902                 h->hba_inquiry_data = NULL;
7903         }
7904 }
7905
7906 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7907 {
7908         int rc, i;
7909         void __iomem *vaddr;
7910
7911         if (!reset_devices)
7912                 return 0;
7913
7914         /* kdump kernel is loading, we don't know in which state is
7915          * the pci interface. The dev->enable_cnt is equal zero
7916          * so we call enable+disable, wait a while and switch it on.
7917          */
7918         rc = pci_enable_device(pdev);
7919         if (rc) {
7920                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7921                 return -ENODEV;
7922         }
7923         pci_disable_device(pdev);
7924         msleep(260);                    /* a randomly chosen number */
7925         rc = pci_enable_device(pdev);
7926         if (rc) {
7927                 dev_warn(&pdev->dev, "failed to enable device.\n");
7928                 return -ENODEV;
7929         }
7930
7931         pci_set_master(pdev);
7932
7933         vaddr = pci_ioremap_bar(pdev, 0);
7934         if (vaddr == NULL) {
7935                 rc = -ENOMEM;
7936                 goto out_disable;
7937         }
7938         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7939         iounmap(vaddr);
7940
7941         /* Reset the controller with a PCI power-cycle or via doorbell */
7942         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7943
7944         /* -ENOTSUPP here means we cannot reset the controller
7945          * but it's already (and still) up and running in
7946          * "performant mode".  Or, it might be 640x, which can't reset
7947          * due to concerns about shared bbwc between 6402/6404 pair.
7948          */
7949         if (rc)
7950                 goto out_disable;
7951
7952         /* Now try to get the controller to respond to a no-op */
7953         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7954         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7955                 if (hpsa_noop(pdev) == 0)
7956                         break;
7957                 else
7958                         dev_warn(&pdev->dev, "no-op failed%s\n",
7959                                         (i < 11 ? "; re-trying" : ""));
7960         }
7961
7962 out_disable:
7963
7964         pci_disable_device(pdev);
7965         return rc;
7966 }
7967
7968 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7969 {
7970         kfree(h->cmd_pool_bits);
7971         h->cmd_pool_bits = NULL;
7972         if (h->cmd_pool) {
7973                 dma_free_coherent(&h->pdev->dev,
7974                                 h->nr_cmds * sizeof(struct CommandList),
7975                                 h->cmd_pool,
7976                                 h->cmd_pool_dhandle);
7977                 h->cmd_pool = NULL;
7978                 h->cmd_pool_dhandle = 0;
7979         }
7980         if (h->errinfo_pool) {
7981                 dma_free_coherent(&h->pdev->dev,
7982                                 h->nr_cmds * sizeof(struct ErrorInfo),
7983                                 h->errinfo_pool,
7984                                 h->errinfo_pool_dhandle);
7985                 h->errinfo_pool = NULL;
7986                 h->errinfo_pool_dhandle = 0;
7987         }
7988 }
7989
7990 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7991 {
7992         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7993                                    sizeof(unsigned long),
7994                                    GFP_KERNEL);
7995         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7996                     h->nr_cmds * sizeof(*h->cmd_pool),
7997                     &h->cmd_pool_dhandle, GFP_KERNEL);
7998         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7999                     h->nr_cmds * sizeof(*h->errinfo_pool),
8000                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8001         if ((h->cmd_pool_bits == NULL)
8002             || (h->cmd_pool == NULL)
8003             || (h->errinfo_pool == NULL)) {
8004                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8005                 goto clean_up;
8006         }
8007         hpsa_preinitialize_commands(h);
8008         return 0;
8009 clean_up:
8010         hpsa_free_cmd_pool(h);
8011         return -ENOMEM;
8012 }
8013
8014 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8015 static void hpsa_free_irqs(struct ctlr_info *h)
8016 {
8017         int i;
8018         int irq_vector = 0;
8019
8020         if (hpsa_simple_mode)
8021                 irq_vector = h->intr_mode;
8022
8023         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8024                 /* Single reply queue, only one irq to free */
8025                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8026                                 &h->q[h->intr_mode]);
8027                 h->q[h->intr_mode] = 0;
8028                 return;
8029         }
8030
8031         for (i = 0; i < h->msix_vectors; i++) {
8032                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8033                 h->q[i] = 0;
8034         }
8035         for (; i < MAX_REPLY_QUEUES; i++)
8036                 h->q[i] = 0;
8037 }
8038
8039 /* returns 0 on success; cleans up and returns -Enn on error */
8040 static int hpsa_request_irqs(struct ctlr_info *h,
8041         irqreturn_t (*msixhandler)(int, void *),
8042         irqreturn_t (*intxhandler)(int, void *))
8043 {
8044         int rc, i;
8045         int irq_vector = 0;
8046
8047         if (hpsa_simple_mode)
8048                 irq_vector = h->intr_mode;
8049
8050         /*
8051          * initialize h->q[x] = x so that interrupt handlers know which
8052          * queue to process.
8053          */
8054         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8055                 h->q[i] = (u8) i;
8056
8057         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8058                 /* If performant mode and MSI-X, use multiple reply queues */
8059                 for (i = 0; i < h->msix_vectors; i++) {
8060                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8061                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8062                                         0, h->intrname[i],
8063                                         &h->q[i]);
8064                         if (rc) {
8065                                 int j;
8066
8067                                 dev_err(&h->pdev->dev,
8068                                         "failed to get irq %d for %s\n",
8069                                        pci_irq_vector(h->pdev, i), h->devname);
8070                                 for (j = 0; j < i; j++) {
8071                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8072                                         h->q[j] = 0;
8073                                 }
8074                                 for (; j < MAX_REPLY_QUEUES; j++)
8075                                         h->q[j] = 0;
8076                                 return rc;
8077                         }
8078                 }
8079         } else {
8080                 /* Use single reply pool */
8081                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8082                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8083                                 h->msix_vectors ? "x" : "");
8084                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8085                                 msixhandler, 0,
8086                                 h->intrname[0],
8087                                 &h->q[h->intr_mode]);
8088                 } else {
8089                         sprintf(h->intrname[h->intr_mode],
8090                                 "%s-intx", h->devname);
8091                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8092                                 intxhandler, IRQF_SHARED,
8093                                 h->intrname[0],
8094                                 &h->q[h->intr_mode]);
8095                 }
8096         }
8097         if (rc) {
8098                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8099                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8100                 hpsa_free_irqs(h);
8101                 return -ENODEV;
8102         }
8103         return 0;
8104 }
8105
8106 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8107 {
8108         int rc;
8109         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8110
8111         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8112         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8113         if (rc) {
8114                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8115                 return rc;
8116         }
8117
8118         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8119         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8120         if (rc) {
8121                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8122                         "after soft reset.\n");
8123                 return rc;
8124         }
8125
8126         return 0;
8127 }
8128
8129 static void hpsa_free_reply_queues(struct ctlr_info *h)
8130 {
8131         int i;
8132
8133         for (i = 0; i < h->nreply_queues; i++) {
8134                 if (!h->reply_queue[i].head)
8135                         continue;
8136                 dma_free_coherent(&h->pdev->dev,
8137                                         h->reply_queue_size,
8138                                         h->reply_queue[i].head,
8139                                         h->reply_queue[i].busaddr);
8140                 h->reply_queue[i].head = NULL;
8141                 h->reply_queue[i].busaddr = 0;
8142         }
8143         h->reply_queue_size = 0;
8144 }
8145
8146 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8147 {
8148         hpsa_free_performant_mode(h);           /* init_one 7 */
8149         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8150         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8151         hpsa_free_irqs(h);                      /* init_one 4 */
8152         scsi_host_put(h->scsi_host);            /* init_one 3 */
8153         h->scsi_host = NULL;                    /* init_one 3 */
8154         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8155         free_percpu(h->lockup_detected);        /* init_one 2 */
8156         h->lockup_detected = NULL;              /* init_one 2 */
8157         if (h->resubmit_wq) {
8158                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8159                 h->resubmit_wq = NULL;
8160         }
8161         if (h->rescan_ctlr_wq) {
8162                 destroy_workqueue(h->rescan_ctlr_wq);
8163                 h->rescan_ctlr_wq = NULL;
8164         }
8165         if (h->monitor_ctlr_wq) {
8166                 destroy_workqueue(h->monitor_ctlr_wq);
8167                 h->monitor_ctlr_wq = NULL;
8168         }
8169
8170         kfree(h);                               /* init_one 1 */
8171 }
8172
8173 /* Called when controller lockup detected. */
8174 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8175 {
8176         int i, refcount;
8177         struct CommandList *c;
8178         int failcount = 0;
8179
8180         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8181         for (i = 0; i < h->nr_cmds; i++) {
8182                 c = h->cmd_pool + i;
8183                 refcount = atomic_inc_return(&c->refcount);
8184                 if (refcount > 1) {
8185                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8186                         finish_cmd(c);
8187                         atomic_dec(&h->commands_outstanding);
8188                         failcount++;
8189                 }
8190                 cmd_free(h, c);
8191         }
8192         dev_warn(&h->pdev->dev,
8193                 "failed %d commands in fail_all\n", failcount);
8194 }
8195
8196 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8197 {
8198         int cpu;
8199
8200         for_each_online_cpu(cpu) {
8201                 u32 *lockup_detected;
8202                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8203                 *lockup_detected = value;
8204         }
8205         wmb(); /* be sure the per-cpu variables are out to memory */
8206 }
8207
8208 static void controller_lockup_detected(struct ctlr_info *h)
8209 {
8210         unsigned long flags;
8211         u32 lockup_detected;
8212
8213         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8214         spin_lock_irqsave(&h->lock, flags);
8215         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8216         if (!lockup_detected) {
8217                 /* no heartbeat, but controller gave us a zero. */
8218                 dev_warn(&h->pdev->dev,
8219                         "lockup detected after %d but scratchpad register is zero\n",
8220                         h->heartbeat_sample_interval / HZ);
8221                 lockup_detected = 0xffffffff;
8222         }
8223         set_lockup_detected_for_all_cpus(h, lockup_detected);
8224         spin_unlock_irqrestore(&h->lock, flags);
8225         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8226                         lockup_detected, h->heartbeat_sample_interval / HZ);
8227         if (lockup_detected == 0xffff0000) {
8228                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8229                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8230         }
8231         pci_disable_device(h->pdev);
8232         fail_all_outstanding_cmds(h);
8233 }
8234
8235 static int detect_controller_lockup(struct ctlr_info *h)
8236 {
8237         u64 now;
8238         u32 heartbeat;
8239         unsigned long flags;
8240
8241         now = get_jiffies_64();
8242         /* If we've received an interrupt recently, we're ok. */
8243         if (time_after64(h->last_intr_timestamp +
8244                                 (h->heartbeat_sample_interval), now))
8245                 return false;
8246
8247         /*
8248          * If we've already checked the heartbeat recently, we're ok.
8249          * This could happen if someone sends us a signal. We
8250          * otherwise don't care about signals in this thread.
8251          */
8252         if (time_after64(h->last_heartbeat_timestamp +
8253                                 (h->heartbeat_sample_interval), now))
8254                 return false;
8255
8256         /* If heartbeat has not changed since we last looked, we're not ok. */
8257         spin_lock_irqsave(&h->lock, flags);
8258         heartbeat = readl(&h->cfgtable->HeartBeat);
8259         spin_unlock_irqrestore(&h->lock, flags);
8260         if (h->last_heartbeat == heartbeat) {
8261                 controller_lockup_detected(h);
8262                 return true;
8263         }
8264
8265         /* We're ok. */
8266         h->last_heartbeat = heartbeat;
8267         h->last_heartbeat_timestamp = now;
8268         return false;
8269 }
8270
8271 /*
8272  * Set ioaccel status for all ioaccel volumes.
8273  *
8274  * Called from monitor controller worker (hpsa_event_monitor_worker)
8275  *
8276  * A Volume (or Volumes that comprise an Array set may be undergoing a
8277  * transformation, so we will be turning off ioaccel for all volumes that
8278  * make up the Array.
8279  */
8280 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8281 {
8282         int rc;
8283         int i;
8284         u8 ioaccel_status;
8285         unsigned char *buf;
8286         struct hpsa_scsi_dev_t *device;
8287
8288         if (!h)
8289                 return;
8290
8291         buf = kmalloc(64, GFP_KERNEL);
8292         if (!buf)
8293                 return;
8294
8295         /*
8296          * Run through current device list used during I/O requests.
8297          */
8298         for (i = 0; i < h->ndevices; i++) {
8299                 device = h->dev[i];
8300
8301                 if (!device)
8302                         continue;
8303                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8304                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8305                         continue;
8306
8307                 memset(buf, 0, 64);
8308
8309                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8310                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8311                                         buf, 64);
8312                 if (rc != 0)
8313                         continue;
8314
8315                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8316                 device->offload_config =
8317                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8318                 if (device->offload_config)
8319                         device->offload_to_be_enabled =
8320                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8321
8322                 /*
8323                  * Immediately turn off ioaccel for any volume the
8324                  * controller tells us to. Some of the reasons could be:
8325                  *    transformation - change to the LVs of an Array.
8326                  *    degraded volume - component failure
8327                  *
8328                  * If ioaccel is to be re-enabled, re-enable later during the
8329                  * scan operation so the driver can get a fresh raidmap
8330                  * before turning ioaccel back on.
8331                  *
8332                  */
8333                 if (!device->offload_to_be_enabled)
8334                         device->offload_enabled = 0;
8335         }
8336
8337         kfree(buf);
8338 }
8339
8340 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8341 {
8342         char *event_type;
8343
8344         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8345                 return;
8346
8347         /* Ask the controller to clear the events we're handling. */
8348         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8349                         | CFGTBL_Trans_io_accel2)) &&
8350                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8351                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8352
8353                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8354                         event_type = "state change";
8355                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8356                         event_type = "configuration change";
8357                 /* Stop sending new RAID offload reqs via the IO accelerator */
8358                 scsi_block_requests(h->scsi_host);
8359                 hpsa_set_ioaccel_status(h);
8360                 hpsa_drain_accel_commands(h);
8361                 /* Set 'accelerator path config change' bit */
8362                 dev_warn(&h->pdev->dev,
8363                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8364                         h->events, event_type);
8365                 writel(h->events, &(h->cfgtable->clear_event_notify));
8366                 /* Set the "clear event notify field update" bit 6 */
8367                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8368                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8369                 hpsa_wait_for_clear_event_notify_ack(h);
8370                 scsi_unblock_requests(h->scsi_host);
8371         } else {
8372                 /* Acknowledge controller notification events. */
8373                 writel(h->events, &(h->cfgtable->clear_event_notify));
8374                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8375                 hpsa_wait_for_clear_event_notify_ack(h);
8376         }
8377         return;
8378 }
8379
8380 /* Check a register on the controller to see if there are configuration
8381  * changes (added/changed/removed logical drives, etc.) which mean that
8382  * we should rescan the controller for devices.
8383  * Also check flag for driver-initiated rescan.
8384  */
8385 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8386 {
8387         if (h->drv_req_rescan) {
8388                 h->drv_req_rescan = 0;
8389                 return 1;
8390         }
8391
8392         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8393                 return 0;
8394
8395         h->events = readl(&(h->cfgtable->event_notify));
8396         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8397 }
8398
8399 /*
8400  * Check if any of the offline devices have become ready
8401  */
8402 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8403 {
8404         unsigned long flags;
8405         struct offline_device_entry *d;
8406         struct list_head *this, *tmp;
8407
8408         spin_lock_irqsave(&h->offline_device_lock, flags);
8409         list_for_each_safe(this, tmp, &h->offline_device_list) {
8410                 d = list_entry(this, struct offline_device_entry,
8411                                 offline_list);
8412                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8413                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8414                         spin_lock_irqsave(&h->offline_device_lock, flags);
8415                         list_del(&d->offline_list);
8416                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8417                         return 1;
8418                 }
8419                 spin_lock_irqsave(&h->offline_device_lock, flags);
8420         }
8421         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8422         return 0;
8423 }
8424
8425 static int hpsa_luns_changed(struct ctlr_info *h)
8426 {
8427         int rc = 1; /* assume there are changes */
8428         struct ReportLUNdata *logdev = NULL;
8429
8430         /* if we can't find out if lun data has changed,
8431          * assume that it has.
8432          */
8433
8434         if (!h->lastlogicals)
8435                 return rc;
8436
8437         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8438         if (!logdev)
8439                 return rc;
8440
8441         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8442                 dev_warn(&h->pdev->dev,
8443                         "report luns failed, can't track lun changes.\n");
8444                 goto out;
8445         }
8446         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8447                 dev_info(&h->pdev->dev,
8448                         "Lun changes detected.\n");
8449                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8450                 goto out;
8451         } else
8452                 rc = 0; /* no changes detected. */
8453 out:
8454         kfree(logdev);
8455         return rc;
8456 }
8457
8458 static void hpsa_perform_rescan(struct ctlr_info *h)
8459 {
8460         struct Scsi_Host *sh = NULL;
8461         unsigned long flags;
8462
8463         /*
8464          * Do the scan after the reset
8465          */
8466         spin_lock_irqsave(&h->reset_lock, flags);
8467         if (h->reset_in_progress) {
8468                 h->drv_req_rescan = 1;
8469                 spin_unlock_irqrestore(&h->reset_lock, flags);
8470                 return;
8471         }
8472         spin_unlock_irqrestore(&h->reset_lock, flags);
8473
8474         sh = scsi_host_get(h->scsi_host);
8475         if (sh != NULL) {
8476                 hpsa_scan_start(sh);
8477                 scsi_host_put(sh);
8478                 h->drv_req_rescan = 0;
8479         }
8480 }
8481
8482 /*
8483  * watch for controller events
8484  */
8485 static void hpsa_event_monitor_worker(struct work_struct *work)
8486 {
8487         struct ctlr_info *h = container_of(to_delayed_work(work),
8488                                         struct ctlr_info, event_monitor_work);
8489         unsigned long flags;
8490
8491         spin_lock_irqsave(&h->lock, flags);
8492         if (h->remove_in_progress) {
8493                 spin_unlock_irqrestore(&h->lock, flags);
8494                 return;
8495         }
8496         spin_unlock_irqrestore(&h->lock, flags);
8497
8498         if (hpsa_ctlr_needs_rescan(h)) {
8499                 hpsa_ack_ctlr_events(h);
8500                 hpsa_perform_rescan(h);
8501         }
8502
8503         spin_lock_irqsave(&h->lock, flags);
8504         if (!h->remove_in_progress)
8505                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8506                                 HPSA_EVENT_MONITOR_INTERVAL);
8507         spin_unlock_irqrestore(&h->lock, flags);
8508 }
8509
8510 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8511 {
8512         unsigned long flags;
8513         struct ctlr_info *h = container_of(to_delayed_work(work),
8514                                         struct ctlr_info, rescan_ctlr_work);
8515
8516         spin_lock_irqsave(&h->lock, flags);
8517         if (h->remove_in_progress) {
8518                 spin_unlock_irqrestore(&h->lock, flags);
8519                 return;
8520         }
8521         spin_unlock_irqrestore(&h->lock, flags);
8522
8523         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8524                 hpsa_perform_rescan(h);
8525         } else if (h->discovery_polling) {
8526                 if (hpsa_luns_changed(h)) {
8527                         dev_info(&h->pdev->dev,
8528                                 "driver discovery polling rescan.\n");
8529                         hpsa_perform_rescan(h);
8530                 }
8531         }
8532         spin_lock_irqsave(&h->lock, flags);
8533         if (!h->remove_in_progress)
8534                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8535                                 h->heartbeat_sample_interval);
8536         spin_unlock_irqrestore(&h->lock, flags);
8537 }
8538
8539 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8540 {
8541         unsigned long flags;
8542         struct ctlr_info *h = container_of(to_delayed_work(work),
8543                                         struct ctlr_info, monitor_ctlr_work);
8544
8545         detect_controller_lockup(h);
8546         if (lockup_detected(h))
8547                 return;
8548
8549         spin_lock_irqsave(&h->lock, flags);
8550         if (!h->remove_in_progress)
8551                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8552                                 h->heartbeat_sample_interval);
8553         spin_unlock_irqrestore(&h->lock, flags);
8554 }
8555
8556 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8557                                                 char *name)
8558 {
8559         struct workqueue_struct *wq = NULL;
8560
8561         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8562         if (!wq)
8563                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8564
8565         return wq;
8566 }
8567
8568 static void hpda_free_ctlr_info(struct ctlr_info *h)
8569 {
8570         kfree(h->reply_map);
8571         kfree(h);
8572 }
8573
8574 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8575 {
8576         struct ctlr_info *h;
8577
8578         h = kzalloc(sizeof(*h), GFP_KERNEL);
8579         if (!h)
8580                 return NULL;
8581
8582         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8583         if (!h->reply_map) {
8584                 kfree(h);
8585                 return NULL;
8586         }
8587         return h;
8588 }
8589
8590 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8591 {
8592         int dac, rc;
8593         struct ctlr_info *h;
8594         int try_soft_reset = 0;
8595         unsigned long flags;
8596         u32 board_id;
8597
8598         if (number_of_controllers == 0)
8599                 printk(KERN_INFO DRIVER_NAME "\n");
8600
8601         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8602         if (rc < 0) {
8603                 dev_warn(&pdev->dev, "Board ID not found\n");
8604                 return rc;
8605         }
8606
8607         rc = hpsa_init_reset_devices(pdev, board_id);
8608         if (rc) {
8609                 if (rc != -ENOTSUPP)
8610                         return rc;
8611                 /* If the reset fails in a particular way (it has no way to do
8612                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8613                  * a soft reset once we get the controller configured up to the
8614                  * point that it can accept a command.
8615                  */
8616                 try_soft_reset = 1;
8617                 rc = 0;
8618         }
8619
8620 reinit_after_soft_reset:
8621
8622         /* Command structures must be aligned on a 32-byte boundary because
8623          * the 5 lower bits of the address are used by the hardware. and by
8624          * the driver.  See comments in hpsa.h for more info.
8625          */
8626         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8627         h = hpda_alloc_ctlr_info();
8628         if (!h) {
8629                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8630                 return -ENOMEM;
8631         }
8632
8633         h->pdev = pdev;
8634
8635         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8636         INIT_LIST_HEAD(&h->offline_device_list);
8637         spin_lock_init(&h->lock);
8638         spin_lock_init(&h->offline_device_lock);
8639         spin_lock_init(&h->scan_lock);
8640         spin_lock_init(&h->reset_lock);
8641         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8642
8643         /* Allocate and clear per-cpu variable lockup_detected */
8644         h->lockup_detected = alloc_percpu(u32);
8645         if (!h->lockup_detected) {
8646                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8647                 rc = -ENOMEM;
8648                 goto clean1;    /* aer/h */
8649         }
8650         set_lockup_detected_for_all_cpus(h, 0);
8651
8652         rc = hpsa_pci_init(h);
8653         if (rc)
8654                 goto clean2;    /* lu, aer/h */
8655
8656         /* relies on h-> settings made by hpsa_pci_init, including
8657          * interrupt_mode h->intr */
8658         rc = hpsa_scsi_host_alloc(h);
8659         if (rc)
8660                 goto clean2_5;  /* pci, lu, aer/h */
8661
8662         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8663         h->ctlr = number_of_controllers;
8664         number_of_controllers++;
8665
8666         /* configure PCI DMA stuff */
8667         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8668         if (rc == 0) {
8669                 dac = 1;
8670         } else {
8671                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8672                 if (rc == 0) {
8673                         dac = 0;
8674                 } else {
8675                         dev_err(&pdev->dev, "no suitable DMA available\n");
8676                         goto clean3;    /* shost, pci, lu, aer/h */
8677                 }
8678         }
8679
8680         /* make sure the board interrupts are off */
8681         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8682
8683         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8684         if (rc)
8685                 goto clean3;    /* shost, pci, lu, aer/h */
8686         rc = hpsa_alloc_cmd_pool(h);
8687         if (rc)
8688                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8689         rc = hpsa_alloc_sg_chain_blocks(h);
8690         if (rc)
8691                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8692         init_waitqueue_head(&h->scan_wait_queue);
8693         init_waitqueue_head(&h->event_sync_wait_queue);
8694         mutex_init(&h->reset_mutex);
8695         h->scan_finished = 1; /* no scan currently in progress */
8696         h->scan_waiting = 0;
8697
8698         pci_set_drvdata(pdev, h);
8699         h->ndevices = 0;
8700
8701         spin_lock_init(&h->devlock);
8702         rc = hpsa_put_ctlr_into_performant_mode(h);
8703         if (rc)
8704                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8705
8706         /* create the resubmit workqueue */
8707         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8708         if (!h->rescan_ctlr_wq) {
8709                 rc = -ENOMEM;
8710                 goto clean7;
8711         }
8712
8713         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8714         if (!h->resubmit_wq) {
8715                 rc = -ENOMEM;
8716                 goto clean7;    /* aer/h */
8717         }
8718
8719         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8720         if (!h->monitor_ctlr_wq) {
8721                 rc = -ENOMEM;
8722                 goto clean7;
8723         }
8724
8725         /*
8726          * At this point, the controller is ready to take commands.
8727          * Now, if reset_devices and the hard reset didn't work, try
8728          * the soft reset and see if that works.
8729          */
8730         if (try_soft_reset) {
8731
8732                 /* This is kind of gross.  We may or may not get a completion
8733                  * from the soft reset command, and if we do, then the value
8734                  * from the fifo may or may not be valid.  So, we wait 10 secs
8735                  * after the reset throwing away any completions we get during
8736                  * that time.  Unregister the interrupt handler and register
8737                  * fake ones to scoop up any residual completions.
8738                  */
8739                 spin_lock_irqsave(&h->lock, flags);
8740                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8741                 spin_unlock_irqrestore(&h->lock, flags);
8742                 hpsa_free_irqs(h);
8743                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8744                                         hpsa_intx_discard_completions);
8745                 if (rc) {
8746                         dev_warn(&h->pdev->dev,
8747                                 "Failed to request_irq after soft reset.\n");
8748                         /*
8749                          * cannot goto clean7 or free_irqs will be called
8750                          * again. Instead, do its work
8751                          */
8752                         hpsa_free_performant_mode(h);   /* clean7 */
8753                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8754                         hpsa_free_cmd_pool(h);          /* clean5 */
8755                         /*
8756                          * skip hpsa_free_irqs(h) clean4 since that
8757                          * was just called before request_irqs failed
8758                          */
8759                         goto clean3;
8760                 }
8761
8762                 rc = hpsa_kdump_soft_reset(h);
8763                 if (rc)
8764                         /* Neither hard nor soft reset worked, we're hosed. */
8765                         goto clean7;
8766
8767                 dev_info(&h->pdev->dev, "Board READY.\n");
8768                 dev_info(&h->pdev->dev,
8769                         "Waiting for stale completions to drain.\n");
8770                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8771                 msleep(10000);
8772                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8773
8774                 rc = controller_reset_failed(h->cfgtable);
8775                 if (rc)
8776                         dev_info(&h->pdev->dev,
8777                                 "Soft reset appears to have failed.\n");
8778
8779                 /* since the controller's reset, we have to go back and re-init
8780                  * everything.  Easiest to just forget what we've done and do it
8781                  * all over again.
8782                  */
8783                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8784                 try_soft_reset = 0;
8785                 if (rc)
8786                         /* don't goto clean, we already unallocated */
8787                         return -ENODEV;
8788
8789                 goto reinit_after_soft_reset;
8790         }
8791
8792         /* Enable Accelerated IO path at driver layer */
8793         h->acciopath_status = 1;
8794         /* Disable discovery polling.*/
8795         h->discovery_polling = 0;
8796
8797
8798         /* Turn the interrupts on so we can service requests */
8799         h->access.set_intr_mask(h, HPSA_INTR_ON);
8800
8801         hpsa_hba_inquiry(h);
8802
8803         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8804         if (!h->lastlogicals)
8805                 dev_info(&h->pdev->dev,
8806                         "Can't track change to report lun data\n");
8807
8808         /* hook into SCSI subsystem */
8809         rc = hpsa_scsi_add_host(h);
8810         if (rc)
8811                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8812
8813         /* Monitor the controller for firmware lockups */
8814         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8815         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8816         schedule_delayed_work(&h->monitor_ctlr_work,
8817                                 h->heartbeat_sample_interval);
8818         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8819         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8820                                 h->heartbeat_sample_interval);
8821         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8822         schedule_delayed_work(&h->event_monitor_work,
8823                                 HPSA_EVENT_MONITOR_INTERVAL);
8824         return 0;
8825
8826 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8827         hpsa_free_performant_mode(h);
8828         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8829 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8830         hpsa_free_sg_chain_blocks(h);
8831 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8832         hpsa_free_cmd_pool(h);
8833 clean4: /* irq, shost, pci, lu, aer/h */
8834         hpsa_free_irqs(h);
8835 clean3: /* shost, pci, lu, aer/h */
8836         scsi_host_put(h->scsi_host);
8837         h->scsi_host = NULL;
8838 clean2_5: /* pci, lu, aer/h */
8839         hpsa_free_pci_init(h);
8840 clean2: /* lu, aer/h */
8841         if (h->lockup_detected) {
8842                 free_percpu(h->lockup_detected);
8843                 h->lockup_detected = NULL;
8844         }
8845 clean1: /* wq/aer/h */
8846         if (h->resubmit_wq) {
8847                 destroy_workqueue(h->resubmit_wq);
8848                 h->resubmit_wq = NULL;
8849         }
8850         if (h->rescan_ctlr_wq) {
8851                 destroy_workqueue(h->rescan_ctlr_wq);
8852                 h->rescan_ctlr_wq = NULL;
8853         }
8854         if (h->monitor_ctlr_wq) {
8855                 destroy_workqueue(h->monitor_ctlr_wq);
8856                 h->monitor_ctlr_wq = NULL;
8857         }
8858         kfree(h);
8859         return rc;
8860 }
8861
8862 static void hpsa_flush_cache(struct ctlr_info *h)
8863 {
8864         char *flush_buf;
8865         struct CommandList *c;
8866         int rc;
8867
8868         if (unlikely(lockup_detected(h)))
8869                 return;
8870         flush_buf = kzalloc(4, GFP_KERNEL);
8871         if (!flush_buf)
8872                 return;
8873
8874         c = cmd_alloc(h);
8875
8876         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8877                 RAID_CTLR_LUNID, TYPE_CMD)) {
8878                 goto out;
8879         }
8880         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8881                         DEFAULT_TIMEOUT);
8882         if (rc)
8883                 goto out;
8884         if (c->err_info->CommandStatus != 0)
8885 out:
8886                 dev_warn(&h->pdev->dev,
8887                         "error flushing cache on controller\n");
8888         cmd_free(h, c);
8889         kfree(flush_buf);
8890 }
8891
8892 /* Make controller gather fresh report lun data each time we
8893  * send down a report luns request
8894  */
8895 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8896 {
8897         u32 *options;
8898         struct CommandList *c;
8899         int rc;
8900
8901         /* Don't bother trying to set diag options if locked up */
8902         if (unlikely(h->lockup_detected))
8903                 return;
8904
8905         options = kzalloc(sizeof(*options), GFP_KERNEL);
8906         if (!options)
8907                 return;
8908
8909         c = cmd_alloc(h);
8910
8911         /* first, get the current diag options settings */
8912         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8913                 RAID_CTLR_LUNID, TYPE_CMD))
8914                 goto errout;
8915
8916         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8917                         NO_TIMEOUT);
8918         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8919                 goto errout;
8920
8921         /* Now, set the bit for disabling the RLD caching */
8922         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8923
8924         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8925                 RAID_CTLR_LUNID, TYPE_CMD))
8926                 goto errout;
8927
8928         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8929                         NO_TIMEOUT);
8930         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8931                 goto errout;
8932
8933         /* Now verify that it got set: */
8934         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8935                 RAID_CTLR_LUNID, TYPE_CMD))
8936                 goto errout;
8937
8938         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8939                         NO_TIMEOUT);
8940         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8941                 goto errout;
8942
8943         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8944                 goto out;
8945
8946 errout:
8947         dev_err(&h->pdev->dev,
8948                         "Error: failed to disable report lun data caching.\n");
8949 out:
8950         cmd_free(h, c);
8951         kfree(options);
8952 }
8953
8954 static void __hpsa_shutdown(struct pci_dev *pdev)
8955 {
8956         struct ctlr_info *h;
8957
8958         h = pci_get_drvdata(pdev);
8959         /* Turn board interrupts off  and send the flush cache command
8960          * sendcmd will turn off interrupt, and send the flush...
8961          * To write all data in the battery backed cache to disks
8962          */
8963         hpsa_flush_cache(h);
8964         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8965         hpsa_free_irqs(h);                      /* init_one 4 */
8966         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8967 }
8968
8969 static void hpsa_shutdown(struct pci_dev *pdev)
8970 {
8971         __hpsa_shutdown(pdev);
8972         pci_disable_device(pdev);
8973 }
8974
8975 static void hpsa_free_device_info(struct ctlr_info *h)
8976 {
8977         int i;
8978
8979         for (i = 0; i < h->ndevices; i++) {
8980                 kfree(h->dev[i]);
8981                 h->dev[i] = NULL;
8982         }
8983 }
8984
8985 static void hpsa_remove_one(struct pci_dev *pdev)
8986 {
8987         struct ctlr_info *h;
8988         unsigned long flags;
8989
8990         if (pci_get_drvdata(pdev) == NULL) {
8991                 dev_err(&pdev->dev, "unable to remove device\n");
8992                 return;
8993         }
8994         h = pci_get_drvdata(pdev);
8995
8996         /* Get rid of any controller monitoring work items */
8997         spin_lock_irqsave(&h->lock, flags);
8998         h->remove_in_progress = 1;
8999         spin_unlock_irqrestore(&h->lock, flags);
9000         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9001         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9002         cancel_delayed_work_sync(&h->event_monitor_work);
9003         destroy_workqueue(h->rescan_ctlr_wq);
9004         destroy_workqueue(h->resubmit_wq);
9005         destroy_workqueue(h->monitor_ctlr_wq);
9006
9007         hpsa_delete_sas_host(h);
9008
9009         /*
9010          * Call before disabling interrupts.
9011          * scsi_remove_host can trigger I/O operations especially
9012          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9013          * operations which cannot complete and will hang the system.
9014          */
9015         if (h->scsi_host)
9016                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9017         /* includes hpsa_free_irqs - init_one 4 */
9018         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9019         __hpsa_shutdown(pdev);
9020
9021         hpsa_free_device_info(h);               /* scan */
9022
9023         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9024         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9025         hpsa_free_ioaccel2_sg_chain_blocks(h);
9026         hpsa_free_performant_mode(h);                   /* init_one 7 */
9027         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9028         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9029         kfree(h->lastlogicals);
9030
9031         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9032
9033         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9034         h->scsi_host = NULL;                            /* init_one 3 */
9035
9036         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9037         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9038
9039         free_percpu(h->lockup_detected);                /* init_one 2 */
9040         h->lockup_detected = NULL;                      /* init_one 2 */
9041         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9042
9043         hpda_free_ctlr_info(h);                         /* init_one 1 */
9044 }
9045
9046 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9047         __attribute__((unused)) pm_message_t state)
9048 {
9049         return -ENOSYS;
9050 }
9051
9052 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9053 {
9054         return -ENOSYS;
9055 }
9056
9057 static struct pci_driver hpsa_pci_driver = {
9058         .name = HPSA,
9059         .probe = hpsa_init_one,
9060         .remove = hpsa_remove_one,
9061         .id_table = hpsa_pci_device_id, /* id_table */
9062         .shutdown = hpsa_shutdown,
9063         .suspend = hpsa_suspend,
9064         .resume = hpsa_resume,
9065 };
9066
9067 /* Fill in bucket_map[], given nsgs (the max number of
9068  * scatter gather elements supported) and bucket[],
9069  * which is an array of 8 integers.  The bucket[] array
9070  * contains 8 different DMA transfer sizes (in 16
9071  * byte increments) which the controller uses to fetch
9072  * commands.  This function fills in bucket_map[], which
9073  * maps a given number of scatter gather elements to one of
9074  * the 8 DMA transfer sizes.  The point of it is to allow the
9075  * controller to only do as much DMA as needed to fetch the
9076  * command, with the DMA transfer size encoded in the lower
9077  * bits of the command address.
9078  */
9079 static void  calc_bucket_map(int bucket[], int num_buckets,
9080         int nsgs, int min_blocks, u32 *bucket_map)
9081 {
9082         int i, j, b, size;
9083
9084         /* Note, bucket_map must have nsgs+1 entries. */
9085         for (i = 0; i <= nsgs; i++) {
9086                 /* Compute size of a command with i SG entries */
9087                 size = i + min_blocks;
9088                 b = num_buckets; /* Assume the biggest bucket */
9089                 /* Find the bucket that is just big enough */
9090                 for (j = 0; j < num_buckets; j++) {
9091                         if (bucket[j] >= size) {
9092                                 b = j;
9093                                 break;
9094                         }
9095                 }
9096                 /* for a command with i SG entries, use bucket b. */
9097                 bucket_map[i] = b;
9098         }
9099 }
9100
9101 /*
9102  * return -ENODEV on err, 0 on success (or no action)
9103  * allocates numerous items that must be freed later
9104  */
9105 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9106 {
9107         int i;
9108         unsigned long register_value;
9109         unsigned long transMethod = CFGTBL_Trans_Performant |
9110                         (trans_support & CFGTBL_Trans_use_short_tags) |
9111                                 CFGTBL_Trans_enable_directed_msix |
9112                         (trans_support & (CFGTBL_Trans_io_accel1 |
9113                                 CFGTBL_Trans_io_accel2));
9114         struct access_method access = SA5_performant_access;
9115
9116         /* This is a bit complicated.  There are 8 registers on
9117          * the controller which we write to to tell it 8 different
9118          * sizes of commands which there may be.  It's a way of
9119          * reducing the DMA done to fetch each command.  Encoded into
9120          * each command's tag are 3 bits which communicate to the controller
9121          * which of the eight sizes that command fits within.  The size of
9122          * each command depends on how many scatter gather entries there are.
9123          * Each SG entry requires 16 bytes.  The eight registers are programmed
9124          * with the number of 16-byte blocks a command of that size requires.
9125          * The smallest command possible requires 5 such 16 byte blocks.
9126          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9127          * blocks.  Note, this only extends to the SG entries contained
9128          * within the command block, and does not extend to chained blocks
9129          * of SG elements.   bft[] contains the eight values we write to
9130          * the registers.  They are not evenly distributed, but have more
9131          * sizes for small commands, and fewer sizes for larger commands.
9132          */
9133         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9134 #define MIN_IOACCEL2_BFT_ENTRY 5
9135 #define HPSA_IOACCEL2_HEADER_SZ 4
9136         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9137                         13, 14, 15, 16, 17, 18, 19,
9138                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9139         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9140         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9141         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9142                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9143         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9144         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9145         /*  5 = 1 s/g entry or 4k
9146          *  6 = 2 s/g entry or 8k
9147          *  8 = 4 s/g entry or 16k
9148          * 10 = 6 s/g entry or 24k
9149          */
9150
9151         /* If the controller supports either ioaccel method then
9152          * we can also use the RAID stack submit path that does not
9153          * perform the superfluous readl() after each command submission.
9154          */
9155         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9156                 access = SA5_performant_access_no_read;
9157
9158         /* Controller spec: zero out this buffer. */
9159         for (i = 0; i < h->nreply_queues; i++)
9160                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9161
9162         bft[7] = SG_ENTRIES_IN_CMD + 4;
9163         calc_bucket_map(bft, ARRAY_SIZE(bft),
9164                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9165         for (i = 0; i < 8; i++)
9166                 writel(bft[i], &h->transtable->BlockFetch[i]);
9167
9168         /* size of controller ring buffer */
9169         writel(h->max_commands, &h->transtable->RepQSize);
9170         writel(h->nreply_queues, &h->transtable->RepQCount);
9171         writel(0, &h->transtable->RepQCtrAddrLow32);
9172         writel(0, &h->transtable->RepQCtrAddrHigh32);
9173
9174         for (i = 0; i < h->nreply_queues; i++) {
9175                 writel(0, &h->transtable->RepQAddr[i].upper);
9176                 writel(h->reply_queue[i].busaddr,
9177                         &h->transtable->RepQAddr[i].lower);
9178         }
9179
9180         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9181         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9182         /*
9183          * enable outbound interrupt coalescing in accelerator mode;
9184          */
9185         if (trans_support & CFGTBL_Trans_io_accel1) {
9186                 access = SA5_ioaccel_mode1_access;
9187                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9188                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9189         } else
9190                 if (trans_support & CFGTBL_Trans_io_accel2)
9191                         access = SA5_ioaccel_mode2_access;
9192         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9193         if (hpsa_wait_for_mode_change_ack(h)) {
9194                 dev_err(&h->pdev->dev,
9195                         "performant mode problem - doorbell timeout\n");
9196                 return -ENODEV;
9197         }
9198         register_value = readl(&(h->cfgtable->TransportActive));
9199         if (!(register_value & CFGTBL_Trans_Performant)) {
9200                 dev_err(&h->pdev->dev,
9201                         "performant mode problem - transport not active\n");
9202                 return -ENODEV;
9203         }
9204         /* Change the access methods to the performant access methods */
9205         h->access = access;
9206         h->transMethod = transMethod;
9207
9208         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9209                 (trans_support & CFGTBL_Trans_io_accel2)))
9210                 return 0;
9211
9212         if (trans_support & CFGTBL_Trans_io_accel1) {
9213                 /* Set up I/O accelerator mode */
9214                 for (i = 0; i < h->nreply_queues; i++) {
9215                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9216                         h->reply_queue[i].current_entry =
9217                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9218                 }
9219                 bft[7] = h->ioaccel_maxsg + 8;
9220                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9221                                 h->ioaccel1_blockFetchTable);
9222
9223                 /* initialize all reply queue entries to unused */
9224                 for (i = 0; i < h->nreply_queues; i++)
9225                         memset(h->reply_queue[i].head,
9226                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9227                                 h->reply_queue_size);
9228
9229                 /* set all the constant fields in the accelerator command
9230                  * frames once at init time to save CPU cycles later.
9231                  */
9232                 for (i = 0; i < h->nr_cmds; i++) {
9233                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9234
9235                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9236                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9237                                         (i * sizeof(struct ErrorInfo)));
9238                         cp->err_info_len = sizeof(struct ErrorInfo);
9239                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9240                         cp->host_context_flags =
9241                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9242                         cp->timeout_sec = 0;
9243                         cp->ReplyQueue = 0;
9244                         cp->tag =
9245                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9246                         cp->host_addr =
9247                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9248                                         (i * sizeof(struct io_accel1_cmd)));
9249                 }
9250         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9251                 u64 cfg_offset, cfg_base_addr_index;
9252                 u32 bft2_offset, cfg_base_addr;
9253                 int rc;
9254
9255                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9256                         &cfg_base_addr_index, &cfg_offset);
9257                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9258                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9259                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9260                                 4, h->ioaccel2_blockFetchTable);
9261                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9262                 BUILD_BUG_ON(offsetof(struct CfgTable,
9263                                 io_accel_request_size_offset) != 0xb8);
9264                 h->ioaccel2_bft2_regs =
9265                         remap_pci_mem(pci_resource_start(h->pdev,
9266                                         cfg_base_addr_index) +
9267                                         cfg_offset + bft2_offset,
9268                                         ARRAY_SIZE(bft2) *
9269                                         sizeof(*h->ioaccel2_bft2_regs));
9270                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9271                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9272         }
9273         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9274         if (hpsa_wait_for_mode_change_ack(h)) {
9275                 dev_err(&h->pdev->dev,
9276                         "performant mode problem - enabling ioaccel mode\n");
9277                 return -ENODEV;
9278         }
9279         return 0;
9280 }
9281
9282 /* Free ioaccel1 mode command blocks and block fetch table */
9283 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9284 {
9285         if (h->ioaccel_cmd_pool) {
9286                 pci_free_consistent(h->pdev,
9287                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9288                         h->ioaccel_cmd_pool,
9289                         h->ioaccel_cmd_pool_dhandle);
9290                 h->ioaccel_cmd_pool = NULL;
9291                 h->ioaccel_cmd_pool_dhandle = 0;
9292         }
9293         kfree(h->ioaccel1_blockFetchTable);
9294         h->ioaccel1_blockFetchTable = NULL;
9295 }
9296
9297 /* Allocate ioaccel1 mode command blocks and block fetch table */
9298 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9299 {
9300         h->ioaccel_maxsg =
9301                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9302         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9303                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9304
9305         /* Command structures must be aligned on a 128-byte boundary
9306          * because the 7 lower bits of the address are used by the
9307          * hardware.
9308          */
9309         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9310                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9311         h->ioaccel_cmd_pool =
9312                 dma_alloc_coherent(&h->pdev->dev,
9313                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9314                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9315
9316         h->ioaccel1_blockFetchTable =
9317                 kmalloc(((h->ioaccel_maxsg + 1) *
9318                                 sizeof(u32)), GFP_KERNEL);
9319
9320         if ((h->ioaccel_cmd_pool == NULL) ||
9321                 (h->ioaccel1_blockFetchTable == NULL))
9322                 goto clean_up;
9323
9324         memset(h->ioaccel_cmd_pool, 0,
9325                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9326         return 0;
9327
9328 clean_up:
9329         hpsa_free_ioaccel1_cmd_and_bft(h);
9330         return -ENOMEM;
9331 }
9332
9333 /* Free ioaccel2 mode command blocks and block fetch table */
9334 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9335 {
9336         hpsa_free_ioaccel2_sg_chain_blocks(h);
9337
9338         if (h->ioaccel2_cmd_pool) {
9339                 pci_free_consistent(h->pdev,
9340                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9341                         h->ioaccel2_cmd_pool,
9342                         h->ioaccel2_cmd_pool_dhandle);
9343                 h->ioaccel2_cmd_pool = NULL;
9344                 h->ioaccel2_cmd_pool_dhandle = 0;
9345         }
9346         kfree(h->ioaccel2_blockFetchTable);
9347         h->ioaccel2_blockFetchTable = NULL;
9348 }
9349
9350 /* Allocate ioaccel2 mode command blocks and block fetch table */
9351 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9352 {
9353         int rc;
9354
9355         /* Allocate ioaccel2 mode command blocks and block fetch table */
9356
9357         h->ioaccel_maxsg =
9358                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9359         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9360                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9361
9362         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9363                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9364         h->ioaccel2_cmd_pool =
9365                 dma_alloc_coherent(&h->pdev->dev,
9366                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9367                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9368
9369         h->ioaccel2_blockFetchTable =
9370                 kmalloc(((h->ioaccel_maxsg + 1) *
9371                                 sizeof(u32)), GFP_KERNEL);
9372
9373         if ((h->ioaccel2_cmd_pool == NULL) ||
9374                 (h->ioaccel2_blockFetchTable == NULL)) {
9375                 rc = -ENOMEM;
9376                 goto clean_up;
9377         }
9378
9379         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9380         if (rc)
9381                 goto clean_up;
9382
9383         memset(h->ioaccel2_cmd_pool, 0,
9384                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9385         return 0;
9386
9387 clean_up:
9388         hpsa_free_ioaccel2_cmd_and_bft(h);
9389         return rc;
9390 }
9391
9392 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9393 static void hpsa_free_performant_mode(struct ctlr_info *h)
9394 {
9395         kfree(h->blockFetchTable);
9396         h->blockFetchTable = NULL;
9397         hpsa_free_reply_queues(h);
9398         hpsa_free_ioaccel1_cmd_and_bft(h);
9399         hpsa_free_ioaccel2_cmd_and_bft(h);
9400 }
9401
9402 /* return -ENODEV on error, 0 on success (or no action)
9403  * allocates numerous items that must be freed later
9404  */
9405 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9406 {
9407         u32 trans_support;
9408         unsigned long transMethod = CFGTBL_Trans_Performant |
9409                                         CFGTBL_Trans_use_short_tags;
9410         int i, rc;
9411
9412         if (hpsa_simple_mode)
9413                 return 0;
9414
9415         trans_support = readl(&(h->cfgtable->TransportSupport));
9416         if (!(trans_support & PERFORMANT_MODE))
9417                 return 0;
9418
9419         /* Check for I/O accelerator mode support */
9420         if (trans_support & CFGTBL_Trans_io_accel1) {
9421                 transMethod |= CFGTBL_Trans_io_accel1 |
9422                                 CFGTBL_Trans_enable_directed_msix;
9423                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9424                 if (rc)
9425                         return rc;
9426         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9427                 transMethod |= CFGTBL_Trans_io_accel2 |
9428                                 CFGTBL_Trans_enable_directed_msix;
9429                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9430                 if (rc)
9431                         return rc;
9432         }
9433
9434         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9435         hpsa_get_max_perf_mode_cmds(h);
9436         /* Performant mode ring buffer and supporting data structures */
9437         h->reply_queue_size = h->max_commands * sizeof(u64);
9438
9439         for (i = 0; i < h->nreply_queues; i++) {
9440                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9441                                                 h->reply_queue_size,
9442                                                 &h->reply_queue[i].busaddr,
9443                                                 GFP_KERNEL);
9444                 if (!h->reply_queue[i].head) {
9445                         rc = -ENOMEM;
9446                         goto clean1;    /* rq, ioaccel */
9447                 }
9448                 h->reply_queue[i].size = h->max_commands;
9449                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9450                 h->reply_queue[i].current_entry = 0;
9451         }
9452
9453         /* Need a block fetch table for performant mode */
9454         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9455                                 sizeof(u32)), GFP_KERNEL);
9456         if (!h->blockFetchTable) {
9457                 rc = -ENOMEM;
9458                 goto clean1;    /* rq, ioaccel */
9459         }
9460
9461         rc = hpsa_enter_performant_mode(h, trans_support);
9462         if (rc)
9463                 goto clean2;    /* bft, rq, ioaccel */
9464         return 0;
9465
9466 clean2: /* bft, rq, ioaccel */
9467         kfree(h->blockFetchTable);
9468         h->blockFetchTable = NULL;
9469 clean1: /* rq, ioaccel */
9470         hpsa_free_reply_queues(h);
9471         hpsa_free_ioaccel1_cmd_and_bft(h);
9472         hpsa_free_ioaccel2_cmd_and_bft(h);
9473         return rc;
9474 }
9475
9476 static int is_accelerated_cmd(struct CommandList *c)
9477 {
9478         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9479 }
9480
9481 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9482 {
9483         struct CommandList *c = NULL;
9484         int i, accel_cmds_out;
9485         int refcount;
9486
9487         do { /* wait for all outstanding ioaccel commands to drain out */
9488                 accel_cmds_out = 0;
9489                 for (i = 0; i < h->nr_cmds; i++) {
9490                         c = h->cmd_pool + i;
9491                         refcount = atomic_inc_return(&c->refcount);
9492                         if (refcount > 1) /* Command is allocated */
9493                                 accel_cmds_out += is_accelerated_cmd(c);
9494                         cmd_free(h, c);
9495                 }
9496                 if (accel_cmds_out <= 0)
9497                         break;
9498                 msleep(100);
9499         } while (1);
9500 }
9501
9502 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9503                                 struct hpsa_sas_port *hpsa_sas_port)
9504 {
9505         struct hpsa_sas_phy *hpsa_sas_phy;
9506         struct sas_phy *phy;
9507
9508         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9509         if (!hpsa_sas_phy)
9510                 return NULL;
9511
9512         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9513                 hpsa_sas_port->next_phy_index);
9514         if (!phy) {
9515                 kfree(hpsa_sas_phy);
9516                 return NULL;
9517         }
9518
9519         hpsa_sas_port->next_phy_index++;
9520         hpsa_sas_phy->phy = phy;
9521         hpsa_sas_phy->parent_port = hpsa_sas_port;
9522
9523         return hpsa_sas_phy;
9524 }
9525
9526 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9527 {
9528         struct sas_phy *phy = hpsa_sas_phy->phy;
9529
9530         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9531         if (hpsa_sas_phy->added_to_port)
9532                 list_del(&hpsa_sas_phy->phy_list_entry);
9533         sas_phy_delete(phy);
9534         kfree(hpsa_sas_phy);
9535 }
9536
9537 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9538 {
9539         int rc;
9540         struct hpsa_sas_port *hpsa_sas_port;
9541         struct sas_phy *phy;
9542         struct sas_identify *identify;
9543
9544         hpsa_sas_port = hpsa_sas_phy->parent_port;
9545         phy = hpsa_sas_phy->phy;
9546
9547         identify = &phy->identify;
9548         memset(identify, 0, sizeof(*identify));
9549         identify->sas_address = hpsa_sas_port->sas_address;
9550         identify->device_type = SAS_END_DEVICE;
9551         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9552         identify->target_port_protocols = SAS_PROTOCOL_STP;
9553         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9554         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9555         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9556         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9557         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9558
9559         rc = sas_phy_add(hpsa_sas_phy->phy);
9560         if (rc)
9561                 return rc;
9562
9563         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9564         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9565                         &hpsa_sas_port->phy_list_head);
9566         hpsa_sas_phy->added_to_port = true;
9567
9568         return 0;
9569 }
9570
9571 static int
9572         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9573                                 struct sas_rphy *rphy)
9574 {
9575         struct sas_identify *identify;
9576
9577         identify = &rphy->identify;
9578         identify->sas_address = hpsa_sas_port->sas_address;
9579         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9580         identify->target_port_protocols = SAS_PROTOCOL_STP;
9581
9582         return sas_rphy_add(rphy);
9583 }
9584
9585 static struct hpsa_sas_port
9586         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9587                                 u64 sas_address)
9588 {
9589         int rc;
9590         struct hpsa_sas_port *hpsa_sas_port;
9591         struct sas_port *port;
9592
9593         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9594         if (!hpsa_sas_port)
9595                 return NULL;
9596
9597         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9598         hpsa_sas_port->parent_node = hpsa_sas_node;
9599
9600         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9601         if (!port)
9602                 goto free_hpsa_port;
9603
9604         rc = sas_port_add(port);
9605         if (rc)
9606                 goto free_sas_port;
9607
9608         hpsa_sas_port->port = port;
9609         hpsa_sas_port->sas_address = sas_address;
9610         list_add_tail(&hpsa_sas_port->port_list_entry,
9611                         &hpsa_sas_node->port_list_head);
9612
9613         return hpsa_sas_port;
9614
9615 free_sas_port:
9616         sas_port_free(port);
9617 free_hpsa_port:
9618         kfree(hpsa_sas_port);
9619
9620         return NULL;
9621 }
9622
9623 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9624 {
9625         struct hpsa_sas_phy *hpsa_sas_phy;
9626         struct hpsa_sas_phy *next;
9627
9628         list_for_each_entry_safe(hpsa_sas_phy, next,
9629                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9630                 hpsa_free_sas_phy(hpsa_sas_phy);
9631
9632         sas_port_delete(hpsa_sas_port->port);
9633         list_del(&hpsa_sas_port->port_list_entry);
9634         kfree(hpsa_sas_port);
9635 }
9636
9637 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9638 {
9639         struct hpsa_sas_node *hpsa_sas_node;
9640
9641         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9642         if (hpsa_sas_node) {
9643                 hpsa_sas_node->parent_dev = parent_dev;
9644                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9645         }
9646
9647         return hpsa_sas_node;
9648 }
9649
9650 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9651 {
9652         struct hpsa_sas_port *hpsa_sas_port;
9653         struct hpsa_sas_port *next;
9654
9655         if (!hpsa_sas_node)
9656                 return;
9657
9658         list_for_each_entry_safe(hpsa_sas_port, next,
9659                         &hpsa_sas_node->port_list_head, port_list_entry)
9660                 hpsa_free_sas_port(hpsa_sas_port);
9661
9662         kfree(hpsa_sas_node);
9663 }
9664
9665 static struct hpsa_scsi_dev_t
9666         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9667                                         struct sas_rphy *rphy)
9668 {
9669         int i;
9670         struct hpsa_scsi_dev_t *device;
9671
9672         for (i = 0; i < h->ndevices; i++) {
9673                 device = h->dev[i];
9674                 if (!device->sas_port)
9675                         continue;
9676                 if (device->sas_port->rphy == rphy)
9677                         return device;
9678         }
9679
9680         return NULL;
9681 }
9682
9683 static int hpsa_add_sas_host(struct ctlr_info *h)
9684 {
9685         int rc;
9686         struct device *parent_dev;
9687         struct hpsa_sas_node *hpsa_sas_node;
9688         struct hpsa_sas_port *hpsa_sas_port;
9689         struct hpsa_sas_phy *hpsa_sas_phy;
9690
9691         parent_dev = &h->scsi_host->shost_dev;
9692
9693         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9694         if (!hpsa_sas_node)
9695                 return -ENOMEM;
9696
9697         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9698         if (!hpsa_sas_port) {
9699                 rc = -ENODEV;
9700                 goto free_sas_node;
9701         }
9702
9703         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9704         if (!hpsa_sas_phy) {
9705                 rc = -ENODEV;
9706                 goto free_sas_port;
9707         }
9708
9709         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9710         if (rc)
9711                 goto free_sas_phy;
9712
9713         h->sas_host = hpsa_sas_node;
9714
9715         return 0;
9716
9717 free_sas_phy:
9718         hpsa_free_sas_phy(hpsa_sas_phy);
9719 free_sas_port:
9720         hpsa_free_sas_port(hpsa_sas_port);
9721 free_sas_node:
9722         hpsa_free_sas_node(hpsa_sas_node);
9723
9724         return rc;
9725 }
9726
9727 static void hpsa_delete_sas_host(struct ctlr_info *h)
9728 {
9729         hpsa_free_sas_node(h->sas_host);
9730 }
9731
9732 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9733                                 struct hpsa_scsi_dev_t *device)
9734 {
9735         int rc;
9736         struct hpsa_sas_port *hpsa_sas_port;
9737         struct sas_rphy *rphy;
9738
9739         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9740         if (!hpsa_sas_port)
9741                 return -ENOMEM;
9742
9743         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9744         if (!rphy) {
9745                 rc = -ENODEV;
9746                 goto free_sas_port;
9747         }
9748
9749         hpsa_sas_port->rphy = rphy;
9750         device->sas_port = hpsa_sas_port;
9751
9752         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9753         if (rc)
9754                 goto free_sas_port;
9755
9756         return 0;
9757
9758 free_sas_port:
9759         hpsa_free_sas_port(hpsa_sas_port);
9760         device->sas_port = NULL;
9761
9762         return rc;
9763 }
9764
9765 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9766 {
9767         if (device->sas_port) {
9768                 hpsa_free_sas_port(device->sas_port);
9769                 device->sas_port = NULL;
9770         }
9771 }
9772
9773 static int
9774 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9775 {
9776         return 0;
9777 }
9778
9779 static int
9780 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9781 {
9782         struct Scsi_Host *shost = phy_to_shost(rphy);
9783         struct ctlr_info *h;
9784         struct hpsa_scsi_dev_t *sd;
9785
9786         if (!shost)
9787                 return -ENXIO;
9788
9789         h = shost_to_hba(shost);
9790
9791         if (!h)
9792                 return -ENXIO;
9793
9794         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9795         if (!sd)
9796                 return -ENXIO;
9797
9798         *identifier = sd->eli;
9799
9800         return 0;
9801 }
9802
9803 static int
9804 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9805 {
9806         return -ENXIO;
9807 }
9808
9809 static int
9810 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9811 {
9812         return 0;
9813 }
9814
9815 static int
9816 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9817 {
9818         return 0;
9819 }
9820
9821 static int
9822 hpsa_sas_phy_setup(struct sas_phy *phy)
9823 {
9824         return 0;
9825 }
9826
9827 static void
9828 hpsa_sas_phy_release(struct sas_phy *phy)
9829 {
9830 }
9831
9832 static int
9833 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9834 {
9835         return -EINVAL;
9836 }
9837
9838 static struct sas_function_template hpsa_sas_transport_functions = {
9839         .get_linkerrors = hpsa_sas_get_linkerrors,
9840         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9841         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9842         .phy_reset = hpsa_sas_phy_reset,
9843         .phy_enable = hpsa_sas_phy_enable,
9844         .phy_setup = hpsa_sas_phy_setup,
9845         .phy_release = hpsa_sas_phy_release,
9846         .set_phy_speed = hpsa_sas_phy_speed,
9847 };
9848
9849 /*
9850  *  This is it.  Register the PCI driver information for the cards we control
9851  *  the OS will call our registered routines when it finds one of our cards.
9852  */
9853 static int __init hpsa_init(void)
9854 {
9855         int rc;
9856
9857         hpsa_sas_transport_template =
9858                 sas_attach_transport(&hpsa_sas_transport_functions);
9859         if (!hpsa_sas_transport_template)
9860                 return -ENODEV;
9861
9862         rc = pci_register_driver(&hpsa_pci_driver);
9863
9864         if (rc)
9865                 sas_release_transport(hpsa_sas_transport_template);
9866
9867         return rc;
9868 }
9869
9870 static void __exit hpsa_cleanup(void)
9871 {
9872         pci_unregister_driver(&hpsa_pci_driver);
9873         sas_release_transport(hpsa_sas_transport_template);
9874 }
9875
9876 static void __attribute__((unused)) verify_offsets(void)
9877 {
9878 #define VERIFY_OFFSET(member, offset) \
9879         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9880
9881         VERIFY_OFFSET(structure_size, 0);
9882         VERIFY_OFFSET(volume_blk_size, 4);
9883         VERIFY_OFFSET(volume_blk_cnt, 8);
9884         VERIFY_OFFSET(phys_blk_shift, 16);
9885         VERIFY_OFFSET(parity_rotation_shift, 17);
9886         VERIFY_OFFSET(strip_size, 18);
9887         VERIFY_OFFSET(disk_starting_blk, 20);
9888         VERIFY_OFFSET(disk_blk_cnt, 28);
9889         VERIFY_OFFSET(data_disks_per_row, 36);
9890         VERIFY_OFFSET(metadata_disks_per_row, 38);
9891         VERIFY_OFFSET(row_cnt, 40);
9892         VERIFY_OFFSET(layout_map_count, 42);
9893         VERIFY_OFFSET(flags, 44);
9894         VERIFY_OFFSET(dekindex, 46);
9895         /* VERIFY_OFFSET(reserved, 48 */
9896         VERIFY_OFFSET(data, 64);
9897
9898 #undef VERIFY_OFFSET
9899
9900 #define VERIFY_OFFSET(member, offset) \
9901         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9902
9903         VERIFY_OFFSET(IU_type, 0);
9904         VERIFY_OFFSET(direction, 1);
9905         VERIFY_OFFSET(reply_queue, 2);
9906         /* VERIFY_OFFSET(reserved1, 3);  */
9907         VERIFY_OFFSET(scsi_nexus, 4);
9908         VERIFY_OFFSET(Tag, 8);
9909         VERIFY_OFFSET(cdb, 16);
9910         VERIFY_OFFSET(cciss_lun, 32);
9911         VERIFY_OFFSET(data_len, 40);
9912         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9913         VERIFY_OFFSET(sg_count, 45);
9914         /* VERIFY_OFFSET(reserved3 */
9915         VERIFY_OFFSET(err_ptr, 48);
9916         VERIFY_OFFSET(err_len, 56);
9917         /* VERIFY_OFFSET(reserved4  */
9918         VERIFY_OFFSET(sg, 64);
9919
9920 #undef VERIFY_OFFSET
9921
9922 #define VERIFY_OFFSET(member, offset) \
9923         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9924
9925         VERIFY_OFFSET(dev_handle, 0x00);
9926         VERIFY_OFFSET(reserved1, 0x02);
9927         VERIFY_OFFSET(function, 0x03);
9928         VERIFY_OFFSET(reserved2, 0x04);
9929         VERIFY_OFFSET(err_info, 0x0C);
9930         VERIFY_OFFSET(reserved3, 0x10);
9931         VERIFY_OFFSET(err_info_len, 0x12);
9932         VERIFY_OFFSET(reserved4, 0x13);
9933         VERIFY_OFFSET(sgl_offset, 0x14);
9934         VERIFY_OFFSET(reserved5, 0x15);
9935         VERIFY_OFFSET(transfer_len, 0x1C);
9936         VERIFY_OFFSET(reserved6, 0x20);
9937         VERIFY_OFFSET(io_flags, 0x24);
9938         VERIFY_OFFSET(reserved7, 0x26);
9939         VERIFY_OFFSET(LUN, 0x34);
9940         VERIFY_OFFSET(control, 0x3C);
9941         VERIFY_OFFSET(CDB, 0x40);
9942         VERIFY_OFFSET(reserved8, 0x50);
9943         VERIFY_OFFSET(host_context_flags, 0x60);
9944         VERIFY_OFFSET(timeout_sec, 0x62);
9945         VERIFY_OFFSET(ReplyQueue, 0x64);
9946         VERIFY_OFFSET(reserved9, 0x65);
9947         VERIFY_OFFSET(tag, 0x68);
9948         VERIFY_OFFSET(host_addr, 0x70);
9949         VERIFY_OFFSET(CISS_LUN, 0x78);
9950         VERIFY_OFFSET(SG, 0x78 + 8);
9951 #undef VERIFY_OFFSET
9952 }
9953
9954 module_init(hpsa_init);
9955 module_exit(hpsa_cleanup);