Merge tag 'reset-for-v5.3' of git://git.pengutronix.de/git/pza/linux into arm/drivers
[sfrench/cifs-2.6.git] / drivers / rtc / rtc-cmos.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
61 static inline int cmos_use_acpi_alarm(void)
62 {
63         return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
67 static inline int cmos_use_acpi_alarm(void)
68 {
69         return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74         struct rtc_device       *rtc;
75         struct device           *dev;
76         int                     irq;
77         struct resource         *iomem;
78         time64_t                alarm_expires;
79
80         void                    (*wake_on)(struct device *);
81         void                    (*wake_off)(struct device *);
82
83         u8                      enabled_wake;
84         u8                      suspend_ctrl;
85
86         /* newer hardware extends the original register set */
87         u8                      day_alrm;
88         u8                      mon_alrm;
89         u8                      century;
90
91         struct rtc_wkalrm       saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)         ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
104
105 static inline int is_intr(u8 rtc_intr)
106 {
107         if (!(rtc_intr & RTC_IRQF))
108                 return 0;
109         return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
128 static inline int is_hpet_enabled(void)
129 {
130         return 0;
131 }
132
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135         return 0;
136 }
137
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140         return 0;
141 }
142
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146         return 0;
147 }
148
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151         return 0;
152 }
153
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156         return 0;
157 }
158
159 static inline int hpet_rtc_timer_init(void)
160 {
161         return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168         return 0;
169 }
170
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173         return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
180 {
181         return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2       true
193
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196         outb(addr, RTC_PORT(2));
197         return inb(RTC_PORT(3));
198 }
199
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202         outb(addr, RTC_PORT(2));
203         outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2       false
209
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212         return 0;
213 }
214
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225         /*
226          * If pm_trace abused the RTC for storage, set the timespec to 0,
227          * which tells the caller that this RTC value is unusable.
228          */
229         if (!pm_trace_rtc_valid())
230                 return -EIO;
231
232         /* REVISIT:  if the clock has a "century" register, use
233          * that instead of the heuristic in mc146818_get_time().
234          * That'll make Y3K compatility (year > 2070) easy!
235          */
236         mc146818_get_time(t);
237         return 0;
238 }
239
240 static int cmos_set_time(struct device *dev, struct rtc_time *t)
241 {
242         /* REVISIT:  set the "century" register if available
243          *
244          * NOTE: this ignores the issue whereby updating the seconds
245          * takes effect exactly 500ms after we write the register.
246          * (Also queueing and other delays before we get this far.)
247          */
248         return mc146818_set_time(t);
249 }
250
251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252 {
253         struct cmos_rtc *cmos = dev_get_drvdata(dev);
254         unsigned char   rtc_control;
255
256         /* This not only a rtc_op, but also called directly */
257         if (!is_valid_irq(cmos->irq))
258                 return -EIO;
259
260         /* Basic alarms only support hour, minute, and seconds fields.
261          * Some also support day and month, for alarms up to a year in
262          * the future.
263          */
264
265         spin_lock_irq(&rtc_lock);
266         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270         if (cmos->day_alrm) {
271                 /* ignore upper bits on readback per ACPI spec */
272                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273                 if (!t->time.tm_mday)
274                         t->time.tm_mday = -1;
275
276                 if (cmos->mon_alrm) {
277                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278                         if (!t->time.tm_mon)
279                                 t->time.tm_mon = -1;
280                 }
281         }
282
283         rtc_control = CMOS_READ(RTC_CONTROL);
284         spin_unlock_irq(&rtc_lock);
285
286         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287                 if (((unsigned)t->time.tm_sec) < 0x60)
288                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
289                 else
290                         t->time.tm_sec = -1;
291                 if (((unsigned)t->time.tm_min) < 0x60)
292                         t->time.tm_min = bcd2bin(t->time.tm_min);
293                 else
294                         t->time.tm_min = -1;
295                 if (((unsigned)t->time.tm_hour) < 0x24)
296                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
297                 else
298                         t->time.tm_hour = -1;
299
300                 if (cmos->day_alrm) {
301                         if (((unsigned)t->time.tm_mday) <= 0x31)
302                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303                         else
304                                 t->time.tm_mday = -1;
305
306                         if (cmos->mon_alrm) {
307                                 if (((unsigned)t->time.tm_mon) <= 0x12)
308                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309                                 else
310                                         t->time.tm_mon = -1;
311                         }
312                 }
313         }
314
315         t->enabled = !!(rtc_control & RTC_AIE);
316         t->pending = 0;
317
318         return 0;
319 }
320
321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322 {
323         unsigned char   rtc_intr;
324
325         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326          * allegedly some older rtcs need that to handle irqs properly
327          */
328         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
330         if (use_hpet_alarm())
331                 return;
332
333         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334         if (is_intr(rtc_intr))
335                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336 }
337
338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339 {
340         unsigned char   rtc_control;
341
342         /* flush any pending IRQ status, notably for update irqs,
343          * before we enable new IRQs
344          */
345         rtc_control = CMOS_READ(RTC_CONTROL);
346         cmos_checkintr(cmos, rtc_control);
347
348         rtc_control |= mask;
349         CMOS_WRITE(rtc_control, RTC_CONTROL);
350         if (use_hpet_alarm())
351                 hpet_set_rtc_irq_bit(mask);
352
353         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354                 if (cmos->wake_on)
355                         cmos->wake_on(cmos->dev);
356         }
357
358         cmos_checkintr(cmos, rtc_control);
359 }
360
361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362 {
363         unsigned char   rtc_control;
364
365         rtc_control = CMOS_READ(RTC_CONTROL);
366         rtc_control &= ~mask;
367         CMOS_WRITE(rtc_control, RTC_CONTROL);
368         if (use_hpet_alarm())
369                 hpet_mask_rtc_irq_bit(mask);
370
371         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372                 if (cmos->wake_off)
373                         cmos->wake_off(cmos->dev);
374         }
375
376         cmos_checkintr(cmos, rtc_control);
377 }
378
379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380 {
381         struct cmos_rtc *cmos = dev_get_drvdata(dev);
382         struct rtc_time now;
383
384         cmos_read_time(dev, &now);
385
386         if (!cmos->day_alrm) {
387                 time64_t t_max_date;
388                 time64_t t_alrm;
389
390                 t_max_date = rtc_tm_to_time64(&now);
391                 t_max_date += 24 * 60 * 60 - 1;
392                 t_alrm = rtc_tm_to_time64(&t->time);
393                 if (t_alrm > t_max_date) {
394                         dev_err(dev,
395                                 "Alarms can be up to one day in the future\n");
396                         return -EINVAL;
397                 }
398         } else if (!cmos->mon_alrm) {
399                 struct rtc_time max_date = now;
400                 time64_t t_max_date;
401                 time64_t t_alrm;
402                 int max_mday;
403
404                 if (max_date.tm_mon == 11) {
405                         max_date.tm_mon = 0;
406                         max_date.tm_year += 1;
407                 } else {
408                         max_date.tm_mon += 1;
409                 }
410                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411                 if (max_date.tm_mday > max_mday)
412                         max_date.tm_mday = max_mday;
413
414                 t_max_date = rtc_tm_to_time64(&max_date);
415                 t_max_date -= 1;
416                 t_alrm = rtc_tm_to_time64(&t->time);
417                 if (t_alrm > t_max_date) {
418                         dev_err(dev,
419                                 "Alarms can be up to one month in the future\n");
420                         return -EINVAL;
421                 }
422         } else {
423                 struct rtc_time max_date = now;
424                 time64_t t_max_date;
425                 time64_t t_alrm;
426                 int max_mday;
427
428                 max_date.tm_year += 1;
429                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430                 if (max_date.tm_mday > max_mday)
431                         max_date.tm_mday = max_mday;
432
433                 t_max_date = rtc_tm_to_time64(&max_date);
434                 t_max_date -= 1;
435                 t_alrm = rtc_tm_to_time64(&t->time);
436                 if (t_alrm > t_max_date) {
437                         dev_err(dev,
438                                 "Alarms can be up to one year in the future\n");
439                         return -EINVAL;
440                 }
441         }
442
443         return 0;
444 }
445
446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447 {
448         struct cmos_rtc *cmos = dev_get_drvdata(dev);
449         unsigned char mon, mday, hrs, min, sec, rtc_control;
450         int ret;
451
452         /* This not only a rtc_op, but also called directly */
453         if (!is_valid_irq(cmos->irq))
454                 return -EIO;
455
456         ret = cmos_validate_alarm(dev, t);
457         if (ret < 0)
458                 return ret;
459
460         mon = t->time.tm_mon + 1;
461         mday = t->time.tm_mday;
462         hrs = t->time.tm_hour;
463         min = t->time.tm_min;
464         sec = t->time.tm_sec;
465
466         rtc_control = CMOS_READ(RTC_CONTROL);
467         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468                 /* Writing 0xff means "don't care" or "match all".  */
469                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472                 min = (min < 60) ? bin2bcd(min) : 0xff;
473                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474         }
475
476         spin_lock_irq(&rtc_lock);
477
478         /* next rtc irq must not be from previous alarm setting */
479         cmos_irq_disable(cmos, RTC_AIE);
480
481         /* update alarm */
482         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483         CMOS_WRITE(min, RTC_MINUTES_ALARM);
484         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486         /* the system may support an "enhanced" alarm */
487         if (cmos->day_alrm) {
488                 CMOS_WRITE(mday, cmos->day_alrm);
489                 if (cmos->mon_alrm)
490                         CMOS_WRITE(mon, cmos->mon_alrm);
491         }
492
493         if (use_hpet_alarm()) {
494                 /*
495                  * FIXME the HPET alarm glue currently ignores day_alrm
496                  * and mon_alrm ...
497                  */
498                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499                                     t->time.tm_sec);
500         }
501
502         if (t->enabled)
503                 cmos_irq_enable(cmos, RTC_AIE);
504
505         spin_unlock_irq(&rtc_lock);
506
507         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
509         return 0;
510 }
511
512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513 {
514         struct cmos_rtc *cmos = dev_get_drvdata(dev);
515         unsigned long   flags;
516
517         spin_lock_irqsave(&rtc_lock, flags);
518
519         if (enabled)
520                 cmos_irq_enable(cmos, RTC_AIE);
521         else
522                 cmos_irq_disable(cmos, RTC_AIE);
523
524         spin_unlock_irqrestore(&rtc_lock, flags);
525         return 0;
526 }
527
528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529
530 static int cmos_procfs(struct device *dev, struct seq_file *seq)
531 {
532         struct cmos_rtc *cmos = dev_get_drvdata(dev);
533         unsigned char   rtc_control, valid;
534
535         spin_lock_irq(&rtc_lock);
536         rtc_control = CMOS_READ(RTC_CONTROL);
537         valid = CMOS_READ(RTC_VALID);
538         spin_unlock_irq(&rtc_lock);
539
540         /* NOTE:  at least ICH6 reports battery status using a different
541          * (non-RTC) bit; and SQWE is ignored on many current systems.
542          */
543         seq_printf(seq,
544                    "periodic_IRQ\t: %s\n"
545                    "update_IRQ\t: %s\n"
546                    "HPET_emulated\t: %s\n"
547                    // "square_wave\t: %s\n"
548                    "BCD\t\t: %s\n"
549                    "DST_enable\t: %s\n"
550                    "periodic_freq\t: %d\n"
551                    "batt_status\t: %s\n",
552                    (rtc_control & RTC_PIE) ? "yes" : "no",
553                    (rtc_control & RTC_UIE) ? "yes" : "no",
554                    use_hpet_alarm() ? "yes" : "no",
555                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
556                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
558                    cmos->rtc->irq_freq,
559                    (valid & RTC_VRT) ? "okay" : "dead");
560
561         return 0;
562 }
563
564 #else
565 #define cmos_procfs     NULL
566 #endif
567
568 static const struct rtc_class_ops cmos_rtc_ops = {
569         .read_time              = cmos_read_time,
570         .set_time               = cmos_set_time,
571         .read_alarm             = cmos_read_alarm,
572         .set_alarm              = cmos_set_alarm,
573         .proc                   = cmos_procfs,
574         .alarm_irq_enable       = cmos_alarm_irq_enable,
575 };
576
577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578         .read_time              = cmos_read_time,
579         .set_time               = cmos_set_time,
580         .proc                   = cmos_procfs,
581 };
582
583 /*----------------------------------------------------------------*/
584
585 /*
586  * All these chips have at least 64 bytes of address space, shared by
587  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
588  * by boot firmware.  Modern chips have 128 or 256 bytes.
589  */
590
591 #define NVRAM_OFFSET    (RTC_REG_D + 1)
592
593 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594                            size_t count)
595 {
596         unsigned char *buf = val;
597         int     retval;
598
599         off += NVRAM_OFFSET;
600         spin_lock_irq(&rtc_lock);
601         for (retval = 0; count; count--, off++, retval++) {
602                 if (off < 128)
603                         *buf++ = CMOS_READ(off);
604                 else if (can_bank2)
605                         *buf++ = cmos_read_bank2(off);
606                 else
607                         break;
608         }
609         spin_unlock_irq(&rtc_lock);
610
611         return retval;
612 }
613
614 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615                             size_t count)
616 {
617         struct cmos_rtc *cmos = priv;
618         unsigned char   *buf = val;
619         int             retval;
620
621         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
622          * checksum on part of the NVRAM data.  That's currently ignored
623          * here.  If userspace is smart enough to know what fields of
624          * NVRAM to update, updating checksums is also part of its job.
625          */
626         off += NVRAM_OFFSET;
627         spin_lock_irq(&rtc_lock);
628         for (retval = 0; count; count--, off++, retval++) {
629                 /* don't trash RTC registers */
630                 if (off == cmos->day_alrm
631                                 || off == cmos->mon_alrm
632                                 || off == cmos->century)
633                         buf++;
634                 else if (off < 128)
635                         CMOS_WRITE(*buf++, off);
636                 else if (can_bank2)
637                         cmos_write_bank2(*buf++, off);
638                 else
639                         break;
640         }
641         spin_unlock_irq(&rtc_lock);
642
643         return retval;
644 }
645
646 /*----------------------------------------------------------------*/
647
648 static struct cmos_rtc  cmos_rtc;
649
650 static irqreturn_t cmos_interrupt(int irq, void *p)
651 {
652         u8              irqstat;
653         u8              rtc_control;
654
655         spin_lock(&rtc_lock);
656
657         /* When the HPET interrupt handler calls us, the interrupt
658          * status is passed as arg1 instead of the irq number.  But
659          * always clear irq status, even when HPET is in the way.
660          *
661          * Note that HPET and RTC are almost certainly out of phase,
662          * giving different IRQ status ...
663          */
664         irqstat = CMOS_READ(RTC_INTR_FLAGS);
665         rtc_control = CMOS_READ(RTC_CONTROL);
666         if (use_hpet_alarm())
667                 irqstat = (unsigned long)irq & 0xF0;
668
669         /* If we were suspended, RTC_CONTROL may not be accurate since the
670          * bios may have cleared it.
671          */
672         if (!cmos_rtc.suspend_ctrl)
673                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
674         else
675                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
676
677         /* All Linux RTC alarms should be treated as if they were oneshot.
678          * Similar code may be needed in system wakeup paths, in case the
679          * alarm woke the system.
680          */
681         if (irqstat & RTC_AIE) {
682                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
683                 rtc_control &= ~RTC_AIE;
684                 CMOS_WRITE(rtc_control, RTC_CONTROL);
685                 if (use_hpet_alarm())
686                         hpet_mask_rtc_irq_bit(RTC_AIE);
687                 CMOS_READ(RTC_INTR_FLAGS);
688         }
689         spin_unlock(&rtc_lock);
690
691         if (is_intr(irqstat)) {
692                 rtc_update_irq(p, 1, irqstat);
693                 return IRQ_HANDLED;
694         } else
695                 return IRQ_NONE;
696 }
697
698 #ifdef  CONFIG_PNP
699 #define INITSECTION
700
701 #else
702 #define INITSECTION     __init
703 #endif
704
705 static int INITSECTION
706 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
707 {
708         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
709         int                             retval = 0;
710         unsigned char                   rtc_control;
711         unsigned                        address_space;
712         u32                             flags = 0;
713         struct nvmem_config nvmem_cfg = {
714                 .name = "cmos_nvram",
715                 .word_size = 1,
716                 .stride = 1,
717                 .reg_read = cmos_nvram_read,
718                 .reg_write = cmos_nvram_write,
719                 .priv = &cmos_rtc,
720         };
721
722         /* there can be only one ... */
723         if (cmos_rtc.dev)
724                 return -EBUSY;
725
726         if (!ports)
727                 return -ENODEV;
728
729         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
730          *
731          * REVISIT non-x86 systems may instead use memory space resources
732          * (needing ioremap etc), not i/o space resources like this ...
733          */
734         if (RTC_IOMAPPED)
735                 ports = request_region(ports->start, resource_size(ports),
736                                        driver_name);
737         else
738                 ports = request_mem_region(ports->start, resource_size(ports),
739                                            driver_name);
740         if (!ports) {
741                 dev_dbg(dev, "i/o registers already in use\n");
742                 return -EBUSY;
743         }
744
745         cmos_rtc.irq = rtc_irq;
746         cmos_rtc.iomem = ports;
747
748         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
749          * driver did, but don't reject unknown configs.   Old hardware
750          * won't address 128 bytes.  Newer chips have multiple banks,
751          * though they may not be listed in one I/O resource.
752          */
753 #if     defined(CONFIG_ATARI)
754         address_space = 64;
755 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
756                         || defined(__sparc__) || defined(__mips__) \
757                         || defined(__powerpc__)
758         address_space = 128;
759 #else
760 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
761         address_space = 128;
762 #endif
763         if (can_bank2 && ports->end > (ports->start + 1))
764                 address_space = 256;
765
766         /* For ACPI systems extension info comes from the FADT.  On others,
767          * board specific setup provides it as appropriate.  Systems where
768          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
769          * some almost-clones) can provide hooks to make that behave.
770          *
771          * Note that ACPI doesn't preclude putting these registers into
772          * "extended" areas of the chip, including some that we won't yet
773          * expect CMOS_READ and friends to handle.
774          */
775         if (info) {
776                 if (info->flags)
777                         flags = info->flags;
778                 if (info->address_space)
779                         address_space = info->address_space;
780
781                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
782                         cmos_rtc.day_alrm = info->rtc_day_alarm;
783                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
784                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
785                 if (info->rtc_century && info->rtc_century < 128)
786                         cmos_rtc.century = info->rtc_century;
787
788                 if (info->wake_on && info->wake_off) {
789                         cmos_rtc.wake_on = info->wake_on;
790                         cmos_rtc.wake_off = info->wake_off;
791                 }
792         }
793
794         cmos_rtc.dev = dev;
795         dev_set_drvdata(dev, &cmos_rtc);
796
797         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
798         if (IS_ERR(cmos_rtc.rtc)) {
799                 retval = PTR_ERR(cmos_rtc.rtc);
800                 goto cleanup0;
801         }
802
803         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
804
805         spin_lock_irq(&rtc_lock);
806
807         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
808                 /* force periodic irq to CMOS reset default of 1024Hz;
809                  *
810                  * REVISIT it's been reported that at least one x86_64 ALI
811                  * mobo doesn't use 32KHz here ... for portability we might
812                  * need to do something about other clock frequencies.
813                  */
814                 cmos_rtc.rtc->irq_freq = 1024;
815                 if (use_hpet_alarm())
816                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
817                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
818         }
819
820         /* disable irqs */
821         if (is_valid_irq(rtc_irq))
822                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
823
824         rtc_control = CMOS_READ(RTC_CONTROL);
825
826         spin_unlock_irq(&rtc_lock);
827
828         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
829                 dev_warn(dev, "only 24-hr supported\n");
830                 retval = -ENXIO;
831                 goto cleanup1;
832         }
833
834         if (use_hpet_alarm())
835                 hpet_rtc_timer_init();
836
837         if (is_valid_irq(rtc_irq)) {
838                 irq_handler_t rtc_cmos_int_handler;
839
840                 if (use_hpet_alarm()) {
841                         rtc_cmos_int_handler = hpet_rtc_interrupt;
842                         retval = hpet_register_irq_handler(cmos_interrupt);
843                         if (retval) {
844                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
845                                 dev_warn(dev, "hpet_register_irq_handler "
846                                                 " failed in rtc_init().");
847                                 goto cleanup1;
848                         }
849                 } else
850                         rtc_cmos_int_handler = cmos_interrupt;
851
852                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
853                                 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
854                                 cmos_rtc.rtc);
855                 if (retval < 0) {
856                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
857                         goto cleanup1;
858                 }
859
860                 cmos_rtc.rtc->ops = &cmos_rtc_ops;
861         } else {
862                 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
863         }
864
865         cmos_rtc.rtc->nvram_old_abi = true;
866         retval = rtc_register_device(cmos_rtc.rtc);
867         if (retval)
868                 goto cleanup2;
869
870         /* export at least the first block of NVRAM */
871         nvmem_cfg.size = address_space - NVRAM_OFFSET;
872         if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
873                 dev_err(dev, "nvmem registration failed\n");
874
875         dev_info(dev, "%s%s, %d bytes nvram%s\n",
876                  !is_valid_irq(rtc_irq) ? "no alarms" :
877                  cmos_rtc.mon_alrm ? "alarms up to one year" :
878                  cmos_rtc.day_alrm ? "alarms up to one month" :
879                  "alarms up to one day",
880                  cmos_rtc.century ? ", y3k" : "",
881                  nvmem_cfg.size,
882                  use_hpet_alarm() ? ", hpet irqs" : "");
883
884         return 0;
885
886 cleanup2:
887         if (is_valid_irq(rtc_irq))
888                 free_irq(rtc_irq, cmos_rtc.rtc);
889 cleanup1:
890         cmos_rtc.dev = NULL;
891 cleanup0:
892         if (RTC_IOMAPPED)
893                 release_region(ports->start, resource_size(ports));
894         else
895                 release_mem_region(ports->start, resource_size(ports));
896         return retval;
897 }
898
899 static void cmos_do_shutdown(int rtc_irq)
900 {
901         spin_lock_irq(&rtc_lock);
902         if (is_valid_irq(rtc_irq))
903                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
904         spin_unlock_irq(&rtc_lock);
905 }
906
907 static void cmos_do_remove(struct device *dev)
908 {
909         struct cmos_rtc *cmos = dev_get_drvdata(dev);
910         struct resource *ports;
911
912         cmos_do_shutdown(cmos->irq);
913
914         if (is_valid_irq(cmos->irq)) {
915                 free_irq(cmos->irq, cmos->rtc);
916                 if (use_hpet_alarm())
917                         hpet_unregister_irq_handler(cmos_interrupt);
918         }
919
920         cmos->rtc = NULL;
921
922         ports = cmos->iomem;
923         if (RTC_IOMAPPED)
924                 release_region(ports->start, resource_size(ports));
925         else
926                 release_mem_region(ports->start, resource_size(ports));
927         cmos->iomem = NULL;
928
929         cmos->dev = NULL;
930 }
931
932 static int cmos_aie_poweroff(struct device *dev)
933 {
934         struct cmos_rtc *cmos = dev_get_drvdata(dev);
935         struct rtc_time now;
936         time64_t t_now;
937         int retval = 0;
938         unsigned char rtc_control;
939
940         if (!cmos->alarm_expires)
941                 return -EINVAL;
942
943         spin_lock_irq(&rtc_lock);
944         rtc_control = CMOS_READ(RTC_CONTROL);
945         spin_unlock_irq(&rtc_lock);
946
947         /* We only care about the situation where AIE is disabled. */
948         if (rtc_control & RTC_AIE)
949                 return -EBUSY;
950
951         cmos_read_time(dev, &now);
952         t_now = rtc_tm_to_time64(&now);
953
954         /*
955          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
956          * automatically right after shutdown on some buggy boxes.
957          * This automatic rebooting issue won't happen when the alarm
958          * time is larger than now+1 seconds.
959          *
960          * If the alarm time is equal to now+1 seconds, the issue can be
961          * prevented by cancelling the alarm.
962          */
963         if (cmos->alarm_expires == t_now + 1) {
964                 struct rtc_wkalrm alarm;
965
966                 /* Cancel the AIE timer by configuring the past time. */
967                 rtc_time64_to_tm(t_now - 1, &alarm.time);
968                 alarm.enabled = 0;
969                 retval = cmos_set_alarm(dev, &alarm);
970         } else if (cmos->alarm_expires > t_now + 1) {
971                 retval = -EBUSY;
972         }
973
974         return retval;
975 }
976
977 static int cmos_suspend(struct device *dev)
978 {
979         struct cmos_rtc *cmos = dev_get_drvdata(dev);
980         unsigned char   tmp;
981
982         /* only the alarm might be a wakeup event source */
983         spin_lock_irq(&rtc_lock);
984         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
985         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
986                 unsigned char   mask;
987
988                 if (device_may_wakeup(dev))
989                         mask = RTC_IRQMASK & ~RTC_AIE;
990                 else
991                         mask = RTC_IRQMASK;
992                 tmp &= ~mask;
993                 CMOS_WRITE(tmp, RTC_CONTROL);
994                 if (use_hpet_alarm())
995                         hpet_mask_rtc_irq_bit(mask);
996                 cmos_checkintr(cmos, tmp);
997         }
998         spin_unlock_irq(&rtc_lock);
999
1000         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1001                 cmos->enabled_wake = 1;
1002                 if (cmos->wake_on)
1003                         cmos->wake_on(dev);
1004                 else
1005                         enable_irq_wake(cmos->irq);
1006         }
1007
1008         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1009
1010         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1011                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1012                         tmp);
1013
1014         return 0;
1015 }
1016
1017 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1018  * after a detour through G3 "mechanical off", although the ACPI spec
1019  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1020  * distinctions between S4 and S5 are pointless.  So when the hardware
1021  * allows, don't draw that distinction.
1022  */
1023 static inline int cmos_poweroff(struct device *dev)
1024 {
1025         if (!IS_ENABLED(CONFIG_PM))
1026                 return -ENOSYS;
1027
1028         return cmos_suspend(dev);
1029 }
1030
1031 static void cmos_check_wkalrm(struct device *dev)
1032 {
1033         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1034         struct rtc_wkalrm current_alarm;
1035         time64_t t_now;
1036         time64_t t_current_expires;
1037         time64_t t_saved_expires;
1038         struct rtc_time now;
1039
1040         /* Check if we have RTC Alarm armed */
1041         if (!(cmos->suspend_ctrl & RTC_AIE))
1042                 return;
1043
1044         cmos_read_time(dev, &now);
1045         t_now = rtc_tm_to_time64(&now);
1046
1047         /*
1048          * ACPI RTC wake event is cleared after resume from STR,
1049          * ACK the rtc irq here
1050          */
1051         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1052                 cmos_interrupt(0, (void *)cmos->rtc);
1053                 return;
1054         }
1055
1056         cmos_read_alarm(dev, &current_alarm);
1057         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1058         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1059         if (t_current_expires != t_saved_expires ||
1060             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1061                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1062         }
1063 }
1064
1065 static void cmos_check_acpi_rtc_status(struct device *dev,
1066                                        unsigned char *rtc_control);
1067
1068 static int __maybe_unused cmos_resume(struct device *dev)
1069 {
1070         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1071         unsigned char tmp;
1072
1073         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1074                 if (cmos->wake_off)
1075                         cmos->wake_off(dev);
1076                 else
1077                         disable_irq_wake(cmos->irq);
1078                 cmos->enabled_wake = 0;
1079         }
1080
1081         /* The BIOS might have changed the alarm, restore it */
1082         cmos_check_wkalrm(dev);
1083
1084         spin_lock_irq(&rtc_lock);
1085         tmp = cmos->suspend_ctrl;
1086         cmos->suspend_ctrl = 0;
1087         /* re-enable any irqs previously active */
1088         if (tmp & RTC_IRQMASK) {
1089                 unsigned char   mask;
1090
1091                 if (device_may_wakeup(dev) && use_hpet_alarm())
1092                         hpet_rtc_timer_init();
1093
1094                 do {
1095                         CMOS_WRITE(tmp, RTC_CONTROL);
1096                         if (use_hpet_alarm())
1097                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1098
1099                         mask = CMOS_READ(RTC_INTR_FLAGS);
1100                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1101                         if (!use_hpet_alarm() || !is_intr(mask))
1102                                 break;
1103
1104                         /* force one-shot behavior if HPET blocked
1105                          * the wake alarm's irq
1106                          */
1107                         rtc_update_irq(cmos->rtc, 1, mask);
1108                         tmp &= ~RTC_AIE;
1109                         hpet_mask_rtc_irq_bit(RTC_AIE);
1110                 } while (mask & RTC_AIE);
1111
1112                 if (tmp & RTC_AIE)
1113                         cmos_check_acpi_rtc_status(dev, &tmp);
1114         }
1115         spin_unlock_irq(&rtc_lock);
1116
1117         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1118
1119         return 0;
1120 }
1121
1122 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1123
1124 /*----------------------------------------------------------------*/
1125
1126 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1127  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1128  * probably list them in similar PNPBIOS tables; so PNP is more common.
1129  *
1130  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1131  * predate even PNPBIOS should set up platform_bus devices.
1132  */
1133
1134 #ifdef  CONFIG_ACPI
1135
1136 #include <linux/acpi.h>
1137
1138 static u32 rtc_handler(void *context)
1139 {
1140         struct device *dev = context;
1141         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1142         unsigned char rtc_control = 0;
1143         unsigned char rtc_intr;
1144         unsigned long flags;
1145
1146
1147         /*
1148          * Always update rtc irq when ACPI is used as RTC Alarm.
1149          * Or else, ACPI SCI is enabled during suspend/resume only,
1150          * update rtc irq in that case.
1151          */
1152         if (cmos_use_acpi_alarm())
1153                 cmos_interrupt(0, (void *)cmos->rtc);
1154         else {
1155                 /* Fix me: can we use cmos_interrupt() here as well? */
1156                 spin_lock_irqsave(&rtc_lock, flags);
1157                 if (cmos_rtc.suspend_ctrl)
1158                         rtc_control = CMOS_READ(RTC_CONTROL);
1159                 if (rtc_control & RTC_AIE) {
1160                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1161                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1162                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1163                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1164                 }
1165                 spin_unlock_irqrestore(&rtc_lock, flags);
1166         }
1167
1168         pm_wakeup_hard_event(dev);
1169         acpi_clear_event(ACPI_EVENT_RTC);
1170         acpi_disable_event(ACPI_EVENT_RTC, 0);
1171         return ACPI_INTERRUPT_HANDLED;
1172 }
1173
1174 static inline void rtc_wake_setup(struct device *dev)
1175 {
1176         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1177         /*
1178          * After the RTC handler is installed, the Fixed_RTC event should
1179          * be disabled. Only when the RTC alarm is set will it be enabled.
1180          */
1181         acpi_clear_event(ACPI_EVENT_RTC);
1182         acpi_disable_event(ACPI_EVENT_RTC, 0);
1183 }
1184
1185 static void rtc_wake_on(struct device *dev)
1186 {
1187         acpi_clear_event(ACPI_EVENT_RTC);
1188         acpi_enable_event(ACPI_EVENT_RTC, 0);
1189 }
1190
1191 static void rtc_wake_off(struct device *dev)
1192 {
1193         acpi_disable_event(ACPI_EVENT_RTC, 0);
1194 }
1195
1196 #ifdef CONFIG_X86
1197 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1198 static void use_acpi_alarm_quirks(void)
1199 {
1200         int year;
1201
1202         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1203                 return;
1204
1205         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1206                 return;
1207
1208         if (!is_hpet_enabled())
1209                 return;
1210
1211         if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1212                 use_acpi_alarm = true;
1213 }
1214 #else
1215 static inline void use_acpi_alarm_quirks(void) { }
1216 #endif
1217
1218 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1219  * its device node and pass extra config data.  This helps its driver use
1220  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1221  * that this board's RTC is wakeup-capable (per ACPI spec).
1222  */
1223 static struct cmos_rtc_board_info acpi_rtc_info;
1224
1225 static void cmos_wake_setup(struct device *dev)
1226 {
1227         if (acpi_disabled)
1228                 return;
1229
1230         use_acpi_alarm_quirks();
1231
1232         rtc_wake_setup(dev);
1233         acpi_rtc_info.wake_on = rtc_wake_on;
1234         acpi_rtc_info.wake_off = rtc_wake_off;
1235
1236         /* workaround bug in some ACPI tables */
1237         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1238                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1239                         acpi_gbl_FADT.month_alarm);
1240                 acpi_gbl_FADT.month_alarm = 0;
1241         }
1242
1243         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1244         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1245         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1246
1247         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1248         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1249                 dev_info(dev, "RTC can wake from S4\n");
1250
1251         dev->platform_data = &acpi_rtc_info;
1252
1253         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1254         device_init_wakeup(dev, 1);
1255 }
1256
1257 static void cmos_check_acpi_rtc_status(struct device *dev,
1258                                        unsigned char *rtc_control)
1259 {
1260         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1261         acpi_event_status rtc_status;
1262         acpi_status status;
1263
1264         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1265                 return;
1266
1267         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1268         if (ACPI_FAILURE(status)) {
1269                 dev_err(dev, "Could not get RTC status\n");
1270         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1271                 unsigned char mask;
1272                 *rtc_control &= ~RTC_AIE;
1273                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1274                 mask = CMOS_READ(RTC_INTR_FLAGS);
1275                 rtc_update_irq(cmos->rtc, 1, mask);
1276         }
1277 }
1278
1279 #else
1280
1281 static void cmos_wake_setup(struct device *dev)
1282 {
1283 }
1284
1285 static void cmos_check_acpi_rtc_status(struct device *dev,
1286                                        unsigned char *rtc_control)
1287 {
1288 }
1289
1290 #endif
1291
1292 #ifdef  CONFIG_PNP
1293
1294 #include <linux/pnp.h>
1295
1296 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1297 {
1298         cmos_wake_setup(&pnp->dev);
1299
1300         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1301                 unsigned int irq = 0;
1302 #ifdef CONFIG_X86
1303                 /* Some machines contain a PNP entry for the RTC, but
1304                  * don't define the IRQ. It should always be safe to
1305                  * hardcode it on systems with a legacy PIC.
1306                  */
1307                 if (nr_legacy_irqs())
1308                         irq = 8;
1309 #endif
1310                 return cmos_do_probe(&pnp->dev,
1311                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1312         } else {
1313                 return cmos_do_probe(&pnp->dev,
1314                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1315                                 pnp_irq(pnp, 0));
1316         }
1317 }
1318
1319 static void cmos_pnp_remove(struct pnp_dev *pnp)
1320 {
1321         cmos_do_remove(&pnp->dev);
1322 }
1323
1324 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1325 {
1326         struct device *dev = &pnp->dev;
1327         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328
1329         if (system_state == SYSTEM_POWER_OFF) {
1330                 int retval = cmos_poweroff(dev);
1331
1332                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333                         return;
1334         }
1335
1336         cmos_do_shutdown(cmos->irq);
1337 }
1338
1339 static const struct pnp_device_id rtc_ids[] = {
1340         { .id = "PNP0b00", },
1341         { .id = "PNP0b01", },
1342         { .id = "PNP0b02", },
1343         { },
1344 };
1345 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1346
1347 static struct pnp_driver cmos_pnp_driver = {
1348         .name           = (char *) driver_name,
1349         .id_table       = rtc_ids,
1350         .probe          = cmos_pnp_probe,
1351         .remove         = cmos_pnp_remove,
1352         .shutdown       = cmos_pnp_shutdown,
1353
1354         /* flag ensures resume() gets called, and stops syslog spam */
1355         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1356         .driver         = {
1357                         .pm = &cmos_pm_ops,
1358         },
1359 };
1360
1361 #endif  /* CONFIG_PNP */
1362
1363 #ifdef CONFIG_OF
1364 static const struct of_device_id of_cmos_match[] = {
1365         {
1366                 .compatible = "motorola,mc146818",
1367         },
1368         { },
1369 };
1370 MODULE_DEVICE_TABLE(of, of_cmos_match);
1371
1372 static __init void cmos_of_init(struct platform_device *pdev)
1373 {
1374         struct device_node *node = pdev->dev.of_node;
1375         const __be32 *val;
1376
1377         if (!node)
1378                 return;
1379
1380         val = of_get_property(node, "ctrl-reg", NULL);
1381         if (val)
1382                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1383
1384         val = of_get_property(node, "freq-reg", NULL);
1385         if (val)
1386                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1387 }
1388 #else
1389 static inline void cmos_of_init(struct platform_device *pdev) {}
1390 #endif
1391 /*----------------------------------------------------------------*/
1392
1393 /* Platform setup should have set up an RTC device, when PNP is
1394  * unavailable ... this could happen even on (older) PCs.
1395  */
1396
1397 static int __init cmos_platform_probe(struct platform_device *pdev)
1398 {
1399         struct resource *resource;
1400         int irq;
1401
1402         cmos_of_init(pdev);
1403         cmos_wake_setup(&pdev->dev);
1404
1405         if (RTC_IOMAPPED)
1406                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1407         else
1408                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1409         irq = platform_get_irq(pdev, 0);
1410         if (irq < 0)
1411                 irq = -1;
1412
1413         return cmos_do_probe(&pdev->dev, resource, irq);
1414 }
1415
1416 static int cmos_platform_remove(struct platform_device *pdev)
1417 {
1418         cmos_do_remove(&pdev->dev);
1419         return 0;
1420 }
1421
1422 static void cmos_platform_shutdown(struct platform_device *pdev)
1423 {
1424         struct device *dev = &pdev->dev;
1425         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1426
1427         if (system_state == SYSTEM_POWER_OFF) {
1428                 int retval = cmos_poweroff(dev);
1429
1430                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1431                         return;
1432         }
1433
1434         cmos_do_shutdown(cmos->irq);
1435 }
1436
1437 /* work with hotplug and coldplug */
1438 MODULE_ALIAS("platform:rtc_cmos");
1439
1440 static struct platform_driver cmos_platform_driver = {
1441         .remove         = cmos_platform_remove,
1442         .shutdown       = cmos_platform_shutdown,
1443         .driver = {
1444                 .name           = driver_name,
1445                 .pm             = &cmos_pm_ops,
1446                 .of_match_table = of_match_ptr(of_cmos_match),
1447         }
1448 };
1449
1450 #ifdef CONFIG_PNP
1451 static bool pnp_driver_registered;
1452 #endif
1453 static bool platform_driver_registered;
1454
1455 static int __init cmos_init(void)
1456 {
1457         int retval = 0;
1458
1459 #ifdef  CONFIG_PNP
1460         retval = pnp_register_driver(&cmos_pnp_driver);
1461         if (retval == 0)
1462                 pnp_driver_registered = true;
1463 #endif
1464
1465         if (!cmos_rtc.dev) {
1466                 retval = platform_driver_probe(&cmos_platform_driver,
1467                                                cmos_platform_probe);
1468                 if (retval == 0)
1469                         platform_driver_registered = true;
1470         }
1471
1472         if (retval == 0)
1473                 return 0;
1474
1475 #ifdef  CONFIG_PNP
1476         if (pnp_driver_registered)
1477                 pnp_unregister_driver(&cmos_pnp_driver);
1478 #endif
1479         return retval;
1480 }
1481 module_init(cmos_init);
1482
1483 static void __exit cmos_exit(void)
1484 {
1485 #ifdef  CONFIG_PNP
1486         if (pnp_driver_registered)
1487                 pnp_unregister_driver(&cmos_pnp_driver);
1488 #endif
1489         if (platform_driver_registered)
1490                 platform_driver_unregister(&cmos_platform_driver);
1491 }
1492 module_exit(cmos_exit);
1493
1494
1495 MODULE_AUTHOR("David Brownell");
1496 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1497 MODULE_LICENSE("GPL");