Merge tag 'selinux-pr-20220801' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / power / supply / power_supply_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31
32 ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
33 EXPORT_SYMBOL_GPL(power_supply_notifier);
34
35 static struct device_type power_supply_dev_type;
36
37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME     msecs_to_jiffies(10)
38
39 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
40                                          struct power_supply *supply)
41 {
42         int i;
43
44         if (!supply->supplied_from && !supplier->supplied_to)
45                 return false;
46
47         /* Support both supplied_to and supplied_from modes */
48         if (supply->supplied_from) {
49                 if (!supplier->desc->name)
50                         return false;
51                 for (i = 0; i < supply->num_supplies; i++)
52                         if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
53                                 return true;
54         } else {
55                 if (!supply->desc->name)
56                         return false;
57                 for (i = 0; i < supplier->num_supplicants; i++)
58                         if (!strcmp(supplier->supplied_to[i], supply->desc->name))
59                                 return true;
60         }
61
62         return false;
63 }
64
65 static int __power_supply_changed_work(struct device *dev, void *data)
66 {
67         struct power_supply *psy = data;
68         struct power_supply *pst = dev_get_drvdata(dev);
69
70         if (__power_supply_is_supplied_by(psy, pst)) {
71                 if (pst->desc->external_power_changed)
72                         pst->desc->external_power_changed(pst);
73         }
74
75         return 0;
76 }
77
78 static void power_supply_changed_work(struct work_struct *work)
79 {
80         unsigned long flags;
81         struct power_supply *psy = container_of(work, struct power_supply,
82                                                 changed_work);
83
84         dev_dbg(&psy->dev, "%s\n", __func__);
85
86         spin_lock_irqsave(&psy->changed_lock, flags);
87         /*
88          * Check 'changed' here to avoid issues due to race between
89          * power_supply_changed() and this routine. In worst case
90          * power_supply_changed() can be called again just before we take above
91          * lock. During the first call of this routine we will mark 'changed' as
92          * false and it will stay false for the next call as well.
93          */
94         if (likely(psy->changed)) {
95                 psy->changed = false;
96                 spin_unlock_irqrestore(&psy->changed_lock, flags);
97                 class_for_each_device(power_supply_class, NULL, psy,
98                                       __power_supply_changed_work);
99                 power_supply_update_leds(psy);
100                 atomic_notifier_call_chain(&power_supply_notifier,
101                                 PSY_EVENT_PROP_CHANGED, psy);
102                 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
103                 spin_lock_irqsave(&psy->changed_lock, flags);
104         }
105
106         /*
107          * Hold the wakeup_source until all events are processed.
108          * power_supply_changed() might have called again and have set 'changed'
109          * to true.
110          */
111         if (likely(!psy->changed))
112                 pm_relax(&psy->dev);
113         spin_unlock_irqrestore(&psy->changed_lock, flags);
114 }
115
116 void power_supply_changed(struct power_supply *psy)
117 {
118         unsigned long flags;
119
120         dev_dbg(&psy->dev, "%s\n", __func__);
121
122         spin_lock_irqsave(&psy->changed_lock, flags);
123         psy->changed = true;
124         pm_stay_awake(&psy->dev);
125         spin_unlock_irqrestore(&psy->changed_lock, flags);
126         schedule_work(&psy->changed_work);
127 }
128 EXPORT_SYMBOL_GPL(power_supply_changed);
129
130 /*
131  * Notify that power supply was registered after parent finished the probing.
132  *
133  * Often power supply is registered from driver's probe function. However
134  * calling power_supply_changed() directly from power_supply_register()
135  * would lead to execution of get_property() function provided by the driver
136  * too early - before the probe ends.
137  *
138  * Avoid that by waiting on parent's mutex.
139  */
140 static void power_supply_deferred_register_work(struct work_struct *work)
141 {
142         struct power_supply *psy = container_of(work, struct power_supply,
143                                                 deferred_register_work.work);
144
145         if (psy->dev.parent) {
146                 while (!mutex_trylock(&psy->dev.parent->mutex)) {
147                         if (psy->removing)
148                                 return;
149                         msleep(10);
150                 }
151         }
152
153         power_supply_changed(psy);
154
155         if (psy->dev.parent)
156                 mutex_unlock(&psy->dev.parent->mutex);
157 }
158
159 #ifdef CONFIG_OF
160 static int __power_supply_populate_supplied_from(struct device *dev,
161                                                  void *data)
162 {
163         struct power_supply *psy = data;
164         struct power_supply *epsy = dev_get_drvdata(dev);
165         struct device_node *np;
166         int i = 0;
167
168         do {
169                 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
170                 if (!np)
171                         break;
172
173                 if (np == epsy->of_node) {
174                         dev_dbg(&psy->dev, "%s: Found supply : %s\n",
175                                 psy->desc->name, epsy->desc->name);
176                         psy->supplied_from[i-1] = (char *)epsy->desc->name;
177                         psy->num_supplies++;
178                         of_node_put(np);
179                         break;
180                 }
181                 of_node_put(np);
182         } while (np);
183
184         return 0;
185 }
186
187 static int power_supply_populate_supplied_from(struct power_supply *psy)
188 {
189         int error;
190
191         error = class_for_each_device(power_supply_class, NULL, psy,
192                                       __power_supply_populate_supplied_from);
193
194         dev_dbg(&psy->dev, "%s %d\n", __func__, error);
195
196         return error;
197 }
198
199 static int  __power_supply_find_supply_from_node(struct device *dev,
200                                                  void *data)
201 {
202         struct device_node *np = data;
203         struct power_supply *epsy = dev_get_drvdata(dev);
204
205         /* returning non-zero breaks out of class_for_each_device loop */
206         if (epsy->of_node == np)
207                 return 1;
208
209         return 0;
210 }
211
212 static int power_supply_find_supply_from_node(struct device_node *supply_node)
213 {
214         int error;
215
216         /*
217          * class_for_each_device() either returns its own errors or values
218          * returned by __power_supply_find_supply_from_node().
219          *
220          * __power_supply_find_supply_from_node() will return 0 (no match)
221          * or 1 (match).
222          *
223          * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
224          * it returned 0, or error as returned by it.
225          */
226         error = class_for_each_device(power_supply_class, NULL, supply_node,
227                                        __power_supply_find_supply_from_node);
228
229         return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
230 }
231
232 static int power_supply_check_supplies(struct power_supply *psy)
233 {
234         struct device_node *np;
235         int cnt = 0;
236
237         /* If there is already a list honor it */
238         if (psy->supplied_from && psy->num_supplies > 0)
239                 return 0;
240
241         /* No device node found, nothing to do */
242         if (!psy->of_node)
243                 return 0;
244
245         do {
246                 int ret;
247
248                 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
249                 if (!np)
250                         break;
251
252                 ret = power_supply_find_supply_from_node(np);
253                 of_node_put(np);
254
255                 if (ret) {
256                         dev_dbg(&psy->dev, "Failed to find supply!\n");
257                         return ret;
258                 }
259         } while (np);
260
261         /* Missing valid "power-supplies" entries */
262         if (cnt == 1)
263                 return 0;
264
265         /* All supplies found, allocate char ** array for filling */
266         psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(psy->supplied_from),
267                                           GFP_KERNEL);
268         if (!psy->supplied_from)
269                 return -ENOMEM;
270
271         *psy->supplied_from = devm_kcalloc(&psy->dev,
272                                            cnt - 1, sizeof(char *),
273                                            GFP_KERNEL);
274         if (!*psy->supplied_from)
275                 return -ENOMEM;
276
277         return power_supply_populate_supplied_from(psy);
278 }
279 #else
280 static int power_supply_check_supplies(struct power_supply *psy)
281 {
282         int nval, ret;
283
284         if (!psy->dev.parent)
285                 return 0;
286
287         nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
288         if (nval <= 0)
289                 return 0;
290
291         psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
292                                                 sizeof(char *), GFP_KERNEL);
293         if (!psy->supplied_from)
294                 return -ENOMEM;
295
296         ret = device_property_read_string_array(psy->dev.parent,
297                 "supplied-from", (const char **)psy->supplied_from, nval);
298         if (ret < 0)
299                 return ret;
300
301         psy->num_supplies = nval;
302
303         return 0;
304 }
305 #endif
306
307 struct psy_am_i_supplied_data {
308         struct power_supply *psy;
309         unsigned int count;
310 };
311
312 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
313 {
314         union power_supply_propval ret = {0,};
315         struct power_supply *epsy = dev_get_drvdata(dev);
316         struct psy_am_i_supplied_data *data = _data;
317
318         if (__power_supply_is_supplied_by(epsy, data->psy)) {
319                 data->count++;
320                 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
321                                         &ret))
322                         return ret.intval;
323         }
324
325         return 0;
326 }
327
328 int power_supply_am_i_supplied(struct power_supply *psy)
329 {
330         struct psy_am_i_supplied_data data = { psy, 0 };
331         int error;
332
333         error = class_for_each_device(power_supply_class, NULL, &data,
334                                       __power_supply_am_i_supplied);
335
336         dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
337
338         if (data.count == 0)
339                 return -ENODEV;
340
341         return error;
342 }
343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
344
345 static int __power_supply_is_system_supplied(struct device *dev, void *data)
346 {
347         union power_supply_propval ret = {0,};
348         struct power_supply *psy = dev_get_drvdata(dev);
349         unsigned int *count = data;
350
351         (*count)++;
352         if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
353                 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
354                                         &ret))
355                         return ret.intval;
356
357         return 0;
358 }
359
360 int power_supply_is_system_supplied(void)
361 {
362         int error;
363         unsigned int count = 0;
364
365         error = class_for_each_device(power_supply_class, NULL, &count,
366                                       __power_supply_is_system_supplied);
367
368         /*
369          * If no power class device was found at all, most probably we are
370          * running on a desktop system, so assume we are on mains power.
371          */
372         if (count == 0)
373                 return 1;
374
375         return error;
376 }
377 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
378
379 struct psy_get_supplier_prop_data {
380         struct power_supply *psy;
381         enum power_supply_property psp;
382         union power_supply_propval *val;
383 };
384
385 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
386 {
387         struct power_supply *epsy = dev_get_drvdata(dev);
388         struct psy_get_supplier_prop_data *data = _data;
389
390         if (__power_supply_is_supplied_by(epsy, data->psy))
391                 if (!epsy->desc->get_property(epsy, data->psp, data->val))
392                         return 1; /* Success */
393
394         return 0; /* Continue iterating */
395 }
396
397 int power_supply_get_property_from_supplier(struct power_supply *psy,
398                                             enum power_supply_property psp,
399                                             union power_supply_propval *val)
400 {
401         struct psy_get_supplier_prop_data data = {
402                 .psy = psy,
403                 .psp = psp,
404                 .val = val,
405         };
406         int ret;
407
408         /*
409          * This function is not intended for use with a supply with multiple
410          * suppliers, we simply pick the first supply to report the psp.
411          */
412         ret = class_for_each_device(power_supply_class, NULL, &data,
413                                     __power_supply_get_supplier_property);
414         if (ret < 0)
415                 return ret;
416         if (ret == 0)
417                 return -ENODEV;
418
419         return 0;
420 }
421 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
422
423 int power_supply_set_battery_charged(struct power_supply *psy)
424 {
425         if (atomic_read(&psy->use_cnt) >= 0 &&
426                         psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
427                         psy->desc->set_charged) {
428                 psy->desc->set_charged(psy);
429                 return 0;
430         }
431
432         return -EINVAL;
433 }
434 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
435
436 static int power_supply_match_device_by_name(struct device *dev, const void *data)
437 {
438         const char *name = data;
439         struct power_supply *psy = dev_get_drvdata(dev);
440
441         return strcmp(psy->desc->name, name) == 0;
442 }
443
444 /**
445  * power_supply_get_by_name() - Search for a power supply and returns its ref
446  * @name: Power supply name to fetch
447  *
448  * If power supply was found, it increases reference count for the
449  * internal power supply's device. The user should power_supply_put()
450  * after usage.
451  *
452  * Return: On success returns a reference to a power supply with
453  * matching name equals to @name, a NULL otherwise.
454  */
455 struct power_supply *power_supply_get_by_name(const char *name)
456 {
457         struct power_supply *psy = NULL;
458         struct device *dev = class_find_device(power_supply_class, NULL, name,
459                                         power_supply_match_device_by_name);
460
461         if (dev) {
462                 psy = dev_get_drvdata(dev);
463                 atomic_inc(&psy->use_cnt);
464         }
465
466         return psy;
467 }
468 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
469
470 /**
471  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
472  * @psy: Reference to put
473  *
474  * The reference to power supply should be put before unregistering
475  * the power supply.
476  */
477 void power_supply_put(struct power_supply *psy)
478 {
479         might_sleep();
480
481         atomic_dec(&psy->use_cnt);
482         put_device(&psy->dev);
483 }
484 EXPORT_SYMBOL_GPL(power_supply_put);
485
486 #ifdef CONFIG_OF
487 static int power_supply_match_device_node(struct device *dev, const void *data)
488 {
489         return dev->parent && dev->parent->of_node == data;
490 }
491
492 /**
493  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
494  * @np: Pointer to device node holding phandle property
495  * @property: Name of property holding a power supply name
496  *
497  * If power supply was found, it increases reference count for the
498  * internal power supply's device. The user should power_supply_put()
499  * after usage.
500  *
501  * Return: On success returns a reference to a power supply with
502  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
503  */
504 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
505                                                         const char *property)
506 {
507         struct device_node *power_supply_np;
508         struct power_supply *psy = NULL;
509         struct device *dev;
510
511         power_supply_np = of_parse_phandle(np, property, 0);
512         if (!power_supply_np)
513                 return ERR_PTR(-ENODEV);
514
515         dev = class_find_device(power_supply_class, NULL, power_supply_np,
516                                                 power_supply_match_device_node);
517
518         of_node_put(power_supply_np);
519
520         if (dev) {
521                 psy = dev_get_drvdata(dev);
522                 atomic_inc(&psy->use_cnt);
523         }
524
525         return psy;
526 }
527 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
528
529 static void devm_power_supply_put(struct device *dev, void *res)
530 {
531         struct power_supply **psy = res;
532
533         power_supply_put(*psy);
534 }
535
536 /**
537  * devm_power_supply_get_by_phandle() - Resource managed version of
538  *  power_supply_get_by_phandle()
539  * @dev: Pointer to device holding phandle property
540  * @property: Name of property holding a power supply phandle
541  *
542  * Return: On success returns a reference to a power supply with
543  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
544  */
545 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
546                                                       const char *property)
547 {
548         struct power_supply **ptr, *psy;
549
550         if (!dev->of_node)
551                 return ERR_PTR(-ENODEV);
552
553         ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
554         if (!ptr)
555                 return ERR_PTR(-ENOMEM);
556
557         psy = power_supply_get_by_phandle(dev->of_node, property);
558         if (IS_ERR_OR_NULL(psy)) {
559                 devres_free(ptr);
560         } else {
561                 *ptr = psy;
562                 devres_add(dev, ptr);
563         }
564         return psy;
565 }
566 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
567 #endif /* CONFIG_OF */
568
569 int power_supply_get_battery_info(struct power_supply *psy,
570                                   struct power_supply_battery_info **info_out)
571 {
572         struct power_supply_resistance_temp_table *resist_table;
573         struct power_supply_battery_info *info;
574         struct device_node *battery_np = NULL;
575         struct fwnode_reference_args args;
576         struct fwnode_handle *fwnode;
577         const char *value;
578         int err, len, index;
579         const __be32 *list;
580         u32 min_max[2];
581
582         if (psy->of_node) {
583                 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
584                 if (!battery_np)
585                         return -ENODEV;
586
587                 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
588         } else {
589                 err = fwnode_property_get_reference_args(
590                                         dev_fwnode(psy->dev.parent),
591                                         "monitored-battery", NULL, 0, 0, &args);
592                 if (err)
593                         return err;
594
595                 fwnode = args.fwnode;
596         }
597
598         err = fwnode_property_read_string(fwnode, "compatible", &value);
599         if (err)
600                 goto out_put_node;
601
602
603         /* Try static batteries first */
604         err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
605         if (!err)
606                 goto out_ret_pointer;
607         else if (err == -ENODEV)
608                 /*
609                  * Device does not have a static battery.
610                  * Proceed to look for a simple battery.
611                  */
612                 err = 0;
613
614         if (strcmp("simple-battery", value)) {
615                 err = -ENODEV;
616                 goto out_put_node;
617         }
618
619         info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
620         if (!info) {
621                 err = -ENOMEM;
622                 goto out_put_node;
623         }
624
625         info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
626         info->energy_full_design_uwh         = -EINVAL;
627         info->charge_full_design_uah         = -EINVAL;
628         info->voltage_min_design_uv          = -EINVAL;
629         info->voltage_max_design_uv          = -EINVAL;
630         info->precharge_current_ua           = -EINVAL;
631         info->charge_term_current_ua         = -EINVAL;
632         info->constant_charge_current_max_ua = -EINVAL;
633         info->constant_charge_voltage_max_uv = -EINVAL;
634         info->tricklecharge_current_ua       = -EINVAL;
635         info->precharge_voltage_max_uv       = -EINVAL;
636         info->charge_restart_voltage_uv      = -EINVAL;
637         info->overvoltage_limit_uv           = -EINVAL;
638         info->maintenance_charge             = NULL;
639         info->alert_low_temp_charge_current_ua = -EINVAL;
640         info->alert_low_temp_charge_voltage_uv = -EINVAL;
641         info->alert_high_temp_charge_current_ua = -EINVAL;
642         info->alert_high_temp_charge_voltage_uv = -EINVAL;
643         info->temp_ambient_alert_min         = INT_MIN;
644         info->temp_ambient_alert_max         = INT_MAX;
645         info->temp_alert_min                 = INT_MIN;
646         info->temp_alert_max                 = INT_MAX;
647         info->temp_min                       = INT_MIN;
648         info->temp_max                       = INT_MAX;
649         info->factory_internal_resistance_uohm  = -EINVAL;
650         info->resist_table                   = NULL;
651         info->bti_resistance_ohm             = -EINVAL;
652         info->bti_resistance_tolerance       = -EINVAL;
653
654         for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
655                 info->ocv_table[index]       = NULL;
656                 info->ocv_temp[index]        = -EINVAL;
657                 info->ocv_table_size[index]  = -EINVAL;
658         }
659
660         /* The property and field names below must correspond to elements
661          * in enum power_supply_property. For reasoning, see
662          * Documentation/power/power_supply_class.rst.
663          */
664
665         if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
666                 if (!strcmp("nickel-cadmium", value))
667                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
668                 else if (!strcmp("nickel-metal-hydride", value))
669                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
670                 else if (!strcmp("lithium-ion", value))
671                         /* Imprecise lithium-ion type */
672                         info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
673                 else if (!strcmp("lithium-ion-polymer", value))
674                         info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
675                 else if (!strcmp("lithium-ion-iron-phosphate", value))
676                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
677                 else if (!strcmp("lithium-ion-manganese-oxide", value))
678                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
679                 else
680                         dev_warn(&psy->dev, "%s unknown battery type\n", value);
681         }
682
683         fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
684                              &info->energy_full_design_uwh);
685         fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
686                              &info->charge_full_design_uah);
687         fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
688                              &info->voltage_min_design_uv);
689         fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
690                              &info->voltage_max_design_uv);
691         fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
692                              &info->tricklecharge_current_ua);
693         fwnode_property_read_u32(fwnode, "precharge-current-microamp",
694                              &info->precharge_current_ua);
695         fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
696                              &info->precharge_voltage_max_uv);
697         fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
698                              &info->charge_term_current_ua);
699         fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
700                              &info->charge_restart_voltage_uv);
701         fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
702                              &info->overvoltage_limit_uv);
703         fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
704                              &info->constant_charge_current_max_ua);
705         fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
706                              &info->constant_charge_voltage_max_uv);
707         fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
708                              &info->factory_internal_resistance_uohm);
709
710         if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
711                                             min_max, ARRAY_SIZE(min_max))) {
712                 info->temp_ambient_alert_min = min_max[0];
713                 info->temp_ambient_alert_max = min_max[1];
714         }
715         if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
716                                             min_max, ARRAY_SIZE(min_max))) {
717                 info->temp_alert_min = min_max[0];
718                 info->temp_alert_max = min_max[1];
719         }
720         if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
721                                             min_max, ARRAY_SIZE(min_max))) {
722                 info->temp_min = min_max[0];
723                 info->temp_max = min_max[1];
724         }
725
726         /*
727          * The below code uses raw of-data parsing to parse
728          * /schemas/types.yaml#/definitions/uint32-matrix
729          * data, so for now this is only support with of.
730          */
731         if (!battery_np)
732                 goto out_ret_pointer;
733
734         len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
735         if (len < 0 && len != -EINVAL) {
736                 err = len;
737                 goto out_put_node;
738         } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
739                 dev_err(&psy->dev, "Too many temperature values\n");
740                 err = -EINVAL;
741                 goto out_put_node;
742         } else if (len > 0) {
743                 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
744                                            info->ocv_temp, len);
745         }
746
747         for (index = 0; index < len; index++) {
748                 struct power_supply_battery_ocv_table *table;
749                 char *propname;
750                 int i, tab_len, size;
751
752                 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
753                 list = of_get_property(battery_np, propname, &size);
754                 if (!list || !size) {
755                         dev_err(&psy->dev, "failed to get %s\n", propname);
756                         kfree(propname);
757                         power_supply_put_battery_info(psy, info);
758                         err = -EINVAL;
759                         goto out_put_node;
760                 }
761
762                 kfree(propname);
763                 tab_len = size / (2 * sizeof(__be32));
764                 info->ocv_table_size[index] = tab_len;
765
766                 table = info->ocv_table[index] =
767                         devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
768                 if (!info->ocv_table[index]) {
769                         power_supply_put_battery_info(psy, info);
770                         err = -ENOMEM;
771                         goto out_put_node;
772                 }
773
774                 for (i = 0; i < tab_len; i++) {
775                         table[i].ocv = be32_to_cpu(*list);
776                         list++;
777                         table[i].capacity = be32_to_cpu(*list);
778                         list++;
779                 }
780         }
781
782         list = of_get_property(battery_np, "resistance-temp-table", &len);
783         if (!list || !len)
784                 goto out_ret_pointer;
785
786         info->resist_table_size = len / (2 * sizeof(__be32));
787         resist_table = info->resist_table = devm_kcalloc(&psy->dev,
788                                                          info->resist_table_size,
789                                                          sizeof(*resist_table),
790                                                          GFP_KERNEL);
791         if (!info->resist_table) {
792                 power_supply_put_battery_info(psy, info);
793                 err = -ENOMEM;
794                 goto out_put_node;
795         }
796
797         for (index = 0; index < info->resist_table_size; index++) {
798                 resist_table[index].temp = be32_to_cpu(*list++);
799                 resist_table[index].resistance = be32_to_cpu(*list++);
800         }
801
802 out_ret_pointer:
803         /* Finally return the whole thing */
804         *info_out = info;
805
806 out_put_node:
807         fwnode_handle_put(fwnode);
808         of_node_put(battery_np);
809         return err;
810 }
811 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
812
813 void power_supply_put_battery_info(struct power_supply *psy,
814                                    struct power_supply_battery_info *info)
815 {
816         int i;
817
818         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
819                 if (info->ocv_table[i])
820                         devm_kfree(&psy->dev, info->ocv_table[i]);
821         }
822
823         if (info->resist_table)
824                 devm_kfree(&psy->dev, info->resist_table);
825
826         devm_kfree(&psy->dev, info);
827 }
828 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
829
830 /**
831  * power_supply_temp2resist_simple() - find the battery internal resistance
832  * percent from temperature
833  * @table: Pointer to battery resistance temperature table
834  * @table_len: The table length
835  * @temp: Current temperature
836  *
837  * This helper function is used to look up battery internal resistance percent
838  * according to current temperature value from the resistance temperature table,
839  * and the table must be ordered descending. Then the actual battery internal
840  * resistance = the ideal battery internal resistance * percent / 100.
841  *
842  * Return: the battery internal resistance percent
843  */
844 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
845                                     int table_len, int temp)
846 {
847         int i, high, low;
848
849         for (i = 0; i < table_len; i++)
850                 if (temp > table[i].temp)
851                         break;
852
853         /* The library function will deal with high == low */
854         if (i == 0)
855                 high = low = i;
856         else if (i == table_len)
857                 high = low = i - 1;
858         else
859                 high = (low = i) - 1;
860
861         return fixp_linear_interpolate(table[low].temp,
862                                        table[low].resistance,
863                                        table[high].temp,
864                                        table[high].resistance,
865                                        temp);
866 }
867 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
868
869 /**
870  * power_supply_vbat2ri() - find the battery internal resistance
871  * from the battery voltage
872  * @info: The battery information container
873  * @table: Pointer to battery resistance temperature table
874  * @vbat_uv: The battery voltage in microvolt
875  * @charging: If we are charging (true) or not (false)
876  *
877  * This helper function is used to look up battery internal resistance
878  * according to current battery voltage. Depending on whether the battery
879  * is currently charging or not, different resistance will be returned.
880  *
881  * Returns the internal resistance in microohm or negative error code.
882  */
883 int power_supply_vbat2ri(struct power_supply_battery_info *info,
884                          int vbat_uv, bool charging)
885 {
886         struct power_supply_vbat_ri_table *vbat2ri;
887         int table_len;
888         int i, high, low;
889
890         /*
891          * If we are charging, and the battery supplies a separate table
892          * for this state, we use that in order to compensate for the
893          * charging voltage. Otherwise we use the main table.
894          */
895         if (charging && info->vbat2ri_charging) {
896                 vbat2ri = info->vbat2ri_charging;
897                 table_len = info->vbat2ri_charging_size;
898         } else {
899                 vbat2ri = info->vbat2ri_discharging;
900                 table_len = info->vbat2ri_discharging_size;
901         }
902
903         /*
904          * If no tables are specified, or if we are above the highest voltage in
905          * the voltage table, just return the factory specified internal resistance.
906          */
907         if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
908                 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
909                         return info->factory_internal_resistance_charging_uohm;
910                 else
911                         return info->factory_internal_resistance_uohm;
912         }
913
914         /* Break loop at table_len - 1 because that is the highest index */
915         for (i = 0; i < table_len - 1; i++)
916                 if (vbat_uv > vbat2ri[i].vbat_uv)
917                         break;
918
919         /* The library function will deal with high == low */
920         if ((i == 0) || (i == (table_len - 1)))
921                 high = i;
922         else
923                 high = i - 1;
924         low = i;
925
926         return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
927                                        vbat2ri[low].ri_uohm,
928                                        vbat2ri[high].vbat_uv,
929                                        vbat2ri[high].ri_uohm,
930                                        vbat_uv);
931 }
932 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
933
934 struct power_supply_maintenance_charge_table *
935 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
936                                               int index)
937 {
938         if (index >= info->maintenance_charge_size)
939                 return NULL;
940         return &info->maintenance_charge[index];
941 }
942 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
943
944 /**
945  * power_supply_ocv2cap_simple() - find the battery capacity
946  * @table: Pointer to battery OCV lookup table
947  * @table_len: OCV table length
948  * @ocv: Current OCV value
949  *
950  * This helper function is used to look up battery capacity according to
951  * current OCV value from one OCV table, and the OCV table must be ordered
952  * descending.
953  *
954  * Return: the battery capacity.
955  */
956 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
957                                 int table_len, int ocv)
958 {
959         int i, high, low;
960
961         for (i = 0; i < table_len; i++)
962                 if (ocv > table[i].ocv)
963                         break;
964
965         /* The library function will deal with high == low */
966         if (i == 0)
967                 high = low = i;
968         else if (i == table_len)
969                 high = low = i - 1;
970         else
971                 high = (low = i) - 1;
972
973         return fixp_linear_interpolate(table[low].ocv,
974                                        table[low].capacity,
975                                        table[high].ocv,
976                                        table[high].capacity,
977                                        ocv);
978 }
979 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
980
981 struct power_supply_battery_ocv_table *
982 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
983                                 int temp, int *table_len)
984 {
985         int best_temp_diff = INT_MAX, temp_diff;
986         u8 i, best_index = 0;
987
988         if (!info->ocv_table[0])
989                 return NULL;
990
991         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
992                 /* Out of capacity tables */
993                 if (!info->ocv_table[i])
994                         break;
995
996                 temp_diff = abs(info->ocv_temp[i] - temp);
997
998                 if (temp_diff < best_temp_diff) {
999                         best_temp_diff = temp_diff;
1000                         best_index = i;
1001                 }
1002         }
1003
1004         *table_len = info->ocv_table_size[best_index];
1005         return info->ocv_table[best_index];
1006 }
1007 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1008
1009 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1010                                  int ocv, int temp)
1011 {
1012         struct power_supply_battery_ocv_table *table;
1013         int table_len;
1014
1015         table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1016         if (!table)
1017                 return -EINVAL;
1018
1019         return power_supply_ocv2cap_simple(table, table_len, ocv);
1020 }
1021 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1022
1023 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1024                                        int resistance)
1025 {
1026         int low, high;
1027
1028         /* Nothing like this can be checked */
1029         if (info->bti_resistance_ohm <= 0)
1030                 return false;
1031
1032         /* This will be extremely strict and unlikely to work */
1033         if (info->bti_resistance_tolerance <= 0)
1034                 return (info->bti_resistance_ohm == resistance);
1035
1036         low = info->bti_resistance_ohm -
1037                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1038         high = info->bti_resistance_ohm +
1039                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1040
1041         return ((resistance >= low) && (resistance <= high));
1042 }
1043 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1044
1045 int power_supply_get_property(struct power_supply *psy,
1046                             enum power_supply_property psp,
1047                             union power_supply_propval *val)
1048 {
1049         if (atomic_read(&psy->use_cnt) <= 0) {
1050                 if (!psy->initialized)
1051                         return -EAGAIN;
1052                 return -ENODEV;
1053         }
1054
1055         return psy->desc->get_property(psy, psp, val);
1056 }
1057 EXPORT_SYMBOL_GPL(power_supply_get_property);
1058
1059 int power_supply_set_property(struct power_supply *psy,
1060                             enum power_supply_property psp,
1061                             const union power_supply_propval *val)
1062 {
1063         if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1064                 return -ENODEV;
1065
1066         return psy->desc->set_property(psy, psp, val);
1067 }
1068 EXPORT_SYMBOL_GPL(power_supply_set_property);
1069
1070 int power_supply_property_is_writeable(struct power_supply *psy,
1071                                         enum power_supply_property psp)
1072 {
1073         if (atomic_read(&psy->use_cnt) <= 0 ||
1074                         !psy->desc->property_is_writeable)
1075                 return -ENODEV;
1076
1077         return psy->desc->property_is_writeable(psy, psp);
1078 }
1079 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1080
1081 void power_supply_external_power_changed(struct power_supply *psy)
1082 {
1083         if (atomic_read(&psy->use_cnt) <= 0 ||
1084                         !psy->desc->external_power_changed)
1085                 return;
1086
1087         psy->desc->external_power_changed(psy);
1088 }
1089 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1090
1091 int power_supply_powers(struct power_supply *psy, struct device *dev)
1092 {
1093         return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1094 }
1095 EXPORT_SYMBOL_GPL(power_supply_powers);
1096
1097 static void power_supply_dev_release(struct device *dev)
1098 {
1099         struct power_supply *psy = to_power_supply(dev);
1100         dev_dbg(dev, "%s\n", __func__);
1101         kfree(psy);
1102 }
1103
1104 int power_supply_reg_notifier(struct notifier_block *nb)
1105 {
1106         return atomic_notifier_chain_register(&power_supply_notifier, nb);
1107 }
1108 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1109
1110 void power_supply_unreg_notifier(struct notifier_block *nb)
1111 {
1112         atomic_notifier_chain_unregister(&power_supply_notifier, nb);
1113 }
1114 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1115
1116 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1117                              enum power_supply_property psp)
1118 {
1119         bool found = false;
1120         int i;
1121
1122         for (i = 0; i < psy_desc->num_properties; i++) {
1123                 if (psy_desc->properties[i] == psp) {
1124                         found = true;
1125                         break;
1126                 }
1127         }
1128
1129         return found;
1130 }
1131
1132 #ifdef CONFIG_THERMAL
1133 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1134                 int *temp)
1135 {
1136         struct power_supply *psy;
1137         union power_supply_propval val;
1138         int ret;
1139
1140         WARN_ON(tzd == NULL);
1141         psy = tzd->devdata;
1142         ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1143         if (ret)
1144                 return ret;
1145
1146         /* Convert tenths of degree Celsius to milli degree Celsius. */
1147         *temp = val.intval * 100;
1148
1149         return ret;
1150 }
1151
1152 static struct thermal_zone_device_ops psy_tzd_ops = {
1153         .get_temp = power_supply_read_temp,
1154 };
1155
1156 static int psy_register_thermal(struct power_supply *psy)
1157 {
1158         int ret;
1159
1160         if (psy->desc->no_thermal)
1161                 return 0;
1162
1163         /* Register battery zone device psy reports temperature */
1164         if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1165                 psy->tzd = thermal_zone_device_register(psy->desc->name,
1166                                 0, 0, psy, &psy_tzd_ops, NULL, 0, 0);
1167                 if (IS_ERR(psy->tzd))
1168                         return PTR_ERR(psy->tzd);
1169                 ret = thermal_zone_device_enable(psy->tzd);
1170                 if (ret)
1171                         thermal_zone_device_unregister(psy->tzd);
1172                 return ret;
1173         }
1174
1175         return 0;
1176 }
1177
1178 static void psy_unregister_thermal(struct power_supply *psy)
1179 {
1180         if (IS_ERR_OR_NULL(psy->tzd))
1181                 return;
1182         thermal_zone_device_unregister(psy->tzd);
1183 }
1184
1185 /* thermal cooling device callbacks */
1186 static int ps_get_max_charge_cntl_limit(struct thermal_cooling_device *tcd,
1187                                         unsigned long *state)
1188 {
1189         struct power_supply *psy;
1190         union power_supply_propval val;
1191         int ret;
1192
1193         psy = tcd->devdata;
1194         ret = power_supply_get_property(psy,
1195                         POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
1196         if (ret)
1197                 return ret;
1198
1199         *state = val.intval;
1200
1201         return ret;
1202 }
1203
1204 static int ps_get_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1205                                         unsigned long *state)
1206 {
1207         struct power_supply *psy;
1208         union power_supply_propval val;
1209         int ret;
1210
1211         psy = tcd->devdata;
1212         ret = power_supply_get_property(psy,
1213                         POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1214         if (ret)
1215                 return ret;
1216
1217         *state = val.intval;
1218
1219         return ret;
1220 }
1221
1222 static int ps_set_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1223                                         unsigned long state)
1224 {
1225         struct power_supply *psy;
1226         union power_supply_propval val;
1227         int ret;
1228
1229         psy = tcd->devdata;
1230         val.intval = state;
1231         ret = psy->desc->set_property(psy,
1232                 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1233
1234         return ret;
1235 }
1236
1237 static const struct thermal_cooling_device_ops psy_tcd_ops = {
1238         .get_max_state = ps_get_max_charge_cntl_limit,
1239         .get_cur_state = ps_get_cur_charge_cntl_limit,
1240         .set_cur_state = ps_set_cur_charge_cntl_limit,
1241 };
1242
1243 static int psy_register_cooler(struct power_supply *psy)
1244 {
1245         /* Register for cooling device if psy can control charging */
1246         if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT)) {
1247                 psy->tcd = thermal_cooling_device_register(
1248                         (char *)psy->desc->name,
1249                         psy, &psy_tcd_ops);
1250                 return PTR_ERR_OR_ZERO(psy->tcd);
1251         }
1252
1253         return 0;
1254 }
1255
1256 static void psy_unregister_cooler(struct power_supply *psy)
1257 {
1258         if (IS_ERR_OR_NULL(psy->tcd))
1259                 return;
1260         thermal_cooling_device_unregister(psy->tcd);
1261 }
1262 #else
1263 static int psy_register_thermal(struct power_supply *psy)
1264 {
1265         return 0;
1266 }
1267
1268 static void psy_unregister_thermal(struct power_supply *psy)
1269 {
1270 }
1271
1272 static int psy_register_cooler(struct power_supply *psy)
1273 {
1274         return 0;
1275 }
1276
1277 static void psy_unregister_cooler(struct power_supply *psy)
1278 {
1279 }
1280 #endif
1281
1282 static struct power_supply *__must_check
1283 __power_supply_register(struct device *parent,
1284                                    const struct power_supply_desc *desc,
1285                                    const struct power_supply_config *cfg,
1286                                    bool ws)
1287 {
1288         struct device *dev;
1289         struct power_supply *psy;
1290         int rc;
1291
1292         if (!parent)
1293                 pr_warn("%s: Expected proper parent device for '%s'\n",
1294                         __func__, desc->name);
1295
1296         if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1297                 return ERR_PTR(-EINVAL);
1298
1299         if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1300             (!desc->usb_types || !desc->num_usb_types))
1301                 return ERR_PTR(-EINVAL);
1302
1303         psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1304         if (!psy)
1305                 return ERR_PTR(-ENOMEM);
1306
1307         dev = &psy->dev;
1308
1309         device_initialize(dev);
1310
1311         dev->class = power_supply_class;
1312         dev->type = &power_supply_dev_type;
1313         dev->parent = parent;
1314         dev->release = power_supply_dev_release;
1315         dev_set_drvdata(dev, psy);
1316         psy->desc = desc;
1317         if (cfg) {
1318                 dev->groups = cfg->attr_grp;
1319                 psy->drv_data = cfg->drv_data;
1320                 psy->of_node =
1321                         cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1322                 psy->supplied_to = cfg->supplied_to;
1323                 psy->num_supplicants = cfg->num_supplicants;
1324         }
1325
1326         rc = dev_set_name(dev, "%s", desc->name);
1327         if (rc)
1328                 goto dev_set_name_failed;
1329
1330         INIT_WORK(&psy->changed_work, power_supply_changed_work);
1331         INIT_DELAYED_WORK(&psy->deferred_register_work,
1332                           power_supply_deferred_register_work);
1333
1334         rc = power_supply_check_supplies(psy);
1335         if (rc) {
1336                 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1337                 goto check_supplies_failed;
1338         }
1339
1340         spin_lock_init(&psy->changed_lock);
1341         rc = device_add(dev);
1342         if (rc)
1343                 goto device_add_failed;
1344
1345         rc = device_init_wakeup(dev, ws);
1346         if (rc)
1347                 goto wakeup_init_failed;
1348
1349         rc = psy_register_thermal(psy);
1350         if (rc)
1351                 goto register_thermal_failed;
1352
1353         rc = psy_register_cooler(psy);
1354         if (rc)
1355                 goto register_cooler_failed;
1356
1357         rc = power_supply_create_triggers(psy);
1358         if (rc)
1359                 goto create_triggers_failed;
1360
1361         rc = power_supply_add_hwmon_sysfs(psy);
1362         if (rc)
1363                 goto add_hwmon_sysfs_failed;
1364
1365         /*
1366          * Update use_cnt after any uevents (most notably from device_add()).
1367          * We are here still during driver's probe but
1368          * the power_supply_uevent() calls back driver's get_property
1369          * method so:
1370          * 1. Driver did not assigned the returned struct power_supply,
1371          * 2. Driver could not finish initialization (anything in its probe
1372          *    after calling power_supply_register()).
1373          */
1374         atomic_inc(&psy->use_cnt);
1375         psy->initialized = true;
1376
1377         queue_delayed_work(system_power_efficient_wq,
1378                            &psy->deferred_register_work,
1379                            POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1380
1381         return psy;
1382
1383 add_hwmon_sysfs_failed:
1384         power_supply_remove_triggers(psy);
1385 create_triggers_failed:
1386         psy_unregister_cooler(psy);
1387 register_cooler_failed:
1388         psy_unregister_thermal(psy);
1389 register_thermal_failed:
1390         device_del(dev);
1391 wakeup_init_failed:
1392 device_add_failed:
1393 check_supplies_failed:
1394 dev_set_name_failed:
1395         put_device(dev);
1396         return ERR_PTR(rc);
1397 }
1398
1399 /**
1400  * power_supply_register() - Register new power supply
1401  * @parent:     Device to be a parent of power supply's device, usually
1402  *              the device which probe function calls this
1403  * @desc:       Description of power supply, must be valid through whole
1404  *              lifetime of this power supply
1405  * @cfg:        Run-time specific configuration accessed during registering,
1406  *              may be NULL
1407  *
1408  * Return: A pointer to newly allocated power_supply on success
1409  * or ERR_PTR otherwise.
1410  * Use power_supply_unregister() on returned power_supply pointer to release
1411  * resources.
1412  */
1413 struct power_supply *__must_check power_supply_register(struct device *parent,
1414                 const struct power_supply_desc *desc,
1415                 const struct power_supply_config *cfg)
1416 {
1417         return __power_supply_register(parent, desc, cfg, true);
1418 }
1419 EXPORT_SYMBOL_GPL(power_supply_register);
1420
1421 /**
1422  * power_supply_register_no_ws() - Register new non-waking-source power supply
1423  * @parent:     Device to be a parent of power supply's device, usually
1424  *              the device which probe function calls this
1425  * @desc:       Description of power supply, must be valid through whole
1426  *              lifetime of this power supply
1427  * @cfg:        Run-time specific configuration accessed during registering,
1428  *              may be NULL
1429  *
1430  * Return: A pointer to newly allocated power_supply on success
1431  * or ERR_PTR otherwise.
1432  * Use power_supply_unregister() on returned power_supply pointer to release
1433  * resources.
1434  */
1435 struct power_supply *__must_check
1436 power_supply_register_no_ws(struct device *parent,
1437                 const struct power_supply_desc *desc,
1438                 const struct power_supply_config *cfg)
1439 {
1440         return __power_supply_register(parent, desc, cfg, false);
1441 }
1442 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1443
1444 static void devm_power_supply_release(struct device *dev, void *res)
1445 {
1446         struct power_supply **psy = res;
1447
1448         power_supply_unregister(*psy);
1449 }
1450
1451 /**
1452  * devm_power_supply_register() - Register managed power supply
1453  * @parent:     Device to be a parent of power supply's device, usually
1454  *              the device which probe function calls this
1455  * @desc:       Description of power supply, must be valid through whole
1456  *              lifetime of this power supply
1457  * @cfg:        Run-time specific configuration accessed during registering,
1458  *              may be NULL
1459  *
1460  * Return: A pointer to newly allocated power_supply on success
1461  * or ERR_PTR otherwise.
1462  * The returned power_supply pointer will be automatically unregistered
1463  * on driver detach.
1464  */
1465 struct power_supply *__must_check
1466 devm_power_supply_register(struct device *parent,
1467                 const struct power_supply_desc *desc,
1468                 const struct power_supply_config *cfg)
1469 {
1470         struct power_supply **ptr, *psy;
1471
1472         ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1473
1474         if (!ptr)
1475                 return ERR_PTR(-ENOMEM);
1476         psy = __power_supply_register(parent, desc, cfg, true);
1477         if (IS_ERR(psy)) {
1478                 devres_free(ptr);
1479         } else {
1480                 *ptr = psy;
1481                 devres_add(parent, ptr);
1482         }
1483         return psy;
1484 }
1485 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1486
1487 /**
1488  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1489  * @parent:     Device to be a parent of power supply's device, usually
1490  *              the device which probe function calls this
1491  * @desc:       Description of power supply, must be valid through whole
1492  *              lifetime of this power supply
1493  * @cfg:        Run-time specific configuration accessed during registering,
1494  *              may be NULL
1495  *
1496  * Return: A pointer to newly allocated power_supply on success
1497  * or ERR_PTR otherwise.
1498  * The returned power_supply pointer will be automatically unregistered
1499  * on driver detach.
1500  */
1501 struct power_supply *__must_check
1502 devm_power_supply_register_no_ws(struct device *parent,
1503                 const struct power_supply_desc *desc,
1504                 const struct power_supply_config *cfg)
1505 {
1506         struct power_supply **ptr, *psy;
1507
1508         ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1509
1510         if (!ptr)
1511                 return ERR_PTR(-ENOMEM);
1512         psy = __power_supply_register(parent, desc, cfg, false);
1513         if (IS_ERR(psy)) {
1514                 devres_free(ptr);
1515         } else {
1516                 *ptr = psy;
1517                 devres_add(parent, ptr);
1518         }
1519         return psy;
1520 }
1521 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1522
1523 /**
1524  * power_supply_unregister() - Remove this power supply from system
1525  * @psy:        Pointer to power supply to unregister
1526  *
1527  * Remove this power supply from the system. The resources of power supply
1528  * will be freed here or on last power_supply_put() call.
1529  */
1530 void power_supply_unregister(struct power_supply *psy)
1531 {
1532         WARN_ON(atomic_dec_return(&psy->use_cnt));
1533         psy->removing = true;
1534         cancel_work_sync(&psy->changed_work);
1535         cancel_delayed_work_sync(&psy->deferred_register_work);
1536         sysfs_remove_link(&psy->dev.kobj, "powers");
1537         power_supply_remove_hwmon_sysfs(psy);
1538         power_supply_remove_triggers(psy);
1539         psy_unregister_cooler(psy);
1540         psy_unregister_thermal(psy);
1541         device_init_wakeup(&psy->dev, false);
1542         device_unregister(&psy->dev);
1543 }
1544 EXPORT_SYMBOL_GPL(power_supply_unregister);
1545
1546 void *power_supply_get_drvdata(struct power_supply *psy)
1547 {
1548         return psy->drv_data;
1549 }
1550 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1551
1552 static int __init power_supply_class_init(void)
1553 {
1554         power_supply_class = class_create(THIS_MODULE, "power_supply");
1555
1556         if (IS_ERR(power_supply_class))
1557                 return PTR_ERR(power_supply_class);
1558
1559         power_supply_class->dev_uevent = power_supply_uevent;
1560         power_supply_init_attrs(&power_supply_dev_type);
1561
1562         return 0;
1563 }
1564
1565 static void __exit power_supply_class_exit(void)
1566 {
1567         class_destroy(power_supply_class);
1568 }
1569
1570 subsys_initcall(power_supply_class_init);
1571 module_exit(power_supply_class_exit);
1572
1573 MODULE_DESCRIPTION("Universal power supply monitor class");
1574 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1575               "Szabolcs Gyurko, "
1576               "Anton Vorontsov <cbou@mail.ru>");
1577 MODULE_LICENSE("GPL");