HID: apple: Fix stuck function keys when using FN
[sfrench/cifs-2.6.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
30 static DEFINE_PER_CPU(int, cpu_irq);
31
32 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
33 {
34         if (event->hw.flags & ARMPMU_EVT_64BIT)
35                 return GENMASK_ULL(63, 0);
36         else
37                 return GENMASK_ULL(31, 0);
38 }
39
40 static int
41 armpmu_map_cache_event(const unsigned (*cache_map)
42                                       [PERF_COUNT_HW_CACHE_MAX]
43                                       [PERF_COUNT_HW_CACHE_OP_MAX]
44                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
45                        u64 config)
46 {
47         unsigned int cache_type, cache_op, cache_result, ret;
48
49         cache_type = (config >>  0) & 0xff;
50         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
51                 return -EINVAL;
52
53         cache_op = (config >>  8) & 0xff;
54         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
55                 return -EINVAL;
56
57         cache_result = (config >> 16) & 0xff;
58         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
59                 return -EINVAL;
60
61         if (!cache_map)
62                 return -ENOENT;
63
64         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
65
66         if (ret == CACHE_OP_UNSUPPORTED)
67                 return -ENOENT;
68
69         return ret;
70 }
71
72 static int
73 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
74 {
75         int mapping;
76
77         if (config >= PERF_COUNT_HW_MAX)
78                 return -EINVAL;
79
80         if (!event_map)
81                 return -ENOENT;
82
83         mapping = (*event_map)[config];
84         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
85 }
86
87 static int
88 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
89 {
90         return (int)(config & raw_event_mask);
91 }
92
93 int
94 armpmu_map_event(struct perf_event *event,
95                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
96                  const unsigned (*cache_map)
97                                 [PERF_COUNT_HW_CACHE_MAX]
98                                 [PERF_COUNT_HW_CACHE_OP_MAX]
99                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
100                  u32 raw_event_mask)
101 {
102         u64 config = event->attr.config;
103         int type = event->attr.type;
104
105         if (type == event->pmu->type)
106                 return armpmu_map_raw_event(raw_event_mask, config);
107
108         switch (type) {
109         case PERF_TYPE_HARDWARE:
110                 return armpmu_map_hw_event(event_map, config);
111         case PERF_TYPE_HW_CACHE:
112                 return armpmu_map_cache_event(cache_map, config);
113         case PERF_TYPE_RAW:
114                 return armpmu_map_raw_event(raw_event_mask, config);
115         }
116
117         return -ENOENT;
118 }
119
120 int armpmu_event_set_period(struct perf_event *event)
121 {
122         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
123         struct hw_perf_event *hwc = &event->hw;
124         s64 left = local64_read(&hwc->period_left);
125         s64 period = hwc->sample_period;
126         u64 max_period;
127         int ret = 0;
128
129         max_period = arm_pmu_event_max_period(event);
130         if (unlikely(left <= -period)) {
131                 left = period;
132                 local64_set(&hwc->period_left, left);
133                 hwc->last_period = period;
134                 ret = 1;
135         }
136
137         if (unlikely(left <= 0)) {
138                 left += period;
139                 local64_set(&hwc->period_left, left);
140                 hwc->last_period = period;
141                 ret = 1;
142         }
143
144         /*
145          * Limit the maximum period to prevent the counter value
146          * from overtaking the one we are about to program. In
147          * effect we are reducing max_period to account for
148          * interrupt latency (and we are being very conservative).
149          */
150         if (left > (max_period >> 1))
151                 left = (max_period >> 1);
152
153         local64_set(&hwc->prev_count, (u64)-left);
154
155         armpmu->write_counter(event, (u64)(-left) & max_period);
156
157         perf_event_update_userpage(event);
158
159         return ret;
160 }
161
162 u64 armpmu_event_update(struct perf_event *event)
163 {
164         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165         struct hw_perf_event *hwc = &event->hw;
166         u64 delta, prev_raw_count, new_raw_count;
167         u64 max_period = arm_pmu_event_max_period(event);
168
169 again:
170         prev_raw_count = local64_read(&hwc->prev_count);
171         new_raw_count = armpmu->read_counter(event);
172
173         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
174                              new_raw_count) != prev_raw_count)
175                 goto again;
176
177         delta = (new_raw_count - prev_raw_count) & max_period;
178
179         local64_add(delta, &event->count);
180         local64_sub(delta, &hwc->period_left);
181
182         return new_raw_count;
183 }
184
185 static void
186 armpmu_read(struct perf_event *event)
187 {
188         armpmu_event_update(event);
189 }
190
191 static void
192 armpmu_stop(struct perf_event *event, int flags)
193 {
194         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
195         struct hw_perf_event *hwc = &event->hw;
196
197         /*
198          * ARM pmu always has to update the counter, so ignore
199          * PERF_EF_UPDATE, see comments in armpmu_start().
200          */
201         if (!(hwc->state & PERF_HES_STOPPED)) {
202                 armpmu->disable(event);
203                 armpmu_event_update(event);
204                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
205         }
206 }
207
208 static void armpmu_start(struct perf_event *event, int flags)
209 {
210         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
211         struct hw_perf_event *hwc = &event->hw;
212
213         /*
214          * ARM pmu always has to reprogram the period, so ignore
215          * PERF_EF_RELOAD, see the comment below.
216          */
217         if (flags & PERF_EF_RELOAD)
218                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
219
220         hwc->state = 0;
221         /*
222          * Set the period again. Some counters can't be stopped, so when we
223          * were stopped we simply disabled the IRQ source and the counter
224          * may have been left counting. If we don't do this step then we may
225          * get an interrupt too soon or *way* too late if the overflow has
226          * happened since disabling.
227          */
228         armpmu_event_set_period(event);
229         armpmu->enable(event);
230 }
231
232 static void
233 armpmu_del(struct perf_event *event, int flags)
234 {
235         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
237         struct hw_perf_event *hwc = &event->hw;
238         int idx = hwc->idx;
239
240         armpmu_stop(event, PERF_EF_UPDATE);
241         hw_events->events[idx] = NULL;
242         armpmu->clear_event_idx(hw_events, event);
243         perf_event_update_userpage(event);
244         /* Clear the allocated counter */
245         hwc->idx = -1;
246 }
247
248 static int
249 armpmu_add(struct perf_event *event, int flags)
250 {
251         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
252         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
253         struct hw_perf_event *hwc = &event->hw;
254         int idx;
255
256         /* An event following a process won't be stopped earlier */
257         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
258                 return -ENOENT;
259
260         /* If we don't have a space for the counter then finish early. */
261         idx = armpmu->get_event_idx(hw_events, event);
262         if (idx < 0)
263                 return idx;
264
265         /*
266          * If there is an event in the counter we are going to use then make
267          * sure it is disabled.
268          */
269         event->hw.idx = idx;
270         armpmu->disable(event);
271         hw_events->events[idx] = event;
272
273         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
274         if (flags & PERF_EF_START)
275                 armpmu_start(event, PERF_EF_RELOAD);
276
277         /* Propagate our changes to the userspace mapping. */
278         perf_event_update_userpage(event);
279
280         return 0;
281 }
282
283 static int
284 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
285                                struct perf_event *event)
286 {
287         struct arm_pmu *armpmu;
288
289         if (is_software_event(event))
290                 return 1;
291
292         /*
293          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
294          * core perf code won't check that the pmu->ctx == leader->ctx
295          * until after pmu->event_init(event).
296          */
297         if (event->pmu != pmu)
298                 return 0;
299
300         if (event->state < PERF_EVENT_STATE_OFF)
301                 return 1;
302
303         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
304                 return 1;
305
306         armpmu = to_arm_pmu(event->pmu);
307         return armpmu->get_event_idx(hw_events, event) >= 0;
308 }
309
310 static int
311 validate_group(struct perf_event *event)
312 {
313         struct perf_event *sibling, *leader = event->group_leader;
314         struct pmu_hw_events fake_pmu;
315
316         /*
317          * Initialise the fake PMU. We only need to populate the
318          * used_mask for the purposes of validation.
319          */
320         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
321
322         if (!validate_event(event->pmu, &fake_pmu, leader))
323                 return -EINVAL;
324
325         for_each_sibling_event(sibling, leader) {
326                 if (!validate_event(event->pmu, &fake_pmu, sibling))
327                         return -EINVAL;
328         }
329
330         if (!validate_event(event->pmu, &fake_pmu, event))
331                 return -EINVAL;
332
333         return 0;
334 }
335
336 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
337 {
338         struct arm_pmu *armpmu;
339         int ret;
340         u64 start_clock, finish_clock;
341
342         /*
343          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
344          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
345          * do any necessary shifting, we just need to perform the first
346          * dereference.
347          */
348         armpmu = *(void **)dev;
349         if (WARN_ON_ONCE(!armpmu))
350                 return IRQ_NONE;
351
352         start_clock = sched_clock();
353         ret = armpmu->handle_irq(armpmu);
354         finish_clock = sched_clock();
355
356         perf_sample_event_took(finish_clock - start_clock);
357         return ret;
358 }
359
360 static int
361 __hw_perf_event_init(struct perf_event *event)
362 {
363         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
364         struct hw_perf_event *hwc = &event->hw;
365         int mapping;
366
367         hwc->flags = 0;
368         mapping = armpmu->map_event(event);
369
370         if (mapping < 0) {
371                 pr_debug("event %x:%llx not supported\n", event->attr.type,
372                          event->attr.config);
373                 return mapping;
374         }
375
376         /*
377          * We don't assign an index until we actually place the event onto
378          * hardware. Use -1 to signify that we haven't decided where to put it
379          * yet. For SMP systems, each core has it's own PMU so we can't do any
380          * clever allocation or constraints checking at this point.
381          */
382         hwc->idx                = -1;
383         hwc->config_base        = 0;
384         hwc->config             = 0;
385         hwc->event_base         = 0;
386
387         /*
388          * Check whether we need to exclude the counter from certain modes.
389          */
390         if (armpmu->set_event_filter &&
391             armpmu->set_event_filter(hwc, &event->attr)) {
392                 pr_debug("ARM performance counters do not support "
393                          "mode exclusion\n");
394                 return -EOPNOTSUPP;
395         }
396
397         /*
398          * Store the event encoding into the config_base field.
399          */
400         hwc->config_base            |= (unsigned long)mapping;
401
402         if (!is_sampling_event(event)) {
403                 /*
404                  * For non-sampling runs, limit the sample_period to half
405                  * of the counter width. That way, the new counter value
406                  * is far less likely to overtake the previous one unless
407                  * you have some serious IRQ latency issues.
408                  */
409                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
410                 hwc->last_period    = hwc->sample_period;
411                 local64_set(&hwc->period_left, hwc->sample_period);
412         }
413
414         if (event->group_leader != event) {
415                 if (validate_group(event) != 0)
416                         return -EINVAL;
417         }
418
419         return 0;
420 }
421
422 static int armpmu_event_init(struct perf_event *event)
423 {
424         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
425
426         /*
427          * Reject CPU-affine events for CPUs that are of a different class to
428          * that which this PMU handles. Process-following events (where
429          * event->cpu == -1) can be migrated between CPUs, and thus we have to
430          * reject them later (in armpmu_add) if they're scheduled on a
431          * different class of CPU.
432          */
433         if (event->cpu != -1 &&
434                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
435                 return -ENOENT;
436
437         /* does not support taken branch sampling */
438         if (has_branch_stack(event))
439                 return -EOPNOTSUPP;
440
441         if (armpmu->map_event(event) == -ENOENT)
442                 return -ENOENT;
443
444         return __hw_perf_event_init(event);
445 }
446
447 static void armpmu_enable(struct pmu *pmu)
448 {
449         struct arm_pmu *armpmu = to_arm_pmu(pmu);
450         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
451         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
452
453         /* For task-bound events we may be called on other CPUs */
454         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
455                 return;
456
457         if (enabled)
458                 armpmu->start(armpmu);
459 }
460
461 static void armpmu_disable(struct pmu *pmu)
462 {
463         struct arm_pmu *armpmu = to_arm_pmu(pmu);
464
465         /* For task-bound events we may be called on other CPUs */
466         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
467                 return;
468
469         armpmu->stop(armpmu);
470 }
471
472 /*
473  * In heterogeneous systems, events are specific to a particular
474  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
475  * the same microarchitecture.
476  */
477 static int armpmu_filter_match(struct perf_event *event)
478 {
479         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
480         unsigned int cpu = smp_processor_id();
481         int ret;
482
483         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
484         if (ret && armpmu->filter_match)
485                 return armpmu->filter_match(event);
486
487         return ret;
488 }
489
490 static ssize_t armpmu_cpumask_show(struct device *dev,
491                                    struct device_attribute *attr, char *buf)
492 {
493         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
494         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
495 }
496
497 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
498
499 static struct attribute *armpmu_common_attrs[] = {
500         &dev_attr_cpus.attr,
501         NULL,
502 };
503
504 static struct attribute_group armpmu_common_attr_group = {
505         .attrs = armpmu_common_attrs,
506 };
507
508 /* Set at runtime when we know what CPU type we are. */
509 static struct arm_pmu *__oprofile_cpu_pmu;
510
511 /*
512  * Despite the names, these two functions are CPU-specific and are used
513  * by the OProfile/perf code.
514  */
515 const char *perf_pmu_name(void)
516 {
517         if (!__oprofile_cpu_pmu)
518                 return NULL;
519
520         return __oprofile_cpu_pmu->name;
521 }
522 EXPORT_SYMBOL_GPL(perf_pmu_name);
523
524 int perf_num_counters(void)
525 {
526         int max_events = 0;
527
528         if (__oprofile_cpu_pmu != NULL)
529                 max_events = __oprofile_cpu_pmu->num_events;
530
531         return max_events;
532 }
533 EXPORT_SYMBOL_GPL(perf_num_counters);
534
535 static int armpmu_count_irq_users(const int irq)
536 {
537         int cpu, count = 0;
538
539         for_each_possible_cpu(cpu) {
540                 if (per_cpu(cpu_irq, cpu) == irq)
541                         count++;
542         }
543
544         return count;
545 }
546
547 void armpmu_free_irq(int irq, int cpu)
548 {
549         if (per_cpu(cpu_irq, cpu) == 0)
550                 return;
551         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
552                 return;
553
554         if (!irq_is_percpu_devid(irq))
555                 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
556         else if (armpmu_count_irq_users(irq) == 1)
557                 free_percpu_irq(irq, &cpu_armpmu);
558
559         per_cpu(cpu_irq, cpu) = 0;
560 }
561
562 int armpmu_request_irq(int irq, int cpu)
563 {
564         int err = 0;
565         const irq_handler_t handler = armpmu_dispatch_irq;
566         if (!irq)
567                 return 0;
568
569         if (!irq_is_percpu_devid(irq)) {
570                 unsigned long irq_flags;
571
572                 err = irq_force_affinity(irq, cpumask_of(cpu));
573
574                 if (err && num_possible_cpus() > 1) {
575                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
576                                 irq, cpu);
577                         goto err_out;
578                 }
579
580                 irq_flags = IRQF_PERCPU |
581                             IRQF_NOBALANCING |
582                             IRQF_NO_THREAD;
583
584                 irq_set_status_flags(irq, IRQ_NOAUTOEN);
585                 err = request_irq(irq, handler, irq_flags, "arm-pmu",
586                                   per_cpu_ptr(&cpu_armpmu, cpu));
587         } else if (armpmu_count_irq_users(irq) == 0) {
588                 err = request_percpu_irq(irq, handler, "arm-pmu",
589                                          &cpu_armpmu);
590         }
591
592         if (err)
593                 goto err_out;
594
595         per_cpu(cpu_irq, cpu) = irq;
596         return 0;
597
598 err_out:
599         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
600         return err;
601 }
602
603 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
604 {
605         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
606         return per_cpu(hw_events->irq, cpu);
607 }
608
609 /*
610  * PMU hardware loses all context when a CPU goes offline.
611  * When a CPU is hotplugged back in, since some hardware registers are
612  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
613  * junk values out of them.
614  */
615 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
616 {
617         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
618         int irq;
619
620         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
621                 return 0;
622         if (pmu->reset)
623                 pmu->reset(pmu);
624
625         per_cpu(cpu_armpmu, cpu) = pmu;
626
627         irq = armpmu_get_cpu_irq(pmu, cpu);
628         if (irq) {
629                 if (irq_is_percpu_devid(irq))
630                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
631                 else
632                         enable_irq(irq);
633         }
634
635         return 0;
636 }
637
638 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
639 {
640         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
641         int irq;
642
643         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
644                 return 0;
645
646         irq = armpmu_get_cpu_irq(pmu, cpu);
647         if (irq) {
648                 if (irq_is_percpu_devid(irq))
649                         disable_percpu_irq(irq);
650                 else
651                         disable_irq_nosync(irq);
652         }
653
654         per_cpu(cpu_armpmu, cpu) = NULL;
655
656         return 0;
657 }
658
659 #ifdef CONFIG_CPU_PM
660 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
661 {
662         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
663         struct perf_event *event;
664         int idx;
665
666         for (idx = 0; idx < armpmu->num_events; idx++) {
667                 event = hw_events->events[idx];
668                 if (!event)
669                         continue;
670
671                 switch (cmd) {
672                 case CPU_PM_ENTER:
673                         /*
674                          * Stop and update the counter
675                          */
676                         armpmu_stop(event, PERF_EF_UPDATE);
677                         break;
678                 case CPU_PM_EXIT:
679                 case CPU_PM_ENTER_FAILED:
680                          /*
681                           * Restore and enable the counter.
682                           * armpmu_start() indirectly calls
683                           *
684                           * perf_event_update_userpage()
685                           *
686                           * that requires RCU read locking to be functional,
687                           * wrap the call within RCU_NONIDLE to make the
688                           * RCU subsystem aware this cpu is not idle from
689                           * an RCU perspective for the armpmu_start() call
690                           * duration.
691                           */
692                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
693                         break;
694                 default:
695                         break;
696                 }
697         }
698 }
699
700 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
701                              void *v)
702 {
703         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
704         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
705         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
706
707         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
708                 return NOTIFY_DONE;
709
710         /*
711          * Always reset the PMU registers on power-up even if
712          * there are no events running.
713          */
714         if (cmd == CPU_PM_EXIT && armpmu->reset)
715                 armpmu->reset(armpmu);
716
717         if (!enabled)
718                 return NOTIFY_OK;
719
720         switch (cmd) {
721         case CPU_PM_ENTER:
722                 armpmu->stop(armpmu);
723                 cpu_pm_pmu_setup(armpmu, cmd);
724                 break;
725         case CPU_PM_EXIT:
726         case CPU_PM_ENTER_FAILED:
727                 cpu_pm_pmu_setup(armpmu, cmd);
728                 armpmu->start(armpmu);
729                 break;
730         default:
731                 return NOTIFY_DONE;
732         }
733
734         return NOTIFY_OK;
735 }
736
737 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
738 {
739         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
740         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
741 }
742
743 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
744 {
745         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
746 }
747 #else
748 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
749 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
750 #endif
751
752 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
753 {
754         int err;
755
756         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
757                                        &cpu_pmu->node);
758         if (err)
759                 goto out;
760
761         err = cpu_pm_pmu_register(cpu_pmu);
762         if (err)
763                 goto out_unregister;
764
765         return 0;
766
767 out_unregister:
768         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
769                                             &cpu_pmu->node);
770 out:
771         return err;
772 }
773
774 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
775 {
776         cpu_pm_pmu_unregister(cpu_pmu);
777         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
778                                             &cpu_pmu->node);
779 }
780
781 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
782 {
783         struct arm_pmu *pmu;
784         int cpu;
785
786         pmu = kzalloc(sizeof(*pmu), flags);
787         if (!pmu) {
788                 pr_info("failed to allocate PMU device!\n");
789                 goto out;
790         }
791
792         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
793         if (!pmu->hw_events) {
794                 pr_info("failed to allocate per-cpu PMU data.\n");
795                 goto out_free_pmu;
796         }
797
798         pmu->pmu = (struct pmu) {
799                 .pmu_enable     = armpmu_enable,
800                 .pmu_disable    = armpmu_disable,
801                 .event_init     = armpmu_event_init,
802                 .add            = armpmu_add,
803                 .del            = armpmu_del,
804                 .start          = armpmu_start,
805                 .stop           = armpmu_stop,
806                 .read           = armpmu_read,
807                 .filter_match   = armpmu_filter_match,
808                 .attr_groups    = pmu->attr_groups,
809                 /*
810                  * This is a CPU PMU potentially in a heterogeneous
811                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
812                  * and we have taken ctx sharing into account (e.g. with our
813                  * pmu::filter_match callback and pmu::event_init group
814                  * validation).
815                  */
816                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
817         };
818
819         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
820                 &armpmu_common_attr_group;
821
822         for_each_possible_cpu(cpu) {
823                 struct pmu_hw_events *events;
824
825                 events = per_cpu_ptr(pmu->hw_events, cpu);
826                 raw_spin_lock_init(&events->pmu_lock);
827                 events->percpu_pmu = pmu;
828         }
829
830         return pmu;
831
832 out_free_pmu:
833         kfree(pmu);
834 out:
835         return NULL;
836 }
837
838 struct arm_pmu *armpmu_alloc(void)
839 {
840         return __armpmu_alloc(GFP_KERNEL);
841 }
842
843 struct arm_pmu *armpmu_alloc_atomic(void)
844 {
845         return __armpmu_alloc(GFP_ATOMIC);
846 }
847
848
849 void armpmu_free(struct arm_pmu *pmu)
850 {
851         free_percpu(pmu->hw_events);
852         kfree(pmu);
853 }
854
855 int armpmu_register(struct arm_pmu *pmu)
856 {
857         int ret;
858
859         ret = cpu_pmu_init(pmu);
860         if (ret)
861                 return ret;
862
863         if (!pmu->set_event_filter)
864                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
865
866         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
867         if (ret)
868                 goto out_destroy;
869
870         if (!__oprofile_cpu_pmu)
871                 __oprofile_cpu_pmu = pmu;
872
873         pr_info("enabled with %s PMU driver, %d counters available\n",
874                 pmu->name, pmu->num_events);
875
876         return 0;
877
878 out_destroy:
879         cpu_pmu_destroy(pmu);
880         return ret;
881 }
882
883 static int arm_pmu_hp_init(void)
884 {
885         int ret;
886
887         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
888                                       "perf/arm/pmu:starting",
889                                       arm_perf_starting_cpu,
890                                       arm_perf_teardown_cpu);
891         if (ret)
892                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
893                        ret);
894         return ret;
895 }
896 subsys_initcall(arm_pmu_hp_init);