Merge tag 'for-6.7/block-2023-10-30' of git://git.kernel.dk/linux
[sfrench/cifs-2.6.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <crypto/hash.h>
22 #include <trace/events/sock.h>
23
24 #include "nvmet.h"
25
26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
27
28 static int param_store_val(const char *str, int *val, int min, int max)
29 {
30         int ret, new_val;
31
32         ret = kstrtoint(str, 10, &new_val);
33         if (ret)
34                 return -EINVAL;
35
36         if (new_val < min || new_val > max)
37                 return -EINVAL;
38
39         *val = new_val;
40         return 0;
41 }
42
43 static int set_params(const char *str, const struct kernel_param *kp)
44 {
45         return param_store_val(str, kp->arg, 0, INT_MAX);
46 }
47
48 static const struct kernel_param_ops set_param_ops = {
49         .set    = set_params,
50         .get    = param_get_int,
51 };
52
53 /* Define the socket priority to use for connections were it is desirable
54  * that the NIC consider performing optimized packet processing or filtering.
55  * A non-zero value being sufficient to indicate general consideration of any
56  * possible optimization.  Making it a module param allows for alternative
57  * values that may be unique for some NIC implementations.
58  */
59 static int so_priority;
60 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
61 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
62
63 /* Define a time period (in usecs) that io_work() shall sample an activated
64  * queue before determining it to be idle.  This optional module behavior
65  * can enable NIC solutions that support socket optimized packet processing
66  * using advanced interrupt moderation techniques.
67  */
68 static int idle_poll_period_usecs;
69 device_param_cb(idle_poll_period_usecs, &set_param_ops,
70                 &idle_poll_period_usecs, 0644);
71 MODULE_PARM_DESC(idle_poll_period_usecs,
72                 "nvmet tcp io_work poll till idle time period in usecs: Default 0");
73
74 #ifdef CONFIG_NVME_TARGET_TCP_TLS
75 /*
76  * TLS handshake timeout
77  */
78 static int tls_handshake_timeout = 10;
79 module_param(tls_handshake_timeout, int, 0644);
80 MODULE_PARM_DESC(tls_handshake_timeout,
81                  "nvme TLS handshake timeout in seconds (default 10)");
82 #endif
83
84 #define NVMET_TCP_RECV_BUDGET           8
85 #define NVMET_TCP_SEND_BUDGET           8
86 #define NVMET_TCP_IO_WORK_BUDGET        64
87
88 enum nvmet_tcp_send_state {
89         NVMET_TCP_SEND_DATA_PDU,
90         NVMET_TCP_SEND_DATA,
91         NVMET_TCP_SEND_R2T,
92         NVMET_TCP_SEND_DDGST,
93         NVMET_TCP_SEND_RESPONSE
94 };
95
96 enum nvmet_tcp_recv_state {
97         NVMET_TCP_RECV_PDU,
98         NVMET_TCP_RECV_DATA,
99         NVMET_TCP_RECV_DDGST,
100         NVMET_TCP_RECV_ERR,
101 };
102
103 enum {
104         NVMET_TCP_F_INIT_FAILED = (1 << 0),
105 };
106
107 struct nvmet_tcp_cmd {
108         struct nvmet_tcp_queue          *queue;
109         struct nvmet_req                req;
110
111         struct nvme_tcp_cmd_pdu         *cmd_pdu;
112         struct nvme_tcp_rsp_pdu         *rsp_pdu;
113         struct nvme_tcp_data_pdu        *data_pdu;
114         struct nvme_tcp_r2t_pdu         *r2t_pdu;
115
116         u32                             rbytes_done;
117         u32                             wbytes_done;
118
119         u32                             pdu_len;
120         u32                             pdu_recv;
121         int                             sg_idx;
122         char                            recv_cbuf[CMSG_LEN(sizeof(char))];
123         struct msghdr                   recv_msg;
124         struct bio_vec                  *iov;
125         u32                             flags;
126
127         struct list_head                entry;
128         struct llist_node               lentry;
129
130         /* send state */
131         u32                             offset;
132         struct scatterlist              *cur_sg;
133         enum nvmet_tcp_send_state       state;
134
135         __le32                          exp_ddgst;
136         __le32                          recv_ddgst;
137 };
138
139 enum nvmet_tcp_queue_state {
140         NVMET_TCP_Q_CONNECTING,
141         NVMET_TCP_Q_TLS_HANDSHAKE,
142         NVMET_TCP_Q_LIVE,
143         NVMET_TCP_Q_DISCONNECTING,
144         NVMET_TCP_Q_FAILED,
145 };
146
147 struct nvmet_tcp_queue {
148         struct socket           *sock;
149         struct nvmet_tcp_port   *port;
150         struct work_struct      io_work;
151         struct nvmet_cq         nvme_cq;
152         struct nvmet_sq         nvme_sq;
153         struct kref             kref;
154
155         /* send state */
156         struct nvmet_tcp_cmd    *cmds;
157         unsigned int            nr_cmds;
158         struct list_head        free_list;
159         struct llist_head       resp_list;
160         struct list_head        resp_send_list;
161         int                     send_list_len;
162         struct nvmet_tcp_cmd    *snd_cmd;
163
164         /* recv state */
165         int                     offset;
166         int                     left;
167         enum nvmet_tcp_recv_state rcv_state;
168         struct nvmet_tcp_cmd    *cmd;
169         union nvme_tcp_pdu      pdu;
170
171         /* digest state */
172         bool                    hdr_digest;
173         bool                    data_digest;
174         struct ahash_request    *snd_hash;
175         struct ahash_request    *rcv_hash;
176
177         /* TLS state */
178         key_serial_t            tls_pskid;
179         struct delayed_work     tls_handshake_tmo_work;
180
181         unsigned long           poll_end;
182
183         spinlock_t              state_lock;
184         enum nvmet_tcp_queue_state state;
185
186         struct sockaddr_storage sockaddr;
187         struct sockaddr_storage sockaddr_peer;
188         struct work_struct      release_work;
189
190         int                     idx;
191         struct list_head        queue_list;
192
193         struct nvmet_tcp_cmd    connect;
194
195         struct page_frag_cache  pf_cache;
196
197         void (*data_ready)(struct sock *);
198         void (*state_change)(struct sock *);
199         void (*write_space)(struct sock *);
200 };
201
202 struct nvmet_tcp_port {
203         struct socket           *sock;
204         struct work_struct      accept_work;
205         struct nvmet_port       *nport;
206         struct sockaddr_storage addr;
207         void (*data_ready)(struct sock *);
208 };
209
210 static DEFINE_IDA(nvmet_tcp_queue_ida);
211 static LIST_HEAD(nvmet_tcp_queue_list);
212 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
213
214 static struct workqueue_struct *nvmet_tcp_wq;
215 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
216 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
217 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
218
219 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
220                 struct nvmet_tcp_cmd *cmd)
221 {
222         if (unlikely(!queue->nr_cmds)) {
223                 /* We didn't allocate cmds yet, send 0xffff */
224                 return USHRT_MAX;
225         }
226
227         return cmd - queue->cmds;
228 }
229
230 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
231 {
232         return nvme_is_write(cmd->req.cmd) &&
233                 cmd->rbytes_done < cmd->req.transfer_len;
234 }
235
236 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
237 {
238         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
239 }
240
241 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
242 {
243         return !nvme_is_write(cmd->req.cmd) &&
244                 cmd->req.transfer_len > 0 &&
245                 !cmd->req.cqe->status;
246 }
247
248 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
249 {
250         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
251                 !cmd->rbytes_done;
252 }
253
254 static inline struct nvmet_tcp_cmd *
255 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
256 {
257         struct nvmet_tcp_cmd *cmd;
258
259         cmd = list_first_entry_or_null(&queue->free_list,
260                                 struct nvmet_tcp_cmd, entry);
261         if (!cmd)
262                 return NULL;
263         list_del_init(&cmd->entry);
264
265         cmd->rbytes_done = cmd->wbytes_done = 0;
266         cmd->pdu_len = 0;
267         cmd->pdu_recv = 0;
268         cmd->iov = NULL;
269         cmd->flags = 0;
270         return cmd;
271 }
272
273 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
274 {
275         if (unlikely(cmd == &cmd->queue->connect))
276                 return;
277
278         list_add_tail(&cmd->entry, &cmd->queue->free_list);
279 }
280
281 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
282 {
283         return queue->sock->sk->sk_incoming_cpu;
284 }
285
286 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
287 {
288         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
289 }
290
291 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
292 {
293         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
294 }
295
296 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
297                 void *pdu, size_t len)
298 {
299         struct scatterlist sg;
300
301         sg_init_one(&sg, pdu, len);
302         ahash_request_set_crypt(hash, &sg, pdu + len, len);
303         crypto_ahash_digest(hash);
304 }
305
306 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
307         void *pdu, size_t len)
308 {
309         struct nvme_tcp_hdr *hdr = pdu;
310         __le32 recv_digest;
311         __le32 exp_digest;
312
313         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
314                 pr_err("queue %d: header digest enabled but no header digest\n",
315                         queue->idx);
316                 return -EPROTO;
317         }
318
319         recv_digest = *(__le32 *)(pdu + hdr->hlen);
320         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
321         exp_digest = *(__le32 *)(pdu + hdr->hlen);
322         if (recv_digest != exp_digest) {
323                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
324                         queue->idx, le32_to_cpu(recv_digest),
325                         le32_to_cpu(exp_digest));
326                 return -EPROTO;
327         }
328
329         return 0;
330 }
331
332 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
333 {
334         struct nvme_tcp_hdr *hdr = pdu;
335         u8 digest_len = nvmet_tcp_hdgst_len(queue);
336         u32 len;
337
338         len = le32_to_cpu(hdr->plen) - hdr->hlen -
339                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
340
341         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
342                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
343                 return -EPROTO;
344         }
345
346         return 0;
347 }
348
349 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
350 {
351         kfree(cmd->iov);
352         sgl_free(cmd->req.sg);
353         cmd->iov = NULL;
354         cmd->req.sg = NULL;
355 }
356
357 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
358 {
359         struct bio_vec *iov = cmd->iov;
360         struct scatterlist *sg;
361         u32 length, offset, sg_offset;
362         int nr_pages;
363
364         length = cmd->pdu_len;
365         nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
366         offset = cmd->rbytes_done;
367         cmd->sg_idx = offset / PAGE_SIZE;
368         sg_offset = offset % PAGE_SIZE;
369         sg = &cmd->req.sg[cmd->sg_idx];
370
371         while (length) {
372                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
373
374                 bvec_set_page(iov, sg_page(sg), iov_len,
375                                 sg->offset + sg_offset);
376
377                 length -= iov_len;
378                 sg = sg_next(sg);
379                 iov++;
380                 sg_offset = 0;
381         }
382
383         iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
384                       nr_pages, cmd->pdu_len);
385 }
386
387 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
388 {
389         queue->rcv_state = NVMET_TCP_RECV_ERR;
390         if (queue->nvme_sq.ctrl)
391                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
392         else
393                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
394 }
395
396 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
397 {
398         queue->rcv_state = NVMET_TCP_RECV_ERR;
399         if (status == -EPIPE || status == -ECONNRESET)
400                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
401         else
402                 nvmet_tcp_fatal_error(queue);
403 }
404
405 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
406 {
407         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
408         u32 len = le32_to_cpu(sgl->length);
409
410         if (!len)
411                 return 0;
412
413         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
414                           NVME_SGL_FMT_OFFSET)) {
415                 if (!nvme_is_write(cmd->req.cmd))
416                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
417
418                 if (len > cmd->req.port->inline_data_size)
419                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
420                 cmd->pdu_len = len;
421         }
422         cmd->req.transfer_len += len;
423
424         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
425         if (!cmd->req.sg)
426                 return NVME_SC_INTERNAL;
427         cmd->cur_sg = cmd->req.sg;
428
429         if (nvmet_tcp_has_data_in(cmd)) {
430                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
431                                 sizeof(*cmd->iov), GFP_KERNEL);
432                 if (!cmd->iov)
433                         goto err;
434         }
435
436         return 0;
437 err:
438         nvmet_tcp_free_cmd_buffers(cmd);
439         return NVME_SC_INTERNAL;
440 }
441
442 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
443                 struct nvmet_tcp_cmd *cmd)
444 {
445         ahash_request_set_crypt(hash, cmd->req.sg,
446                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
447         crypto_ahash_digest(hash);
448 }
449
450 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
451 {
452         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
453         struct nvmet_tcp_queue *queue = cmd->queue;
454         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
455         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
456
457         cmd->offset = 0;
458         cmd->state = NVMET_TCP_SEND_DATA_PDU;
459
460         pdu->hdr.type = nvme_tcp_c2h_data;
461         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
462                                                 NVME_TCP_F_DATA_SUCCESS : 0);
463         pdu->hdr.hlen = sizeof(*pdu);
464         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
465         pdu->hdr.plen =
466                 cpu_to_le32(pdu->hdr.hlen + hdgst +
467                                 cmd->req.transfer_len + ddgst);
468         pdu->command_id = cmd->req.cqe->command_id;
469         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
470         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
471
472         if (queue->data_digest) {
473                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
474                 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
475         }
476
477         if (cmd->queue->hdr_digest) {
478                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
479                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
480         }
481 }
482
483 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
484 {
485         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
486         struct nvmet_tcp_queue *queue = cmd->queue;
487         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
488
489         cmd->offset = 0;
490         cmd->state = NVMET_TCP_SEND_R2T;
491
492         pdu->hdr.type = nvme_tcp_r2t;
493         pdu->hdr.flags = 0;
494         pdu->hdr.hlen = sizeof(*pdu);
495         pdu->hdr.pdo = 0;
496         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
497
498         pdu->command_id = cmd->req.cmd->common.command_id;
499         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
500         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
501         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
502         if (cmd->queue->hdr_digest) {
503                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
504                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
505         }
506 }
507
508 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
509 {
510         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
511         struct nvmet_tcp_queue *queue = cmd->queue;
512         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
513
514         cmd->offset = 0;
515         cmd->state = NVMET_TCP_SEND_RESPONSE;
516
517         pdu->hdr.type = nvme_tcp_rsp;
518         pdu->hdr.flags = 0;
519         pdu->hdr.hlen = sizeof(*pdu);
520         pdu->hdr.pdo = 0;
521         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
522         if (cmd->queue->hdr_digest) {
523                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
524                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
525         }
526 }
527
528 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
529 {
530         struct llist_node *node;
531         struct nvmet_tcp_cmd *cmd;
532
533         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
534                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
535                 list_add(&cmd->entry, &queue->resp_send_list);
536                 queue->send_list_len++;
537         }
538 }
539
540 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
541 {
542         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
543                                 struct nvmet_tcp_cmd, entry);
544         if (!queue->snd_cmd) {
545                 nvmet_tcp_process_resp_list(queue);
546                 queue->snd_cmd =
547                         list_first_entry_or_null(&queue->resp_send_list,
548                                         struct nvmet_tcp_cmd, entry);
549                 if (unlikely(!queue->snd_cmd))
550                         return NULL;
551         }
552
553         list_del_init(&queue->snd_cmd->entry);
554         queue->send_list_len--;
555
556         if (nvmet_tcp_need_data_out(queue->snd_cmd))
557                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
558         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
559                 nvmet_setup_r2t_pdu(queue->snd_cmd);
560         else
561                 nvmet_setup_response_pdu(queue->snd_cmd);
562
563         return queue->snd_cmd;
564 }
565
566 static void nvmet_tcp_queue_response(struct nvmet_req *req)
567 {
568         struct nvmet_tcp_cmd *cmd =
569                 container_of(req, struct nvmet_tcp_cmd, req);
570         struct nvmet_tcp_queue  *queue = cmd->queue;
571         struct nvme_sgl_desc *sgl;
572         u32 len;
573
574         if (unlikely(cmd == queue->cmd)) {
575                 sgl = &cmd->req.cmd->common.dptr.sgl;
576                 len = le32_to_cpu(sgl->length);
577
578                 /*
579                  * Wait for inline data before processing the response.
580                  * Avoid using helpers, this might happen before
581                  * nvmet_req_init is completed.
582                  */
583                 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
584                     len && len <= cmd->req.port->inline_data_size &&
585                     nvme_is_write(cmd->req.cmd))
586                         return;
587         }
588
589         llist_add(&cmd->lentry, &queue->resp_list);
590         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
591 }
592
593 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
594 {
595         if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
596                 nvmet_tcp_queue_response(&cmd->req);
597         else
598                 cmd->req.execute(&cmd->req);
599 }
600
601 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
602 {
603         struct msghdr msg = {
604                 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
605         };
606         struct bio_vec bvec;
607         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
608         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
609         int ret;
610
611         bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
612         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
613         ret = sock_sendmsg(cmd->queue->sock, &msg);
614         if (ret <= 0)
615                 return ret;
616
617         cmd->offset += ret;
618         left -= ret;
619
620         if (left)
621                 return -EAGAIN;
622
623         cmd->state = NVMET_TCP_SEND_DATA;
624         cmd->offset  = 0;
625         return 1;
626 }
627
628 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
629 {
630         struct nvmet_tcp_queue *queue = cmd->queue;
631         int ret;
632
633         while (cmd->cur_sg) {
634                 struct msghdr msg = {
635                         .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
636                 };
637                 struct page *page = sg_page(cmd->cur_sg);
638                 struct bio_vec bvec;
639                 u32 left = cmd->cur_sg->length - cmd->offset;
640
641                 if ((!last_in_batch && cmd->queue->send_list_len) ||
642                     cmd->wbytes_done + left < cmd->req.transfer_len ||
643                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
644                         msg.msg_flags |= MSG_MORE;
645
646                 bvec_set_page(&bvec, page, left, cmd->offset);
647                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
648                 ret = sock_sendmsg(cmd->queue->sock, &msg);
649                 if (ret <= 0)
650                         return ret;
651
652                 cmd->offset += ret;
653                 cmd->wbytes_done += ret;
654
655                 /* Done with sg?*/
656                 if (cmd->offset == cmd->cur_sg->length) {
657                         cmd->cur_sg = sg_next(cmd->cur_sg);
658                         cmd->offset = 0;
659                 }
660         }
661
662         if (queue->data_digest) {
663                 cmd->state = NVMET_TCP_SEND_DDGST;
664                 cmd->offset = 0;
665         } else {
666                 if (queue->nvme_sq.sqhd_disabled) {
667                         cmd->queue->snd_cmd = NULL;
668                         nvmet_tcp_put_cmd(cmd);
669                 } else {
670                         nvmet_setup_response_pdu(cmd);
671                 }
672         }
673
674         if (queue->nvme_sq.sqhd_disabled)
675                 nvmet_tcp_free_cmd_buffers(cmd);
676
677         return 1;
678
679 }
680
681 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
682                 bool last_in_batch)
683 {
684         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
685         struct bio_vec bvec;
686         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
687         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
688         int ret;
689
690         if (!last_in_batch && cmd->queue->send_list_len)
691                 msg.msg_flags |= MSG_MORE;
692         else
693                 msg.msg_flags |= MSG_EOR;
694
695         bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
696         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
697         ret = sock_sendmsg(cmd->queue->sock, &msg);
698         if (ret <= 0)
699                 return ret;
700         cmd->offset += ret;
701         left -= ret;
702
703         if (left)
704                 return -EAGAIN;
705
706         nvmet_tcp_free_cmd_buffers(cmd);
707         cmd->queue->snd_cmd = NULL;
708         nvmet_tcp_put_cmd(cmd);
709         return 1;
710 }
711
712 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
713 {
714         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
715         struct bio_vec bvec;
716         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
717         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
718         int ret;
719
720         if (!last_in_batch && cmd->queue->send_list_len)
721                 msg.msg_flags |= MSG_MORE;
722         else
723                 msg.msg_flags |= MSG_EOR;
724
725         bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
726         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
727         ret = sock_sendmsg(cmd->queue->sock, &msg);
728         if (ret <= 0)
729                 return ret;
730         cmd->offset += ret;
731         left -= ret;
732
733         if (left)
734                 return -EAGAIN;
735
736         cmd->queue->snd_cmd = NULL;
737         return 1;
738 }
739
740 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
741 {
742         struct nvmet_tcp_queue *queue = cmd->queue;
743         int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
744         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
745         struct kvec iov = {
746                 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
747                 .iov_len = left
748         };
749         int ret;
750
751         if (!last_in_batch && cmd->queue->send_list_len)
752                 msg.msg_flags |= MSG_MORE;
753         else
754                 msg.msg_flags |= MSG_EOR;
755
756         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
757         if (unlikely(ret <= 0))
758                 return ret;
759
760         cmd->offset += ret;
761         left -= ret;
762
763         if (left)
764                 return -EAGAIN;
765
766         if (queue->nvme_sq.sqhd_disabled) {
767                 cmd->queue->snd_cmd = NULL;
768                 nvmet_tcp_put_cmd(cmd);
769         } else {
770                 nvmet_setup_response_pdu(cmd);
771         }
772         return 1;
773 }
774
775 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
776                 bool last_in_batch)
777 {
778         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
779         int ret = 0;
780
781         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
782                 cmd = nvmet_tcp_fetch_cmd(queue);
783                 if (unlikely(!cmd))
784                         return 0;
785         }
786
787         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
788                 ret = nvmet_try_send_data_pdu(cmd);
789                 if (ret <= 0)
790                         goto done_send;
791         }
792
793         if (cmd->state == NVMET_TCP_SEND_DATA) {
794                 ret = nvmet_try_send_data(cmd, last_in_batch);
795                 if (ret <= 0)
796                         goto done_send;
797         }
798
799         if (cmd->state == NVMET_TCP_SEND_DDGST) {
800                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
801                 if (ret <= 0)
802                         goto done_send;
803         }
804
805         if (cmd->state == NVMET_TCP_SEND_R2T) {
806                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
807                 if (ret <= 0)
808                         goto done_send;
809         }
810
811         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
812                 ret = nvmet_try_send_response(cmd, last_in_batch);
813
814 done_send:
815         if (ret < 0) {
816                 if (ret == -EAGAIN)
817                         return 0;
818                 return ret;
819         }
820
821         return 1;
822 }
823
824 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
825                 int budget, int *sends)
826 {
827         int i, ret = 0;
828
829         for (i = 0; i < budget; i++) {
830                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
831                 if (unlikely(ret < 0)) {
832                         nvmet_tcp_socket_error(queue, ret);
833                         goto done;
834                 } else if (ret == 0) {
835                         break;
836                 }
837                 (*sends)++;
838         }
839 done:
840         return ret;
841 }
842
843 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
844 {
845         queue->offset = 0;
846         queue->left = sizeof(struct nvme_tcp_hdr);
847         queue->cmd = NULL;
848         queue->rcv_state = NVMET_TCP_RECV_PDU;
849 }
850
851 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
852 {
853         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
854
855         ahash_request_free(queue->rcv_hash);
856         ahash_request_free(queue->snd_hash);
857         crypto_free_ahash(tfm);
858 }
859
860 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
861 {
862         struct crypto_ahash *tfm;
863
864         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
865         if (IS_ERR(tfm))
866                 return PTR_ERR(tfm);
867
868         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
869         if (!queue->snd_hash)
870                 goto free_tfm;
871         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
872
873         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
874         if (!queue->rcv_hash)
875                 goto free_snd_hash;
876         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
877
878         return 0;
879 free_snd_hash:
880         ahash_request_free(queue->snd_hash);
881 free_tfm:
882         crypto_free_ahash(tfm);
883         return -ENOMEM;
884 }
885
886
887 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
888 {
889         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
890         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
891         struct msghdr msg = {};
892         struct kvec iov;
893         int ret;
894
895         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
896                 pr_err("bad nvme-tcp pdu length (%d)\n",
897                         le32_to_cpu(icreq->hdr.plen));
898                 nvmet_tcp_fatal_error(queue);
899         }
900
901         if (icreq->pfv != NVME_TCP_PFV_1_0) {
902                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
903                 return -EPROTO;
904         }
905
906         if (icreq->hpda != 0) {
907                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
908                         icreq->hpda);
909                 return -EPROTO;
910         }
911
912         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
913         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
914         if (queue->hdr_digest || queue->data_digest) {
915                 ret = nvmet_tcp_alloc_crypto(queue);
916                 if (ret)
917                         return ret;
918         }
919
920         memset(icresp, 0, sizeof(*icresp));
921         icresp->hdr.type = nvme_tcp_icresp;
922         icresp->hdr.hlen = sizeof(*icresp);
923         icresp->hdr.pdo = 0;
924         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
925         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
926         icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
927         icresp->cpda = 0;
928         if (queue->hdr_digest)
929                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
930         if (queue->data_digest)
931                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
932
933         iov.iov_base = icresp;
934         iov.iov_len = sizeof(*icresp);
935         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
936         if (ret < 0) {
937                 queue->state = NVMET_TCP_Q_FAILED;
938                 return ret; /* queue removal will cleanup */
939         }
940
941         queue->state = NVMET_TCP_Q_LIVE;
942         nvmet_prepare_receive_pdu(queue);
943         return 0;
944 }
945
946 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
947                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
948 {
949         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
950         int ret;
951
952         /*
953          * This command has not been processed yet, hence we are trying to
954          * figure out if there is still pending data left to receive. If
955          * we don't, we can simply prepare for the next pdu and bail out,
956          * otherwise we will need to prepare a buffer and receive the
957          * stale data before continuing forward.
958          */
959         if (!nvme_is_write(cmd->req.cmd) || !data_len ||
960             data_len > cmd->req.port->inline_data_size) {
961                 nvmet_prepare_receive_pdu(queue);
962                 return;
963         }
964
965         ret = nvmet_tcp_map_data(cmd);
966         if (unlikely(ret)) {
967                 pr_err("queue %d: failed to map data\n", queue->idx);
968                 nvmet_tcp_fatal_error(queue);
969                 return;
970         }
971
972         queue->rcv_state = NVMET_TCP_RECV_DATA;
973         nvmet_tcp_build_pdu_iovec(cmd);
974         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
975 }
976
977 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
978 {
979         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
980         struct nvmet_tcp_cmd *cmd;
981
982         if (likely(queue->nr_cmds)) {
983                 if (unlikely(data->ttag >= queue->nr_cmds)) {
984                         pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
985                                 queue->idx, data->ttag, queue->nr_cmds);
986                         nvmet_tcp_fatal_error(queue);
987                         return -EPROTO;
988                 }
989                 cmd = &queue->cmds[data->ttag];
990         } else {
991                 cmd = &queue->connect;
992         }
993
994         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
995                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
996                         data->ttag, le32_to_cpu(data->data_offset),
997                         cmd->rbytes_done);
998                 /* FIXME: use path and transport errors */
999                 nvmet_req_complete(&cmd->req,
1000                         NVME_SC_INVALID_FIELD | NVME_SC_DNR);
1001                 return -EPROTO;
1002         }
1003
1004         cmd->pdu_len = le32_to_cpu(data->data_length);
1005         cmd->pdu_recv = 0;
1006         nvmet_tcp_build_pdu_iovec(cmd);
1007         queue->cmd = cmd;
1008         queue->rcv_state = NVMET_TCP_RECV_DATA;
1009
1010         return 0;
1011 }
1012
1013 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1014 {
1015         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1016         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1017         struct nvmet_req *req;
1018         int ret;
1019
1020         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1021                 if (hdr->type != nvme_tcp_icreq) {
1022                         pr_err("unexpected pdu type (%d) before icreq\n",
1023                                 hdr->type);
1024                         nvmet_tcp_fatal_error(queue);
1025                         return -EPROTO;
1026                 }
1027                 return nvmet_tcp_handle_icreq(queue);
1028         }
1029
1030         if (unlikely(hdr->type == nvme_tcp_icreq)) {
1031                 pr_err("queue %d: received icreq pdu in state %d\n",
1032                         queue->idx, queue->state);
1033                 nvmet_tcp_fatal_error(queue);
1034                 return -EPROTO;
1035         }
1036
1037         if (hdr->type == nvme_tcp_h2c_data) {
1038                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1039                 if (unlikely(ret))
1040                         return ret;
1041                 return 0;
1042         }
1043
1044         queue->cmd = nvmet_tcp_get_cmd(queue);
1045         if (unlikely(!queue->cmd)) {
1046                 /* This should never happen */
1047                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1048                         queue->idx, queue->nr_cmds, queue->send_list_len,
1049                         nvme_cmd->common.opcode);
1050                 nvmet_tcp_fatal_error(queue);
1051                 return -ENOMEM;
1052         }
1053
1054         req = &queue->cmd->req;
1055         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1056
1057         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1058                         &queue->nvme_sq, &nvmet_tcp_ops))) {
1059                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1060                         req->cmd, req->cmd->common.command_id,
1061                         req->cmd->common.opcode,
1062                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
1063
1064                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1065                 return 0;
1066         }
1067
1068         ret = nvmet_tcp_map_data(queue->cmd);
1069         if (unlikely(ret)) {
1070                 pr_err("queue %d: failed to map data\n", queue->idx);
1071                 if (nvmet_tcp_has_inline_data(queue->cmd))
1072                         nvmet_tcp_fatal_error(queue);
1073                 else
1074                         nvmet_req_complete(req, ret);
1075                 ret = -EAGAIN;
1076                 goto out;
1077         }
1078
1079         if (nvmet_tcp_need_data_in(queue->cmd)) {
1080                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1081                         queue->rcv_state = NVMET_TCP_RECV_DATA;
1082                         nvmet_tcp_build_pdu_iovec(queue->cmd);
1083                         return 0;
1084                 }
1085                 /* send back R2T */
1086                 nvmet_tcp_queue_response(&queue->cmd->req);
1087                 goto out;
1088         }
1089
1090         queue->cmd->req.execute(&queue->cmd->req);
1091 out:
1092         nvmet_prepare_receive_pdu(queue);
1093         return ret;
1094 }
1095
1096 static const u8 nvme_tcp_pdu_sizes[] = {
1097         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
1098         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
1099         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
1100 };
1101
1102 static inline u8 nvmet_tcp_pdu_size(u8 type)
1103 {
1104         size_t idx = type;
1105
1106         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1107                 nvme_tcp_pdu_sizes[idx]) ?
1108                         nvme_tcp_pdu_sizes[idx] : 0;
1109 }
1110
1111 static inline bool nvmet_tcp_pdu_valid(u8 type)
1112 {
1113         switch (type) {
1114         case nvme_tcp_icreq:
1115         case nvme_tcp_cmd:
1116         case nvme_tcp_h2c_data:
1117                 /* fallthru */
1118                 return true;
1119         }
1120
1121         return false;
1122 }
1123
1124 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1125                 struct msghdr *msg, char *cbuf)
1126 {
1127         struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1128         u8 ctype, level, description;
1129         int ret = 0;
1130
1131         ctype = tls_get_record_type(queue->sock->sk, cmsg);
1132         switch (ctype) {
1133         case 0:
1134                 break;
1135         case TLS_RECORD_TYPE_DATA:
1136                 break;
1137         case TLS_RECORD_TYPE_ALERT:
1138                 tls_alert_recv(queue->sock->sk, msg, &level, &description);
1139                 if (level == TLS_ALERT_LEVEL_FATAL) {
1140                         pr_err("queue %d: TLS Alert desc %u\n",
1141                                queue->idx, description);
1142                         ret = -ENOTCONN;
1143                 } else {
1144                         pr_warn("queue %d: TLS Alert desc %u\n",
1145                                queue->idx, description);
1146                         ret = -EAGAIN;
1147                 }
1148                 break;
1149         default:
1150                 /* discard this record type */
1151                 pr_err("queue %d: TLS record %d unhandled\n",
1152                        queue->idx, ctype);
1153                 ret = -EAGAIN;
1154                 break;
1155         }
1156         return ret;
1157 }
1158
1159 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1160 {
1161         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1162         int len, ret;
1163         struct kvec iov;
1164         char cbuf[CMSG_LEN(sizeof(char))] = {};
1165         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1166
1167 recv:
1168         iov.iov_base = (void *)&queue->pdu + queue->offset;
1169         iov.iov_len = queue->left;
1170         if (queue->tls_pskid) {
1171                 msg.msg_control = cbuf;
1172                 msg.msg_controllen = sizeof(cbuf);
1173         }
1174         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1175                         iov.iov_len, msg.msg_flags);
1176         if (unlikely(len < 0))
1177                 return len;
1178         if (queue->tls_pskid) {
1179                 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1180                 if (ret < 0)
1181                         return ret;
1182         }
1183
1184         queue->offset += len;
1185         queue->left -= len;
1186         if (queue->left)
1187                 return -EAGAIN;
1188
1189         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1190                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1191
1192                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1193                         pr_err("unexpected pdu type %d\n", hdr->type);
1194                         nvmet_tcp_fatal_error(queue);
1195                         return -EIO;
1196                 }
1197
1198                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1199                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1200                         return -EIO;
1201                 }
1202
1203                 queue->left = hdr->hlen - queue->offset + hdgst;
1204                 goto recv;
1205         }
1206
1207         if (queue->hdr_digest &&
1208             nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1209                 nvmet_tcp_fatal_error(queue); /* fatal */
1210                 return -EPROTO;
1211         }
1212
1213         if (queue->data_digest &&
1214             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1215                 nvmet_tcp_fatal_error(queue); /* fatal */
1216                 return -EPROTO;
1217         }
1218
1219         return nvmet_tcp_done_recv_pdu(queue);
1220 }
1221
1222 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1223 {
1224         struct nvmet_tcp_queue *queue = cmd->queue;
1225
1226         nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1227         queue->offset = 0;
1228         queue->left = NVME_TCP_DIGEST_LENGTH;
1229         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1230 }
1231
1232 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1233 {
1234         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1235         int len, ret;
1236
1237         while (msg_data_left(&cmd->recv_msg)) {
1238                 len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1239                         cmd->recv_msg.msg_flags);
1240                 if (len <= 0)
1241                         return len;
1242                 if (queue->tls_pskid) {
1243                         ret = nvmet_tcp_tls_record_ok(cmd->queue,
1244                                         &cmd->recv_msg, cmd->recv_cbuf);
1245                         if (ret < 0)
1246                                 return ret;
1247                 }
1248
1249                 cmd->pdu_recv += len;
1250                 cmd->rbytes_done += len;
1251         }
1252
1253         if (queue->data_digest) {
1254                 nvmet_tcp_prep_recv_ddgst(cmd);
1255                 return 0;
1256         }
1257
1258         if (cmd->rbytes_done == cmd->req.transfer_len)
1259                 nvmet_tcp_execute_request(cmd);
1260
1261         nvmet_prepare_receive_pdu(queue);
1262         return 0;
1263 }
1264
1265 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1266 {
1267         struct nvmet_tcp_cmd *cmd = queue->cmd;
1268         int ret, len;
1269         char cbuf[CMSG_LEN(sizeof(char))] = {};
1270         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1271         struct kvec iov = {
1272                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1273                 .iov_len = queue->left
1274         };
1275
1276         if (queue->tls_pskid) {
1277                 msg.msg_control = cbuf;
1278                 msg.msg_controllen = sizeof(cbuf);
1279         }
1280         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1281                         iov.iov_len, msg.msg_flags);
1282         if (unlikely(len < 0))
1283                 return len;
1284         if (queue->tls_pskid) {
1285                 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1286                 if (ret < 0)
1287                         return ret;
1288         }
1289
1290         queue->offset += len;
1291         queue->left -= len;
1292         if (queue->left)
1293                 return -EAGAIN;
1294
1295         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1296                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1297                         queue->idx, cmd->req.cmd->common.command_id,
1298                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1299                         le32_to_cpu(cmd->exp_ddgst));
1300                 nvmet_req_uninit(&cmd->req);
1301                 nvmet_tcp_free_cmd_buffers(cmd);
1302                 nvmet_tcp_fatal_error(queue);
1303                 ret = -EPROTO;
1304                 goto out;
1305         }
1306
1307         if (cmd->rbytes_done == cmd->req.transfer_len)
1308                 nvmet_tcp_execute_request(cmd);
1309
1310         ret = 0;
1311 out:
1312         nvmet_prepare_receive_pdu(queue);
1313         return ret;
1314 }
1315
1316 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1317 {
1318         int result = 0;
1319
1320         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1321                 return 0;
1322
1323         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1324                 result = nvmet_tcp_try_recv_pdu(queue);
1325                 if (result != 0)
1326                         goto done_recv;
1327         }
1328
1329         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1330                 result = nvmet_tcp_try_recv_data(queue);
1331                 if (result != 0)
1332                         goto done_recv;
1333         }
1334
1335         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1336                 result = nvmet_tcp_try_recv_ddgst(queue);
1337                 if (result != 0)
1338                         goto done_recv;
1339         }
1340
1341 done_recv:
1342         if (result < 0) {
1343                 if (result == -EAGAIN)
1344                         return 0;
1345                 return result;
1346         }
1347         return 1;
1348 }
1349
1350 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1351                 int budget, int *recvs)
1352 {
1353         int i, ret = 0;
1354
1355         for (i = 0; i < budget; i++) {
1356                 ret = nvmet_tcp_try_recv_one(queue);
1357                 if (unlikely(ret < 0)) {
1358                         nvmet_tcp_socket_error(queue, ret);
1359                         goto done;
1360                 } else if (ret == 0) {
1361                         break;
1362                 }
1363                 (*recvs)++;
1364         }
1365 done:
1366         return ret;
1367 }
1368
1369 static void nvmet_tcp_release_queue(struct kref *kref)
1370 {
1371         struct nvmet_tcp_queue *queue =
1372                 container_of(kref, struct nvmet_tcp_queue, kref);
1373
1374         WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1375         queue_work(nvmet_wq, &queue->release_work);
1376 }
1377
1378 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1379 {
1380         spin_lock_bh(&queue->state_lock);
1381         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1382                 /* Socket closed during handshake */
1383                 tls_handshake_cancel(queue->sock->sk);
1384         }
1385         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1386                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1387                 kref_put(&queue->kref, nvmet_tcp_release_queue);
1388         }
1389         spin_unlock_bh(&queue->state_lock);
1390 }
1391
1392 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1393 {
1394         queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1395 }
1396
1397 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1398                 int ops)
1399 {
1400         if (!idle_poll_period_usecs)
1401                 return false;
1402
1403         if (ops)
1404                 nvmet_tcp_arm_queue_deadline(queue);
1405
1406         return !time_after(jiffies, queue->poll_end);
1407 }
1408
1409 static void nvmet_tcp_io_work(struct work_struct *w)
1410 {
1411         struct nvmet_tcp_queue *queue =
1412                 container_of(w, struct nvmet_tcp_queue, io_work);
1413         bool pending;
1414         int ret, ops = 0;
1415
1416         do {
1417                 pending = false;
1418
1419                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1420                 if (ret > 0)
1421                         pending = true;
1422                 else if (ret < 0)
1423                         return;
1424
1425                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1426                 if (ret > 0)
1427                         pending = true;
1428                 else if (ret < 0)
1429                         return;
1430
1431         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1432
1433         /*
1434          * Requeue the worker if idle deadline period is in progress or any
1435          * ops activity was recorded during the do-while loop above.
1436          */
1437         if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1438                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1439 }
1440
1441 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1442                 struct nvmet_tcp_cmd *c)
1443 {
1444         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1445
1446         c->queue = queue;
1447         c->req.port = queue->port->nport;
1448
1449         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1450                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1451         if (!c->cmd_pdu)
1452                 return -ENOMEM;
1453         c->req.cmd = &c->cmd_pdu->cmd;
1454
1455         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1456                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1457         if (!c->rsp_pdu)
1458                 goto out_free_cmd;
1459         c->req.cqe = &c->rsp_pdu->cqe;
1460
1461         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1462                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1463         if (!c->data_pdu)
1464                 goto out_free_rsp;
1465
1466         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1467                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1468         if (!c->r2t_pdu)
1469                 goto out_free_data;
1470
1471         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1472                 c->recv_msg.msg_control = c->recv_cbuf;
1473                 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1474         }
1475         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1476
1477         list_add_tail(&c->entry, &queue->free_list);
1478
1479         return 0;
1480 out_free_data:
1481         page_frag_free(c->data_pdu);
1482 out_free_rsp:
1483         page_frag_free(c->rsp_pdu);
1484 out_free_cmd:
1485         page_frag_free(c->cmd_pdu);
1486         return -ENOMEM;
1487 }
1488
1489 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1490 {
1491         page_frag_free(c->r2t_pdu);
1492         page_frag_free(c->data_pdu);
1493         page_frag_free(c->rsp_pdu);
1494         page_frag_free(c->cmd_pdu);
1495 }
1496
1497 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1498 {
1499         struct nvmet_tcp_cmd *cmds;
1500         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1501
1502         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1503         if (!cmds)
1504                 goto out;
1505
1506         for (i = 0; i < nr_cmds; i++) {
1507                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1508                 if (ret)
1509                         goto out_free;
1510         }
1511
1512         queue->cmds = cmds;
1513
1514         return 0;
1515 out_free:
1516         while (--i >= 0)
1517                 nvmet_tcp_free_cmd(cmds + i);
1518         kfree(cmds);
1519 out:
1520         return ret;
1521 }
1522
1523 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1524 {
1525         struct nvmet_tcp_cmd *cmds = queue->cmds;
1526         int i;
1527
1528         for (i = 0; i < queue->nr_cmds; i++)
1529                 nvmet_tcp_free_cmd(cmds + i);
1530
1531         nvmet_tcp_free_cmd(&queue->connect);
1532         kfree(cmds);
1533 }
1534
1535 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1536 {
1537         struct socket *sock = queue->sock;
1538
1539         write_lock_bh(&sock->sk->sk_callback_lock);
1540         sock->sk->sk_data_ready =  queue->data_ready;
1541         sock->sk->sk_state_change = queue->state_change;
1542         sock->sk->sk_write_space = queue->write_space;
1543         sock->sk->sk_user_data = NULL;
1544         write_unlock_bh(&sock->sk->sk_callback_lock);
1545 }
1546
1547 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1548 {
1549         struct nvmet_tcp_cmd *cmd = queue->cmds;
1550         int i;
1551
1552         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1553                 if (nvmet_tcp_need_data_in(cmd))
1554                         nvmet_req_uninit(&cmd->req);
1555         }
1556
1557         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1558                 /* failed in connect */
1559                 nvmet_req_uninit(&queue->connect.req);
1560         }
1561 }
1562
1563 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1564 {
1565         struct nvmet_tcp_cmd *cmd = queue->cmds;
1566         int i;
1567
1568         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1569                 if (nvmet_tcp_need_data_in(cmd))
1570                         nvmet_tcp_free_cmd_buffers(cmd);
1571         }
1572
1573         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
1574                 nvmet_tcp_free_cmd_buffers(&queue->connect);
1575 }
1576
1577 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1578 {
1579         struct page *page;
1580         struct nvmet_tcp_queue *queue =
1581                 container_of(w, struct nvmet_tcp_queue, release_work);
1582
1583         mutex_lock(&nvmet_tcp_queue_mutex);
1584         list_del_init(&queue->queue_list);
1585         mutex_unlock(&nvmet_tcp_queue_mutex);
1586
1587         nvmet_tcp_restore_socket_callbacks(queue);
1588         cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1589         cancel_work_sync(&queue->io_work);
1590         /* stop accepting incoming data */
1591         queue->rcv_state = NVMET_TCP_RECV_ERR;
1592
1593         nvmet_tcp_uninit_data_in_cmds(queue);
1594         nvmet_sq_destroy(&queue->nvme_sq);
1595         cancel_work_sync(&queue->io_work);
1596         nvmet_tcp_free_cmd_data_in_buffers(queue);
1597         /* ->sock will be released by fput() */
1598         fput(queue->sock->file);
1599         nvmet_tcp_free_cmds(queue);
1600         if (queue->hdr_digest || queue->data_digest)
1601                 nvmet_tcp_free_crypto(queue);
1602         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1603         page = virt_to_head_page(queue->pf_cache.va);
1604         __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1605         kfree(queue);
1606 }
1607
1608 static void nvmet_tcp_data_ready(struct sock *sk)
1609 {
1610         struct nvmet_tcp_queue *queue;
1611
1612         trace_sk_data_ready(sk);
1613
1614         read_lock_bh(&sk->sk_callback_lock);
1615         queue = sk->sk_user_data;
1616         if (likely(queue)) {
1617                 if (queue->data_ready)
1618                         queue->data_ready(sk);
1619                 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1620                         queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1621                                       &queue->io_work);
1622         }
1623         read_unlock_bh(&sk->sk_callback_lock);
1624 }
1625
1626 static void nvmet_tcp_write_space(struct sock *sk)
1627 {
1628         struct nvmet_tcp_queue *queue;
1629
1630         read_lock_bh(&sk->sk_callback_lock);
1631         queue = sk->sk_user_data;
1632         if (unlikely(!queue))
1633                 goto out;
1634
1635         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1636                 queue->write_space(sk);
1637                 goto out;
1638         }
1639
1640         if (sk_stream_is_writeable(sk)) {
1641                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1642                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1643         }
1644 out:
1645         read_unlock_bh(&sk->sk_callback_lock);
1646 }
1647
1648 static void nvmet_tcp_state_change(struct sock *sk)
1649 {
1650         struct nvmet_tcp_queue *queue;
1651
1652         read_lock_bh(&sk->sk_callback_lock);
1653         queue = sk->sk_user_data;
1654         if (!queue)
1655                 goto done;
1656
1657         switch (sk->sk_state) {
1658         case TCP_FIN_WAIT2:
1659         case TCP_LAST_ACK:
1660                 break;
1661         case TCP_FIN_WAIT1:
1662         case TCP_CLOSE_WAIT:
1663         case TCP_CLOSE:
1664                 /* FALLTHRU */
1665                 nvmet_tcp_schedule_release_queue(queue);
1666                 break;
1667         default:
1668                 pr_warn("queue %d unhandled state %d\n",
1669                         queue->idx, sk->sk_state);
1670         }
1671 done:
1672         read_unlock_bh(&sk->sk_callback_lock);
1673 }
1674
1675 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1676 {
1677         struct socket *sock = queue->sock;
1678         struct inet_sock *inet = inet_sk(sock->sk);
1679         int ret;
1680
1681         ret = kernel_getsockname(sock,
1682                 (struct sockaddr *)&queue->sockaddr);
1683         if (ret < 0)
1684                 return ret;
1685
1686         ret = kernel_getpeername(sock,
1687                 (struct sockaddr *)&queue->sockaddr_peer);
1688         if (ret < 0)
1689                 return ret;
1690
1691         /*
1692          * Cleanup whatever is sitting in the TCP transmit queue on socket
1693          * close. This is done to prevent stale data from being sent should
1694          * the network connection be restored before TCP times out.
1695          */
1696         sock_no_linger(sock->sk);
1697
1698         if (so_priority > 0)
1699                 sock_set_priority(sock->sk, so_priority);
1700
1701         /* Set socket type of service */
1702         if (inet->rcv_tos > 0)
1703                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1704
1705         ret = 0;
1706         write_lock_bh(&sock->sk->sk_callback_lock);
1707         if (sock->sk->sk_state != TCP_ESTABLISHED) {
1708                 /*
1709                  * If the socket is already closing, don't even start
1710                  * consuming it
1711                  */
1712                 ret = -ENOTCONN;
1713         } else {
1714                 sock->sk->sk_user_data = queue;
1715                 queue->data_ready = sock->sk->sk_data_ready;
1716                 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1717                 queue->state_change = sock->sk->sk_state_change;
1718                 sock->sk->sk_state_change = nvmet_tcp_state_change;
1719                 queue->write_space = sock->sk->sk_write_space;
1720                 sock->sk->sk_write_space = nvmet_tcp_write_space;
1721                 if (idle_poll_period_usecs)
1722                         nvmet_tcp_arm_queue_deadline(queue);
1723                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1724         }
1725         write_unlock_bh(&sock->sk->sk_callback_lock);
1726
1727         return ret;
1728 }
1729
1730 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1731 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1732 {
1733         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1734         int len, ret;
1735         struct kvec iov = {
1736                 .iov_base = (u8 *)&queue->pdu + queue->offset,
1737                 .iov_len = sizeof(struct nvme_tcp_hdr),
1738         };
1739         char cbuf[CMSG_LEN(sizeof(char))] = {};
1740         struct msghdr msg = {
1741                 .msg_control = cbuf,
1742                 .msg_controllen = sizeof(cbuf),
1743                 .msg_flags = MSG_PEEK,
1744         };
1745
1746         if (nvmet_port_secure_channel_required(queue->port->nport))
1747                 return 0;
1748
1749         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1750                         iov.iov_len, msg.msg_flags);
1751         if (unlikely(len < 0)) {
1752                 pr_debug("queue %d: peek error %d\n",
1753                          queue->idx, len);
1754                 return len;
1755         }
1756
1757         ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1758         if (ret < 0)
1759                 return ret;
1760
1761         if (len < sizeof(struct nvme_tcp_hdr)) {
1762                 pr_debug("queue %d: short read, %d bytes missing\n",
1763                          queue->idx, (int)iov.iov_len - len);
1764                 return -EAGAIN;
1765         }
1766         pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1767                  queue->idx, hdr->type, hdr->hlen, hdr->plen,
1768                  (int)sizeof(struct nvme_tcp_icreq_pdu));
1769         if (hdr->type == nvme_tcp_icreq &&
1770             hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1771             hdr->plen == (__le32)sizeof(struct nvme_tcp_icreq_pdu)) {
1772                 pr_debug("queue %d: icreq detected\n",
1773                          queue->idx);
1774                 return len;
1775         }
1776         return 0;
1777 }
1778
1779 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1780                                          key_serial_t peerid)
1781 {
1782         struct nvmet_tcp_queue *queue = data;
1783
1784         pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1785                  queue->idx, peerid, status);
1786         spin_lock_bh(&queue->state_lock);
1787         if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1788                 spin_unlock_bh(&queue->state_lock);
1789                 return;
1790         }
1791         if (!status) {
1792                 queue->tls_pskid = peerid;
1793                 queue->state = NVMET_TCP_Q_CONNECTING;
1794         } else
1795                 queue->state = NVMET_TCP_Q_FAILED;
1796         spin_unlock_bh(&queue->state_lock);
1797
1798         cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1799         if (status)
1800                 nvmet_tcp_schedule_release_queue(queue);
1801         else
1802                 nvmet_tcp_set_queue_sock(queue);
1803         kref_put(&queue->kref, nvmet_tcp_release_queue);
1804 }
1805
1806 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1807 {
1808         struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1809                         struct nvmet_tcp_queue, tls_handshake_tmo_work);
1810
1811         pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1812         /*
1813          * If tls_handshake_cancel() fails we've lost the race with
1814          * nvmet_tcp_tls_handshake_done() */
1815         if (!tls_handshake_cancel(queue->sock->sk))
1816                 return;
1817         spin_lock_bh(&queue->state_lock);
1818         if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1819                 spin_unlock_bh(&queue->state_lock);
1820                 return;
1821         }
1822         queue->state = NVMET_TCP_Q_FAILED;
1823         spin_unlock_bh(&queue->state_lock);
1824         nvmet_tcp_schedule_release_queue(queue);
1825         kref_put(&queue->kref, nvmet_tcp_release_queue);
1826 }
1827
1828 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1829 {
1830         int ret = -EOPNOTSUPP;
1831         struct tls_handshake_args args;
1832
1833         if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1834                 pr_warn("cannot start TLS in state %d\n", queue->state);
1835                 return -EINVAL;
1836         }
1837
1838         kref_get(&queue->kref);
1839         pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1840         memset(&args, 0, sizeof(args));
1841         args.ta_sock = queue->sock;
1842         args.ta_done = nvmet_tcp_tls_handshake_done;
1843         args.ta_data = queue;
1844         args.ta_keyring = key_serial(queue->port->nport->keyring);
1845         args.ta_timeout_ms = tls_handshake_timeout * 1000;
1846
1847         ret = tls_server_hello_psk(&args, GFP_KERNEL);
1848         if (ret) {
1849                 kref_put(&queue->kref, nvmet_tcp_release_queue);
1850                 pr_err("failed to start TLS, err=%d\n", ret);
1851         } else {
1852                 queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1853                                    tls_handshake_timeout * HZ);
1854         }
1855         return ret;
1856 }
1857 #endif
1858
1859 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1860                 struct socket *newsock)
1861 {
1862         struct nvmet_tcp_queue *queue;
1863         struct file *sock_file = NULL;
1864         int ret;
1865
1866         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1867         if (!queue) {
1868                 ret = -ENOMEM;
1869                 goto out_release;
1870         }
1871
1872         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1873         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1874         kref_init(&queue->kref);
1875         queue->sock = newsock;
1876         queue->port = port;
1877         queue->nr_cmds = 0;
1878         spin_lock_init(&queue->state_lock);
1879         if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1880             NVMF_TCP_SECTYPE_TLS13)
1881                 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1882         else
1883                 queue->state = NVMET_TCP_Q_CONNECTING;
1884         INIT_LIST_HEAD(&queue->free_list);
1885         init_llist_head(&queue->resp_list);
1886         INIT_LIST_HEAD(&queue->resp_send_list);
1887
1888         sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1889         if (IS_ERR(sock_file)) {
1890                 ret = PTR_ERR(sock_file);
1891                 goto out_free_queue;
1892         }
1893
1894         queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1895         if (queue->idx < 0) {
1896                 ret = queue->idx;
1897                 goto out_sock;
1898         }
1899
1900         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1901         if (ret)
1902                 goto out_ida_remove;
1903
1904         ret = nvmet_sq_init(&queue->nvme_sq);
1905         if (ret)
1906                 goto out_free_connect;
1907
1908         nvmet_prepare_receive_pdu(queue);
1909
1910         mutex_lock(&nvmet_tcp_queue_mutex);
1911         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1912         mutex_unlock(&nvmet_tcp_queue_mutex);
1913
1914 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1915         INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1916                           nvmet_tcp_tls_handshake_timeout);
1917         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1918                 struct sock *sk = queue->sock->sk;
1919
1920                 /* Restore the default callbacks before starting upcall */
1921                 read_lock_bh(&sk->sk_callback_lock);
1922                 sk->sk_user_data = NULL;
1923                 sk->sk_data_ready = port->data_ready;
1924                 read_unlock_bh(&sk->sk_callback_lock);
1925                 if (!nvmet_tcp_try_peek_pdu(queue)) {
1926                         if (!nvmet_tcp_tls_handshake(queue))
1927                                 return;
1928                         /* TLS handshake failed, terminate the connection */
1929                         goto out_destroy_sq;
1930                 }
1931                 /* Not a TLS connection, continue with normal processing */
1932                 queue->state = NVMET_TCP_Q_CONNECTING;
1933         }
1934 #endif
1935
1936         ret = nvmet_tcp_set_queue_sock(queue);
1937         if (ret)
1938                 goto out_destroy_sq;
1939
1940         return;
1941 out_destroy_sq:
1942         mutex_lock(&nvmet_tcp_queue_mutex);
1943         list_del_init(&queue->queue_list);
1944         mutex_unlock(&nvmet_tcp_queue_mutex);
1945         nvmet_sq_destroy(&queue->nvme_sq);
1946 out_free_connect:
1947         nvmet_tcp_free_cmd(&queue->connect);
1948 out_ida_remove:
1949         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1950 out_sock:
1951         fput(queue->sock->file);
1952 out_free_queue:
1953         kfree(queue);
1954 out_release:
1955         pr_err("failed to allocate queue, error %d\n", ret);
1956         if (!sock_file)
1957                 sock_release(newsock);
1958 }
1959
1960 static void nvmet_tcp_accept_work(struct work_struct *w)
1961 {
1962         struct nvmet_tcp_port *port =
1963                 container_of(w, struct nvmet_tcp_port, accept_work);
1964         struct socket *newsock;
1965         int ret;
1966
1967         while (true) {
1968                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1969                 if (ret < 0) {
1970                         if (ret != -EAGAIN)
1971                                 pr_warn("failed to accept err=%d\n", ret);
1972                         return;
1973                 }
1974                 nvmet_tcp_alloc_queue(port, newsock);
1975         }
1976 }
1977
1978 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1979 {
1980         struct nvmet_tcp_port *port;
1981
1982         trace_sk_data_ready(sk);
1983
1984         read_lock_bh(&sk->sk_callback_lock);
1985         port = sk->sk_user_data;
1986         if (!port)
1987                 goto out;
1988
1989         if (sk->sk_state == TCP_LISTEN)
1990                 queue_work(nvmet_wq, &port->accept_work);
1991 out:
1992         read_unlock_bh(&sk->sk_callback_lock);
1993 }
1994
1995 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1996 {
1997         struct nvmet_tcp_port *port;
1998         __kernel_sa_family_t af;
1999         int ret;
2000
2001         port = kzalloc(sizeof(*port), GFP_KERNEL);
2002         if (!port)
2003                 return -ENOMEM;
2004
2005         switch (nport->disc_addr.adrfam) {
2006         case NVMF_ADDR_FAMILY_IP4:
2007                 af = AF_INET;
2008                 break;
2009         case NVMF_ADDR_FAMILY_IP6:
2010                 af = AF_INET6;
2011                 break;
2012         default:
2013                 pr_err("address family %d not supported\n",
2014                                 nport->disc_addr.adrfam);
2015                 ret = -EINVAL;
2016                 goto err_port;
2017         }
2018
2019         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2020                         nport->disc_addr.trsvcid, &port->addr);
2021         if (ret) {
2022                 pr_err("malformed ip/port passed: %s:%s\n",
2023                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2024                 goto err_port;
2025         }
2026
2027         port->nport = nport;
2028         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2029         if (port->nport->inline_data_size < 0)
2030                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2031
2032         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2033                                 IPPROTO_TCP, &port->sock);
2034         if (ret) {
2035                 pr_err("failed to create a socket\n");
2036                 goto err_port;
2037         }
2038
2039         port->sock->sk->sk_user_data = port;
2040         port->data_ready = port->sock->sk->sk_data_ready;
2041         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2042         sock_set_reuseaddr(port->sock->sk);
2043         tcp_sock_set_nodelay(port->sock->sk);
2044         if (so_priority > 0)
2045                 sock_set_priority(port->sock->sk, so_priority);
2046
2047         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2048                         sizeof(port->addr));
2049         if (ret) {
2050                 pr_err("failed to bind port socket %d\n", ret);
2051                 goto err_sock;
2052         }
2053
2054         ret = kernel_listen(port->sock, 128);
2055         if (ret) {
2056                 pr_err("failed to listen %d on port sock\n", ret);
2057                 goto err_sock;
2058         }
2059
2060         nport->priv = port;
2061         pr_info("enabling port %d (%pISpc)\n",
2062                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
2063
2064         return 0;
2065
2066 err_sock:
2067         sock_release(port->sock);
2068 err_port:
2069         kfree(port);
2070         return ret;
2071 }
2072
2073 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2074 {
2075         struct nvmet_tcp_queue *queue;
2076
2077         mutex_lock(&nvmet_tcp_queue_mutex);
2078         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2079                 if (queue->port == port)
2080                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2081         mutex_unlock(&nvmet_tcp_queue_mutex);
2082 }
2083
2084 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2085 {
2086         struct nvmet_tcp_port *port = nport->priv;
2087
2088         write_lock_bh(&port->sock->sk->sk_callback_lock);
2089         port->sock->sk->sk_data_ready = port->data_ready;
2090         port->sock->sk->sk_user_data = NULL;
2091         write_unlock_bh(&port->sock->sk->sk_callback_lock);
2092         cancel_work_sync(&port->accept_work);
2093         /*
2094          * Destroy the remaining queues, which are not belong to any
2095          * controller yet.
2096          */
2097         nvmet_tcp_destroy_port_queues(port);
2098
2099         sock_release(port->sock);
2100         kfree(port);
2101 }
2102
2103 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2104 {
2105         struct nvmet_tcp_queue *queue;
2106
2107         mutex_lock(&nvmet_tcp_queue_mutex);
2108         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2109                 if (queue->nvme_sq.ctrl == ctrl)
2110                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2111         mutex_unlock(&nvmet_tcp_queue_mutex);
2112 }
2113
2114 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2115 {
2116         struct nvmet_tcp_queue *queue =
2117                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2118
2119         if (sq->qid == 0) {
2120                 /* Let inflight controller teardown complete */
2121                 flush_workqueue(nvmet_wq);
2122         }
2123
2124         queue->nr_cmds = sq->size * 2;
2125         if (nvmet_tcp_alloc_cmds(queue))
2126                 return NVME_SC_INTERNAL;
2127         return 0;
2128 }
2129
2130 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2131                 struct nvmet_port *nport, char *traddr)
2132 {
2133         struct nvmet_tcp_port *port = nport->priv;
2134
2135         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2136                 struct nvmet_tcp_cmd *cmd =
2137                         container_of(req, struct nvmet_tcp_cmd, req);
2138                 struct nvmet_tcp_queue *queue = cmd->queue;
2139
2140                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2141         } else {
2142                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2143         }
2144 }
2145
2146 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2147         .owner                  = THIS_MODULE,
2148         .type                   = NVMF_TRTYPE_TCP,
2149         .msdbd                  = 1,
2150         .add_port               = nvmet_tcp_add_port,
2151         .remove_port            = nvmet_tcp_remove_port,
2152         .queue_response         = nvmet_tcp_queue_response,
2153         .delete_ctrl            = nvmet_tcp_delete_ctrl,
2154         .install_queue          = nvmet_tcp_install_queue,
2155         .disc_traddr            = nvmet_tcp_disc_port_addr,
2156 };
2157
2158 static int __init nvmet_tcp_init(void)
2159 {
2160         int ret;
2161
2162         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2163                                 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2164         if (!nvmet_tcp_wq)
2165                 return -ENOMEM;
2166
2167         ret = nvmet_register_transport(&nvmet_tcp_ops);
2168         if (ret)
2169                 goto err;
2170
2171         return 0;
2172 err:
2173         destroy_workqueue(nvmet_tcp_wq);
2174         return ret;
2175 }
2176
2177 static void __exit nvmet_tcp_exit(void)
2178 {
2179         struct nvmet_tcp_queue *queue;
2180
2181         nvmet_unregister_transport(&nvmet_tcp_ops);
2182
2183         flush_workqueue(nvmet_wq);
2184         mutex_lock(&nvmet_tcp_queue_mutex);
2185         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2186                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2187         mutex_unlock(&nvmet_tcp_queue_mutex);
2188         flush_workqueue(nvmet_wq);
2189
2190         destroy_workqueue(nvmet_tcp_wq);
2191 }
2192
2193 module_init(nvmet_tcp_init);
2194 module_exit(nvmet_tcp_exit);
2195
2196 MODULE_LICENSE("GPL v2");
2197 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */