fix short copy handling in copy_mc_pipe_to_iter()
[sfrench/cifs-2.6.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
21
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31
32 /* Define a time period (in usecs) that io_work() shall sample an activated
33  * queue before determining it to be idle.  This optional module behavior
34  * can enable NIC solutions that support socket optimized packet processing
35  * using advanced interrupt moderation techniques.
36  */
37 static int idle_poll_period_usecs;
38 module_param(idle_poll_period_usecs, int, 0644);
39 MODULE_PARM_DESC(idle_poll_period_usecs,
40                 "nvmet tcp io_work poll till idle time period in usecs");
41
42 #define NVMET_TCP_RECV_BUDGET           8
43 #define NVMET_TCP_SEND_BUDGET           8
44 #define NVMET_TCP_IO_WORK_BUDGET        64
45
46 enum nvmet_tcp_send_state {
47         NVMET_TCP_SEND_DATA_PDU,
48         NVMET_TCP_SEND_DATA,
49         NVMET_TCP_SEND_R2T,
50         NVMET_TCP_SEND_DDGST,
51         NVMET_TCP_SEND_RESPONSE
52 };
53
54 enum nvmet_tcp_recv_state {
55         NVMET_TCP_RECV_PDU,
56         NVMET_TCP_RECV_DATA,
57         NVMET_TCP_RECV_DDGST,
58         NVMET_TCP_RECV_ERR,
59 };
60
61 enum {
62         NVMET_TCP_F_INIT_FAILED = (1 << 0),
63 };
64
65 struct nvmet_tcp_cmd {
66         struct nvmet_tcp_queue          *queue;
67         struct nvmet_req                req;
68
69         struct nvme_tcp_cmd_pdu         *cmd_pdu;
70         struct nvme_tcp_rsp_pdu         *rsp_pdu;
71         struct nvme_tcp_data_pdu        *data_pdu;
72         struct nvme_tcp_r2t_pdu         *r2t_pdu;
73
74         u32                             rbytes_done;
75         u32                             wbytes_done;
76
77         u32                             pdu_len;
78         u32                             pdu_recv;
79         int                             sg_idx;
80         int                             nr_mapped;
81         struct msghdr                   recv_msg;
82         struct kvec                     *iov;
83         u32                             flags;
84
85         struct list_head                entry;
86         struct llist_node               lentry;
87
88         /* send state */
89         u32                             offset;
90         struct scatterlist              *cur_sg;
91         enum nvmet_tcp_send_state       state;
92
93         __le32                          exp_ddgst;
94         __le32                          recv_ddgst;
95 };
96
97 enum nvmet_tcp_queue_state {
98         NVMET_TCP_Q_CONNECTING,
99         NVMET_TCP_Q_LIVE,
100         NVMET_TCP_Q_DISCONNECTING,
101 };
102
103 struct nvmet_tcp_queue {
104         struct socket           *sock;
105         struct nvmet_tcp_port   *port;
106         struct work_struct      io_work;
107         struct nvmet_cq         nvme_cq;
108         struct nvmet_sq         nvme_sq;
109
110         /* send state */
111         struct nvmet_tcp_cmd    *cmds;
112         unsigned int            nr_cmds;
113         struct list_head        free_list;
114         struct llist_head       resp_list;
115         struct list_head        resp_send_list;
116         int                     send_list_len;
117         struct nvmet_tcp_cmd    *snd_cmd;
118
119         /* recv state */
120         int                     offset;
121         int                     left;
122         enum nvmet_tcp_recv_state rcv_state;
123         struct nvmet_tcp_cmd    *cmd;
124         union nvme_tcp_pdu      pdu;
125
126         /* digest state */
127         bool                    hdr_digest;
128         bool                    data_digest;
129         struct ahash_request    *snd_hash;
130         struct ahash_request    *rcv_hash;
131
132         unsigned long           poll_end;
133
134         spinlock_t              state_lock;
135         enum nvmet_tcp_queue_state state;
136
137         struct sockaddr_storage sockaddr;
138         struct sockaddr_storage sockaddr_peer;
139         struct work_struct      release_work;
140
141         int                     idx;
142         struct list_head        queue_list;
143
144         struct nvmet_tcp_cmd    connect;
145
146         struct page_frag_cache  pf_cache;
147
148         void (*data_ready)(struct sock *);
149         void (*state_change)(struct sock *);
150         void (*write_space)(struct sock *);
151 };
152
153 struct nvmet_tcp_port {
154         struct socket           *sock;
155         struct work_struct      accept_work;
156         struct nvmet_port       *nport;
157         struct sockaddr_storage addr;
158         void (*data_ready)(struct sock *);
159 };
160
161 static DEFINE_IDA(nvmet_tcp_queue_ida);
162 static LIST_HEAD(nvmet_tcp_queue_list);
163 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
164
165 static struct workqueue_struct *nvmet_tcp_wq;
166 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
167 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
168 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
169 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
170 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd);
171
172 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
173                 struct nvmet_tcp_cmd *cmd)
174 {
175         if (unlikely(!queue->nr_cmds)) {
176                 /* We didn't allocate cmds yet, send 0xffff */
177                 return USHRT_MAX;
178         }
179
180         return cmd - queue->cmds;
181 }
182
183 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
184 {
185         return nvme_is_write(cmd->req.cmd) &&
186                 cmd->rbytes_done < cmd->req.transfer_len;
187 }
188
189 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
190 {
191         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
192 }
193
194 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
195 {
196         return !nvme_is_write(cmd->req.cmd) &&
197                 cmd->req.transfer_len > 0 &&
198                 !cmd->req.cqe->status;
199 }
200
201 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
202 {
203         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
204                 !cmd->rbytes_done;
205 }
206
207 static inline struct nvmet_tcp_cmd *
208 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
209 {
210         struct nvmet_tcp_cmd *cmd;
211
212         cmd = list_first_entry_or_null(&queue->free_list,
213                                 struct nvmet_tcp_cmd, entry);
214         if (!cmd)
215                 return NULL;
216         list_del_init(&cmd->entry);
217
218         cmd->rbytes_done = cmd->wbytes_done = 0;
219         cmd->pdu_len = 0;
220         cmd->pdu_recv = 0;
221         cmd->iov = NULL;
222         cmd->flags = 0;
223         return cmd;
224 }
225
226 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
227 {
228         if (unlikely(cmd == &cmd->queue->connect))
229                 return;
230
231         list_add_tail(&cmd->entry, &cmd->queue->free_list);
232 }
233
234 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
235 {
236         return queue->sock->sk->sk_incoming_cpu;
237 }
238
239 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
240 {
241         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
242 }
243
244 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
245 {
246         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
247 }
248
249 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
250                 void *pdu, size_t len)
251 {
252         struct scatterlist sg;
253
254         sg_init_one(&sg, pdu, len);
255         ahash_request_set_crypt(hash, &sg, pdu + len, len);
256         crypto_ahash_digest(hash);
257 }
258
259 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
260         void *pdu, size_t len)
261 {
262         struct nvme_tcp_hdr *hdr = pdu;
263         __le32 recv_digest;
264         __le32 exp_digest;
265
266         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
267                 pr_err("queue %d: header digest enabled but no header digest\n",
268                         queue->idx);
269                 return -EPROTO;
270         }
271
272         recv_digest = *(__le32 *)(pdu + hdr->hlen);
273         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
274         exp_digest = *(__le32 *)(pdu + hdr->hlen);
275         if (recv_digest != exp_digest) {
276                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
277                         queue->idx, le32_to_cpu(recv_digest),
278                         le32_to_cpu(exp_digest));
279                 return -EPROTO;
280         }
281
282         return 0;
283 }
284
285 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
286 {
287         struct nvme_tcp_hdr *hdr = pdu;
288         u8 digest_len = nvmet_tcp_hdgst_len(queue);
289         u32 len;
290
291         len = le32_to_cpu(hdr->plen) - hdr->hlen -
292                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
293
294         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
295                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
296                 return -EPROTO;
297         }
298
299         return 0;
300 }
301
302 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
303 {
304         WARN_ON(unlikely(cmd->nr_mapped > 0));
305
306         kfree(cmd->iov);
307         sgl_free(cmd->req.sg);
308         cmd->iov = NULL;
309         cmd->req.sg = NULL;
310 }
311
312 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
313 {
314         struct scatterlist *sg;
315         int i;
316
317         sg = &cmd->req.sg[cmd->sg_idx];
318
319         for (i = 0; i < cmd->nr_mapped; i++)
320                 kunmap(sg_page(&sg[i]));
321
322         cmd->nr_mapped = 0;
323 }
324
325 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
326 {
327         struct kvec *iov = cmd->iov;
328         struct scatterlist *sg;
329         u32 length, offset, sg_offset;
330
331         length = cmd->pdu_len;
332         cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
333         offset = cmd->rbytes_done;
334         cmd->sg_idx = offset / PAGE_SIZE;
335         sg_offset = offset % PAGE_SIZE;
336         sg = &cmd->req.sg[cmd->sg_idx];
337
338         while (length) {
339                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
340
341                 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
342                 iov->iov_len = iov_len;
343
344                 length -= iov_len;
345                 sg = sg_next(sg);
346                 iov++;
347                 sg_offset = 0;
348         }
349
350         iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
351                 cmd->nr_mapped, cmd->pdu_len);
352 }
353
354 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
355 {
356         queue->rcv_state = NVMET_TCP_RECV_ERR;
357         if (queue->nvme_sq.ctrl)
358                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
359         else
360                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
361 }
362
363 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
364 {
365         if (status == -EPIPE || status == -ECONNRESET)
366                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
367         else
368                 nvmet_tcp_fatal_error(queue);
369 }
370
371 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
372 {
373         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
374         u32 len = le32_to_cpu(sgl->length);
375
376         if (!len)
377                 return 0;
378
379         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
380                           NVME_SGL_FMT_OFFSET)) {
381                 if (!nvme_is_write(cmd->req.cmd))
382                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
383
384                 if (len > cmd->req.port->inline_data_size)
385                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
386                 cmd->pdu_len = len;
387         }
388         cmd->req.transfer_len += len;
389
390         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
391         if (!cmd->req.sg)
392                 return NVME_SC_INTERNAL;
393         cmd->cur_sg = cmd->req.sg;
394
395         if (nvmet_tcp_has_data_in(cmd)) {
396                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
397                                 sizeof(*cmd->iov), GFP_KERNEL);
398                 if (!cmd->iov)
399                         goto err;
400         }
401
402         return 0;
403 err:
404         nvmet_tcp_free_cmd_buffers(cmd);
405         return NVME_SC_INTERNAL;
406 }
407
408 static void nvmet_tcp_send_ddgst(struct ahash_request *hash,
409                 struct nvmet_tcp_cmd *cmd)
410 {
411         ahash_request_set_crypt(hash, cmd->req.sg,
412                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
413         crypto_ahash_digest(hash);
414 }
415
416 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash,
417                 struct nvmet_tcp_cmd *cmd)
418 {
419         struct scatterlist sg;
420         struct kvec *iov;
421         int i;
422
423         crypto_ahash_init(hash);
424         for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) {
425                 sg_init_one(&sg, iov->iov_base, iov->iov_len);
426                 ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len);
427                 crypto_ahash_update(hash);
428         }
429         ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0);
430         crypto_ahash_final(hash);
431 }
432
433 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
434 {
435         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
436         struct nvmet_tcp_queue *queue = cmd->queue;
437         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
438         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
439
440         cmd->offset = 0;
441         cmd->state = NVMET_TCP_SEND_DATA_PDU;
442
443         pdu->hdr.type = nvme_tcp_c2h_data;
444         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
445                                                 NVME_TCP_F_DATA_SUCCESS : 0);
446         pdu->hdr.hlen = sizeof(*pdu);
447         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
448         pdu->hdr.plen =
449                 cpu_to_le32(pdu->hdr.hlen + hdgst +
450                                 cmd->req.transfer_len + ddgst);
451         pdu->command_id = cmd->req.cqe->command_id;
452         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
453         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
454
455         if (queue->data_digest) {
456                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
457                 nvmet_tcp_send_ddgst(queue->snd_hash, cmd);
458         }
459
460         if (cmd->queue->hdr_digest) {
461                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
462                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
463         }
464 }
465
466 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
467 {
468         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
469         struct nvmet_tcp_queue *queue = cmd->queue;
470         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
471
472         cmd->offset = 0;
473         cmd->state = NVMET_TCP_SEND_R2T;
474
475         pdu->hdr.type = nvme_tcp_r2t;
476         pdu->hdr.flags = 0;
477         pdu->hdr.hlen = sizeof(*pdu);
478         pdu->hdr.pdo = 0;
479         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
480
481         pdu->command_id = cmd->req.cmd->common.command_id;
482         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
483         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
484         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
485         if (cmd->queue->hdr_digest) {
486                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
487                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
488         }
489 }
490
491 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
492 {
493         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
494         struct nvmet_tcp_queue *queue = cmd->queue;
495         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
496
497         cmd->offset = 0;
498         cmd->state = NVMET_TCP_SEND_RESPONSE;
499
500         pdu->hdr.type = nvme_tcp_rsp;
501         pdu->hdr.flags = 0;
502         pdu->hdr.hlen = sizeof(*pdu);
503         pdu->hdr.pdo = 0;
504         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
505         if (cmd->queue->hdr_digest) {
506                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
507                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
508         }
509 }
510
511 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
512 {
513         struct llist_node *node;
514         struct nvmet_tcp_cmd *cmd;
515
516         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
517                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
518                 list_add(&cmd->entry, &queue->resp_send_list);
519                 queue->send_list_len++;
520         }
521 }
522
523 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
524 {
525         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
526                                 struct nvmet_tcp_cmd, entry);
527         if (!queue->snd_cmd) {
528                 nvmet_tcp_process_resp_list(queue);
529                 queue->snd_cmd =
530                         list_first_entry_or_null(&queue->resp_send_list,
531                                         struct nvmet_tcp_cmd, entry);
532                 if (unlikely(!queue->snd_cmd))
533                         return NULL;
534         }
535
536         list_del_init(&queue->snd_cmd->entry);
537         queue->send_list_len--;
538
539         if (nvmet_tcp_need_data_out(queue->snd_cmd))
540                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
541         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
542                 nvmet_setup_r2t_pdu(queue->snd_cmd);
543         else
544                 nvmet_setup_response_pdu(queue->snd_cmd);
545
546         return queue->snd_cmd;
547 }
548
549 static void nvmet_tcp_queue_response(struct nvmet_req *req)
550 {
551         struct nvmet_tcp_cmd *cmd =
552                 container_of(req, struct nvmet_tcp_cmd, req);
553         struct nvmet_tcp_queue  *queue = cmd->queue;
554         struct nvme_sgl_desc *sgl;
555         u32 len;
556
557         if (unlikely(cmd == queue->cmd)) {
558                 sgl = &cmd->req.cmd->common.dptr.sgl;
559                 len = le32_to_cpu(sgl->length);
560
561                 /*
562                  * Wait for inline data before processing the response.
563                  * Avoid using helpers, this might happen before
564                  * nvmet_req_init is completed.
565                  */
566                 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
567                     len && len <= cmd->req.port->inline_data_size &&
568                     nvme_is_write(cmd->req.cmd))
569                         return;
570         }
571
572         llist_add(&cmd->lentry, &queue->resp_list);
573         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
574 }
575
576 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
577 {
578         if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
579                 nvmet_tcp_queue_response(&cmd->req);
580         else
581                 cmd->req.execute(&cmd->req);
582 }
583
584 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
585 {
586         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
587         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
588         int ret;
589
590         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
591                         offset_in_page(cmd->data_pdu) + cmd->offset,
592                         left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
593         if (ret <= 0)
594                 return ret;
595
596         cmd->offset += ret;
597         left -= ret;
598
599         if (left)
600                 return -EAGAIN;
601
602         cmd->state = NVMET_TCP_SEND_DATA;
603         cmd->offset  = 0;
604         return 1;
605 }
606
607 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
608 {
609         struct nvmet_tcp_queue *queue = cmd->queue;
610         int ret;
611
612         while (cmd->cur_sg) {
613                 struct page *page = sg_page(cmd->cur_sg);
614                 u32 left = cmd->cur_sg->length - cmd->offset;
615                 int flags = MSG_DONTWAIT;
616
617                 if ((!last_in_batch && cmd->queue->send_list_len) ||
618                     cmd->wbytes_done + left < cmd->req.transfer_len ||
619                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
620                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
621
622                 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
623                                         left, flags);
624                 if (ret <= 0)
625                         return ret;
626
627                 cmd->offset += ret;
628                 cmd->wbytes_done += ret;
629
630                 /* Done with sg?*/
631                 if (cmd->offset == cmd->cur_sg->length) {
632                         cmd->cur_sg = sg_next(cmd->cur_sg);
633                         cmd->offset = 0;
634                 }
635         }
636
637         if (queue->data_digest) {
638                 cmd->state = NVMET_TCP_SEND_DDGST;
639                 cmd->offset = 0;
640         } else {
641                 if (queue->nvme_sq.sqhd_disabled) {
642                         cmd->queue->snd_cmd = NULL;
643                         nvmet_tcp_put_cmd(cmd);
644                 } else {
645                         nvmet_setup_response_pdu(cmd);
646                 }
647         }
648
649         if (queue->nvme_sq.sqhd_disabled)
650                 nvmet_tcp_free_cmd_buffers(cmd);
651
652         return 1;
653
654 }
655
656 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
657                 bool last_in_batch)
658 {
659         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
660         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
661         int flags = MSG_DONTWAIT;
662         int ret;
663
664         if (!last_in_batch && cmd->queue->send_list_len)
665                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
666         else
667                 flags |= MSG_EOR;
668
669         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
670                 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
671         if (ret <= 0)
672                 return ret;
673         cmd->offset += ret;
674         left -= ret;
675
676         if (left)
677                 return -EAGAIN;
678
679         nvmet_tcp_free_cmd_buffers(cmd);
680         cmd->queue->snd_cmd = NULL;
681         nvmet_tcp_put_cmd(cmd);
682         return 1;
683 }
684
685 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
686 {
687         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
688         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
689         int flags = MSG_DONTWAIT;
690         int ret;
691
692         if (!last_in_batch && cmd->queue->send_list_len)
693                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
694         else
695                 flags |= MSG_EOR;
696
697         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
698                 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
699         if (ret <= 0)
700                 return ret;
701         cmd->offset += ret;
702         left -= ret;
703
704         if (left)
705                 return -EAGAIN;
706
707         cmd->queue->snd_cmd = NULL;
708         return 1;
709 }
710
711 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
712 {
713         struct nvmet_tcp_queue *queue = cmd->queue;
714         int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
715         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
716         struct kvec iov = {
717                 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
718                 .iov_len = left
719         };
720         int ret;
721
722         if (!last_in_batch && cmd->queue->send_list_len)
723                 msg.msg_flags |= MSG_MORE;
724         else
725                 msg.msg_flags |= MSG_EOR;
726
727         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
728         if (unlikely(ret <= 0))
729                 return ret;
730
731         cmd->offset += ret;
732         left -= ret;
733
734         if (left)
735                 return -EAGAIN;
736
737         if (queue->nvme_sq.sqhd_disabled) {
738                 cmd->queue->snd_cmd = NULL;
739                 nvmet_tcp_put_cmd(cmd);
740         } else {
741                 nvmet_setup_response_pdu(cmd);
742         }
743         return 1;
744 }
745
746 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
747                 bool last_in_batch)
748 {
749         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
750         int ret = 0;
751
752         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
753                 cmd = nvmet_tcp_fetch_cmd(queue);
754                 if (unlikely(!cmd))
755                         return 0;
756         }
757
758         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
759                 ret = nvmet_try_send_data_pdu(cmd);
760                 if (ret <= 0)
761                         goto done_send;
762         }
763
764         if (cmd->state == NVMET_TCP_SEND_DATA) {
765                 ret = nvmet_try_send_data(cmd, last_in_batch);
766                 if (ret <= 0)
767                         goto done_send;
768         }
769
770         if (cmd->state == NVMET_TCP_SEND_DDGST) {
771                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
772                 if (ret <= 0)
773                         goto done_send;
774         }
775
776         if (cmd->state == NVMET_TCP_SEND_R2T) {
777                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
778                 if (ret <= 0)
779                         goto done_send;
780         }
781
782         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
783                 ret = nvmet_try_send_response(cmd, last_in_batch);
784
785 done_send:
786         if (ret < 0) {
787                 if (ret == -EAGAIN)
788                         return 0;
789                 return ret;
790         }
791
792         return 1;
793 }
794
795 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
796                 int budget, int *sends)
797 {
798         int i, ret = 0;
799
800         for (i = 0; i < budget; i++) {
801                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
802                 if (unlikely(ret < 0)) {
803                         nvmet_tcp_socket_error(queue, ret);
804                         goto done;
805                 } else if (ret == 0) {
806                         break;
807                 }
808                 (*sends)++;
809         }
810 done:
811         return ret;
812 }
813
814 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
815 {
816         queue->offset = 0;
817         queue->left = sizeof(struct nvme_tcp_hdr);
818         queue->cmd = NULL;
819         queue->rcv_state = NVMET_TCP_RECV_PDU;
820 }
821
822 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
823 {
824         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
825
826         ahash_request_free(queue->rcv_hash);
827         ahash_request_free(queue->snd_hash);
828         crypto_free_ahash(tfm);
829 }
830
831 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
832 {
833         struct crypto_ahash *tfm;
834
835         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
836         if (IS_ERR(tfm))
837                 return PTR_ERR(tfm);
838
839         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
840         if (!queue->snd_hash)
841                 goto free_tfm;
842         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
843
844         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
845         if (!queue->rcv_hash)
846                 goto free_snd_hash;
847         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
848
849         return 0;
850 free_snd_hash:
851         ahash_request_free(queue->snd_hash);
852 free_tfm:
853         crypto_free_ahash(tfm);
854         return -ENOMEM;
855 }
856
857
858 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
859 {
860         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
861         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
862         struct msghdr msg = {};
863         struct kvec iov;
864         int ret;
865
866         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
867                 pr_err("bad nvme-tcp pdu length (%d)\n",
868                         le32_to_cpu(icreq->hdr.plen));
869                 nvmet_tcp_fatal_error(queue);
870         }
871
872         if (icreq->pfv != NVME_TCP_PFV_1_0) {
873                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
874                 return -EPROTO;
875         }
876
877         if (icreq->hpda != 0) {
878                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
879                         icreq->hpda);
880                 return -EPROTO;
881         }
882
883         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
884         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
885         if (queue->hdr_digest || queue->data_digest) {
886                 ret = nvmet_tcp_alloc_crypto(queue);
887                 if (ret)
888                         return ret;
889         }
890
891         memset(icresp, 0, sizeof(*icresp));
892         icresp->hdr.type = nvme_tcp_icresp;
893         icresp->hdr.hlen = sizeof(*icresp);
894         icresp->hdr.pdo = 0;
895         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
896         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
897         icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
898         icresp->cpda = 0;
899         if (queue->hdr_digest)
900                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
901         if (queue->data_digest)
902                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
903
904         iov.iov_base = icresp;
905         iov.iov_len = sizeof(*icresp);
906         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
907         if (ret < 0)
908                 goto free_crypto;
909
910         queue->state = NVMET_TCP_Q_LIVE;
911         nvmet_prepare_receive_pdu(queue);
912         return 0;
913 free_crypto:
914         if (queue->hdr_digest || queue->data_digest)
915                 nvmet_tcp_free_crypto(queue);
916         return ret;
917 }
918
919 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
920                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
921 {
922         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
923         int ret;
924
925         /*
926          * This command has not been processed yet, hence we are trying to
927          * figure out if there is still pending data left to receive. If
928          * we don't, we can simply prepare for the next pdu and bail out,
929          * otherwise we will need to prepare a buffer and receive the
930          * stale data before continuing forward.
931          */
932         if (!nvme_is_write(cmd->req.cmd) || !data_len ||
933             data_len > cmd->req.port->inline_data_size) {
934                 nvmet_prepare_receive_pdu(queue);
935                 return;
936         }
937
938         ret = nvmet_tcp_map_data(cmd);
939         if (unlikely(ret)) {
940                 pr_err("queue %d: failed to map data\n", queue->idx);
941                 nvmet_tcp_fatal_error(queue);
942                 return;
943         }
944
945         queue->rcv_state = NVMET_TCP_RECV_DATA;
946         nvmet_tcp_map_pdu_iovec(cmd);
947         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
948 }
949
950 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
951 {
952         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
953         struct nvmet_tcp_cmd *cmd;
954
955         if (likely(queue->nr_cmds))
956                 cmd = &queue->cmds[data->ttag];
957         else
958                 cmd = &queue->connect;
959
960         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
961                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
962                         data->ttag, le32_to_cpu(data->data_offset),
963                         cmd->rbytes_done);
964                 /* FIXME: use path and transport errors */
965                 nvmet_req_complete(&cmd->req,
966                         NVME_SC_INVALID_FIELD | NVME_SC_DNR);
967                 return -EPROTO;
968         }
969
970         cmd->pdu_len = le32_to_cpu(data->data_length);
971         cmd->pdu_recv = 0;
972         nvmet_tcp_map_pdu_iovec(cmd);
973         queue->cmd = cmd;
974         queue->rcv_state = NVMET_TCP_RECV_DATA;
975
976         return 0;
977 }
978
979 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
980 {
981         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
982         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
983         struct nvmet_req *req;
984         int ret;
985
986         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
987                 if (hdr->type != nvme_tcp_icreq) {
988                         pr_err("unexpected pdu type (%d) before icreq\n",
989                                 hdr->type);
990                         nvmet_tcp_fatal_error(queue);
991                         return -EPROTO;
992                 }
993                 return nvmet_tcp_handle_icreq(queue);
994         }
995
996         if (hdr->type == nvme_tcp_h2c_data) {
997                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
998                 if (unlikely(ret))
999                         return ret;
1000                 return 0;
1001         }
1002
1003         queue->cmd = nvmet_tcp_get_cmd(queue);
1004         if (unlikely(!queue->cmd)) {
1005                 /* This should never happen */
1006                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1007                         queue->idx, queue->nr_cmds, queue->send_list_len,
1008                         nvme_cmd->common.opcode);
1009                 nvmet_tcp_fatal_error(queue);
1010                 return -ENOMEM;
1011         }
1012
1013         req = &queue->cmd->req;
1014         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1015
1016         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1017                         &queue->nvme_sq, &nvmet_tcp_ops))) {
1018                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1019                         req->cmd, req->cmd->common.command_id,
1020                         req->cmd->common.opcode,
1021                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
1022
1023                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1024                 return 0;
1025         }
1026
1027         ret = nvmet_tcp_map_data(queue->cmd);
1028         if (unlikely(ret)) {
1029                 pr_err("queue %d: failed to map data\n", queue->idx);
1030                 if (nvmet_tcp_has_inline_data(queue->cmd))
1031                         nvmet_tcp_fatal_error(queue);
1032                 else
1033                         nvmet_req_complete(req, ret);
1034                 ret = -EAGAIN;
1035                 goto out;
1036         }
1037
1038         if (nvmet_tcp_need_data_in(queue->cmd)) {
1039                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1040                         queue->rcv_state = NVMET_TCP_RECV_DATA;
1041                         nvmet_tcp_map_pdu_iovec(queue->cmd);
1042                         return 0;
1043                 }
1044                 /* send back R2T */
1045                 nvmet_tcp_queue_response(&queue->cmd->req);
1046                 goto out;
1047         }
1048
1049         queue->cmd->req.execute(&queue->cmd->req);
1050 out:
1051         nvmet_prepare_receive_pdu(queue);
1052         return ret;
1053 }
1054
1055 static const u8 nvme_tcp_pdu_sizes[] = {
1056         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
1057         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
1058         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
1059 };
1060
1061 static inline u8 nvmet_tcp_pdu_size(u8 type)
1062 {
1063         size_t idx = type;
1064
1065         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1066                 nvme_tcp_pdu_sizes[idx]) ?
1067                         nvme_tcp_pdu_sizes[idx] : 0;
1068 }
1069
1070 static inline bool nvmet_tcp_pdu_valid(u8 type)
1071 {
1072         switch (type) {
1073         case nvme_tcp_icreq:
1074         case nvme_tcp_cmd:
1075         case nvme_tcp_h2c_data:
1076                 /* fallthru */
1077                 return true;
1078         }
1079
1080         return false;
1081 }
1082
1083 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1084 {
1085         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1086         int len;
1087         struct kvec iov;
1088         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1089
1090 recv:
1091         iov.iov_base = (void *)&queue->pdu + queue->offset;
1092         iov.iov_len = queue->left;
1093         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1094                         iov.iov_len, msg.msg_flags);
1095         if (unlikely(len < 0))
1096                 return len;
1097
1098         queue->offset += len;
1099         queue->left -= len;
1100         if (queue->left)
1101                 return -EAGAIN;
1102
1103         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1104                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1105
1106                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1107                         pr_err("unexpected pdu type %d\n", hdr->type);
1108                         nvmet_tcp_fatal_error(queue);
1109                         return -EIO;
1110                 }
1111
1112                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1113                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1114                         return -EIO;
1115                 }
1116
1117                 queue->left = hdr->hlen - queue->offset + hdgst;
1118                 goto recv;
1119         }
1120
1121         if (queue->hdr_digest &&
1122             nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1123                 nvmet_tcp_fatal_error(queue); /* fatal */
1124                 return -EPROTO;
1125         }
1126
1127         if (queue->data_digest &&
1128             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1129                 nvmet_tcp_fatal_error(queue); /* fatal */
1130                 return -EPROTO;
1131         }
1132
1133         return nvmet_tcp_done_recv_pdu(queue);
1134 }
1135
1136 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1137 {
1138         struct nvmet_tcp_queue *queue = cmd->queue;
1139
1140         nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd);
1141         queue->offset = 0;
1142         queue->left = NVME_TCP_DIGEST_LENGTH;
1143         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1144 }
1145
1146 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1147 {
1148         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1149         int ret;
1150
1151         while (msg_data_left(&cmd->recv_msg)) {
1152                 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1153                         cmd->recv_msg.msg_flags);
1154                 if (ret <= 0)
1155                         return ret;
1156
1157                 cmd->pdu_recv += ret;
1158                 cmd->rbytes_done += ret;
1159         }
1160
1161         nvmet_tcp_unmap_pdu_iovec(cmd);
1162         if (queue->data_digest) {
1163                 nvmet_tcp_prep_recv_ddgst(cmd);
1164                 return 0;
1165         }
1166
1167         if (cmd->rbytes_done == cmd->req.transfer_len)
1168                 nvmet_tcp_execute_request(cmd);
1169
1170         nvmet_prepare_receive_pdu(queue);
1171         return 0;
1172 }
1173
1174 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1175 {
1176         struct nvmet_tcp_cmd *cmd = queue->cmd;
1177         int ret;
1178         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1179         struct kvec iov = {
1180                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1181                 .iov_len = queue->left
1182         };
1183
1184         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1185                         iov.iov_len, msg.msg_flags);
1186         if (unlikely(ret < 0))
1187                 return ret;
1188
1189         queue->offset += ret;
1190         queue->left -= ret;
1191         if (queue->left)
1192                 return -EAGAIN;
1193
1194         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1195                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1196                         queue->idx, cmd->req.cmd->common.command_id,
1197                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1198                         le32_to_cpu(cmd->exp_ddgst));
1199                 nvmet_tcp_finish_cmd(cmd);
1200                 nvmet_tcp_fatal_error(queue);
1201                 ret = -EPROTO;
1202                 goto out;
1203         }
1204
1205         if (cmd->rbytes_done == cmd->req.transfer_len)
1206                 nvmet_tcp_execute_request(cmd);
1207
1208         ret = 0;
1209 out:
1210         nvmet_prepare_receive_pdu(queue);
1211         return ret;
1212 }
1213
1214 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1215 {
1216         int result = 0;
1217
1218         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1219                 return 0;
1220
1221         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1222                 result = nvmet_tcp_try_recv_pdu(queue);
1223                 if (result != 0)
1224                         goto done_recv;
1225         }
1226
1227         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1228                 result = nvmet_tcp_try_recv_data(queue);
1229                 if (result != 0)
1230                         goto done_recv;
1231         }
1232
1233         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1234                 result = nvmet_tcp_try_recv_ddgst(queue);
1235                 if (result != 0)
1236                         goto done_recv;
1237         }
1238
1239 done_recv:
1240         if (result < 0) {
1241                 if (result == -EAGAIN)
1242                         return 0;
1243                 return result;
1244         }
1245         return 1;
1246 }
1247
1248 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1249                 int budget, int *recvs)
1250 {
1251         int i, ret = 0;
1252
1253         for (i = 0; i < budget; i++) {
1254                 ret = nvmet_tcp_try_recv_one(queue);
1255                 if (unlikely(ret < 0)) {
1256                         nvmet_tcp_socket_error(queue, ret);
1257                         goto done;
1258                 } else if (ret == 0) {
1259                         break;
1260                 }
1261                 (*recvs)++;
1262         }
1263 done:
1264         return ret;
1265 }
1266
1267 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1268 {
1269         spin_lock(&queue->state_lock);
1270         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1271                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1272                 queue_work(nvmet_wq, &queue->release_work);
1273         }
1274         spin_unlock(&queue->state_lock);
1275 }
1276
1277 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1278 {
1279         queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1280 }
1281
1282 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1283                 int ops)
1284 {
1285         if (!idle_poll_period_usecs)
1286                 return false;
1287
1288         if (ops)
1289                 nvmet_tcp_arm_queue_deadline(queue);
1290
1291         return !time_after(jiffies, queue->poll_end);
1292 }
1293
1294 static void nvmet_tcp_io_work(struct work_struct *w)
1295 {
1296         struct nvmet_tcp_queue *queue =
1297                 container_of(w, struct nvmet_tcp_queue, io_work);
1298         bool pending;
1299         int ret, ops = 0;
1300
1301         do {
1302                 pending = false;
1303
1304                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1305                 if (ret > 0)
1306                         pending = true;
1307                 else if (ret < 0)
1308                         return;
1309
1310                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1311                 if (ret > 0)
1312                         pending = true;
1313                 else if (ret < 0)
1314                         return;
1315
1316         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1317
1318         /*
1319          * Requeue the worker if idle deadline period is in progress or any
1320          * ops activity was recorded during the do-while loop above.
1321          */
1322         if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1323                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1324 }
1325
1326 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1327                 struct nvmet_tcp_cmd *c)
1328 {
1329         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1330
1331         c->queue = queue;
1332         c->req.port = queue->port->nport;
1333
1334         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1335                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1336         if (!c->cmd_pdu)
1337                 return -ENOMEM;
1338         c->req.cmd = &c->cmd_pdu->cmd;
1339
1340         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1341                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1342         if (!c->rsp_pdu)
1343                 goto out_free_cmd;
1344         c->req.cqe = &c->rsp_pdu->cqe;
1345
1346         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1347                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1348         if (!c->data_pdu)
1349                 goto out_free_rsp;
1350
1351         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1352                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1353         if (!c->r2t_pdu)
1354                 goto out_free_data;
1355
1356         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1357
1358         list_add_tail(&c->entry, &queue->free_list);
1359
1360         return 0;
1361 out_free_data:
1362         page_frag_free(c->data_pdu);
1363 out_free_rsp:
1364         page_frag_free(c->rsp_pdu);
1365 out_free_cmd:
1366         page_frag_free(c->cmd_pdu);
1367         return -ENOMEM;
1368 }
1369
1370 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1371 {
1372         page_frag_free(c->r2t_pdu);
1373         page_frag_free(c->data_pdu);
1374         page_frag_free(c->rsp_pdu);
1375         page_frag_free(c->cmd_pdu);
1376 }
1377
1378 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1379 {
1380         struct nvmet_tcp_cmd *cmds;
1381         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1382
1383         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1384         if (!cmds)
1385                 goto out;
1386
1387         for (i = 0; i < nr_cmds; i++) {
1388                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1389                 if (ret)
1390                         goto out_free;
1391         }
1392
1393         queue->cmds = cmds;
1394
1395         return 0;
1396 out_free:
1397         while (--i >= 0)
1398                 nvmet_tcp_free_cmd(cmds + i);
1399         kfree(cmds);
1400 out:
1401         return ret;
1402 }
1403
1404 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1405 {
1406         struct nvmet_tcp_cmd *cmds = queue->cmds;
1407         int i;
1408
1409         for (i = 0; i < queue->nr_cmds; i++)
1410                 nvmet_tcp_free_cmd(cmds + i);
1411
1412         nvmet_tcp_free_cmd(&queue->connect);
1413         kfree(cmds);
1414 }
1415
1416 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1417 {
1418         struct socket *sock = queue->sock;
1419
1420         write_lock_bh(&sock->sk->sk_callback_lock);
1421         sock->sk->sk_data_ready =  queue->data_ready;
1422         sock->sk->sk_state_change = queue->state_change;
1423         sock->sk->sk_write_space = queue->write_space;
1424         sock->sk->sk_user_data = NULL;
1425         write_unlock_bh(&sock->sk->sk_callback_lock);
1426 }
1427
1428 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1429 {
1430         nvmet_req_uninit(&cmd->req);
1431         nvmet_tcp_unmap_pdu_iovec(cmd);
1432         nvmet_tcp_free_cmd_buffers(cmd);
1433 }
1434
1435 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1436 {
1437         struct nvmet_tcp_cmd *cmd = queue->cmds;
1438         int i;
1439
1440         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1441                 if (nvmet_tcp_need_data_in(cmd))
1442                         nvmet_req_uninit(&cmd->req);
1443
1444                 nvmet_tcp_unmap_pdu_iovec(cmd);
1445                 nvmet_tcp_free_cmd_buffers(cmd);
1446         }
1447
1448         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1449                 /* failed in connect */
1450                 nvmet_tcp_finish_cmd(&queue->connect);
1451         }
1452 }
1453
1454 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1455 {
1456         struct page *page;
1457         struct nvmet_tcp_queue *queue =
1458                 container_of(w, struct nvmet_tcp_queue, release_work);
1459
1460         mutex_lock(&nvmet_tcp_queue_mutex);
1461         list_del_init(&queue->queue_list);
1462         mutex_unlock(&nvmet_tcp_queue_mutex);
1463
1464         nvmet_tcp_restore_socket_callbacks(queue);
1465         cancel_work_sync(&queue->io_work);
1466         /* stop accepting incoming data */
1467         queue->rcv_state = NVMET_TCP_RECV_ERR;
1468
1469         nvmet_tcp_uninit_data_in_cmds(queue);
1470         nvmet_sq_destroy(&queue->nvme_sq);
1471         cancel_work_sync(&queue->io_work);
1472         sock_release(queue->sock);
1473         nvmet_tcp_free_cmds(queue);
1474         if (queue->hdr_digest || queue->data_digest)
1475                 nvmet_tcp_free_crypto(queue);
1476         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1477
1478         page = virt_to_head_page(queue->pf_cache.va);
1479         __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1480         kfree(queue);
1481 }
1482
1483 static void nvmet_tcp_data_ready(struct sock *sk)
1484 {
1485         struct nvmet_tcp_queue *queue;
1486
1487         read_lock_bh(&sk->sk_callback_lock);
1488         queue = sk->sk_user_data;
1489         if (likely(queue))
1490                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1491         read_unlock_bh(&sk->sk_callback_lock);
1492 }
1493
1494 static void nvmet_tcp_write_space(struct sock *sk)
1495 {
1496         struct nvmet_tcp_queue *queue;
1497
1498         read_lock_bh(&sk->sk_callback_lock);
1499         queue = sk->sk_user_data;
1500         if (unlikely(!queue))
1501                 goto out;
1502
1503         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1504                 queue->write_space(sk);
1505                 goto out;
1506         }
1507
1508         if (sk_stream_is_writeable(sk)) {
1509                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1510                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1511         }
1512 out:
1513         read_unlock_bh(&sk->sk_callback_lock);
1514 }
1515
1516 static void nvmet_tcp_state_change(struct sock *sk)
1517 {
1518         struct nvmet_tcp_queue *queue;
1519
1520         read_lock_bh(&sk->sk_callback_lock);
1521         queue = sk->sk_user_data;
1522         if (!queue)
1523                 goto done;
1524
1525         switch (sk->sk_state) {
1526         case TCP_FIN_WAIT1:
1527         case TCP_CLOSE_WAIT:
1528         case TCP_CLOSE:
1529                 /* FALLTHRU */
1530                 nvmet_tcp_schedule_release_queue(queue);
1531                 break;
1532         default:
1533                 pr_warn("queue %d unhandled state %d\n",
1534                         queue->idx, sk->sk_state);
1535         }
1536 done:
1537         read_unlock_bh(&sk->sk_callback_lock);
1538 }
1539
1540 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1541 {
1542         struct socket *sock = queue->sock;
1543         struct inet_sock *inet = inet_sk(sock->sk);
1544         int ret;
1545
1546         ret = kernel_getsockname(sock,
1547                 (struct sockaddr *)&queue->sockaddr);
1548         if (ret < 0)
1549                 return ret;
1550
1551         ret = kernel_getpeername(sock,
1552                 (struct sockaddr *)&queue->sockaddr_peer);
1553         if (ret < 0)
1554                 return ret;
1555
1556         /*
1557          * Cleanup whatever is sitting in the TCP transmit queue on socket
1558          * close. This is done to prevent stale data from being sent should
1559          * the network connection be restored before TCP times out.
1560          */
1561         sock_no_linger(sock->sk);
1562
1563         if (so_priority > 0)
1564                 sock_set_priority(sock->sk, so_priority);
1565
1566         /* Set socket type of service */
1567         if (inet->rcv_tos > 0)
1568                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1569
1570         ret = 0;
1571         write_lock_bh(&sock->sk->sk_callback_lock);
1572         if (sock->sk->sk_state != TCP_ESTABLISHED) {
1573                 /*
1574                  * If the socket is already closing, don't even start
1575                  * consuming it
1576                  */
1577                 ret = -ENOTCONN;
1578         } else {
1579                 sock->sk->sk_user_data = queue;
1580                 queue->data_ready = sock->sk->sk_data_ready;
1581                 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1582                 queue->state_change = sock->sk->sk_state_change;
1583                 sock->sk->sk_state_change = nvmet_tcp_state_change;
1584                 queue->write_space = sock->sk->sk_write_space;
1585                 sock->sk->sk_write_space = nvmet_tcp_write_space;
1586                 if (idle_poll_period_usecs)
1587                         nvmet_tcp_arm_queue_deadline(queue);
1588                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1589         }
1590         write_unlock_bh(&sock->sk->sk_callback_lock);
1591
1592         return ret;
1593 }
1594
1595 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1596                 struct socket *newsock)
1597 {
1598         struct nvmet_tcp_queue *queue;
1599         int ret;
1600
1601         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1602         if (!queue)
1603                 return -ENOMEM;
1604
1605         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1606         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1607         queue->sock = newsock;
1608         queue->port = port;
1609         queue->nr_cmds = 0;
1610         spin_lock_init(&queue->state_lock);
1611         queue->state = NVMET_TCP_Q_CONNECTING;
1612         INIT_LIST_HEAD(&queue->free_list);
1613         init_llist_head(&queue->resp_list);
1614         INIT_LIST_HEAD(&queue->resp_send_list);
1615
1616         queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1617         if (queue->idx < 0) {
1618                 ret = queue->idx;
1619                 goto out_free_queue;
1620         }
1621
1622         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1623         if (ret)
1624                 goto out_ida_remove;
1625
1626         ret = nvmet_sq_init(&queue->nvme_sq);
1627         if (ret)
1628                 goto out_free_connect;
1629
1630         nvmet_prepare_receive_pdu(queue);
1631
1632         mutex_lock(&nvmet_tcp_queue_mutex);
1633         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1634         mutex_unlock(&nvmet_tcp_queue_mutex);
1635
1636         ret = nvmet_tcp_set_queue_sock(queue);
1637         if (ret)
1638                 goto out_destroy_sq;
1639
1640         return 0;
1641 out_destroy_sq:
1642         mutex_lock(&nvmet_tcp_queue_mutex);
1643         list_del_init(&queue->queue_list);
1644         mutex_unlock(&nvmet_tcp_queue_mutex);
1645         nvmet_sq_destroy(&queue->nvme_sq);
1646 out_free_connect:
1647         nvmet_tcp_free_cmd(&queue->connect);
1648 out_ida_remove:
1649         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1650 out_free_queue:
1651         kfree(queue);
1652         return ret;
1653 }
1654
1655 static void nvmet_tcp_accept_work(struct work_struct *w)
1656 {
1657         struct nvmet_tcp_port *port =
1658                 container_of(w, struct nvmet_tcp_port, accept_work);
1659         struct socket *newsock;
1660         int ret;
1661
1662         while (true) {
1663                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1664                 if (ret < 0) {
1665                         if (ret != -EAGAIN)
1666                                 pr_warn("failed to accept err=%d\n", ret);
1667                         return;
1668                 }
1669                 ret = nvmet_tcp_alloc_queue(port, newsock);
1670                 if (ret) {
1671                         pr_err("failed to allocate queue\n");
1672                         sock_release(newsock);
1673                 }
1674         }
1675 }
1676
1677 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1678 {
1679         struct nvmet_tcp_port *port;
1680
1681         read_lock_bh(&sk->sk_callback_lock);
1682         port = sk->sk_user_data;
1683         if (!port)
1684                 goto out;
1685
1686         if (sk->sk_state == TCP_LISTEN)
1687                 queue_work(nvmet_wq, &port->accept_work);
1688 out:
1689         read_unlock_bh(&sk->sk_callback_lock);
1690 }
1691
1692 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1693 {
1694         struct nvmet_tcp_port *port;
1695         __kernel_sa_family_t af;
1696         int ret;
1697
1698         port = kzalloc(sizeof(*port), GFP_KERNEL);
1699         if (!port)
1700                 return -ENOMEM;
1701
1702         switch (nport->disc_addr.adrfam) {
1703         case NVMF_ADDR_FAMILY_IP4:
1704                 af = AF_INET;
1705                 break;
1706         case NVMF_ADDR_FAMILY_IP6:
1707                 af = AF_INET6;
1708                 break;
1709         default:
1710                 pr_err("address family %d not supported\n",
1711                                 nport->disc_addr.adrfam);
1712                 ret = -EINVAL;
1713                 goto err_port;
1714         }
1715
1716         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1717                         nport->disc_addr.trsvcid, &port->addr);
1718         if (ret) {
1719                 pr_err("malformed ip/port passed: %s:%s\n",
1720                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1721                 goto err_port;
1722         }
1723
1724         port->nport = nport;
1725         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1726         if (port->nport->inline_data_size < 0)
1727                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1728
1729         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1730                                 IPPROTO_TCP, &port->sock);
1731         if (ret) {
1732                 pr_err("failed to create a socket\n");
1733                 goto err_port;
1734         }
1735
1736         port->sock->sk->sk_user_data = port;
1737         port->data_ready = port->sock->sk->sk_data_ready;
1738         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1739         sock_set_reuseaddr(port->sock->sk);
1740         tcp_sock_set_nodelay(port->sock->sk);
1741         if (so_priority > 0)
1742                 sock_set_priority(port->sock->sk, so_priority);
1743
1744         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1745                         sizeof(port->addr));
1746         if (ret) {
1747                 pr_err("failed to bind port socket %d\n", ret);
1748                 goto err_sock;
1749         }
1750
1751         ret = kernel_listen(port->sock, 128);
1752         if (ret) {
1753                 pr_err("failed to listen %d on port sock\n", ret);
1754                 goto err_sock;
1755         }
1756
1757         nport->priv = port;
1758         pr_info("enabling port %d (%pISpc)\n",
1759                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1760
1761         return 0;
1762
1763 err_sock:
1764         sock_release(port->sock);
1765 err_port:
1766         kfree(port);
1767         return ret;
1768 }
1769
1770 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1771 {
1772         struct nvmet_tcp_queue *queue;
1773
1774         mutex_lock(&nvmet_tcp_queue_mutex);
1775         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1776                 if (queue->port == port)
1777                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1778         mutex_unlock(&nvmet_tcp_queue_mutex);
1779 }
1780
1781 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1782 {
1783         struct nvmet_tcp_port *port = nport->priv;
1784
1785         write_lock_bh(&port->sock->sk->sk_callback_lock);
1786         port->sock->sk->sk_data_ready = port->data_ready;
1787         port->sock->sk->sk_user_data = NULL;
1788         write_unlock_bh(&port->sock->sk->sk_callback_lock);
1789         cancel_work_sync(&port->accept_work);
1790         /*
1791          * Destroy the remaining queues, which are not belong to any
1792          * controller yet.
1793          */
1794         nvmet_tcp_destroy_port_queues(port);
1795
1796         sock_release(port->sock);
1797         kfree(port);
1798 }
1799
1800 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1801 {
1802         struct nvmet_tcp_queue *queue;
1803
1804         mutex_lock(&nvmet_tcp_queue_mutex);
1805         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1806                 if (queue->nvme_sq.ctrl == ctrl)
1807                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1808         mutex_unlock(&nvmet_tcp_queue_mutex);
1809 }
1810
1811 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1812 {
1813         struct nvmet_tcp_queue *queue =
1814                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1815
1816         if (sq->qid == 0) {
1817                 /* Let inflight controller teardown complete */
1818                 flush_workqueue(nvmet_wq);
1819         }
1820
1821         queue->nr_cmds = sq->size * 2;
1822         if (nvmet_tcp_alloc_cmds(queue))
1823                 return NVME_SC_INTERNAL;
1824         return 0;
1825 }
1826
1827 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1828                 struct nvmet_port *nport, char *traddr)
1829 {
1830         struct nvmet_tcp_port *port = nport->priv;
1831
1832         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1833                 struct nvmet_tcp_cmd *cmd =
1834                         container_of(req, struct nvmet_tcp_cmd, req);
1835                 struct nvmet_tcp_queue *queue = cmd->queue;
1836
1837                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1838         } else {
1839                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1840         }
1841 }
1842
1843 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1844         .owner                  = THIS_MODULE,
1845         .type                   = NVMF_TRTYPE_TCP,
1846         .msdbd                  = 1,
1847         .add_port               = nvmet_tcp_add_port,
1848         .remove_port            = nvmet_tcp_remove_port,
1849         .queue_response         = nvmet_tcp_queue_response,
1850         .delete_ctrl            = nvmet_tcp_delete_ctrl,
1851         .install_queue          = nvmet_tcp_install_queue,
1852         .disc_traddr            = nvmet_tcp_disc_port_addr,
1853 };
1854
1855 static int __init nvmet_tcp_init(void)
1856 {
1857         int ret;
1858
1859         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1860         if (!nvmet_tcp_wq)
1861                 return -ENOMEM;
1862
1863         ret = nvmet_register_transport(&nvmet_tcp_ops);
1864         if (ret)
1865                 goto err;
1866
1867         return 0;
1868 err:
1869         destroy_workqueue(nvmet_tcp_wq);
1870         return ret;
1871 }
1872
1873 static void __exit nvmet_tcp_exit(void)
1874 {
1875         struct nvmet_tcp_queue *queue;
1876
1877         nvmet_unregister_transport(&nvmet_tcp_ops);
1878
1879         flush_workqueue(nvmet_wq);
1880         mutex_lock(&nvmet_tcp_queue_mutex);
1881         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1882                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1883         mutex_unlock(&nvmet_tcp_queue_mutex);
1884         flush_workqueue(nvmet_wq);
1885
1886         destroy_workqueue(nvmet_tcp_wq);
1887 }
1888
1889 module_init(nvmet_tcp_init);
1890 module_exit(nvmet_tcp_exit);
1891
1892 MODULE_LICENSE("GPL v2");
1893 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */