Merge tag 'pull-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
21
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31
32 /* Define a time period (in usecs) that io_work() shall sample an activated
33  * queue before determining it to be idle.  This optional module behavior
34  * can enable NIC solutions that support socket optimized packet processing
35  * using advanced interrupt moderation techniques.
36  */
37 static int idle_poll_period_usecs;
38 module_param(idle_poll_period_usecs, int, 0644);
39 MODULE_PARM_DESC(idle_poll_period_usecs,
40                 "nvmet tcp io_work poll till idle time period in usecs");
41
42 #define NVMET_TCP_RECV_BUDGET           8
43 #define NVMET_TCP_SEND_BUDGET           8
44 #define NVMET_TCP_IO_WORK_BUDGET        64
45
46 enum nvmet_tcp_send_state {
47         NVMET_TCP_SEND_DATA_PDU,
48         NVMET_TCP_SEND_DATA,
49         NVMET_TCP_SEND_R2T,
50         NVMET_TCP_SEND_DDGST,
51         NVMET_TCP_SEND_RESPONSE
52 };
53
54 enum nvmet_tcp_recv_state {
55         NVMET_TCP_RECV_PDU,
56         NVMET_TCP_RECV_DATA,
57         NVMET_TCP_RECV_DDGST,
58         NVMET_TCP_RECV_ERR,
59 };
60
61 enum {
62         NVMET_TCP_F_INIT_FAILED = (1 << 0),
63 };
64
65 struct nvmet_tcp_cmd {
66         struct nvmet_tcp_queue          *queue;
67         struct nvmet_req                req;
68
69         struct nvme_tcp_cmd_pdu         *cmd_pdu;
70         struct nvme_tcp_rsp_pdu         *rsp_pdu;
71         struct nvme_tcp_data_pdu        *data_pdu;
72         struct nvme_tcp_r2t_pdu         *r2t_pdu;
73
74         u32                             rbytes_done;
75         u32                             wbytes_done;
76
77         u32                             pdu_len;
78         u32                             pdu_recv;
79         int                             sg_idx;
80         int                             nr_mapped;
81         struct msghdr                   recv_msg;
82         struct kvec                     *iov;
83         u32                             flags;
84
85         struct list_head                entry;
86         struct llist_node               lentry;
87
88         /* send state */
89         u32                             offset;
90         struct scatterlist              *cur_sg;
91         enum nvmet_tcp_send_state       state;
92
93         __le32                          exp_ddgst;
94         __le32                          recv_ddgst;
95 };
96
97 enum nvmet_tcp_queue_state {
98         NVMET_TCP_Q_CONNECTING,
99         NVMET_TCP_Q_LIVE,
100         NVMET_TCP_Q_DISCONNECTING,
101 };
102
103 struct nvmet_tcp_queue {
104         struct socket           *sock;
105         struct nvmet_tcp_port   *port;
106         struct work_struct      io_work;
107         struct nvmet_cq         nvme_cq;
108         struct nvmet_sq         nvme_sq;
109
110         /* send state */
111         struct nvmet_tcp_cmd    *cmds;
112         unsigned int            nr_cmds;
113         struct list_head        free_list;
114         struct llist_head       resp_list;
115         struct list_head        resp_send_list;
116         int                     send_list_len;
117         struct nvmet_tcp_cmd    *snd_cmd;
118
119         /* recv state */
120         int                     offset;
121         int                     left;
122         enum nvmet_tcp_recv_state rcv_state;
123         struct nvmet_tcp_cmd    *cmd;
124         union nvme_tcp_pdu      pdu;
125
126         /* digest state */
127         bool                    hdr_digest;
128         bool                    data_digest;
129         struct ahash_request    *snd_hash;
130         struct ahash_request    *rcv_hash;
131
132         unsigned long           poll_end;
133
134         spinlock_t              state_lock;
135         enum nvmet_tcp_queue_state state;
136
137         struct sockaddr_storage sockaddr;
138         struct sockaddr_storage sockaddr_peer;
139         struct work_struct      release_work;
140
141         int                     idx;
142         struct list_head        queue_list;
143
144         struct nvmet_tcp_cmd    connect;
145
146         struct page_frag_cache  pf_cache;
147
148         void (*data_ready)(struct sock *);
149         void (*state_change)(struct sock *);
150         void (*write_space)(struct sock *);
151 };
152
153 struct nvmet_tcp_port {
154         struct socket           *sock;
155         struct work_struct      accept_work;
156         struct nvmet_port       *nport;
157         struct sockaddr_storage addr;
158         void (*data_ready)(struct sock *);
159 };
160
161 static DEFINE_IDA(nvmet_tcp_queue_ida);
162 static LIST_HEAD(nvmet_tcp_queue_list);
163 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
164
165 static struct workqueue_struct *nvmet_tcp_wq;
166 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
167 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
168 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
169 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
170 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd);
171
172 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
173                 struct nvmet_tcp_cmd *cmd)
174 {
175         if (unlikely(!queue->nr_cmds)) {
176                 /* We didn't allocate cmds yet, send 0xffff */
177                 return USHRT_MAX;
178         }
179
180         return cmd - queue->cmds;
181 }
182
183 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
184 {
185         return nvme_is_write(cmd->req.cmd) &&
186                 cmd->rbytes_done < cmd->req.transfer_len;
187 }
188
189 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
190 {
191         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
192 }
193
194 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
195 {
196         return !nvme_is_write(cmd->req.cmd) &&
197                 cmd->req.transfer_len > 0 &&
198                 !cmd->req.cqe->status;
199 }
200
201 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
202 {
203         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
204                 !cmd->rbytes_done;
205 }
206
207 static inline struct nvmet_tcp_cmd *
208 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
209 {
210         struct nvmet_tcp_cmd *cmd;
211
212         cmd = list_first_entry_or_null(&queue->free_list,
213                                 struct nvmet_tcp_cmd, entry);
214         if (!cmd)
215                 return NULL;
216         list_del_init(&cmd->entry);
217
218         cmd->rbytes_done = cmd->wbytes_done = 0;
219         cmd->pdu_len = 0;
220         cmd->pdu_recv = 0;
221         cmd->iov = NULL;
222         cmd->flags = 0;
223         return cmd;
224 }
225
226 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
227 {
228         if (unlikely(cmd == &cmd->queue->connect))
229                 return;
230
231         list_add_tail(&cmd->entry, &cmd->queue->free_list);
232 }
233
234 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
235 {
236         return queue->sock->sk->sk_incoming_cpu;
237 }
238
239 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
240 {
241         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
242 }
243
244 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
245 {
246         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
247 }
248
249 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
250                 void *pdu, size_t len)
251 {
252         struct scatterlist sg;
253
254         sg_init_one(&sg, pdu, len);
255         ahash_request_set_crypt(hash, &sg, pdu + len, len);
256         crypto_ahash_digest(hash);
257 }
258
259 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
260         void *pdu, size_t len)
261 {
262         struct nvme_tcp_hdr *hdr = pdu;
263         __le32 recv_digest;
264         __le32 exp_digest;
265
266         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
267                 pr_err("queue %d: header digest enabled but no header digest\n",
268                         queue->idx);
269                 return -EPROTO;
270         }
271
272         recv_digest = *(__le32 *)(pdu + hdr->hlen);
273         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
274         exp_digest = *(__le32 *)(pdu + hdr->hlen);
275         if (recv_digest != exp_digest) {
276                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
277                         queue->idx, le32_to_cpu(recv_digest),
278                         le32_to_cpu(exp_digest));
279                 return -EPROTO;
280         }
281
282         return 0;
283 }
284
285 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
286 {
287         struct nvme_tcp_hdr *hdr = pdu;
288         u8 digest_len = nvmet_tcp_hdgst_len(queue);
289         u32 len;
290
291         len = le32_to_cpu(hdr->plen) - hdr->hlen -
292                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
293
294         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
295                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
296                 return -EPROTO;
297         }
298
299         return 0;
300 }
301
302 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
303 {
304         WARN_ON(unlikely(cmd->nr_mapped > 0));
305
306         kfree(cmd->iov);
307         sgl_free(cmd->req.sg);
308         cmd->iov = NULL;
309         cmd->req.sg = NULL;
310 }
311
312 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
313 {
314         struct scatterlist *sg;
315         int i;
316
317         sg = &cmd->req.sg[cmd->sg_idx];
318
319         for (i = 0; i < cmd->nr_mapped; i++)
320                 kunmap(sg_page(&sg[i]));
321
322         cmd->nr_mapped = 0;
323 }
324
325 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
326 {
327         struct kvec *iov = cmd->iov;
328         struct scatterlist *sg;
329         u32 length, offset, sg_offset;
330
331         length = cmd->pdu_len;
332         cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
333         offset = cmd->rbytes_done;
334         cmd->sg_idx = offset / PAGE_SIZE;
335         sg_offset = offset % PAGE_SIZE;
336         sg = &cmd->req.sg[cmd->sg_idx];
337
338         while (length) {
339                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
340
341                 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
342                 iov->iov_len = iov_len;
343
344                 length -= iov_len;
345                 sg = sg_next(sg);
346                 iov++;
347                 sg_offset = 0;
348         }
349
350         iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
351                 cmd->nr_mapped, cmd->pdu_len);
352 }
353
354 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
355 {
356         queue->rcv_state = NVMET_TCP_RECV_ERR;
357         if (queue->nvme_sq.ctrl)
358                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
359         else
360                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
361 }
362
363 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
364 {
365         if (status == -EPIPE || status == -ECONNRESET)
366                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
367         else
368                 nvmet_tcp_fatal_error(queue);
369 }
370
371 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
372 {
373         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
374         u32 len = le32_to_cpu(sgl->length);
375
376         if (!len)
377                 return 0;
378
379         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
380                           NVME_SGL_FMT_OFFSET)) {
381                 if (!nvme_is_write(cmd->req.cmd))
382                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
383
384                 if (len > cmd->req.port->inline_data_size)
385                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
386                 cmd->pdu_len = len;
387         }
388         cmd->req.transfer_len += len;
389
390         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
391         if (!cmd->req.sg)
392                 return NVME_SC_INTERNAL;
393         cmd->cur_sg = cmd->req.sg;
394
395         if (nvmet_tcp_has_data_in(cmd)) {
396                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
397                                 sizeof(*cmd->iov), GFP_KERNEL);
398                 if (!cmd->iov)
399                         goto err;
400         }
401
402         return 0;
403 err:
404         nvmet_tcp_free_cmd_buffers(cmd);
405         return NVME_SC_INTERNAL;
406 }
407
408 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
409                 struct nvmet_tcp_cmd *cmd)
410 {
411         ahash_request_set_crypt(hash, cmd->req.sg,
412                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
413         crypto_ahash_digest(hash);
414 }
415
416 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
417 {
418         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
419         struct nvmet_tcp_queue *queue = cmd->queue;
420         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
421         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
422
423         cmd->offset = 0;
424         cmd->state = NVMET_TCP_SEND_DATA_PDU;
425
426         pdu->hdr.type = nvme_tcp_c2h_data;
427         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
428                                                 NVME_TCP_F_DATA_SUCCESS : 0);
429         pdu->hdr.hlen = sizeof(*pdu);
430         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
431         pdu->hdr.plen =
432                 cpu_to_le32(pdu->hdr.hlen + hdgst +
433                                 cmd->req.transfer_len + ddgst);
434         pdu->command_id = cmd->req.cqe->command_id;
435         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
436         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
437
438         if (queue->data_digest) {
439                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
440                 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
441         }
442
443         if (cmd->queue->hdr_digest) {
444                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
445                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
446         }
447 }
448
449 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
450 {
451         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
452         struct nvmet_tcp_queue *queue = cmd->queue;
453         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
454
455         cmd->offset = 0;
456         cmd->state = NVMET_TCP_SEND_R2T;
457
458         pdu->hdr.type = nvme_tcp_r2t;
459         pdu->hdr.flags = 0;
460         pdu->hdr.hlen = sizeof(*pdu);
461         pdu->hdr.pdo = 0;
462         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
463
464         pdu->command_id = cmd->req.cmd->common.command_id;
465         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
466         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
467         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
468         if (cmd->queue->hdr_digest) {
469                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
470                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
471         }
472 }
473
474 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
475 {
476         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
477         struct nvmet_tcp_queue *queue = cmd->queue;
478         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
479
480         cmd->offset = 0;
481         cmd->state = NVMET_TCP_SEND_RESPONSE;
482
483         pdu->hdr.type = nvme_tcp_rsp;
484         pdu->hdr.flags = 0;
485         pdu->hdr.hlen = sizeof(*pdu);
486         pdu->hdr.pdo = 0;
487         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
488         if (cmd->queue->hdr_digest) {
489                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
490                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
491         }
492 }
493
494 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
495 {
496         struct llist_node *node;
497         struct nvmet_tcp_cmd *cmd;
498
499         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
500                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
501                 list_add(&cmd->entry, &queue->resp_send_list);
502                 queue->send_list_len++;
503         }
504 }
505
506 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
507 {
508         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
509                                 struct nvmet_tcp_cmd, entry);
510         if (!queue->snd_cmd) {
511                 nvmet_tcp_process_resp_list(queue);
512                 queue->snd_cmd =
513                         list_first_entry_or_null(&queue->resp_send_list,
514                                         struct nvmet_tcp_cmd, entry);
515                 if (unlikely(!queue->snd_cmd))
516                         return NULL;
517         }
518
519         list_del_init(&queue->snd_cmd->entry);
520         queue->send_list_len--;
521
522         if (nvmet_tcp_need_data_out(queue->snd_cmd))
523                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
524         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
525                 nvmet_setup_r2t_pdu(queue->snd_cmd);
526         else
527                 nvmet_setup_response_pdu(queue->snd_cmd);
528
529         return queue->snd_cmd;
530 }
531
532 static void nvmet_tcp_queue_response(struct nvmet_req *req)
533 {
534         struct nvmet_tcp_cmd *cmd =
535                 container_of(req, struct nvmet_tcp_cmd, req);
536         struct nvmet_tcp_queue  *queue = cmd->queue;
537         struct nvme_sgl_desc *sgl;
538         u32 len;
539
540         if (unlikely(cmd == queue->cmd)) {
541                 sgl = &cmd->req.cmd->common.dptr.sgl;
542                 len = le32_to_cpu(sgl->length);
543
544                 /*
545                  * Wait for inline data before processing the response.
546                  * Avoid using helpers, this might happen before
547                  * nvmet_req_init is completed.
548                  */
549                 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
550                     len && len <= cmd->req.port->inline_data_size &&
551                     nvme_is_write(cmd->req.cmd))
552                         return;
553         }
554
555         llist_add(&cmd->lentry, &queue->resp_list);
556         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
557 }
558
559 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
560 {
561         if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
562                 nvmet_tcp_queue_response(&cmd->req);
563         else
564                 cmd->req.execute(&cmd->req);
565 }
566
567 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
568 {
569         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
570         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
571         int ret;
572
573         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
574                         offset_in_page(cmd->data_pdu) + cmd->offset,
575                         left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
576         if (ret <= 0)
577                 return ret;
578
579         cmd->offset += ret;
580         left -= ret;
581
582         if (left)
583                 return -EAGAIN;
584
585         cmd->state = NVMET_TCP_SEND_DATA;
586         cmd->offset  = 0;
587         return 1;
588 }
589
590 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
591 {
592         struct nvmet_tcp_queue *queue = cmd->queue;
593         int ret;
594
595         while (cmd->cur_sg) {
596                 struct page *page = sg_page(cmd->cur_sg);
597                 u32 left = cmd->cur_sg->length - cmd->offset;
598                 int flags = MSG_DONTWAIT;
599
600                 if ((!last_in_batch && cmd->queue->send_list_len) ||
601                     cmd->wbytes_done + left < cmd->req.transfer_len ||
602                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
603                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
604
605                 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
606                                         left, flags);
607                 if (ret <= 0)
608                         return ret;
609
610                 cmd->offset += ret;
611                 cmd->wbytes_done += ret;
612
613                 /* Done with sg?*/
614                 if (cmd->offset == cmd->cur_sg->length) {
615                         cmd->cur_sg = sg_next(cmd->cur_sg);
616                         cmd->offset = 0;
617                 }
618         }
619
620         if (queue->data_digest) {
621                 cmd->state = NVMET_TCP_SEND_DDGST;
622                 cmd->offset = 0;
623         } else {
624                 if (queue->nvme_sq.sqhd_disabled) {
625                         cmd->queue->snd_cmd = NULL;
626                         nvmet_tcp_put_cmd(cmd);
627                 } else {
628                         nvmet_setup_response_pdu(cmd);
629                 }
630         }
631
632         if (queue->nvme_sq.sqhd_disabled)
633                 nvmet_tcp_free_cmd_buffers(cmd);
634
635         return 1;
636
637 }
638
639 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
640                 bool last_in_batch)
641 {
642         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
643         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
644         int flags = MSG_DONTWAIT;
645         int ret;
646
647         if (!last_in_batch && cmd->queue->send_list_len)
648                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
649         else
650                 flags |= MSG_EOR;
651
652         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
653                 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
654         if (ret <= 0)
655                 return ret;
656         cmd->offset += ret;
657         left -= ret;
658
659         if (left)
660                 return -EAGAIN;
661
662         nvmet_tcp_free_cmd_buffers(cmd);
663         cmd->queue->snd_cmd = NULL;
664         nvmet_tcp_put_cmd(cmd);
665         return 1;
666 }
667
668 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
669 {
670         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
671         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
672         int flags = MSG_DONTWAIT;
673         int ret;
674
675         if (!last_in_batch && cmd->queue->send_list_len)
676                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
677         else
678                 flags |= MSG_EOR;
679
680         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
681                 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
682         if (ret <= 0)
683                 return ret;
684         cmd->offset += ret;
685         left -= ret;
686
687         if (left)
688                 return -EAGAIN;
689
690         cmd->queue->snd_cmd = NULL;
691         return 1;
692 }
693
694 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
695 {
696         struct nvmet_tcp_queue *queue = cmd->queue;
697         int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
698         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
699         struct kvec iov = {
700                 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
701                 .iov_len = left
702         };
703         int ret;
704
705         if (!last_in_batch && cmd->queue->send_list_len)
706                 msg.msg_flags |= MSG_MORE;
707         else
708                 msg.msg_flags |= MSG_EOR;
709
710         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
711         if (unlikely(ret <= 0))
712                 return ret;
713
714         cmd->offset += ret;
715         left -= ret;
716
717         if (left)
718                 return -EAGAIN;
719
720         if (queue->nvme_sq.sqhd_disabled) {
721                 cmd->queue->snd_cmd = NULL;
722                 nvmet_tcp_put_cmd(cmd);
723         } else {
724                 nvmet_setup_response_pdu(cmd);
725         }
726         return 1;
727 }
728
729 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
730                 bool last_in_batch)
731 {
732         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
733         int ret = 0;
734
735         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
736                 cmd = nvmet_tcp_fetch_cmd(queue);
737                 if (unlikely(!cmd))
738                         return 0;
739         }
740
741         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
742                 ret = nvmet_try_send_data_pdu(cmd);
743                 if (ret <= 0)
744                         goto done_send;
745         }
746
747         if (cmd->state == NVMET_TCP_SEND_DATA) {
748                 ret = nvmet_try_send_data(cmd, last_in_batch);
749                 if (ret <= 0)
750                         goto done_send;
751         }
752
753         if (cmd->state == NVMET_TCP_SEND_DDGST) {
754                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
755                 if (ret <= 0)
756                         goto done_send;
757         }
758
759         if (cmd->state == NVMET_TCP_SEND_R2T) {
760                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
761                 if (ret <= 0)
762                         goto done_send;
763         }
764
765         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
766                 ret = nvmet_try_send_response(cmd, last_in_batch);
767
768 done_send:
769         if (ret < 0) {
770                 if (ret == -EAGAIN)
771                         return 0;
772                 return ret;
773         }
774
775         return 1;
776 }
777
778 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
779                 int budget, int *sends)
780 {
781         int i, ret = 0;
782
783         for (i = 0; i < budget; i++) {
784                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
785                 if (unlikely(ret < 0)) {
786                         nvmet_tcp_socket_error(queue, ret);
787                         goto done;
788                 } else if (ret == 0) {
789                         break;
790                 }
791                 (*sends)++;
792         }
793 done:
794         return ret;
795 }
796
797 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
798 {
799         queue->offset = 0;
800         queue->left = sizeof(struct nvme_tcp_hdr);
801         queue->cmd = NULL;
802         queue->rcv_state = NVMET_TCP_RECV_PDU;
803 }
804
805 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
806 {
807         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
808
809         ahash_request_free(queue->rcv_hash);
810         ahash_request_free(queue->snd_hash);
811         crypto_free_ahash(tfm);
812 }
813
814 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
815 {
816         struct crypto_ahash *tfm;
817
818         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
819         if (IS_ERR(tfm))
820                 return PTR_ERR(tfm);
821
822         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
823         if (!queue->snd_hash)
824                 goto free_tfm;
825         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
826
827         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
828         if (!queue->rcv_hash)
829                 goto free_snd_hash;
830         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
831
832         return 0;
833 free_snd_hash:
834         ahash_request_free(queue->snd_hash);
835 free_tfm:
836         crypto_free_ahash(tfm);
837         return -ENOMEM;
838 }
839
840
841 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
842 {
843         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
844         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
845         struct msghdr msg = {};
846         struct kvec iov;
847         int ret;
848
849         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
850                 pr_err("bad nvme-tcp pdu length (%d)\n",
851                         le32_to_cpu(icreq->hdr.plen));
852                 nvmet_tcp_fatal_error(queue);
853         }
854
855         if (icreq->pfv != NVME_TCP_PFV_1_0) {
856                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
857                 return -EPROTO;
858         }
859
860         if (icreq->hpda != 0) {
861                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
862                         icreq->hpda);
863                 return -EPROTO;
864         }
865
866         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
867         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
868         if (queue->hdr_digest || queue->data_digest) {
869                 ret = nvmet_tcp_alloc_crypto(queue);
870                 if (ret)
871                         return ret;
872         }
873
874         memset(icresp, 0, sizeof(*icresp));
875         icresp->hdr.type = nvme_tcp_icresp;
876         icresp->hdr.hlen = sizeof(*icresp);
877         icresp->hdr.pdo = 0;
878         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
879         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
880         icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
881         icresp->cpda = 0;
882         if (queue->hdr_digest)
883                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
884         if (queue->data_digest)
885                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
886
887         iov.iov_base = icresp;
888         iov.iov_len = sizeof(*icresp);
889         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
890         if (ret < 0)
891                 goto free_crypto;
892
893         queue->state = NVMET_TCP_Q_LIVE;
894         nvmet_prepare_receive_pdu(queue);
895         return 0;
896 free_crypto:
897         if (queue->hdr_digest || queue->data_digest)
898                 nvmet_tcp_free_crypto(queue);
899         return ret;
900 }
901
902 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
903                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
904 {
905         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
906         int ret;
907
908         /*
909          * This command has not been processed yet, hence we are trying to
910          * figure out if there is still pending data left to receive. If
911          * we don't, we can simply prepare for the next pdu and bail out,
912          * otherwise we will need to prepare a buffer and receive the
913          * stale data before continuing forward.
914          */
915         if (!nvme_is_write(cmd->req.cmd) || !data_len ||
916             data_len > cmd->req.port->inline_data_size) {
917                 nvmet_prepare_receive_pdu(queue);
918                 return;
919         }
920
921         ret = nvmet_tcp_map_data(cmd);
922         if (unlikely(ret)) {
923                 pr_err("queue %d: failed to map data\n", queue->idx);
924                 nvmet_tcp_fatal_error(queue);
925                 return;
926         }
927
928         queue->rcv_state = NVMET_TCP_RECV_DATA;
929         nvmet_tcp_map_pdu_iovec(cmd);
930         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
931 }
932
933 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
934 {
935         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
936         struct nvmet_tcp_cmd *cmd;
937
938         if (likely(queue->nr_cmds))
939                 cmd = &queue->cmds[data->ttag];
940         else
941                 cmd = &queue->connect;
942
943         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
944                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
945                         data->ttag, le32_to_cpu(data->data_offset),
946                         cmd->rbytes_done);
947                 /* FIXME: use path and transport errors */
948                 nvmet_req_complete(&cmd->req,
949                         NVME_SC_INVALID_FIELD | NVME_SC_DNR);
950                 return -EPROTO;
951         }
952
953         cmd->pdu_len = le32_to_cpu(data->data_length);
954         cmd->pdu_recv = 0;
955         nvmet_tcp_map_pdu_iovec(cmd);
956         queue->cmd = cmd;
957         queue->rcv_state = NVMET_TCP_RECV_DATA;
958
959         return 0;
960 }
961
962 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
963 {
964         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
965         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
966         struct nvmet_req *req;
967         int ret;
968
969         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
970                 if (hdr->type != nvme_tcp_icreq) {
971                         pr_err("unexpected pdu type (%d) before icreq\n",
972                                 hdr->type);
973                         nvmet_tcp_fatal_error(queue);
974                         return -EPROTO;
975                 }
976                 return nvmet_tcp_handle_icreq(queue);
977         }
978
979         if (hdr->type == nvme_tcp_h2c_data) {
980                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
981                 if (unlikely(ret))
982                         return ret;
983                 return 0;
984         }
985
986         queue->cmd = nvmet_tcp_get_cmd(queue);
987         if (unlikely(!queue->cmd)) {
988                 /* This should never happen */
989                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
990                         queue->idx, queue->nr_cmds, queue->send_list_len,
991                         nvme_cmd->common.opcode);
992                 nvmet_tcp_fatal_error(queue);
993                 return -ENOMEM;
994         }
995
996         req = &queue->cmd->req;
997         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
998
999         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1000                         &queue->nvme_sq, &nvmet_tcp_ops))) {
1001                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1002                         req->cmd, req->cmd->common.command_id,
1003                         req->cmd->common.opcode,
1004                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
1005
1006                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1007                 return 0;
1008         }
1009
1010         ret = nvmet_tcp_map_data(queue->cmd);
1011         if (unlikely(ret)) {
1012                 pr_err("queue %d: failed to map data\n", queue->idx);
1013                 if (nvmet_tcp_has_inline_data(queue->cmd))
1014                         nvmet_tcp_fatal_error(queue);
1015                 else
1016                         nvmet_req_complete(req, ret);
1017                 ret = -EAGAIN;
1018                 goto out;
1019         }
1020
1021         if (nvmet_tcp_need_data_in(queue->cmd)) {
1022                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1023                         queue->rcv_state = NVMET_TCP_RECV_DATA;
1024                         nvmet_tcp_map_pdu_iovec(queue->cmd);
1025                         return 0;
1026                 }
1027                 /* send back R2T */
1028                 nvmet_tcp_queue_response(&queue->cmd->req);
1029                 goto out;
1030         }
1031
1032         queue->cmd->req.execute(&queue->cmd->req);
1033 out:
1034         nvmet_prepare_receive_pdu(queue);
1035         return ret;
1036 }
1037
1038 static const u8 nvme_tcp_pdu_sizes[] = {
1039         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
1040         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
1041         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
1042 };
1043
1044 static inline u8 nvmet_tcp_pdu_size(u8 type)
1045 {
1046         size_t idx = type;
1047
1048         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1049                 nvme_tcp_pdu_sizes[idx]) ?
1050                         nvme_tcp_pdu_sizes[idx] : 0;
1051 }
1052
1053 static inline bool nvmet_tcp_pdu_valid(u8 type)
1054 {
1055         switch (type) {
1056         case nvme_tcp_icreq:
1057         case nvme_tcp_cmd:
1058         case nvme_tcp_h2c_data:
1059                 /* fallthru */
1060                 return true;
1061         }
1062
1063         return false;
1064 }
1065
1066 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1067 {
1068         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1069         int len;
1070         struct kvec iov;
1071         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1072
1073 recv:
1074         iov.iov_base = (void *)&queue->pdu + queue->offset;
1075         iov.iov_len = queue->left;
1076         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1077                         iov.iov_len, msg.msg_flags);
1078         if (unlikely(len < 0))
1079                 return len;
1080
1081         queue->offset += len;
1082         queue->left -= len;
1083         if (queue->left)
1084                 return -EAGAIN;
1085
1086         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1087                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1088
1089                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1090                         pr_err("unexpected pdu type %d\n", hdr->type);
1091                         nvmet_tcp_fatal_error(queue);
1092                         return -EIO;
1093                 }
1094
1095                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1096                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1097                         return -EIO;
1098                 }
1099
1100                 queue->left = hdr->hlen - queue->offset + hdgst;
1101                 goto recv;
1102         }
1103
1104         if (queue->hdr_digest &&
1105             nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1106                 nvmet_tcp_fatal_error(queue); /* fatal */
1107                 return -EPROTO;
1108         }
1109
1110         if (queue->data_digest &&
1111             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1112                 nvmet_tcp_fatal_error(queue); /* fatal */
1113                 return -EPROTO;
1114         }
1115
1116         return nvmet_tcp_done_recv_pdu(queue);
1117 }
1118
1119 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1120 {
1121         struct nvmet_tcp_queue *queue = cmd->queue;
1122
1123         nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1124         queue->offset = 0;
1125         queue->left = NVME_TCP_DIGEST_LENGTH;
1126         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1127 }
1128
1129 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1130 {
1131         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1132         int ret;
1133
1134         while (msg_data_left(&cmd->recv_msg)) {
1135                 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1136                         cmd->recv_msg.msg_flags);
1137                 if (ret <= 0)
1138                         return ret;
1139
1140                 cmd->pdu_recv += ret;
1141                 cmd->rbytes_done += ret;
1142         }
1143
1144         nvmet_tcp_unmap_pdu_iovec(cmd);
1145         if (queue->data_digest) {
1146                 nvmet_tcp_prep_recv_ddgst(cmd);
1147                 return 0;
1148         }
1149
1150         if (cmd->rbytes_done == cmd->req.transfer_len)
1151                 nvmet_tcp_execute_request(cmd);
1152
1153         nvmet_prepare_receive_pdu(queue);
1154         return 0;
1155 }
1156
1157 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1158 {
1159         struct nvmet_tcp_cmd *cmd = queue->cmd;
1160         int ret;
1161         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1162         struct kvec iov = {
1163                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1164                 .iov_len = queue->left
1165         };
1166
1167         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1168                         iov.iov_len, msg.msg_flags);
1169         if (unlikely(ret < 0))
1170                 return ret;
1171
1172         queue->offset += ret;
1173         queue->left -= ret;
1174         if (queue->left)
1175                 return -EAGAIN;
1176
1177         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1178                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1179                         queue->idx, cmd->req.cmd->common.command_id,
1180                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1181                         le32_to_cpu(cmd->exp_ddgst));
1182                 nvmet_tcp_finish_cmd(cmd);
1183                 nvmet_tcp_fatal_error(queue);
1184                 ret = -EPROTO;
1185                 goto out;
1186         }
1187
1188         if (cmd->rbytes_done == cmd->req.transfer_len)
1189                 nvmet_tcp_execute_request(cmd);
1190
1191         ret = 0;
1192 out:
1193         nvmet_prepare_receive_pdu(queue);
1194         return ret;
1195 }
1196
1197 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1198 {
1199         int result = 0;
1200
1201         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1202                 return 0;
1203
1204         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1205                 result = nvmet_tcp_try_recv_pdu(queue);
1206                 if (result != 0)
1207                         goto done_recv;
1208         }
1209
1210         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1211                 result = nvmet_tcp_try_recv_data(queue);
1212                 if (result != 0)
1213                         goto done_recv;
1214         }
1215
1216         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1217                 result = nvmet_tcp_try_recv_ddgst(queue);
1218                 if (result != 0)
1219                         goto done_recv;
1220         }
1221
1222 done_recv:
1223         if (result < 0) {
1224                 if (result == -EAGAIN)
1225                         return 0;
1226                 return result;
1227         }
1228         return 1;
1229 }
1230
1231 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1232                 int budget, int *recvs)
1233 {
1234         int i, ret = 0;
1235
1236         for (i = 0; i < budget; i++) {
1237                 ret = nvmet_tcp_try_recv_one(queue);
1238                 if (unlikely(ret < 0)) {
1239                         nvmet_tcp_socket_error(queue, ret);
1240                         goto done;
1241                 } else if (ret == 0) {
1242                         break;
1243                 }
1244                 (*recvs)++;
1245         }
1246 done:
1247         return ret;
1248 }
1249
1250 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1251 {
1252         spin_lock(&queue->state_lock);
1253         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1254                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1255                 queue_work(nvmet_wq, &queue->release_work);
1256         }
1257         spin_unlock(&queue->state_lock);
1258 }
1259
1260 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1261 {
1262         queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1263 }
1264
1265 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1266                 int ops)
1267 {
1268         if (!idle_poll_period_usecs)
1269                 return false;
1270
1271         if (ops)
1272                 nvmet_tcp_arm_queue_deadline(queue);
1273
1274         return !time_after(jiffies, queue->poll_end);
1275 }
1276
1277 static void nvmet_tcp_io_work(struct work_struct *w)
1278 {
1279         struct nvmet_tcp_queue *queue =
1280                 container_of(w, struct nvmet_tcp_queue, io_work);
1281         bool pending;
1282         int ret, ops = 0;
1283
1284         do {
1285                 pending = false;
1286
1287                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1288                 if (ret > 0)
1289                         pending = true;
1290                 else if (ret < 0)
1291                         return;
1292
1293                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1294                 if (ret > 0)
1295                         pending = true;
1296                 else if (ret < 0)
1297                         return;
1298
1299         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1300
1301         /*
1302          * Requeue the worker if idle deadline period is in progress or any
1303          * ops activity was recorded during the do-while loop above.
1304          */
1305         if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1306                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1307 }
1308
1309 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1310                 struct nvmet_tcp_cmd *c)
1311 {
1312         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1313
1314         c->queue = queue;
1315         c->req.port = queue->port->nport;
1316
1317         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1318                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1319         if (!c->cmd_pdu)
1320                 return -ENOMEM;
1321         c->req.cmd = &c->cmd_pdu->cmd;
1322
1323         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1324                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1325         if (!c->rsp_pdu)
1326                 goto out_free_cmd;
1327         c->req.cqe = &c->rsp_pdu->cqe;
1328
1329         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1330                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1331         if (!c->data_pdu)
1332                 goto out_free_rsp;
1333
1334         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1335                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1336         if (!c->r2t_pdu)
1337                 goto out_free_data;
1338
1339         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1340
1341         list_add_tail(&c->entry, &queue->free_list);
1342
1343         return 0;
1344 out_free_data:
1345         page_frag_free(c->data_pdu);
1346 out_free_rsp:
1347         page_frag_free(c->rsp_pdu);
1348 out_free_cmd:
1349         page_frag_free(c->cmd_pdu);
1350         return -ENOMEM;
1351 }
1352
1353 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1354 {
1355         page_frag_free(c->r2t_pdu);
1356         page_frag_free(c->data_pdu);
1357         page_frag_free(c->rsp_pdu);
1358         page_frag_free(c->cmd_pdu);
1359 }
1360
1361 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1362 {
1363         struct nvmet_tcp_cmd *cmds;
1364         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1365
1366         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1367         if (!cmds)
1368                 goto out;
1369
1370         for (i = 0; i < nr_cmds; i++) {
1371                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1372                 if (ret)
1373                         goto out_free;
1374         }
1375
1376         queue->cmds = cmds;
1377
1378         return 0;
1379 out_free:
1380         while (--i >= 0)
1381                 nvmet_tcp_free_cmd(cmds + i);
1382         kfree(cmds);
1383 out:
1384         return ret;
1385 }
1386
1387 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1388 {
1389         struct nvmet_tcp_cmd *cmds = queue->cmds;
1390         int i;
1391
1392         for (i = 0; i < queue->nr_cmds; i++)
1393                 nvmet_tcp_free_cmd(cmds + i);
1394
1395         nvmet_tcp_free_cmd(&queue->connect);
1396         kfree(cmds);
1397 }
1398
1399 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1400 {
1401         struct socket *sock = queue->sock;
1402
1403         write_lock_bh(&sock->sk->sk_callback_lock);
1404         sock->sk->sk_data_ready =  queue->data_ready;
1405         sock->sk->sk_state_change = queue->state_change;
1406         sock->sk->sk_write_space = queue->write_space;
1407         sock->sk->sk_user_data = NULL;
1408         write_unlock_bh(&sock->sk->sk_callback_lock);
1409 }
1410
1411 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1412 {
1413         nvmet_req_uninit(&cmd->req);
1414         nvmet_tcp_unmap_pdu_iovec(cmd);
1415         nvmet_tcp_free_cmd_buffers(cmd);
1416 }
1417
1418 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1419 {
1420         struct nvmet_tcp_cmd *cmd = queue->cmds;
1421         int i;
1422
1423         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1424                 if (nvmet_tcp_need_data_in(cmd))
1425                         nvmet_req_uninit(&cmd->req);
1426
1427                 nvmet_tcp_unmap_pdu_iovec(cmd);
1428                 nvmet_tcp_free_cmd_buffers(cmd);
1429         }
1430
1431         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1432                 /* failed in connect */
1433                 nvmet_tcp_finish_cmd(&queue->connect);
1434         }
1435 }
1436
1437 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1438 {
1439         struct page *page;
1440         struct nvmet_tcp_queue *queue =
1441                 container_of(w, struct nvmet_tcp_queue, release_work);
1442
1443         mutex_lock(&nvmet_tcp_queue_mutex);
1444         list_del_init(&queue->queue_list);
1445         mutex_unlock(&nvmet_tcp_queue_mutex);
1446
1447         nvmet_tcp_restore_socket_callbacks(queue);
1448         cancel_work_sync(&queue->io_work);
1449         /* stop accepting incoming data */
1450         queue->rcv_state = NVMET_TCP_RECV_ERR;
1451
1452         nvmet_tcp_uninit_data_in_cmds(queue);
1453         nvmet_sq_destroy(&queue->nvme_sq);
1454         cancel_work_sync(&queue->io_work);
1455         sock_release(queue->sock);
1456         nvmet_tcp_free_cmds(queue);
1457         if (queue->hdr_digest || queue->data_digest)
1458                 nvmet_tcp_free_crypto(queue);
1459         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1460
1461         page = virt_to_head_page(queue->pf_cache.va);
1462         __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1463         kfree(queue);
1464 }
1465
1466 static void nvmet_tcp_data_ready(struct sock *sk)
1467 {
1468         struct nvmet_tcp_queue *queue;
1469
1470         read_lock_bh(&sk->sk_callback_lock);
1471         queue = sk->sk_user_data;
1472         if (likely(queue))
1473                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1474         read_unlock_bh(&sk->sk_callback_lock);
1475 }
1476
1477 static void nvmet_tcp_write_space(struct sock *sk)
1478 {
1479         struct nvmet_tcp_queue *queue;
1480
1481         read_lock_bh(&sk->sk_callback_lock);
1482         queue = sk->sk_user_data;
1483         if (unlikely(!queue))
1484                 goto out;
1485
1486         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1487                 queue->write_space(sk);
1488                 goto out;
1489         }
1490
1491         if (sk_stream_is_writeable(sk)) {
1492                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1493                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1494         }
1495 out:
1496         read_unlock_bh(&sk->sk_callback_lock);
1497 }
1498
1499 static void nvmet_tcp_state_change(struct sock *sk)
1500 {
1501         struct nvmet_tcp_queue *queue;
1502
1503         read_lock_bh(&sk->sk_callback_lock);
1504         queue = sk->sk_user_data;
1505         if (!queue)
1506                 goto done;
1507
1508         switch (sk->sk_state) {
1509         case TCP_FIN_WAIT1:
1510         case TCP_CLOSE_WAIT:
1511         case TCP_CLOSE:
1512                 /* FALLTHRU */
1513                 nvmet_tcp_schedule_release_queue(queue);
1514                 break;
1515         default:
1516                 pr_warn("queue %d unhandled state %d\n",
1517                         queue->idx, sk->sk_state);
1518         }
1519 done:
1520         read_unlock_bh(&sk->sk_callback_lock);
1521 }
1522
1523 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1524 {
1525         struct socket *sock = queue->sock;
1526         struct inet_sock *inet = inet_sk(sock->sk);
1527         int ret;
1528
1529         ret = kernel_getsockname(sock,
1530                 (struct sockaddr *)&queue->sockaddr);
1531         if (ret < 0)
1532                 return ret;
1533
1534         ret = kernel_getpeername(sock,
1535                 (struct sockaddr *)&queue->sockaddr_peer);
1536         if (ret < 0)
1537                 return ret;
1538
1539         /*
1540          * Cleanup whatever is sitting in the TCP transmit queue on socket
1541          * close. This is done to prevent stale data from being sent should
1542          * the network connection be restored before TCP times out.
1543          */
1544         sock_no_linger(sock->sk);
1545
1546         if (so_priority > 0)
1547                 sock_set_priority(sock->sk, so_priority);
1548
1549         /* Set socket type of service */
1550         if (inet->rcv_tos > 0)
1551                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1552
1553         ret = 0;
1554         write_lock_bh(&sock->sk->sk_callback_lock);
1555         if (sock->sk->sk_state != TCP_ESTABLISHED) {
1556                 /*
1557                  * If the socket is already closing, don't even start
1558                  * consuming it
1559                  */
1560                 ret = -ENOTCONN;
1561         } else {
1562                 sock->sk->sk_user_data = queue;
1563                 queue->data_ready = sock->sk->sk_data_ready;
1564                 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1565                 queue->state_change = sock->sk->sk_state_change;
1566                 sock->sk->sk_state_change = nvmet_tcp_state_change;
1567                 queue->write_space = sock->sk->sk_write_space;
1568                 sock->sk->sk_write_space = nvmet_tcp_write_space;
1569                 if (idle_poll_period_usecs)
1570                         nvmet_tcp_arm_queue_deadline(queue);
1571                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1572         }
1573         write_unlock_bh(&sock->sk->sk_callback_lock);
1574
1575         return ret;
1576 }
1577
1578 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1579                 struct socket *newsock)
1580 {
1581         struct nvmet_tcp_queue *queue;
1582         int ret;
1583
1584         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1585         if (!queue)
1586                 return -ENOMEM;
1587
1588         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1589         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1590         queue->sock = newsock;
1591         queue->port = port;
1592         queue->nr_cmds = 0;
1593         spin_lock_init(&queue->state_lock);
1594         queue->state = NVMET_TCP_Q_CONNECTING;
1595         INIT_LIST_HEAD(&queue->free_list);
1596         init_llist_head(&queue->resp_list);
1597         INIT_LIST_HEAD(&queue->resp_send_list);
1598
1599         queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1600         if (queue->idx < 0) {
1601                 ret = queue->idx;
1602                 goto out_free_queue;
1603         }
1604
1605         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1606         if (ret)
1607                 goto out_ida_remove;
1608
1609         ret = nvmet_sq_init(&queue->nvme_sq);
1610         if (ret)
1611                 goto out_free_connect;
1612
1613         nvmet_prepare_receive_pdu(queue);
1614
1615         mutex_lock(&nvmet_tcp_queue_mutex);
1616         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1617         mutex_unlock(&nvmet_tcp_queue_mutex);
1618
1619         ret = nvmet_tcp_set_queue_sock(queue);
1620         if (ret)
1621                 goto out_destroy_sq;
1622
1623         return 0;
1624 out_destroy_sq:
1625         mutex_lock(&nvmet_tcp_queue_mutex);
1626         list_del_init(&queue->queue_list);
1627         mutex_unlock(&nvmet_tcp_queue_mutex);
1628         nvmet_sq_destroy(&queue->nvme_sq);
1629 out_free_connect:
1630         nvmet_tcp_free_cmd(&queue->connect);
1631 out_ida_remove:
1632         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1633 out_free_queue:
1634         kfree(queue);
1635         return ret;
1636 }
1637
1638 static void nvmet_tcp_accept_work(struct work_struct *w)
1639 {
1640         struct nvmet_tcp_port *port =
1641                 container_of(w, struct nvmet_tcp_port, accept_work);
1642         struct socket *newsock;
1643         int ret;
1644
1645         while (true) {
1646                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1647                 if (ret < 0) {
1648                         if (ret != -EAGAIN)
1649                                 pr_warn("failed to accept err=%d\n", ret);
1650                         return;
1651                 }
1652                 ret = nvmet_tcp_alloc_queue(port, newsock);
1653                 if (ret) {
1654                         pr_err("failed to allocate queue\n");
1655                         sock_release(newsock);
1656                 }
1657         }
1658 }
1659
1660 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1661 {
1662         struct nvmet_tcp_port *port;
1663
1664         read_lock_bh(&sk->sk_callback_lock);
1665         port = sk->sk_user_data;
1666         if (!port)
1667                 goto out;
1668
1669         if (sk->sk_state == TCP_LISTEN)
1670                 queue_work(nvmet_wq, &port->accept_work);
1671 out:
1672         read_unlock_bh(&sk->sk_callback_lock);
1673 }
1674
1675 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1676 {
1677         struct nvmet_tcp_port *port;
1678         __kernel_sa_family_t af;
1679         int ret;
1680
1681         port = kzalloc(sizeof(*port), GFP_KERNEL);
1682         if (!port)
1683                 return -ENOMEM;
1684
1685         switch (nport->disc_addr.adrfam) {
1686         case NVMF_ADDR_FAMILY_IP4:
1687                 af = AF_INET;
1688                 break;
1689         case NVMF_ADDR_FAMILY_IP6:
1690                 af = AF_INET6;
1691                 break;
1692         default:
1693                 pr_err("address family %d not supported\n",
1694                                 nport->disc_addr.adrfam);
1695                 ret = -EINVAL;
1696                 goto err_port;
1697         }
1698
1699         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1700                         nport->disc_addr.trsvcid, &port->addr);
1701         if (ret) {
1702                 pr_err("malformed ip/port passed: %s:%s\n",
1703                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1704                 goto err_port;
1705         }
1706
1707         port->nport = nport;
1708         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1709         if (port->nport->inline_data_size < 0)
1710                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1711
1712         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1713                                 IPPROTO_TCP, &port->sock);
1714         if (ret) {
1715                 pr_err("failed to create a socket\n");
1716                 goto err_port;
1717         }
1718
1719         port->sock->sk->sk_user_data = port;
1720         port->data_ready = port->sock->sk->sk_data_ready;
1721         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1722         sock_set_reuseaddr(port->sock->sk);
1723         tcp_sock_set_nodelay(port->sock->sk);
1724         if (so_priority > 0)
1725                 sock_set_priority(port->sock->sk, so_priority);
1726
1727         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1728                         sizeof(port->addr));
1729         if (ret) {
1730                 pr_err("failed to bind port socket %d\n", ret);
1731                 goto err_sock;
1732         }
1733
1734         ret = kernel_listen(port->sock, 128);
1735         if (ret) {
1736                 pr_err("failed to listen %d on port sock\n", ret);
1737                 goto err_sock;
1738         }
1739
1740         nport->priv = port;
1741         pr_info("enabling port %d (%pISpc)\n",
1742                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1743
1744         return 0;
1745
1746 err_sock:
1747         sock_release(port->sock);
1748 err_port:
1749         kfree(port);
1750         return ret;
1751 }
1752
1753 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1754 {
1755         struct nvmet_tcp_queue *queue;
1756
1757         mutex_lock(&nvmet_tcp_queue_mutex);
1758         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1759                 if (queue->port == port)
1760                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1761         mutex_unlock(&nvmet_tcp_queue_mutex);
1762 }
1763
1764 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1765 {
1766         struct nvmet_tcp_port *port = nport->priv;
1767
1768         write_lock_bh(&port->sock->sk->sk_callback_lock);
1769         port->sock->sk->sk_data_ready = port->data_ready;
1770         port->sock->sk->sk_user_data = NULL;
1771         write_unlock_bh(&port->sock->sk->sk_callback_lock);
1772         cancel_work_sync(&port->accept_work);
1773         /*
1774          * Destroy the remaining queues, which are not belong to any
1775          * controller yet.
1776          */
1777         nvmet_tcp_destroy_port_queues(port);
1778
1779         sock_release(port->sock);
1780         kfree(port);
1781 }
1782
1783 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1784 {
1785         struct nvmet_tcp_queue *queue;
1786
1787         mutex_lock(&nvmet_tcp_queue_mutex);
1788         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1789                 if (queue->nvme_sq.ctrl == ctrl)
1790                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1791         mutex_unlock(&nvmet_tcp_queue_mutex);
1792 }
1793
1794 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1795 {
1796         struct nvmet_tcp_queue *queue =
1797                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1798
1799         if (sq->qid == 0) {
1800                 /* Let inflight controller teardown complete */
1801                 flush_workqueue(nvmet_wq);
1802         }
1803
1804         queue->nr_cmds = sq->size * 2;
1805         if (nvmet_tcp_alloc_cmds(queue))
1806                 return NVME_SC_INTERNAL;
1807         return 0;
1808 }
1809
1810 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1811                 struct nvmet_port *nport, char *traddr)
1812 {
1813         struct nvmet_tcp_port *port = nport->priv;
1814
1815         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1816                 struct nvmet_tcp_cmd *cmd =
1817                         container_of(req, struct nvmet_tcp_cmd, req);
1818                 struct nvmet_tcp_queue *queue = cmd->queue;
1819
1820                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1821         } else {
1822                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1823         }
1824 }
1825
1826 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1827         .owner                  = THIS_MODULE,
1828         .type                   = NVMF_TRTYPE_TCP,
1829         .msdbd                  = 1,
1830         .add_port               = nvmet_tcp_add_port,
1831         .remove_port            = nvmet_tcp_remove_port,
1832         .queue_response         = nvmet_tcp_queue_response,
1833         .delete_ctrl            = nvmet_tcp_delete_ctrl,
1834         .install_queue          = nvmet_tcp_install_queue,
1835         .disc_traddr            = nvmet_tcp_disc_port_addr,
1836 };
1837
1838 static int __init nvmet_tcp_init(void)
1839 {
1840         int ret;
1841
1842         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1843         if (!nvmet_tcp_wq)
1844                 return -ENOMEM;
1845
1846         ret = nvmet_register_transport(&nvmet_tcp_ops);
1847         if (ret)
1848                 goto err;
1849
1850         return 0;
1851 err:
1852         destroy_workqueue(nvmet_tcp_wq);
1853         return ret;
1854 }
1855
1856 static void __exit nvmet_tcp_exit(void)
1857 {
1858         struct nvmet_tcp_queue *queue;
1859
1860         nvmet_unregister_transport(&nvmet_tcp_ops);
1861
1862         flush_workqueue(nvmet_wq);
1863         mutex_lock(&nvmet_tcp_queue_mutex);
1864         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1865                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1866         mutex_unlock(&nvmet_tcp_queue_mutex);
1867         flush_workqueue(nvmet_wq);
1868
1869         destroy_workqueue(nvmet_tcp_wq);
1870 }
1871
1872 module_init(nvmet_tcp_init);
1873 module_exit(nvmet_tcp_exit);
1874
1875 MODULE_LICENSE("GPL v2");
1876 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */