]> git.samba.org - sfrench/cifs-2.6.git/blob - drivers/nvme/target/rdma.c
selinux: kill 'flags' argument in avc_has_perm_flags() and avc_audit()
[sfrench/cifs-2.6.git] / drivers / nvme / target / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/atomic.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/nvme.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/wait.h>
17 #include <linux/inet.h>
18 #include <asm/unaligned.h>
19
20 #include <rdma/ib_verbs.h>
21 #include <rdma/rdma_cm.h>
22 #include <rdma/rw.h>
23 #include <rdma/ib_cm.h>
24
25 #include <linux/nvme-rdma.h>
26 #include "nvmet.h"
27
28 /*
29  * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
30  */
31 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
32 #define NVMET_RDMA_MAX_INLINE_SGE               4
33 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
34
35 /* Assume mpsmin == device_page_size == 4KB */
36 #define NVMET_RDMA_MAX_MDTS                     8
37 #define NVMET_RDMA_MAX_METADATA_MDTS            5
38
39 struct nvmet_rdma_srq;
40
41 struct nvmet_rdma_cmd {
42         struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
43         struct ib_cqe           cqe;
44         struct ib_recv_wr       wr;
45         struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
46         struct nvme_command     *nvme_cmd;
47         struct nvmet_rdma_queue *queue;
48         struct nvmet_rdma_srq   *nsrq;
49 };
50
51 enum {
52         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
53         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
54 };
55
56 struct nvmet_rdma_rsp {
57         struct ib_sge           send_sge;
58         struct ib_cqe           send_cqe;
59         struct ib_send_wr       send_wr;
60
61         struct nvmet_rdma_cmd   *cmd;
62         struct nvmet_rdma_queue *queue;
63
64         struct ib_cqe           read_cqe;
65         struct ib_cqe           write_cqe;
66         struct rdma_rw_ctx      rw;
67
68         struct nvmet_req        req;
69
70         bool                    allocated;
71         u8                      n_rdma;
72         u32                     flags;
73         u32                     invalidate_rkey;
74
75         struct list_head        wait_list;
76         struct list_head        free_list;
77 };
78
79 enum nvmet_rdma_queue_state {
80         NVMET_RDMA_Q_CONNECTING,
81         NVMET_RDMA_Q_LIVE,
82         NVMET_RDMA_Q_DISCONNECTING,
83 };
84
85 struct nvmet_rdma_queue {
86         struct rdma_cm_id       *cm_id;
87         struct ib_qp            *qp;
88         struct nvmet_port       *port;
89         struct ib_cq            *cq;
90         atomic_t                sq_wr_avail;
91         struct nvmet_rdma_device *dev;
92         struct nvmet_rdma_srq   *nsrq;
93         spinlock_t              state_lock;
94         enum nvmet_rdma_queue_state state;
95         struct nvmet_cq         nvme_cq;
96         struct nvmet_sq         nvme_sq;
97
98         struct nvmet_rdma_rsp   *rsps;
99         struct list_head        free_rsps;
100         spinlock_t              rsps_lock;
101         struct nvmet_rdma_cmd   *cmds;
102
103         struct work_struct      release_work;
104         struct list_head        rsp_wait_list;
105         struct list_head        rsp_wr_wait_list;
106         spinlock_t              rsp_wr_wait_lock;
107
108         int                     idx;
109         int                     host_qid;
110         int                     comp_vector;
111         int                     recv_queue_size;
112         int                     send_queue_size;
113
114         struct list_head        queue_list;
115 };
116
117 struct nvmet_rdma_port {
118         struct nvmet_port       *nport;
119         struct sockaddr_storage addr;
120         struct rdma_cm_id       *cm_id;
121         struct delayed_work     repair_work;
122 };
123
124 struct nvmet_rdma_srq {
125         struct ib_srq            *srq;
126         struct nvmet_rdma_cmd    *cmds;
127         struct nvmet_rdma_device *ndev;
128 };
129
130 struct nvmet_rdma_device {
131         struct ib_device        *device;
132         struct ib_pd            *pd;
133         struct nvmet_rdma_srq   **srqs;
134         int                     srq_count;
135         size_t                  srq_size;
136         struct kref             ref;
137         struct list_head        entry;
138         int                     inline_data_size;
139         int                     inline_page_count;
140 };
141
142 static bool nvmet_rdma_use_srq;
143 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
144 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
145
146 static int srq_size_set(const char *val, const struct kernel_param *kp);
147 static const struct kernel_param_ops srq_size_ops = {
148         .set = srq_size_set,
149         .get = param_get_int,
150 };
151
152 static int nvmet_rdma_srq_size = 1024;
153 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
154 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
155
156 static DEFINE_IDA(nvmet_rdma_queue_ida);
157 static LIST_HEAD(nvmet_rdma_queue_list);
158 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
159
160 static LIST_HEAD(device_list);
161 static DEFINE_MUTEX(device_list_mutex);
162
163 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
164 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
165 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
167 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
168 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
169 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
170 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
171                                 struct nvmet_rdma_rsp *r);
172 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
173                                 struct nvmet_rdma_rsp *r);
174
175 static const struct nvmet_fabrics_ops nvmet_rdma_ops;
176
177 static int srq_size_set(const char *val, const struct kernel_param *kp)
178 {
179         int n = 0, ret;
180
181         ret = kstrtoint(val, 10, &n);
182         if (ret != 0 || n < 256)
183                 return -EINVAL;
184
185         return param_set_int(val, kp);
186 }
187
188 static int num_pages(int len)
189 {
190         return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
191 }
192
193 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
194 {
195         return nvme_is_write(rsp->req.cmd) &&
196                 rsp->req.transfer_len &&
197                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
198 }
199
200 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
201 {
202         return !nvme_is_write(rsp->req.cmd) &&
203                 rsp->req.transfer_len &&
204                 !rsp->req.cqe->status &&
205                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
206 }
207
208 static inline struct nvmet_rdma_rsp *
209 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
210 {
211         struct nvmet_rdma_rsp *rsp;
212         unsigned long flags;
213
214         spin_lock_irqsave(&queue->rsps_lock, flags);
215         rsp = list_first_entry_or_null(&queue->free_rsps,
216                                 struct nvmet_rdma_rsp, free_list);
217         if (likely(rsp))
218                 list_del(&rsp->free_list);
219         spin_unlock_irqrestore(&queue->rsps_lock, flags);
220
221         if (unlikely(!rsp)) {
222                 int ret;
223
224                 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
225                 if (unlikely(!rsp))
226                         return NULL;
227                 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
228                 if (unlikely(ret)) {
229                         kfree(rsp);
230                         return NULL;
231                 }
232
233                 rsp->allocated = true;
234         }
235
236         return rsp;
237 }
238
239 static inline void
240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241 {
242         unsigned long flags;
243
244         if (unlikely(rsp->allocated)) {
245                 nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
246                 kfree(rsp);
247                 return;
248         }
249
250         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
251         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
252         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
253 }
254
255 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
256                                 struct nvmet_rdma_cmd *c)
257 {
258         struct scatterlist *sg;
259         struct ib_sge *sge;
260         int i;
261
262         if (!ndev->inline_data_size)
263                 return;
264
265         sg = c->inline_sg;
266         sge = &c->sge[1];
267
268         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
269                 if (sge->length)
270                         ib_dma_unmap_page(ndev->device, sge->addr,
271                                         sge->length, DMA_FROM_DEVICE);
272                 if (sg_page(sg))
273                         __free_page(sg_page(sg));
274         }
275 }
276
277 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
278                                 struct nvmet_rdma_cmd *c)
279 {
280         struct scatterlist *sg;
281         struct ib_sge *sge;
282         struct page *pg;
283         int len;
284         int i;
285
286         if (!ndev->inline_data_size)
287                 return 0;
288
289         sg = c->inline_sg;
290         sg_init_table(sg, ndev->inline_page_count);
291         sge = &c->sge[1];
292         len = ndev->inline_data_size;
293
294         for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
295                 pg = alloc_page(GFP_KERNEL);
296                 if (!pg)
297                         goto out_err;
298                 sg_assign_page(sg, pg);
299                 sge->addr = ib_dma_map_page(ndev->device,
300                         pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
301                 if (ib_dma_mapping_error(ndev->device, sge->addr))
302                         goto out_err;
303                 sge->length = min_t(int, len, PAGE_SIZE);
304                 sge->lkey = ndev->pd->local_dma_lkey;
305                 len -= sge->length;
306         }
307
308         return 0;
309 out_err:
310         for (; i >= 0; i--, sg--, sge--) {
311                 if (sge->length)
312                         ib_dma_unmap_page(ndev->device, sge->addr,
313                                         sge->length, DMA_FROM_DEVICE);
314                 if (sg_page(sg))
315                         __free_page(sg_page(sg));
316         }
317         return -ENOMEM;
318 }
319
320 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
321                         struct nvmet_rdma_cmd *c, bool admin)
322 {
323         /* NVMe command / RDMA RECV */
324         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
325         if (!c->nvme_cmd)
326                 goto out;
327
328         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
329                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
330         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
331                 goto out_free_cmd;
332
333         c->sge[0].length = sizeof(*c->nvme_cmd);
334         c->sge[0].lkey = ndev->pd->local_dma_lkey;
335
336         if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
337                 goto out_unmap_cmd;
338
339         c->cqe.done = nvmet_rdma_recv_done;
340
341         c->wr.wr_cqe = &c->cqe;
342         c->wr.sg_list = c->sge;
343         c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
344
345         return 0;
346
347 out_unmap_cmd:
348         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
349                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
350 out_free_cmd:
351         kfree(c->nvme_cmd);
352
353 out:
354         return -ENOMEM;
355 }
356
357 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
358                 struct nvmet_rdma_cmd *c, bool admin)
359 {
360         if (!admin)
361                 nvmet_rdma_free_inline_pages(ndev, c);
362         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
363                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
364         kfree(c->nvme_cmd);
365 }
366
367 static struct nvmet_rdma_cmd *
368 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
369                 int nr_cmds, bool admin)
370 {
371         struct nvmet_rdma_cmd *cmds;
372         int ret = -EINVAL, i;
373
374         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
375         if (!cmds)
376                 goto out;
377
378         for (i = 0; i < nr_cmds; i++) {
379                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
380                 if (ret)
381                         goto out_free;
382         }
383
384         return cmds;
385
386 out_free:
387         while (--i >= 0)
388                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
389         kfree(cmds);
390 out:
391         return ERR_PTR(ret);
392 }
393
394 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
395                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
396 {
397         int i;
398
399         for (i = 0; i < nr_cmds; i++)
400                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
401         kfree(cmds);
402 }
403
404 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
405                 struct nvmet_rdma_rsp *r)
406 {
407         /* NVMe CQE / RDMA SEND */
408         r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
409         if (!r->req.cqe)
410                 goto out;
411
412         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
413                         sizeof(*r->req.cqe), DMA_TO_DEVICE);
414         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
415                 goto out_free_rsp;
416
417         if (!ib_uses_virt_dma(ndev->device))
418                 r->req.p2p_client = &ndev->device->dev;
419         r->send_sge.length = sizeof(*r->req.cqe);
420         r->send_sge.lkey = ndev->pd->local_dma_lkey;
421
422         r->send_cqe.done = nvmet_rdma_send_done;
423
424         r->send_wr.wr_cqe = &r->send_cqe;
425         r->send_wr.sg_list = &r->send_sge;
426         r->send_wr.num_sge = 1;
427         r->send_wr.send_flags = IB_SEND_SIGNALED;
428
429         /* Data In / RDMA READ */
430         r->read_cqe.done = nvmet_rdma_read_data_done;
431         /* Data Out / RDMA WRITE */
432         r->write_cqe.done = nvmet_rdma_write_data_done;
433
434         return 0;
435
436 out_free_rsp:
437         kfree(r->req.cqe);
438 out:
439         return -ENOMEM;
440 }
441
442 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
443                 struct nvmet_rdma_rsp *r)
444 {
445         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
446                                 sizeof(*r->req.cqe), DMA_TO_DEVICE);
447         kfree(r->req.cqe);
448 }
449
450 static int
451 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
452 {
453         struct nvmet_rdma_device *ndev = queue->dev;
454         int nr_rsps = queue->recv_queue_size * 2;
455         int ret = -EINVAL, i;
456
457         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
458                         GFP_KERNEL);
459         if (!queue->rsps)
460                 goto out;
461
462         for (i = 0; i < nr_rsps; i++) {
463                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
464
465                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
466                 if (ret)
467                         goto out_free;
468
469                 list_add_tail(&rsp->free_list, &queue->free_rsps);
470         }
471
472         return 0;
473
474 out_free:
475         while (--i >= 0) {
476                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
477
478                 list_del(&rsp->free_list);
479                 nvmet_rdma_free_rsp(ndev, rsp);
480         }
481         kfree(queue->rsps);
482 out:
483         return ret;
484 }
485
486 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
487 {
488         struct nvmet_rdma_device *ndev = queue->dev;
489         int i, nr_rsps = queue->recv_queue_size * 2;
490
491         for (i = 0; i < nr_rsps; i++) {
492                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
493
494                 list_del(&rsp->free_list);
495                 nvmet_rdma_free_rsp(ndev, rsp);
496         }
497         kfree(queue->rsps);
498 }
499
500 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
501                 struct nvmet_rdma_cmd *cmd)
502 {
503         int ret;
504
505         ib_dma_sync_single_for_device(ndev->device,
506                 cmd->sge[0].addr, cmd->sge[0].length,
507                 DMA_FROM_DEVICE);
508
509         if (cmd->nsrq)
510                 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
511         else
512                 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
513
514         if (unlikely(ret))
515                 pr_err("post_recv cmd failed\n");
516
517         return ret;
518 }
519
520 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
521 {
522         spin_lock(&queue->rsp_wr_wait_lock);
523         while (!list_empty(&queue->rsp_wr_wait_list)) {
524                 struct nvmet_rdma_rsp *rsp;
525                 bool ret;
526
527                 rsp = list_entry(queue->rsp_wr_wait_list.next,
528                                 struct nvmet_rdma_rsp, wait_list);
529                 list_del(&rsp->wait_list);
530
531                 spin_unlock(&queue->rsp_wr_wait_lock);
532                 ret = nvmet_rdma_execute_command(rsp);
533                 spin_lock(&queue->rsp_wr_wait_lock);
534
535                 if (!ret) {
536                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
537                         break;
538                 }
539         }
540         spin_unlock(&queue->rsp_wr_wait_lock);
541 }
542
543 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
544 {
545         struct ib_mr_status mr_status;
546         int ret;
547         u16 status = 0;
548
549         ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
550         if (ret) {
551                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
552                 return NVME_SC_INVALID_PI;
553         }
554
555         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
556                 switch (mr_status.sig_err.err_type) {
557                 case IB_SIG_BAD_GUARD:
558                         status = NVME_SC_GUARD_CHECK;
559                         break;
560                 case IB_SIG_BAD_REFTAG:
561                         status = NVME_SC_REFTAG_CHECK;
562                         break;
563                 case IB_SIG_BAD_APPTAG:
564                         status = NVME_SC_APPTAG_CHECK;
565                         break;
566                 }
567                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
568                        mr_status.sig_err.err_type,
569                        mr_status.sig_err.expected,
570                        mr_status.sig_err.actual);
571         }
572
573         return status;
574 }
575
576 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
577                 struct nvme_command *cmd, struct ib_sig_domain *domain,
578                 u16 control, u8 pi_type)
579 {
580         domain->sig_type = IB_SIG_TYPE_T10_DIF;
581         domain->sig.dif.bg_type = IB_T10DIF_CRC;
582         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
583         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
584         if (control & NVME_RW_PRINFO_PRCHK_REF)
585                 domain->sig.dif.ref_remap = true;
586
587         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
588         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
589         domain->sig.dif.app_escape = true;
590         if (pi_type == NVME_NS_DPS_PI_TYPE3)
591                 domain->sig.dif.ref_escape = true;
592 }
593
594 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
595                                      struct ib_sig_attrs *sig_attrs)
596 {
597         struct nvme_command *cmd = req->cmd;
598         u16 control = le16_to_cpu(cmd->rw.control);
599         u8 pi_type = req->ns->pi_type;
600         struct blk_integrity *bi;
601
602         bi = bdev_get_integrity(req->ns->bdev);
603
604         memset(sig_attrs, 0, sizeof(*sig_attrs));
605
606         if (control & NVME_RW_PRINFO_PRACT) {
607                 /* for WRITE_INSERT/READ_STRIP no wire domain */
608                 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
609                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
610                                           pi_type);
611                 /* Clear the PRACT bit since HCA will generate/verify the PI */
612                 control &= ~NVME_RW_PRINFO_PRACT;
613                 cmd->rw.control = cpu_to_le16(control);
614                 /* PI is added by the HW */
615                 req->transfer_len += req->metadata_len;
616         } else {
617                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
618                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
619                                           pi_type);
620                 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
621                                           pi_type);
622         }
623
624         if (control & NVME_RW_PRINFO_PRCHK_REF)
625                 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
626         if (control & NVME_RW_PRINFO_PRCHK_GUARD)
627                 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
628         if (control & NVME_RW_PRINFO_PRCHK_APP)
629                 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
630 }
631
632 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
633                                   struct ib_sig_attrs *sig_attrs)
634 {
635         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
636         struct nvmet_req *req = &rsp->req;
637         int ret;
638
639         if (req->metadata_len)
640                 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
641                         cm_id->port_num, req->sg, req->sg_cnt,
642                         req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
643                         addr, key, nvmet_data_dir(req));
644         else
645                 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
646                                        req->sg, req->sg_cnt, 0, addr, key,
647                                        nvmet_data_dir(req));
648
649         return ret;
650 }
651
652 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
653 {
654         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
655         struct nvmet_req *req = &rsp->req;
656
657         if (req->metadata_len)
658                 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
659                         cm_id->port_num, req->sg, req->sg_cnt,
660                         req->metadata_sg, req->metadata_sg_cnt,
661                         nvmet_data_dir(req));
662         else
663                 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
664                                     req->sg, req->sg_cnt, nvmet_data_dir(req));
665 }
666
667 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
668 {
669         struct nvmet_rdma_queue *queue = rsp->queue;
670
671         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
672
673         if (rsp->n_rdma)
674                 nvmet_rdma_rw_ctx_destroy(rsp);
675
676         if (rsp->req.sg != rsp->cmd->inline_sg)
677                 nvmet_req_free_sgls(&rsp->req);
678
679         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
680                 nvmet_rdma_process_wr_wait_list(queue);
681
682         nvmet_rdma_put_rsp(rsp);
683 }
684
685 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
686 {
687         if (queue->nvme_sq.ctrl) {
688                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
689         } else {
690                 /*
691                  * we didn't setup the controller yet in case
692                  * of admin connect error, just disconnect and
693                  * cleanup the queue
694                  */
695                 nvmet_rdma_queue_disconnect(queue);
696         }
697 }
698
699 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
700 {
701         struct nvmet_rdma_rsp *rsp =
702                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
703         struct nvmet_rdma_queue *queue = cq->cq_context;
704
705         nvmet_rdma_release_rsp(rsp);
706
707         if (unlikely(wc->status != IB_WC_SUCCESS &&
708                      wc->status != IB_WC_WR_FLUSH_ERR)) {
709                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
710                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
711                 nvmet_rdma_error_comp(queue);
712         }
713 }
714
715 static void nvmet_rdma_queue_response(struct nvmet_req *req)
716 {
717         struct nvmet_rdma_rsp *rsp =
718                 container_of(req, struct nvmet_rdma_rsp, req);
719         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
720         struct ib_send_wr *first_wr;
721
722         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
723                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
724                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
725         } else {
726                 rsp->send_wr.opcode = IB_WR_SEND;
727         }
728
729         if (nvmet_rdma_need_data_out(rsp)) {
730                 if (rsp->req.metadata_len)
731                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
732                                         cm_id->port_num, &rsp->write_cqe, NULL);
733                 else
734                         first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
735                                         cm_id->port_num, NULL, &rsp->send_wr);
736         } else {
737                 first_wr = &rsp->send_wr;
738         }
739
740         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
741
742         ib_dma_sync_single_for_device(rsp->queue->dev->device,
743                 rsp->send_sge.addr, rsp->send_sge.length,
744                 DMA_TO_DEVICE);
745
746         if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
747                 pr_err("sending cmd response failed\n");
748                 nvmet_rdma_release_rsp(rsp);
749         }
750 }
751
752 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
753 {
754         struct nvmet_rdma_rsp *rsp =
755                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
756         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
757         u16 status = 0;
758
759         WARN_ON(rsp->n_rdma <= 0);
760         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
761         rsp->n_rdma = 0;
762
763         if (unlikely(wc->status != IB_WC_SUCCESS)) {
764                 nvmet_rdma_rw_ctx_destroy(rsp);
765                 nvmet_req_uninit(&rsp->req);
766                 nvmet_rdma_release_rsp(rsp);
767                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
768                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
769                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
770                         nvmet_rdma_error_comp(queue);
771                 }
772                 return;
773         }
774
775         if (rsp->req.metadata_len)
776                 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
777         nvmet_rdma_rw_ctx_destroy(rsp);
778
779         if (unlikely(status))
780                 nvmet_req_complete(&rsp->req, status);
781         else
782                 rsp->req.execute(&rsp->req);
783 }
784
785 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
786 {
787         struct nvmet_rdma_rsp *rsp =
788                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
789         struct nvmet_rdma_queue *queue = cq->cq_context;
790         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
791         u16 status;
792
793         if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
794                 return;
795
796         WARN_ON(rsp->n_rdma <= 0);
797         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
798         rsp->n_rdma = 0;
799
800         if (unlikely(wc->status != IB_WC_SUCCESS)) {
801                 nvmet_rdma_rw_ctx_destroy(rsp);
802                 nvmet_req_uninit(&rsp->req);
803                 nvmet_rdma_release_rsp(rsp);
804                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
805                         pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
806                                 ib_wc_status_msg(wc->status), wc->status);
807                         nvmet_rdma_error_comp(queue);
808                 }
809                 return;
810         }
811
812         /*
813          * Upon RDMA completion check the signature status
814          * - if succeeded send good NVMe response
815          * - if failed send bad NVMe response with appropriate error
816          */
817         status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
818         if (unlikely(status))
819                 rsp->req.cqe->status = cpu_to_le16(status << 1);
820         nvmet_rdma_rw_ctx_destroy(rsp);
821
822         if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
823                 pr_err("sending cmd response failed\n");
824                 nvmet_rdma_release_rsp(rsp);
825         }
826 }
827
828 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
829                 u64 off)
830 {
831         int sg_count = num_pages(len);
832         struct scatterlist *sg;
833         int i;
834
835         sg = rsp->cmd->inline_sg;
836         for (i = 0; i < sg_count; i++, sg++) {
837                 if (i < sg_count - 1)
838                         sg_unmark_end(sg);
839                 else
840                         sg_mark_end(sg);
841                 sg->offset = off;
842                 sg->length = min_t(int, len, PAGE_SIZE - off);
843                 len -= sg->length;
844                 if (!i)
845                         off = 0;
846         }
847
848         rsp->req.sg = rsp->cmd->inline_sg;
849         rsp->req.sg_cnt = sg_count;
850 }
851
852 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
853 {
854         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
855         u64 off = le64_to_cpu(sgl->addr);
856         u32 len = le32_to_cpu(sgl->length);
857
858         if (!nvme_is_write(rsp->req.cmd)) {
859                 rsp->req.error_loc =
860                         offsetof(struct nvme_common_command, opcode);
861                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
862         }
863
864         if (off + len > rsp->queue->dev->inline_data_size) {
865                 pr_err("invalid inline data offset!\n");
866                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
867         }
868
869         /* no data command? */
870         if (!len)
871                 return 0;
872
873         nvmet_rdma_use_inline_sg(rsp, len, off);
874         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
875         rsp->req.transfer_len += len;
876         return 0;
877 }
878
879 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
880                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
881 {
882         u64 addr = le64_to_cpu(sgl->addr);
883         u32 key = get_unaligned_le32(sgl->key);
884         struct ib_sig_attrs sig_attrs;
885         int ret;
886
887         rsp->req.transfer_len = get_unaligned_le24(sgl->length);
888
889         /* no data command? */
890         if (!rsp->req.transfer_len)
891                 return 0;
892
893         if (rsp->req.metadata_len)
894                 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
895
896         ret = nvmet_req_alloc_sgls(&rsp->req);
897         if (unlikely(ret < 0))
898                 goto error_out;
899
900         ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
901         if (unlikely(ret < 0))
902                 goto error_out;
903         rsp->n_rdma += ret;
904
905         if (invalidate) {
906                 rsp->invalidate_rkey = key;
907                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
908         }
909
910         return 0;
911
912 error_out:
913         rsp->req.transfer_len = 0;
914         return NVME_SC_INTERNAL;
915 }
916
917 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
918 {
919         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
920
921         switch (sgl->type >> 4) {
922         case NVME_SGL_FMT_DATA_DESC:
923                 switch (sgl->type & 0xf) {
924                 case NVME_SGL_FMT_OFFSET:
925                         return nvmet_rdma_map_sgl_inline(rsp);
926                 default:
927                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
928                         rsp->req.error_loc =
929                                 offsetof(struct nvme_common_command, dptr);
930                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
931                 }
932         case NVME_KEY_SGL_FMT_DATA_DESC:
933                 switch (sgl->type & 0xf) {
934                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
935                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
936                 case NVME_SGL_FMT_ADDRESS:
937                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
938                 default:
939                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
940                         rsp->req.error_loc =
941                                 offsetof(struct nvme_common_command, dptr);
942                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
943                 }
944         default:
945                 pr_err("invalid SGL type: %#x\n", sgl->type);
946                 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
947                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
948         }
949 }
950
951 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
952 {
953         struct nvmet_rdma_queue *queue = rsp->queue;
954
955         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
956                         &queue->sq_wr_avail) < 0)) {
957                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
958                                 1 + rsp->n_rdma, queue->idx,
959                                 queue->nvme_sq.ctrl->cntlid);
960                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
961                 return false;
962         }
963
964         if (nvmet_rdma_need_data_in(rsp)) {
965                 if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
966                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
967                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
968         } else {
969                 rsp->req.execute(&rsp->req);
970         }
971
972         return true;
973 }
974
975 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
976                 struct nvmet_rdma_rsp *cmd)
977 {
978         u16 status;
979
980         ib_dma_sync_single_for_cpu(queue->dev->device,
981                 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
982                 DMA_FROM_DEVICE);
983         ib_dma_sync_single_for_cpu(queue->dev->device,
984                 cmd->send_sge.addr, cmd->send_sge.length,
985                 DMA_TO_DEVICE);
986
987         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
988                         &queue->nvme_sq, &nvmet_rdma_ops))
989                 return;
990
991         status = nvmet_rdma_map_sgl(cmd);
992         if (status)
993                 goto out_err;
994
995         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
996                 spin_lock(&queue->rsp_wr_wait_lock);
997                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
998                 spin_unlock(&queue->rsp_wr_wait_lock);
999         }
1000
1001         return;
1002
1003 out_err:
1004         nvmet_req_complete(&cmd->req, status);
1005 }
1006
1007 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1008 {
1009         struct nvmet_rdma_cmd *cmd =
1010                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1011         struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1012         struct nvmet_rdma_rsp *rsp;
1013
1014         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1016                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1017                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
1018                                 wc->status);
1019                         nvmet_rdma_error_comp(queue);
1020                 }
1021                 return;
1022         }
1023
1024         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1025                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1026                 nvmet_rdma_error_comp(queue);
1027                 return;
1028         }
1029
1030         cmd->queue = queue;
1031         rsp = nvmet_rdma_get_rsp(queue);
1032         if (unlikely(!rsp)) {
1033                 /*
1034                  * we get here only under memory pressure,
1035                  * silently drop and have the host retry
1036                  * as we can't even fail it.
1037                  */
1038                 nvmet_rdma_post_recv(queue->dev, cmd);
1039                 return;
1040         }
1041         rsp->queue = queue;
1042         rsp->cmd = cmd;
1043         rsp->flags = 0;
1044         rsp->req.cmd = cmd->nvme_cmd;
1045         rsp->req.port = queue->port;
1046         rsp->n_rdma = 0;
1047
1048         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1049                 unsigned long flags;
1050
1051                 spin_lock_irqsave(&queue->state_lock, flags);
1052                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1053                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1054                 else
1055                         nvmet_rdma_put_rsp(rsp);
1056                 spin_unlock_irqrestore(&queue->state_lock, flags);
1057                 return;
1058         }
1059
1060         nvmet_rdma_handle_command(queue, rsp);
1061 }
1062
1063 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1064 {
1065         nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1066                              false);
1067         ib_destroy_srq(nsrq->srq);
1068
1069         kfree(nsrq);
1070 }
1071
1072 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1073 {
1074         int i;
1075
1076         if (!ndev->srqs)
1077                 return;
1078
1079         for (i = 0; i < ndev->srq_count; i++)
1080                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1081
1082         kfree(ndev->srqs);
1083 }
1084
1085 static struct nvmet_rdma_srq *
1086 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1087 {
1088         struct ib_srq_init_attr srq_attr = { NULL, };
1089         size_t srq_size = ndev->srq_size;
1090         struct nvmet_rdma_srq *nsrq;
1091         struct ib_srq *srq;
1092         int ret, i;
1093
1094         nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1095         if (!nsrq)
1096                 return ERR_PTR(-ENOMEM);
1097
1098         srq_attr.attr.max_wr = srq_size;
1099         srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1100         srq_attr.attr.srq_limit = 0;
1101         srq_attr.srq_type = IB_SRQT_BASIC;
1102         srq = ib_create_srq(ndev->pd, &srq_attr);
1103         if (IS_ERR(srq)) {
1104                 ret = PTR_ERR(srq);
1105                 goto out_free;
1106         }
1107
1108         nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1109         if (IS_ERR(nsrq->cmds)) {
1110                 ret = PTR_ERR(nsrq->cmds);
1111                 goto out_destroy_srq;
1112         }
1113
1114         nsrq->srq = srq;
1115         nsrq->ndev = ndev;
1116
1117         for (i = 0; i < srq_size; i++) {
1118                 nsrq->cmds[i].nsrq = nsrq;
1119                 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1120                 if (ret)
1121                         goto out_free_cmds;
1122         }
1123
1124         return nsrq;
1125
1126 out_free_cmds:
1127         nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1128 out_destroy_srq:
1129         ib_destroy_srq(srq);
1130 out_free:
1131         kfree(nsrq);
1132         return ERR_PTR(ret);
1133 }
1134
1135 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1136 {
1137         int i, ret;
1138
1139         if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1140                 /*
1141                  * If SRQs aren't supported we just go ahead and use normal
1142                  * non-shared receive queues.
1143                  */
1144                 pr_info("SRQ requested but not supported.\n");
1145                 return 0;
1146         }
1147
1148         ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1149                              nvmet_rdma_srq_size);
1150         ndev->srq_count = min(ndev->device->num_comp_vectors,
1151                               ndev->device->attrs.max_srq);
1152
1153         ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1154         if (!ndev->srqs)
1155                 return -ENOMEM;
1156
1157         for (i = 0; i < ndev->srq_count; i++) {
1158                 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1159                 if (IS_ERR(ndev->srqs[i])) {
1160                         ret = PTR_ERR(ndev->srqs[i]);
1161                         goto err_srq;
1162                 }
1163         }
1164
1165         return 0;
1166
1167 err_srq:
1168         while (--i >= 0)
1169                 nvmet_rdma_destroy_srq(ndev->srqs[i]);
1170         kfree(ndev->srqs);
1171         return ret;
1172 }
1173
1174 static void nvmet_rdma_free_dev(struct kref *ref)
1175 {
1176         struct nvmet_rdma_device *ndev =
1177                 container_of(ref, struct nvmet_rdma_device, ref);
1178
1179         mutex_lock(&device_list_mutex);
1180         list_del(&ndev->entry);
1181         mutex_unlock(&device_list_mutex);
1182
1183         nvmet_rdma_destroy_srqs(ndev);
1184         ib_dealloc_pd(ndev->pd);
1185
1186         kfree(ndev);
1187 }
1188
1189 static struct nvmet_rdma_device *
1190 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1191 {
1192         struct nvmet_rdma_port *port = cm_id->context;
1193         struct nvmet_port *nport = port->nport;
1194         struct nvmet_rdma_device *ndev;
1195         int inline_page_count;
1196         int inline_sge_count;
1197         int ret;
1198
1199         mutex_lock(&device_list_mutex);
1200         list_for_each_entry(ndev, &device_list, entry) {
1201                 if (ndev->device->node_guid == cm_id->device->node_guid &&
1202                     kref_get_unless_zero(&ndev->ref))
1203                         goto out_unlock;
1204         }
1205
1206         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1207         if (!ndev)
1208                 goto out_err;
1209
1210         inline_page_count = num_pages(nport->inline_data_size);
1211         inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1212                                 cm_id->device->attrs.max_recv_sge) - 1;
1213         if (inline_page_count > inline_sge_count) {
1214                 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1215                         nport->inline_data_size, cm_id->device->name,
1216                         inline_sge_count * PAGE_SIZE);
1217                 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1218                 inline_page_count = inline_sge_count;
1219         }
1220         ndev->inline_data_size = nport->inline_data_size;
1221         ndev->inline_page_count = inline_page_count;
1222
1223         if (nport->pi_enable && !(cm_id->device->attrs.device_cap_flags &
1224                                   IB_DEVICE_INTEGRITY_HANDOVER)) {
1225                 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1226                         cm_id->device->name);
1227                 nport->pi_enable = false;
1228         }
1229
1230         ndev->device = cm_id->device;
1231         kref_init(&ndev->ref);
1232
1233         ndev->pd = ib_alloc_pd(ndev->device, 0);
1234         if (IS_ERR(ndev->pd))
1235                 goto out_free_dev;
1236
1237         if (nvmet_rdma_use_srq) {
1238                 ret = nvmet_rdma_init_srqs(ndev);
1239                 if (ret)
1240                         goto out_free_pd;
1241         }
1242
1243         list_add(&ndev->entry, &device_list);
1244 out_unlock:
1245         mutex_unlock(&device_list_mutex);
1246         pr_debug("added %s.\n", ndev->device->name);
1247         return ndev;
1248
1249 out_free_pd:
1250         ib_dealloc_pd(ndev->pd);
1251 out_free_dev:
1252         kfree(ndev);
1253 out_err:
1254         mutex_unlock(&device_list_mutex);
1255         return NULL;
1256 }
1257
1258 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1259 {
1260         struct ib_qp_init_attr qp_attr;
1261         struct nvmet_rdma_device *ndev = queue->dev;
1262         int nr_cqe, ret, i, factor;
1263
1264         /*
1265          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1266          */
1267         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1268
1269         queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1270                                    queue->comp_vector, IB_POLL_WORKQUEUE);
1271         if (IS_ERR(queue->cq)) {
1272                 ret = PTR_ERR(queue->cq);
1273                 pr_err("failed to create CQ cqe= %d ret= %d\n",
1274                        nr_cqe + 1, ret);
1275                 goto out;
1276         }
1277
1278         memset(&qp_attr, 0, sizeof(qp_attr));
1279         qp_attr.qp_context = queue;
1280         qp_attr.event_handler = nvmet_rdma_qp_event;
1281         qp_attr.send_cq = queue->cq;
1282         qp_attr.recv_cq = queue->cq;
1283         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1284         qp_attr.qp_type = IB_QPT_RC;
1285         /* +1 for drain */
1286         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1287         factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1288                                    1 << NVMET_RDMA_MAX_MDTS);
1289         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1290         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1291                                         ndev->device->attrs.max_send_sge);
1292
1293         if (queue->nsrq) {
1294                 qp_attr.srq = queue->nsrq->srq;
1295         } else {
1296                 /* +1 for drain */
1297                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1298                 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1299         }
1300
1301         if (queue->port->pi_enable && queue->host_qid)
1302                 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1303
1304         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1305         if (ret) {
1306                 pr_err("failed to create_qp ret= %d\n", ret);
1307                 goto err_destroy_cq;
1308         }
1309         queue->qp = queue->cm_id->qp;
1310
1311         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1312
1313         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1314                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1315                  qp_attr.cap.max_send_wr, queue->cm_id);
1316
1317         if (!queue->nsrq) {
1318                 for (i = 0; i < queue->recv_queue_size; i++) {
1319                         queue->cmds[i].queue = queue;
1320                         ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1321                         if (ret)
1322                                 goto err_destroy_qp;
1323                 }
1324         }
1325
1326 out:
1327         return ret;
1328
1329 err_destroy_qp:
1330         rdma_destroy_qp(queue->cm_id);
1331 err_destroy_cq:
1332         ib_cq_pool_put(queue->cq, nr_cqe + 1);
1333         goto out;
1334 }
1335
1336 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1337 {
1338         ib_drain_qp(queue->qp);
1339         if (queue->cm_id)
1340                 rdma_destroy_id(queue->cm_id);
1341         ib_destroy_qp(queue->qp);
1342         ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1343                        queue->send_queue_size + 1);
1344 }
1345
1346 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1347 {
1348         pr_debug("freeing queue %d\n", queue->idx);
1349
1350         nvmet_sq_destroy(&queue->nvme_sq);
1351
1352         nvmet_rdma_destroy_queue_ib(queue);
1353         if (!queue->nsrq) {
1354                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1355                                 queue->recv_queue_size,
1356                                 !queue->host_qid);
1357         }
1358         nvmet_rdma_free_rsps(queue);
1359         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1360         kfree(queue);
1361 }
1362
1363 static void nvmet_rdma_release_queue_work(struct work_struct *w)
1364 {
1365         struct nvmet_rdma_queue *queue =
1366                 container_of(w, struct nvmet_rdma_queue, release_work);
1367         struct nvmet_rdma_device *dev = queue->dev;
1368
1369         nvmet_rdma_free_queue(queue);
1370
1371         kref_put(&dev->ref, nvmet_rdma_free_dev);
1372 }
1373
1374 static int
1375 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1376                                 struct nvmet_rdma_queue *queue)
1377 {
1378         struct nvme_rdma_cm_req *req;
1379
1380         req = (struct nvme_rdma_cm_req *)conn->private_data;
1381         if (!req || conn->private_data_len == 0)
1382                 return NVME_RDMA_CM_INVALID_LEN;
1383
1384         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1385                 return NVME_RDMA_CM_INVALID_RECFMT;
1386
1387         queue->host_qid = le16_to_cpu(req->qid);
1388
1389         /*
1390          * req->hsqsize corresponds to our recv queue size plus 1
1391          * req->hrqsize corresponds to our send queue size
1392          */
1393         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1394         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1395
1396         if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1397                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1398
1399         /* XXX: Should we enforce some kind of max for IO queues? */
1400
1401         return 0;
1402 }
1403
1404 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1405                                 enum nvme_rdma_cm_status status)
1406 {
1407         struct nvme_rdma_cm_rej rej;
1408
1409         pr_debug("rejecting connect request: status %d (%s)\n",
1410                  status, nvme_rdma_cm_msg(status));
1411
1412         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1413         rej.sts = cpu_to_le16(status);
1414
1415         return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1416                            IB_CM_REJ_CONSUMER_DEFINED);
1417 }
1418
1419 static struct nvmet_rdma_queue *
1420 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1421                 struct rdma_cm_id *cm_id,
1422                 struct rdma_cm_event *event)
1423 {
1424         struct nvmet_rdma_port *port = cm_id->context;
1425         struct nvmet_rdma_queue *queue;
1426         int ret;
1427
1428         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1429         if (!queue) {
1430                 ret = NVME_RDMA_CM_NO_RSC;
1431                 goto out_reject;
1432         }
1433
1434         ret = nvmet_sq_init(&queue->nvme_sq);
1435         if (ret) {
1436                 ret = NVME_RDMA_CM_NO_RSC;
1437                 goto out_free_queue;
1438         }
1439
1440         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1441         if (ret)
1442                 goto out_destroy_sq;
1443
1444         /*
1445          * Schedules the actual release because calling rdma_destroy_id from
1446          * inside a CM callback would trigger a deadlock. (great API design..)
1447          */
1448         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1449         queue->dev = ndev;
1450         queue->cm_id = cm_id;
1451         queue->port = port->nport;
1452
1453         spin_lock_init(&queue->state_lock);
1454         queue->state = NVMET_RDMA_Q_CONNECTING;
1455         INIT_LIST_HEAD(&queue->rsp_wait_list);
1456         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1457         spin_lock_init(&queue->rsp_wr_wait_lock);
1458         INIT_LIST_HEAD(&queue->free_rsps);
1459         spin_lock_init(&queue->rsps_lock);
1460         INIT_LIST_HEAD(&queue->queue_list);
1461
1462         queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1463         if (queue->idx < 0) {
1464                 ret = NVME_RDMA_CM_NO_RSC;
1465                 goto out_destroy_sq;
1466         }
1467
1468         /*
1469          * Spread the io queues across completion vectors,
1470          * but still keep all admin queues on vector 0.
1471          */
1472         queue->comp_vector = !queue->host_qid ? 0 :
1473                 queue->idx % ndev->device->num_comp_vectors;
1474
1475
1476         ret = nvmet_rdma_alloc_rsps(queue);
1477         if (ret) {
1478                 ret = NVME_RDMA_CM_NO_RSC;
1479                 goto out_ida_remove;
1480         }
1481
1482         if (ndev->srqs) {
1483                 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1484         } else {
1485                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1486                                 queue->recv_queue_size,
1487                                 !queue->host_qid);
1488                 if (IS_ERR(queue->cmds)) {
1489                         ret = NVME_RDMA_CM_NO_RSC;
1490                         goto out_free_responses;
1491                 }
1492         }
1493
1494         ret = nvmet_rdma_create_queue_ib(queue);
1495         if (ret) {
1496                 pr_err("%s: creating RDMA queue failed (%d).\n",
1497                         __func__, ret);
1498                 ret = NVME_RDMA_CM_NO_RSC;
1499                 goto out_free_cmds;
1500         }
1501
1502         return queue;
1503
1504 out_free_cmds:
1505         if (!queue->nsrq) {
1506                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1507                                 queue->recv_queue_size,
1508                                 !queue->host_qid);
1509         }
1510 out_free_responses:
1511         nvmet_rdma_free_rsps(queue);
1512 out_ida_remove:
1513         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1514 out_destroy_sq:
1515         nvmet_sq_destroy(&queue->nvme_sq);
1516 out_free_queue:
1517         kfree(queue);
1518 out_reject:
1519         nvmet_rdma_cm_reject(cm_id, ret);
1520         return NULL;
1521 }
1522
1523 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1524 {
1525         struct nvmet_rdma_queue *queue = priv;
1526
1527         switch (event->event) {
1528         case IB_EVENT_COMM_EST:
1529                 rdma_notify(queue->cm_id, event->event);
1530                 break;
1531         case IB_EVENT_QP_LAST_WQE_REACHED:
1532                 pr_debug("received last WQE reached event for queue=0x%p\n",
1533                          queue);
1534                 break;
1535         default:
1536                 pr_err("received IB QP event: %s (%d)\n",
1537                        ib_event_msg(event->event), event->event);
1538                 break;
1539         }
1540 }
1541
1542 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1543                 struct nvmet_rdma_queue *queue,
1544                 struct rdma_conn_param *p)
1545 {
1546         struct rdma_conn_param  param = { };
1547         struct nvme_rdma_cm_rep priv = { };
1548         int ret = -ENOMEM;
1549
1550         param.rnr_retry_count = 7;
1551         param.flow_control = 1;
1552         param.initiator_depth = min_t(u8, p->initiator_depth,
1553                 queue->dev->device->attrs.max_qp_init_rd_atom);
1554         param.private_data = &priv;
1555         param.private_data_len = sizeof(priv);
1556         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1557         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1558
1559         ret = rdma_accept(cm_id, &param);
1560         if (ret)
1561                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1562
1563         return ret;
1564 }
1565
1566 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1567                 struct rdma_cm_event *event)
1568 {
1569         struct nvmet_rdma_device *ndev;
1570         struct nvmet_rdma_queue *queue;
1571         int ret = -EINVAL;
1572
1573         ndev = nvmet_rdma_find_get_device(cm_id);
1574         if (!ndev) {
1575                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1576                 return -ECONNREFUSED;
1577         }
1578
1579         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1580         if (!queue) {
1581                 ret = -ENOMEM;
1582                 goto put_device;
1583         }
1584
1585         if (queue->host_qid == 0) {
1586                 /* Let inflight controller teardown complete */
1587                 flush_scheduled_work();
1588         }
1589
1590         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1591         if (ret) {
1592                 /*
1593                  * Don't destroy the cm_id in free path, as we implicitly
1594                  * destroy the cm_id here with non-zero ret code.
1595                  */
1596                 queue->cm_id = NULL;
1597                 goto free_queue;
1598         }
1599
1600         mutex_lock(&nvmet_rdma_queue_mutex);
1601         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1602         mutex_unlock(&nvmet_rdma_queue_mutex);
1603
1604         return 0;
1605
1606 free_queue:
1607         nvmet_rdma_free_queue(queue);
1608 put_device:
1609         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1610
1611         return ret;
1612 }
1613
1614 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1615 {
1616         unsigned long flags;
1617
1618         spin_lock_irqsave(&queue->state_lock, flags);
1619         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1620                 pr_warn("trying to establish a connected queue\n");
1621                 goto out_unlock;
1622         }
1623         queue->state = NVMET_RDMA_Q_LIVE;
1624
1625         while (!list_empty(&queue->rsp_wait_list)) {
1626                 struct nvmet_rdma_rsp *cmd;
1627
1628                 cmd = list_first_entry(&queue->rsp_wait_list,
1629                                         struct nvmet_rdma_rsp, wait_list);
1630                 list_del(&cmd->wait_list);
1631
1632                 spin_unlock_irqrestore(&queue->state_lock, flags);
1633                 nvmet_rdma_handle_command(queue, cmd);
1634                 spin_lock_irqsave(&queue->state_lock, flags);
1635         }
1636
1637 out_unlock:
1638         spin_unlock_irqrestore(&queue->state_lock, flags);
1639 }
1640
1641 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1642 {
1643         bool disconnect = false;
1644         unsigned long flags;
1645
1646         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1647
1648         spin_lock_irqsave(&queue->state_lock, flags);
1649         switch (queue->state) {
1650         case NVMET_RDMA_Q_CONNECTING:
1651                 while (!list_empty(&queue->rsp_wait_list)) {
1652                         struct nvmet_rdma_rsp *rsp;
1653
1654                         rsp = list_first_entry(&queue->rsp_wait_list,
1655                                                struct nvmet_rdma_rsp,
1656                                                wait_list);
1657                         list_del(&rsp->wait_list);
1658                         nvmet_rdma_put_rsp(rsp);
1659                 }
1660                 fallthrough;
1661         case NVMET_RDMA_Q_LIVE:
1662                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1663                 disconnect = true;
1664                 break;
1665         case NVMET_RDMA_Q_DISCONNECTING:
1666                 break;
1667         }
1668         spin_unlock_irqrestore(&queue->state_lock, flags);
1669
1670         if (disconnect) {
1671                 rdma_disconnect(queue->cm_id);
1672                 schedule_work(&queue->release_work);
1673         }
1674 }
1675
1676 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1677 {
1678         bool disconnect = false;
1679
1680         mutex_lock(&nvmet_rdma_queue_mutex);
1681         if (!list_empty(&queue->queue_list)) {
1682                 list_del_init(&queue->queue_list);
1683                 disconnect = true;
1684         }
1685         mutex_unlock(&nvmet_rdma_queue_mutex);
1686
1687         if (disconnect)
1688                 __nvmet_rdma_queue_disconnect(queue);
1689 }
1690
1691 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1692                 struct nvmet_rdma_queue *queue)
1693 {
1694         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1695
1696         mutex_lock(&nvmet_rdma_queue_mutex);
1697         if (!list_empty(&queue->queue_list))
1698                 list_del_init(&queue->queue_list);
1699         mutex_unlock(&nvmet_rdma_queue_mutex);
1700
1701         pr_err("failed to connect queue %d\n", queue->idx);
1702         schedule_work(&queue->release_work);
1703 }
1704
1705 /**
1706  * nvme_rdma_device_removal() - Handle RDMA device removal
1707  * @cm_id:      rdma_cm id, used for nvmet port
1708  * @queue:      nvmet rdma queue (cm id qp_context)
1709  *
1710  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1711  * to unplug. Note that this event can be generated on a normal
1712  * queue cm_id and/or a device bound listener cm_id (where in this
1713  * case queue will be null).
1714  *
1715  * We registered an ib_client to handle device removal for queues,
1716  * so we only need to handle the listening port cm_ids. In this case
1717  * we nullify the priv to prevent double cm_id destruction and destroying
1718  * the cm_id implicitely by returning a non-zero rc to the callout.
1719  */
1720 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1721                 struct nvmet_rdma_queue *queue)
1722 {
1723         struct nvmet_rdma_port *port;
1724
1725         if (queue) {
1726                 /*
1727                  * This is a queue cm_id. we have registered
1728                  * an ib_client to handle queues removal
1729                  * so don't interfear and just return.
1730                  */
1731                 return 0;
1732         }
1733
1734         port = cm_id->context;
1735
1736         /*
1737          * This is a listener cm_id. Make sure that
1738          * future remove_port won't invoke a double
1739          * cm_id destroy. use atomic xchg to make sure
1740          * we don't compete with remove_port.
1741          */
1742         if (xchg(&port->cm_id, NULL) != cm_id)
1743                 return 0;
1744
1745         /*
1746          * We need to return 1 so that the core will destroy
1747          * it's own ID.  What a great API design..
1748          */
1749         return 1;
1750 }
1751
1752 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1753                 struct rdma_cm_event *event)
1754 {
1755         struct nvmet_rdma_queue *queue = NULL;
1756         int ret = 0;
1757
1758         if (cm_id->qp)
1759                 queue = cm_id->qp->qp_context;
1760
1761         pr_debug("%s (%d): status %d id %p\n",
1762                 rdma_event_msg(event->event), event->event,
1763                 event->status, cm_id);
1764
1765         switch (event->event) {
1766         case RDMA_CM_EVENT_CONNECT_REQUEST:
1767                 ret = nvmet_rdma_queue_connect(cm_id, event);
1768                 break;
1769         case RDMA_CM_EVENT_ESTABLISHED:
1770                 nvmet_rdma_queue_established(queue);
1771                 break;
1772         case RDMA_CM_EVENT_ADDR_CHANGE:
1773                 if (!queue) {
1774                         struct nvmet_rdma_port *port = cm_id->context;
1775
1776                         schedule_delayed_work(&port->repair_work, 0);
1777                         break;
1778                 }
1779                 fallthrough;
1780         case RDMA_CM_EVENT_DISCONNECTED:
1781         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1782                 nvmet_rdma_queue_disconnect(queue);
1783                 break;
1784         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1785                 ret = nvmet_rdma_device_removal(cm_id, queue);
1786                 break;
1787         case RDMA_CM_EVENT_REJECTED:
1788                 pr_debug("Connection rejected: %s\n",
1789                          rdma_reject_msg(cm_id, event->status));
1790                 fallthrough;
1791         case RDMA_CM_EVENT_UNREACHABLE:
1792         case RDMA_CM_EVENT_CONNECT_ERROR:
1793                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1794                 break;
1795         default:
1796                 pr_err("received unrecognized RDMA CM event %d\n",
1797                         event->event);
1798                 break;
1799         }
1800
1801         return ret;
1802 }
1803
1804 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1805 {
1806         struct nvmet_rdma_queue *queue;
1807
1808 restart:
1809         mutex_lock(&nvmet_rdma_queue_mutex);
1810         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1811                 if (queue->nvme_sq.ctrl == ctrl) {
1812                         list_del_init(&queue->queue_list);
1813                         mutex_unlock(&nvmet_rdma_queue_mutex);
1814
1815                         __nvmet_rdma_queue_disconnect(queue);
1816                         goto restart;
1817                 }
1818         }
1819         mutex_unlock(&nvmet_rdma_queue_mutex);
1820 }
1821
1822 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1823 {
1824         struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1825
1826         if (cm_id)
1827                 rdma_destroy_id(cm_id);
1828 }
1829
1830 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1831 {
1832         struct sockaddr *addr = (struct sockaddr *)&port->addr;
1833         struct rdma_cm_id *cm_id;
1834         int ret;
1835
1836         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1837                         RDMA_PS_TCP, IB_QPT_RC);
1838         if (IS_ERR(cm_id)) {
1839                 pr_err("CM ID creation failed\n");
1840                 return PTR_ERR(cm_id);
1841         }
1842
1843         /*
1844          * Allow both IPv4 and IPv6 sockets to bind a single port
1845          * at the same time.
1846          */
1847         ret = rdma_set_afonly(cm_id, 1);
1848         if (ret) {
1849                 pr_err("rdma_set_afonly failed (%d)\n", ret);
1850                 goto out_destroy_id;
1851         }
1852
1853         ret = rdma_bind_addr(cm_id, addr);
1854         if (ret) {
1855                 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1856                 goto out_destroy_id;
1857         }
1858
1859         ret = rdma_listen(cm_id, 128);
1860         if (ret) {
1861                 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1862                 goto out_destroy_id;
1863         }
1864
1865         port->cm_id = cm_id;
1866         return 0;
1867
1868 out_destroy_id:
1869         rdma_destroy_id(cm_id);
1870         return ret;
1871 }
1872
1873 static void nvmet_rdma_repair_port_work(struct work_struct *w)
1874 {
1875         struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1876                         struct nvmet_rdma_port, repair_work);
1877         int ret;
1878
1879         nvmet_rdma_disable_port(port);
1880         ret = nvmet_rdma_enable_port(port);
1881         if (ret)
1882                 schedule_delayed_work(&port->repair_work, 5 * HZ);
1883 }
1884
1885 static int nvmet_rdma_add_port(struct nvmet_port *nport)
1886 {
1887         struct nvmet_rdma_port *port;
1888         __kernel_sa_family_t af;
1889         int ret;
1890
1891         port = kzalloc(sizeof(*port), GFP_KERNEL);
1892         if (!port)
1893                 return -ENOMEM;
1894
1895         nport->priv = port;
1896         port->nport = nport;
1897         INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1898
1899         switch (nport->disc_addr.adrfam) {
1900         case NVMF_ADDR_FAMILY_IP4:
1901                 af = AF_INET;
1902                 break;
1903         case NVMF_ADDR_FAMILY_IP6:
1904                 af = AF_INET6;
1905                 break;
1906         default:
1907                 pr_err("address family %d not supported\n",
1908                         nport->disc_addr.adrfam);
1909                 ret = -EINVAL;
1910                 goto out_free_port;
1911         }
1912
1913         if (nport->inline_data_size < 0) {
1914                 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1915         } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1916                 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1917                         nport->inline_data_size,
1918                         NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1919                 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1920         }
1921
1922         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1923                         nport->disc_addr.trsvcid, &port->addr);
1924         if (ret) {
1925                 pr_err("malformed ip/port passed: %s:%s\n",
1926                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1927                 goto out_free_port;
1928         }
1929
1930         ret = nvmet_rdma_enable_port(port);
1931         if (ret)
1932                 goto out_free_port;
1933
1934         pr_info("enabling port %d (%pISpcs)\n",
1935                 le16_to_cpu(nport->disc_addr.portid),
1936                 (struct sockaddr *)&port->addr);
1937
1938         return 0;
1939
1940 out_free_port:
1941         kfree(port);
1942         return ret;
1943 }
1944
1945 static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1946 {
1947         struct nvmet_rdma_port *port = nport->priv;
1948
1949         cancel_delayed_work_sync(&port->repair_work);
1950         nvmet_rdma_disable_port(port);
1951         kfree(port);
1952 }
1953
1954 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1955                 struct nvmet_port *nport, char *traddr)
1956 {
1957         struct nvmet_rdma_port *port = nport->priv;
1958         struct rdma_cm_id *cm_id = port->cm_id;
1959
1960         if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1961                 struct nvmet_rdma_rsp *rsp =
1962                         container_of(req, struct nvmet_rdma_rsp, req);
1963                 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1964                 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1965
1966                 sprintf(traddr, "%pISc", addr);
1967         } else {
1968                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1969         }
1970 }
1971
1972 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1973 {
1974         if (ctrl->pi_support)
1975                 return NVMET_RDMA_MAX_METADATA_MDTS;
1976         return NVMET_RDMA_MAX_MDTS;
1977 }
1978
1979 static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1980         .owner                  = THIS_MODULE,
1981         .type                   = NVMF_TRTYPE_RDMA,
1982         .msdbd                  = 1,
1983         .flags                  = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1984         .add_port               = nvmet_rdma_add_port,
1985         .remove_port            = nvmet_rdma_remove_port,
1986         .queue_response         = nvmet_rdma_queue_response,
1987         .delete_ctrl            = nvmet_rdma_delete_ctrl,
1988         .disc_traddr            = nvmet_rdma_disc_port_addr,
1989         .get_mdts               = nvmet_rdma_get_mdts,
1990 };
1991
1992 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1993 {
1994         struct nvmet_rdma_queue *queue, *tmp;
1995         struct nvmet_rdma_device *ndev;
1996         bool found = false;
1997
1998         mutex_lock(&device_list_mutex);
1999         list_for_each_entry(ndev, &device_list, entry) {
2000                 if (ndev->device == ib_device) {
2001                         found = true;
2002                         break;
2003                 }
2004         }
2005         mutex_unlock(&device_list_mutex);
2006
2007         if (!found)
2008                 return;
2009
2010         /*
2011          * IB Device that is used by nvmet controllers is being removed,
2012          * delete all queues using this device.
2013          */
2014         mutex_lock(&nvmet_rdma_queue_mutex);
2015         list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2016                                  queue_list) {
2017                 if (queue->dev->device != ib_device)
2018                         continue;
2019
2020                 pr_info("Removing queue %d\n", queue->idx);
2021                 list_del_init(&queue->queue_list);
2022                 __nvmet_rdma_queue_disconnect(queue);
2023         }
2024         mutex_unlock(&nvmet_rdma_queue_mutex);
2025
2026         flush_scheduled_work();
2027 }
2028
2029 static struct ib_client nvmet_rdma_ib_client = {
2030         .name   = "nvmet_rdma",
2031         .remove = nvmet_rdma_remove_one
2032 };
2033
2034 static int __init nvmet_rdma_init(void)
2035 {
2036         int ret;
2037
2038         ret = ib_register_client(&nvmet_rdma_ib_client);
2039         if (ret)
2040                 return ret;
2041
2042         ret = nvmet_register_transport(&nvmet_rdma_ops);
2043         if (ret)
2044                 goto err_ib_client;
2045
2046         return 0;
2047
2048 err_ib_client:
2049         ib_unregister_client(&nvmet_rdma_ib_client);
2050         return ret;
2051 }
2052
2053 static void __exit nvmet_rdma_exit(void)
2054 {
2055         nvmet_unregister_transport(&nvmet_rdma_ops);
2056         ib_unregister_client(&nvmet_rdma_ib_client);
2057         WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2058         ida_destroy(&nvmet_rdma_queue_ida);
2059 }
2060
2061 module_init(nvmet_rdma_init);
2062 module_exit(nvmet_rdma_exit);
2063
2064 MODULE_LICENSE("GPL v2");
2065 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */