Merge tag 'pci-v5.18-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[sfrench/cifs-2.6.git] / drivers / nvme / target / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 struct workqueue_struct *zbd_wq;
20 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
21 static DEFINE_IDA(cntlid_ida);
22
23 /*
24  * This read/write semaphore is used to synchronize access to configuration
25  * information on a target system that will result in discovery log page
26  * information change for at least one host.
27  * The full list of resources to protected by this semaphore is:
28  *
29  *  - subsystems list
30  *  - per-subsystem allowed hosts list
31  *  - allow_any_host subsystem attribute
32  *  - nvmet_genctr
33  *  - the nvmet_transports array
34  *
35  * When updating any of those lists/structures write lock should be obtained,
36  * while when reading (popolating discovery log page or checking host-subsystem
37  * link) read lock is obtained to allow concurrent reads.
38  */
39 DECLARE_RWSEM(nvmet_config_sem);
40
41 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
42 u64 nvmet_ana_chgcnt;
43 DECLARE_RWSEM(nvmet_ana_sem);
44
45 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
46 {
47         switch (errno) {
48         case 0:
49                 return NVME_SC_SUCCESS;
50         case -ENOSPC:
51                 req->error_loc = offsetof(struct nvme_rw_command, length);
52                 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
53         case -EREMOTEIO:
54                 req->error_loc = offsetof(struct nvme_rw_command, slba);
55                 return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
56         case -EOPNOTSUPP:
57                 req->error_loc = offsetof(struct nvme_common_command, opcode);
58                 switch (req->cmd->common.opcode) {
59                 case nvme_cmd_dsm:
60                 case nvme_cmd_write_zeroes:
61                         return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
62                 default:
63                         return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
64                 }
65                 break;
66         case -ENODATA:
67                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
68                 return NVME_SC_ACCESS_DENIED;
69         case -EIO:
70                 fallthrough;
71         default:
72                 req->error_loc = offsetof(struct nvme_common_command, opcode);
73                 return NVME_SC_INTERNAL | NVME_SC_DNR;
74         }
75 }
76
77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
78 {
79         pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
80                  req->sq->qid);
81
82         req->error_loc = offsetof(struct nvme_common_command, opcode);
83         return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
84 }
85
86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
87                 const char *subsysnqn);
88
89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
90                 size_t len)
91 {
92         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
93                 req->error_loc = offsetof(struct nvme_common_command, dptr);
94                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
95         }
96         return 0;
97 }
98
99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 {
101         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
102                 req->error_loc = offsetof(struct nvme_common_command, dptr);
103                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
104         }
105         return 0;
106 }
107
108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 {
110         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
111                 req->error_loc = offsetof(struct nvme_common_command, dptr);
112                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
113         }
114         return 0;
115 }
116
117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
118 {
119         struct nvmet_ns *cur;
120         unsigned long idx;
121         u32 nsid = 0;
122
123         xa_for_each(&subsys->namespaces, idx, cur)
124                 nsid = cur->nsid;
125
126         return nsid;
127 }
128
129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
130 {
131         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
132 }
133
134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
135 {
136         struct nvmet_req *req;
137
138         mutex_lock(&ctrl->lock);
139         while (ctrl->nr_async_event_cmds) {
140                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141                 mutex_unlock(&ctrl->lock);
142                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
143                 mutex_lock(&ctrl->lock);
144         }
145         mutex_unlock(&ctrl->lock);
146 }
147
148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150         struct nvmet_async_event *aen;
151         struct nvmet_req *req;
152
153         mutex_lock(&ctrl->lock);
154         while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155                 aen = list_first_entry(&ctrl->async_events,
156                                        struct nvmet_async_event, entry);
157                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158                 nvmet_set_result(req, nvmet_async_event_result(aen));
159
160                 list_del(&aen->entry);
161                 kfree(aen);
162
163                 mutex_unlock(&ctrl->lock);
164                 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165                 nvmet_req_complete(req, 0);
166                 mutex_lock(&ctrl->lock);
167         }
168         mutex_unlock(&ctrl->lock);
169 }
170
171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173         struct nvmet_async_event *aen, *tmp;
174
175         mutex_lock(&ctrl->lock);
176         list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177                 list_del(&aen->entry);
178                 kfree(aen);
179         }
180         mutex_unlock(&ctrl->lock);
181 }
182
183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185         struct nvmet_ctrl *ctrl =
186                 container_of(work, struct nvmet_ctrl, async_event_work);
187
188         nvmet_async_events_process(ctrl);
189 }
190
191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192                 u8 event_info, u8 log_page)
193 {
194         struct nvmet_async_event *aen;
195
196         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197         if (!aen)
198                 return;
199
200         aen->event_type = event_type;
201         aen->event_info = event_info;
202         aen->log_page = log_page;
203
204         mutex_lock(&ctrl->lock);
205         list_add_tail(&aen->entry, &ctrl->async_events);
206         mutex_unlock(&ctrl->lock);
207
208         schedule_work(&ctrl->async_event_work);
209 }
210
211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213         u32 i;
214
215         mutex_lock(&ctrl->lock);
216         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217                 goto out_unlock;
218
219         for (i = 0; i < ctrl->nr_changed_ns; i++) {
220                 if (ctrl->changed_ns_list[i] == nsid)
221                         goto out_unlock;
222         }
223
224         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226                 ctrl->nr_changed_ns = U32_MAX;
227                 goto out_unlock;
228         }
229
230         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232         mutex_unlock(&ctrl->lock);
233 }
234
235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237         struct nvmet_ctrl *ctrl;
238
239         lockdep_assert_held(&subsys->lock);
240
241         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244                         continue;
245                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246                                 NVME_AER_NOTICE_NS_CHANGED,
247                                 NVME_LOG_CHANGED_NS);
248         }
249 }
250
251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252                 struct nvmet_port *port)
253 {
254         struct nvmet_ctrl *ctrl;
255
256         mutex_lock(&subsys->lock);
257         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258                 if (port && ctrl->port != port)
259                         continue;
260                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261                         continue;
262                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264         }
265         mutex_unlock(&subsys->lock);
266 }
267
268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270         struct nvmet_subsys_link *p;
271
272         down_read(&nvmet_config_sem);
273         list_for_each_entry(p, &port->subsystems, entry)
274                 nvmet_send_ana_event(p->subsys, port);
275         up_read(&nvmet_config_sem);
276 }
277
278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280         int ret = 0;
281
282         down_write(&nvmet_config_sem);
283         if (nvmet_transports[ops->type])
284                 ret = -EINVAL;
285         else
286                 nvmet_transports[ops->type] = ops;
287         up_write(&nvmet_config_sem);
288
289         return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292
293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295         down_write(&nvmet_config_sem);
296         nvmet_transports[ops->type] = NULL;
297         up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300
301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303         struct nvmet_ctrl *ctrl;
304
305         mutex_lock(&subsys->lock);
306         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307                 if (ctrl->port == port)
308                         ctrl->ops->delete_ctrl(ctrl);
309         }
310         mutex_unlock(&subsys->lock);
311 }
312
313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315         const struct nvmet_fabrics_ops *ops;
316         int ret;
317
318         lockdep_assert_held(&nvmet_config_sem);
319
320         ops = nvmet_transports[port->disc_addr.trtype];
321         if (!ops) {
322                 up_write(&nvmet_config_sem);
323                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
324                 down_write(&nvmet_config_sem);
325                 ops = nvmet_transports[port->disc_addr.trtype];
326                 if (!ops) {
327                         pr_err("transport type %d not supported\n",
328                                 port->disc_addr.trtype);
329                         return -EINVAL;
330                 }
331         }
332
333         if (!try_module_get(ops->owner))
334                 return -EINVAL;
335
336         /*
337          * If the user requested PI support and the transport isn't pi capable,
338          * don't enable the port.
339          */
340         if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341                 pr_err("T10-PI is not supported by transport type %d\n",
342                        port->disc_addr.trtype);
343                 ret = -EINVAL;
344                 goto out_put;
345         }
346
347         ret = ops->add_port(port);
348         if (ret)
349                 goto out_put;
350
351         /* If the transport didn't set inline_data_size, then disable it. */
352         if (port->inline_data_size < 0)
353                 port->inline_data_size = 0;
354
355         port->enabled = true;
356         port->tr_ops = ops;
357         return 0;
358
359 out_put:
360         module_put(ops->owner);
361         return ret;
362 }
363
364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366         const struct nvmet_fabrics_ops *ops;
367
368         lockdep_assert_held(&nvmet_config_sem);
369
370         port->enabled = false;
371         port->tr_ops = NULL;
372
373         ops = nvmet_transports[port->disc_addr.trtype];
374         ops->remove_port(port);
375         module_put(ops->owner);
376 }
377
378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381                         struct nvmet_ctrl, ka_work);
382         bool reset_tbkas = ctrl->reset_tbkas;
383
384         ctrl->reset_tbkas = false;
385         if (reset_tbkas) {
386                 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387                         ctrl->cntlid);
388                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389                 return;
390         }
391
392         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393                 ctrl->cntlid, ctrl->kato);
394
395         nvmet_ctrl_fatal_error(ctrl);
396 }
397
398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400         if (unlikely(ctrl->kato == 0))
401                 return;
402
403         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404                 ctrl->cntlid, ctrl->kato);
405
406         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
407 }
408
409 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
410 {
411         if (unlikely(ctrl->kato == 0))
412                 return;
413
414         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
415
416         cancel_delayed_work_sync(&ctrl->ka_work);
417 }
418
419 u16 nvmet_req_find_ns(struct nvmet_req *req)
420 {
421         u32 nsid = le32_to_cpu(req->cmd->common.nsid);
422
423         req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
424         if (unlikely(!req->ns)) {
425                 req->error_loc = offsetof(struct nvme_common_command, nsid);
426                 return NVME_SC_INVALID_NS | NVME_SC_DNR;
427         }
428
429         percpu_ref_get(&req->ns->ref);
430         return NVME_SC_SUCCESS;
431 }
432
433 static void nvmet_destroy_namespace(struct percpu_ref *ref)
434 {
435         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
436
437         complete(&ns->disable_done);
438 }
439
440 void nvmet_put_namespace(struct nvmet_ns *ns)
441 {
442         percpu_ref_put(&ns->ref);
443 }
444
445 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
446 {
447         nvmet_bdev_ns_disable(ns);
448         nvmet_file_ns_disable(ns);
449 }
450
451 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
452 {
453         int ret;
454         struct pci_dev *p2p_dev;
455
456         if (!ns->use_p2pmem)
457                 return 0;
458
459         if (!ns->bdev) {
460                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
461                 return -EINVAL;
462         }
463
464         if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
465                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
466                        ns->device_path);
467                 return -EINVAL;
468         }
469
470         if (ns->p2p_dev) {
471                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
472                 if (ret < 0)
473                         return -EINVAL;
474         } else {
475                 /*
476                  * Right now we just check that there is p2pmem available so
477                  * we can report an error to the user right away if there
478                  * is not. We'll find the actual device to use once we
479                  * setup the controller when the port's device is available.
480                  */
481
482                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
483                 if (!p2p_dev) {
484                         pr_err("no peer-to-peer memory is available for %s\n",
485                                ns->device_path);
486                         return -EINVAL;
487                 }
488
489                 pci_dev_put(p2p_dev);
490         }
491
492         return 0;
493 }
494
495 /*
496  * Note: ctrl->subsys->lock should be held when calling this function
497  */
498 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
499                                     struct nvmet_ns *ns)
500 {
501         struct device *clients[2];
502         struct pci_dev *p2p_dev;
503         int ret;
504
505         if (!ctrl->p2p_client || !ns->use_p2pmem)
506                 return;
507
508         if (ns->p2p_dev) {
509                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
510                 if (ret < 0)
511                         return;
512
513                 p2p_dev = pci_dev_get(ns->p2p_dev);
514         } else {
515                 clients[0] = ctrl->p2p_client;
516                 clients[1] = nvmet_ns_dev(ns);
517
518                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
519                 if (!p2p_dev) {
520                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
521                                dev_name(ctrl->p2p_client), ns->device_path);
522                         return;
523                 }
524         }
525
526         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
527         if (ret < 0)
528                 pci_dev_put(p2p_dev);
529
530         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
531                 ns->nsid);
532 }
533
534 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
535 {
536         loff_t oldsize = ns->size;
537
538         if (ns->bdev)
539                 nvmet_bdev_ns_revalidate(ns);
540         else
541                 nvmet_file_ns_revalidate(ns);
542
543         return oldsize != ns->size;
544 }
545
546 int nvmet_ns_enable(struct nvmet_ns *ns)
547 {
548         struct nvmet_subsys *subsys = ns->subsys;
549         struct nvmet_ctrl *ctrl;
550         int ret;
551
552         mutex_lock(&subsys->lock);
553         ret = 0;
554
555         if (nvmet_is_passthru_subsys(subsys)) {
556                 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
557                 goto out_unlock;
558         }
559
560         if (ns->enabled)
561                 goto out_unlock;
562
563         ret = -EMFILE;
564         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
565                 goto out_unlock;
566
567         ret = nvmet_bdev_ns_enable(ns);
568         if (ret == -ENOTBLK)
569                 ret = nvmet_file_ns_enable(ns);
570         if (ret)
571                 goto out_unlock;
572
573         ret = nvmet_p2pmem_ns_enable(ns);
574         if (ret)
575                 goto out_dev_disable;
576
577         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
578                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
579
580         ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
581                                 0, GFP_KERNEL);
582         if (ret)
583                 goto out_dev_put;
584
585         if (ns->nsid > subsys->max_nsid)
586                 subsys->max_nsid = ns->nsid;
587
588         ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
589         if (ret)
590                 goto out_restore_subsys_maxnsid;
591
592         subsys->nr_namespaces++;
593
594         nvmet_ns_changed(subsys, ns->nsid);
595         ns->enabled = true;
596         ret = 0;
597 out_unlock:
598         mutex_unlock(&subsys->lock);
599         return ret;
600
601 out_restore_subsys_maxnsid:
602         subsys->max_nsid = nvmet_max_nsid(subsys);
603         percpu_ref_exit(&ns->ref);
604 out_dev_put:
605         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
606                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
607 out_dev_disable:
608         nvmet_ns_dev_disable(ns);
609         goto out_unlock;
610 }
611
612 void nvmet_ns_disable(struct nvmet_ns *ns)
613 {
614         struct nvmet_subsys *subsys = ns->subsys;
615         struct nvmet_ctrl *ctrl;
616
617         mutex_lock(&subsys->lock);
618         if (!ns->enabled)
619                 goto out_unlock;
620
621         ns->enabled = false;
622         xa_erase(&ns->subsys->namespaces, ns->nsid);
623         if (ns->nsid == subsys->max_nsid)
624                 subsys->max_nsid = nvmet_max_nsid(subsys);
625
626         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
627                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
628
629         mutex_unlock(&subsys->lock);
630
631         /*
632          * Now that we removed the namespaces from the lookup list, we
633          * can kill the per_cpu ref and wait for any remaining references
634          * to be dropped, as well as a RCU grace period for anyone only
635          * using the namepace under rcu_read_lock().  Note that we can't
636          * use call_rcu here as we need to ensure the namespaces have
637          * been fully destroyed before unloading the module.
638          */
639         percpu_ref_kill(&ns->ref);
640         synchronize_rcu();
641         wait_for_completion(&ns->disable_done);
642         percpu_ref_exit(&ns->ref);
643
644         mutex_lock(&subsys->lock);
645
646         subsys->nr_namespaces--;
647         nvmet_ns_changed(subsys, ns->nsid);
648         nvmet_ns_dev_disable(ns);
649 out_unlock:
650         mutex_unlock(&subsys->lock);
651 }
652
653 void nvmet_ns_free(struct nvmet_ns *ns)
654 {
655         nvmet_ns_disable(ns);
656
657         down_write(&nvmet_ana_sem);
658         nvmet_ana_group_enabled[ns->anagrpid]--;
659         up_write(&nvmet_ana_sem);
660
661         kfree(ns->device_path);
662         kfree(ns);
663 }
664
665 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
666 {
667         struct nvmet_ns *ns;
668
669         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
670         if (!ns)
671                 return NULL;
672
673         init_completion(&ns->disable_done);
674
675         ns->nsid = nsid;
676         ns->subsys = subsys;
677
678         down_write(&nvmet_ana_sem);
679         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
680         nvmet_ana_group_enabled[ns->anagrpid]++;
681         up_write(&nvmet_ana_sem);
682
683         uuid_gen(&ns->uuid);
684         ns->buffered_io = false;
685         ns->csi = NVME_CSI_NVM;
686
687         return ns;
688 }
689
690 static void nvmet_update_sq_head(struct nvmet_req *req)
691 {
692         if (req->sq->size) {
693                 u32 old_sqhd, new_sqhd;
694
695                 do {
696                         old_sqhd = req->sq->sqhd;
697                         new_sqhd = (old_sqhd + 1) % req->sq->size;
698                 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
699                                         old_sqhd);
700         }
701         req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
702 }
703
704 static void nvmet_set_error(struct nvmet_req *req, u16 status)
705 {
706         struct nvmet_ctrl *ctrl = req->sq->ctrl;
707         struct nvme_error_slot *new_error_slot;
708         unsigned long flags;
709
710         req->cqe->status = cpu_to_le16(status << 1);
711
712         if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
713                 return;
714
715         spin_lock_irqsave(&ctrl->error_lock, flags);
716         ctrl->err_counter++;
717         new_error_slot =
718                 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
719
720         new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
721         new_error_slot->sqid = cpu_to_le16(req->sq->qid);
722         new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
723         new_error_slot->status_field = cpu_to_le16(status << 1);
724         new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
725         new_error_slot->lba = cpu_to_le64(req->error_slba);
726         new_error_slot->nsid = req->cmd->common.nsid;
727         spin_unlock_irqrestore(&ctrl->error_lock, flags);
728
729         /* set the more bit for this request */
730         req->cqe->status |= cpu_to_le16(1 << 14);
731 }
732
733 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
734 {
735         if (!req->sq->sqhd_disabled)
736                 nvmet_update_sq_head(req);
737         req->cqe->sq_id = cpu_to_le16(req->sq->qid);
738         req->cqe->command_id = req->cmd->common.command_id;
739
740         if (unlikely(status))
741                 nvmet_set_error(req, status);
742
743         trace_nvmet_req_complete(req);
744
745         if (req->ns)
746                 nvmet_put_namespace(req->ns);
747         req->ops->queue_response(req);
748 }
749
750 void nvmet_req_complete(struct nvmet_req *req, u16 status)
751 {
752         __nvmet_req_complete(req, status);
753         percpu_ref_put(&req->sq->ref);
754 }
755 EXPORT_SYMBOL_GPL(nvmet_req_complete);
756
757 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
758                 u16 qid, u16 size)
759 {
760         cq->qid = qid;
761         cq->size = size;
762 }
763
764 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
765                 u16 qid, u16 size)
766 {
767         sq->sqhd = 0;
768         sq->qid = qid;
769         sq->size = size;
770
771         ctrl->sqs[qid] = sq;
772 }
773
774 static void nvmet_confirm_sq(struct percpu_ref *ref)
775 {
776         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
777
778         complete(&sq->confirm_done);
779 }
780
781 void nvmet_sq_destroy(struct nvmet_sq *sq)
782 {
783         struct nvmet_ctrl *ctrl = sq->ctrl;
784
785         /*
786          * If this is the admin queue, complete all AERs so that our
787          * queue doesn't have outstanding requests on it.
788          */
789         if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
790                 nvmet_async_events_failall(ctrl);
791         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
792         wait_for_completion(&sq->confirm_done);
793         wait_for_completion(&sq->free_done);
794         percpu_ref_exit(&sq->ref);
795
796         if (ctrl) {
797                 /*
798                  * The teardown flow may take some time, and the host may not
799                  * send us keep-alive during this period, hence reset the
800                  * traffic based keep-alive timer so we don't trigger a
801                  * controller teardown as a result of a keep-alive expiration.
802                  */
803                 ctrl->reset_tbkas = true;
804                 sq->ctrl->sqs[sq->qid] = NULL;
805                 nvmet_ctrl_put(ctrl);
806                 sq->ctrl = NULL; /* allows reusing the queue later */
807         }
808 }
809 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
810
811 static void nvmet_sq_free(struct percpu_ref *ref)
812 {
813         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
814
815         complete(&sq->free_done);
816 }
817
818 int nvmet_sq_init(struct nvmet_sq *sq)
819 {
820         int ret;
821
822         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
823         if (ret) {
824                 pr_err("percpu_ref init failed!\n");
825                 return ret;
826         }
827         init_completion(&sq->free_done);
828         init_completion(&sq->confirm_done);
829
830         return 0;
831 }
832 EXPORT_SYMBOL_GPL(nvmet_sq_init);
833
834 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
835                 struct nvmet_ns *ns)
836 {
837         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
838
839         if (unlikely(state == NVME_ANA_INACCESSIBLE))
840                 return NVME_SC_ANA_INACCESSIBLE;
841         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
842                 return NVME_SC_ANA_PERSISTENT_LOSS;
843         if (unlikely(state == NVME_ANA_CHANGE))
844                 return NVME_SC_ANA_TRANSITION;
845         return 0;
846 }
847
848 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
849 {
850         if (unlikely(req->ns->readonly)) {
851                 switch (req->cmd->common.opcode) {
852                 case nvme_cmd_read:
853                 case nvme_cmd_flush:
854                         break;
855                 default:
856                         return NVME_SC_NS_WRITE_PROTECTED;
857                 }
858         }
859
860         return 0;
861 }
862
863 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
864 {
865         u16 ret;
866
867         ret = nvmet_check_ctrl_status(req);
868         if (unlikely(ret))
869                 return ret;
870
871         if (nvmet_is_passthru_req(req))
872                 return nvmet_parse_passthru_io_cmd(req);
873
874         ret = nvmet_req_find_ns(req);
875         if (unlikely(ret))
876                 return ret;
877
878         ret = nvmet_check_ana_state(req->port, req->ns);
879         if (unlikely(ret)) {
880                 req->error_loc = offsetof(struct nvme_common_command, nsid);
881                 return ret;
882         }
883         ret = nvmet_io_cmd_check_access(req);
884         if (unlikely(ret)) {
885                 req->error_loc = offsetof(struct nvme_common_command, nsid);
886                 return ret;
887         }
888
889         switch (req->ns->csi) {
890         case NVME_CSI_NVM:
891                 if (req->ns->file)
892                         return nvmet_file_parse_io_cmd(req);
893                 return nvmet_bdev_parse_io_cmd(req);
894         case NVME_CSI_ZNS:
895                 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
896                         return nvmet_bdev_zns_parse_io_cmd(req);
897                 return NVME_SC_INVALID_IO_CMD_SET;
898         default:
899                 return NVME_SC_INVALID_IO_CMD_SET;
900         }
901 }
902
903 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
904                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
905 {
906         u8 flags = req->cmd->common.flags;
907         u16 status;
908
909         req->cq = cq;
910         req->sq = sq;
911         req->ops = ops;
912         req->sg = NULL;
913         req->metadata_sg = NULL;
914         req->sg_cnt = 0;
915         req->metadata_sg_cnt = 0;
916         req->transfer_len = 0;
917         req->metadata_len = 0;
918         req->cqe->status = 0;
919         req->cqe->sq_head = 0;
920         req->ns = NULL;
921         req->error_loc = NVMET_NO_ERROR_LOC;
922         req->error_slba = 0;
923
924         /* no support for fused commands yet */
925         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
926                 req->error_loc = offsetof(struct nvme_common_command, flags);
927                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
928                 goto fail;
929         }
930
931         /*
932          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
933          * contains an address of a single contiguous physical buffer that is
934          * byte aligned.
935          */
936         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
937                 req->error_loc = offsetof(struct nvme_common_command, flags);
938                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
939                 goto fail;
940         }
941
942         if (unlikely(!req->sq->ctrl))
943                 /* will return an error for any non-connect command: */
944                 status = nvmet_parse_connect_cmd(req);
945         else if (likely(req->sq->qid != 0))
946                 status = nvmet_parse_io_cmd(req);
947         else
948                 status = nvmet_parse_admin_cmd(req);
949
950         if (status)
951                 goto fail;
952
953         trace_nvmet_req_init(req, req->cmd);
954
955         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
956                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
957                 goto fail;
958         }
959
960         if (sq->ctrl)
961                 sq->ctrl->reset_tbkas = true;
962
963         return true;
964
965 fail:
966         __nvmet_req_complete(req, status);
967         return false;
968 }
969 EXPORT_SYMBOL_GPL(nvmet_req_init);
970
971 void nvmet_req_uninit(struct nvmet_req *req)
972 {
973         percpu_ref_put(&req->sq->ref);
974         if (req->ns)
975                 nvmet_put_namespace(req->ns);
976 }
977 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
978
979 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
980 {
981         if (unlikely(len != req->transfer_len)) {
982                 req->error_loc = offsetof(struct nvme_common_command, dptr);
983                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
984                 return false;
985         }
986
987         return true;
988 }
989 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
990
991 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
992 {
993         if (unlikely(data_len > req->transfer_len)) {
994                 req->error_loc = offsetof(struct nvme_common_command, dptr);
995                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
996                 return false;
997         }
998
999         return true;
1000 }
1001
1002 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1003 {
1004         return req->transfer_len - req->metadata_len;
1005 }
1006
1007 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1008                 struct nvmet_req *req)
1009 {
1010         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1011                         nvmet_data_transfer_len(req));
1012         if (!req->sg)
1013                 goto out_err;
1014
1015         if (req->metadata_len) {
1016                 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1017                                 &req->metadata_sg_cnt, req->metadata_len);
1018                 if (!req->metadata_sg)
1019                         goto out_free_sg;
1020         }
1021
1022         req->p2p_dev = p2p_dev;
1023
1024         return 0;
1025 out_free_sg:
1026         pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1027 out_err:
1028         return -ENOMEM;
1029 }
1030
1031 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1032 {
1033         if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1034             !req->sq->ctrl || !req->sq->qid || !req->ns)
1035                 return NULL;
1036         return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1037 }
1038
1039 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1040 {
1041         struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1042
1043         if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1044                 return 0;
1045
1046         req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1047                             &req->sg_cnt);
1048         if (unlikely(!req->sg))
1049                 goto out;
1050
1051         if (req->metadata_len) {
1052                 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1053                                              &req->metadata_sg_cnt);
1054                 if (unlikely(!req->metadata_sg))
1055                         goto out_free;
1056         }
1057
1058         return 0;
1059 out_free:
1060         sgl_free(req->sg);
1061 out:
1062         return -ENOMEM;
1063 }
1064 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1065
1066 void nvmet_req_free_sgls(struct nvmet_req *req)
1067 {
1068         if (req->p2p_dev) {
1069                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1070                 if (req->metadata_sg)
1071                         pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1072                 req->p2p_dev = NULL;
1073         } else {
1074                 sgl_free(req->sg);
1075                 if (req->metadata_sg)
1076                         sgl_free(req->metadata_sg);
1077         }
1078
1079         req->sg = NULL;
1080         req->metadata_sg = NULL;
1081         req->sg_cnt = 0;
1082         req->metadata_sg_cnt = 0;
1083 }
1084 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1085
1086 static inline bool nvmet_cc_en(u32 cc)
1087 {
1088         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1089 }
1090
1091 static inline u8 nvmet_cc_css(u32 cc)
1092 {
1093         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1094 }
1095
1096 static inline u8 nvmet_cc_mps(u32 cc)
1097 {
1098         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1099 }
1100
1101 static inline u8 nvmet_cc_ams(u32 cc)
1102 {
1103         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1104 }
1105
1106 static inline u8 nvmet_cc_shn(u32 cc)
1107 {
1108         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1109 }
1110
1111 static inline u8 nvmet_cc_iosqes(u32 cc)
1112 {
1113         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1114 }
1115
1116 static inline u8 nvmet_cc_iocqes(u32 cc)
1117 {
1118         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1119 }
1120
1121 static inline bool nvmet_css_supported(u8 cc_css)
1122 {
1123         switch (cc_css <<= NVME_CC_CSS_SHIFT) {
1124         case NVME_CC_CSS_NVM:
1125         case NVME_CC_CSS_CSI:
1126                 return true;
1127         default:
1128                 return false;
1129         }
1130 }
1131
1132 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1133 {
1134         lockdep_assert_held(&ctrl->lock);
1135
1136         /*
1137          * Only I/O controllers should verify iosqes,iocqes.
1138          * Strictly speaking, the spec says a discovery controller
1139          * should verify iosqes,iocqes are zeroed, however that
1140          * would break backwards compatibility, so don't enforce it.
1141          */
1142         if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1143             (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1144              nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1145                 ctrl->csts = NVME_CSTS_CFS;
1146                 return;
1147         }
1148
1149         if (nvmet_cc_mps(ctrl->cc) != 0 ||
1150             nvmet_cc_ams(ctrl->cc) != 0 ||
1151             !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1152                 ctrl->csts = NVME_CSTS_CFS;
1153                 return;
1154         }
1155
1156         ctrl->csts = NVME_CSTS_RDY;
1157
1158         /*
1159          * Controllers that are not yet enabled should not really enforce the
1160          * keep alive timeout, but we still want to track a timeout and cleanup
1161          * in case a host died before it enabled the controller.  Hence, simply
1162          * reset the keep alive timer when the controller is enabled.
1163          */
1164         if (ctrl->kato)
1165                 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1166 }
1167
1168 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1169 {
1170         lockdep_assert_held(&ctrl->lock);
1171
1172         /* XXX: tear down queues? */
1173         ctrl->csts &= ~NVME_CSTS_RDY;
1174         ctrl->cc = 0;
1175 }
1176
1177 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1178 {
1179         u32 old;
1180
1181         mutex_lock(&ctrl->lock);
1182         old = ctrl->cc;
1183         ctrl->cc = new;
1184
1185         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1186                 nvmet_start_ctrl(ctrl);
1187         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1188                 nvmet_clear_ctrl(ctrl);
1189         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1190                 nvmet_clear_ctrl(ctrl);
1191                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1192         }
1193         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1194                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1195         mutex_unlock(&ctrl->lock);
1196 }
1197
1198 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1199 {
1200         /* command sets supported: NVMe command set: */
1201         ctrl->cap = (1ULL << 37);
1202         /* Controller supports one or more I/O Command Sets */
1203         ctrl->cap |= (1ULL << 43);
1204         /* CC.EN timeout in 500msec units: */
1205         ctrl->cap |= (15ULL << 24);
1206         /* maximum queue entries supported: */
1207         if (ctrl->ops->get_max_queue_size)
1208                 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1209         else
1210                 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1211
1212         if (nvmet_is_passthru_subsys(ctrl->subsys))
1213                 nvmet_passthrough_override_cap(ctrl);
1214 }
1215
1216 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1217                                        const char *hostnqn, u16 cntlid,
1218                                        struct nvmet_req *req)
1219 {
1220         struct nvmet_ctrl *ctrl = NULL;
1221         struct nvmet_subsys *subsys;
1222
1223         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1224         if (!subsys) {
1225                 pr_warn("connect request for invalid subsystem %s!\n",
1226                         subsysnqn);
1227                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1228                 goto out;
1229         }
1230
1231         mutex_lock(&subsys->lock);
1232         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1233                 if (ctrl->cntlid == cntlid) {
1234                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1235                                 pr_warn("hostnqn mismatch.\n");
1236                                 continue;
1237                         }
1238                         if (!kref_get_unless_zero(&ctrl->ref))
1239                                 continue;
1240
1241                         /* ctrl found */
1242                         goto found;
1243                 }
1244         }
1245
1246         ctrl = NULL; /* ctrl not found */
1247         pr_warn("could not find controller %d for subsys %s / host %s\n",
1248                 cntlid, subsysnqn, hostnqn);
1249         req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1250
1251 found:
1252         mutex_unlock(&subsys->lock);
1253         nvmet_subsys_put(subsys);
1254 out:
1255         return ctrl;
1256 }
1257
1258 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1259 {
1260         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1261                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1262                        req->cmd->common.opcode, req->sq->qid);
1263                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1264         }
1265
1266         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1267                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1268                        req->cmd->common.opcode, req->sq->qid);
1269                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1270         }
1271         return 0;
1272 }
1273
1274 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1275 {
1276         struct nvmet_host_link *p;
1277
1278         lockdep_assert_held(&nvmet_config_sem);
1279
1280         if (subsys->allow_any_host)
1281                 return true;
1282
1283         if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1284                 return true;
1285
1286         list_for_each_entry(p, &subsys->hosts, entry) {
1287                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1288                         return true;
1289         }
1290
1291         return false;
1292 }
1293
1294 /*
1295  * Note: ctrl->subsys->lock should be held when calling this function
1296  */
1297 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1298                 struct nvmet_req *req)
1299 {
1300         struct nvmet_ns *ns;
1301         unsigned long idx;
1302
1303         if (!req->p2p_client)
1304                 return;
1305
1306         ctrl->p2p_client = get_device(req->p2p_client);
1307
1308         xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1309                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1310 }
1311
1312 /*
1313  * Note: ctrl->subsys->lock should be held when calling this function
1314  */
1315 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1316 {
1317         struct radix_tree_iter iter;
1318         void __rcu **slot;
1319
1320         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1321                 pci_dev_put(radix_tree_deref_slot(slot));
1322
1323         put_device(ctrl->p2p_client);
1324 }
1325
1326 static void nvmet_fatal_error_handler(struct work_struct *work)
1327 {
1328         struct nvmet_ctrl *ctrl =
1329                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1330
1331         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1332         ctrl->ops->delete_ctrl(ctrl);
1333 }
1334
1335 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1336                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1337 {
1338         struct nvmet_subsys *subsys;
1339         struct nvmet_ctrl *ctrl;
1340         int ret;
1341         u16 status;
1342
1343         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1344         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1345         if (!subsys) {
1346                 pr_warn("connect request for invalid subsystem %s!\n",
1347                         subsysnqn);
1348                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1349                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1350                 goto out;
1351         }
1352
1353         down_read(&nvmet_config_sem);
1354         if (!nvmet_host_allowed(subsys, hostnqn)) {
1355                 pr_info("connect by host %s for subsystem %s not allowed\n",
1356                         hostnqn, subsysnqn);
1357                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1358                 up_read(&nvmet_config_sem);
1359                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1360                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1361                 goto out_put_subsystem;
1362         }
1363         up_read(&nvmet_config_sem);
1364
1365         status = NVME_SC_INTERNAL;
1366         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1367         if (!ctrl)
1368                 goto out_put_subsystem;
1369         mutex_init(&ctrl->lock);
1370
1371         ctrl->port = req->port;
1372         ctrl->ops = req->ops;
1373
1374         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1375         INIT_LIST_HEAD(&ctrl->async_events);
1376         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1377         INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1378         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1379
1380         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1381         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1382
1383         kref_init(&ctrl->ref);
1384         ctrl->subsys = subsys;
1385         nvmet_init_cap(ctrl);
1386         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1387
1388         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1389                         sizeof(__le32), GFP_KERNEL);
1390         if (!ctrl->changed_ns_list)
1391                 goto out_free_ctrl;
1392
1393         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1394                         sizeof(struct nvmet_sq *),
1395                         GFP_KERNEL);
1396         if (!ctrl->sqs)
1397                 goto out_free_changed_ns_list;
1398
1399         if (subsys->cntlid_min > subsys->cntlid_max)
1400                 goto out_free_sqs;
1401
1402         ret = ida_alloc_range(&cntlid_ida,
1403                              subsys->cntlid_min, subsys->cntlid_max,
1404                              GFP_KERNEL);
1405         if (ret < 0) {
1406                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1407                 goto out_free_sqs;
1408         }
1409         ctrl->cntlid = ret;
1410
1411         /*
1412          * Discovery controllers may use some arbitrary high value
1413          * in order to cleanup stale discovery sessions
1414          */
1415         if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1416                 kato = NVMET_DISC_KATO_MS;
1417
1418         /* keep-alive timeout in seconds */
1419         ctrl->kato = DIV_ROUND_UP(kato, 1000);
1420
1421         ctrl->err_counter = 0;
1422         spin_lock_init(&ctrl->error_lock);
1423
1424         nvmet_start_keep_alive_timer(ctrl);
1425
1426         mutex_lock(&subsys->lock);
1427         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1428         nvmet_setup_p2p_ns_map(ctrl, req);
1429         mutex_unlock(&subsys->lock);
1430
1431         *ctrlp = ctrl;
1432         return 0;
1433
1434 out_free_sqs:
1435         kfree(ctrl->sqs);
1436 out_free_changed_ns_list:
1437         kfree(ctrl->changed_ns_list);
1438 out_free_ctrl:
1439         kfree(ctrl);
1440 out_put_subsystem:
1441         nvmet_subsys_put(subsys);
1442 out:
1443         return status;
1444 }
1445
1446 static void nvmet_ctrl_free(struct kref *ref)
1447 {
1448         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1449         struct nvmet_subsys *subsys = ctrl->subsys;
1450
1451         mutex_lock(&subsys->lock);
1452         nvmet_release_p2p_ns_map(ctrl);
1453         list_del(&ctrl->subsys_entry);
1454         mutex_unlock(&subsys->lock);
1455
1456         nvmet_stop_keep_alive_timer(ctrl);
1457
1458         flush_work(&ctrl->async_event_work);
1459         cancel_work_sync(&ctrl->fatal_err_work);
1460
1461         ida_free(&cntlid_ida, ctrl->cntlid);
1462
1463         nvmet_async_events_free(ctrl);
1464         kfree(ctrl->sqs);
1465         kfree(ctrl->changed_ns_list);
1466         kfree(ctrl);
1467
1468         nvmet_subsys_put(subsys);
1469 }
1470
1471 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1472 {
1473         kref_put(&ctrl->ref, nvmet_ctrl_free);
1474 }
1475
1476 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1477 {
1478         mutex_lock(&ctrl->lock);
1479         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1480                 ctrl->csts |= NVME_CSTS_CFS;
1481                 schedule_work(&ctrl->fatal_err_work);
1482         }
1483         mutex_unlock(&ctrl->lock);
1484 }
1485 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1486
1487 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1488                 const char *subsysnqn)
1489 {
1490         struct nvmet_subsys_link *p;
1491
1492         if (!port)
1493                 return NULL;
1494
1495         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1496                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1497                         return NULL;
1498                 return nvmet_disc_subsys;
1499         }
1500
1501         down_read(&nvmet_config_sem);
1502         list_for_each_entry(p, &port->subsystems, entry) {
1503                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1504                                 NVMF_NQN_SIZE)) {
1505                         if (!kref_get_unless_zero(&p->subsys->ref))
1506                                 break;
1507                         up_read(&nvmet_config_sem);
1508                         return p->subsys;
1509                 }
1510         }
1511         up_read(&nvmet_config_sem);
1512         return NULL;
1513 }
1514
1515 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1516                 enum nvme_subsys_type type)
1517 {
1518         struct nvmet_subsys *subsys;
1519         char serial[NVMET_SN_MAX_SIZE / 2];
1520         int ret;
1521
1522         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1523         if (!subsys)
1524                 return ERR_PTR(-ENOMEM);
1525
1526         subsys->ver = NVMET_DEFAULT_VS;
1527         /* generate a random serial number as our controllers are ephemeral: */
1528         get_random_bytes(&serial, sizeof(serial));
1529         bin2hex(subsys->serial, &serial, sizeof(serial));
1530
1531         subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1532         if (!subsys->model_number) {
1533                 ret = -ENOMEM;
1534                 goto free_subsys;
1535         }
1536
1537         switch (type) {
1538         case NVME_NQN_NVME:
1539                 subsys->max_qid = NVMET_NR_QUEUES;
1540                 break;
1541         case NVME_NQN_DISC:
1542         case NVME_NQN_CURR:
1543                 subsys->max_qid = 0;
1544                 break;
1545         default:
1546                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1547                 ret = -EINVAL;
1548                 goto free_mn;
1549         }
1550         subsys->type = type;
1551         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1552                         GFP_KERNEL);
1553         if (!subsys->subsysnqn) {
1554                 ret = -ENOMEM;
1555                 goto free_mn;
1556         }
1557         subsys->cntlid_min = NVME_CNTLID_MIN;
1558         subsys->cntlid_max = NVME_CNTLID_MAX;
1559         kref_init(&subsys->ref);
1560
1561         mutex_init(&subsys->lock);
1562         xa_init(&subsys->namespaces);
1563         INIT_LIST_HEAD(&subsys->ctrls);
1564         INIT_LIST_HEAD(&subsys->hosts);
1565
1566         return subsys;
1567
1568 free_mn:
1569         kfree(subsys->model_number);
1570 free_subsys:
1571         kfree(subsys);
1572         return ERR_PTR(ret);
1573 }
1574
1575 static void nvmet_subsys_free(struct kref *ref)
1576 {
1577         struct nvmet_subsys *subsys =
1578                 container_of(ref, struct nvmet_subsys, ref);
1579
1580         WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1581
1582         xa_destroy(&subsys->namespaces);
1583         nvmet_passthru_subsys_free(subsys);
1584
1585         kfree(subsys->subsysnqn);
1586         kfree(subsys->model_number);
1587         kfree(subsys);
1588 }
1589
1590 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1591 {
1592         struct nvmet_ctrl *ctrl;
1593
1594         mutex_lock(&subsys->lock);
1595         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1596                 ctrl->ops->delete_ctrl(ctrl);
1597         mutex_unlock(&subsys->lock);
1598 }
1599
1600 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1601 {
1602         kref_put(&subsys->ref, nvmet_subsys_free);
1603 }
1604
1605 static int __init nvmet_init(void)
1606 {
1607         int error;
1608
1609         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1610
1611         zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1612         if (!zbd_wq)
1613                 return -ENOMEM;
1614
1615         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1616                         WQ_MEM_RECLAIM, 0);
1617         if (!buffered_io_wq) {
1618                 error = -ENOMEM;
1619                 goto out_free_zbd_work_queue;
1620         }
1621
1622         error = nvmet_init_discovery();
1623         if (error)
1624                 goto out_free_work_queue;
1625
1626         error = nvmet_init_configfs();
1627         if (error)
1628                 goto out_exit_discovery;
1629         return 0;
1630
1631 out_exit_discovery:
1632         nvmet_exit_discovery();
1633 out_free_work_queue:
1634         destroy_workqueue(buffered_io_wq);
1635 out_free_zbd_work_queue:
1636         destroy_workqueue(zbd_wq);
1637         return error;
1638 }
1639
1640 static void __exit nvmet_exit(void)
1641 {
1642         nvmet_exit_configfs();
1643         nvmet_exit_discovery();
1644         ida_destroy(&cntlid_ida);
1645         destroy_workqueue(buffered_io_wq);
1646         destroy_workqueue(zbd_wq);
1647
1648         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1649         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1650 }
1651
1652 module_init(nvmet_init);
1653 module_exit(nvmet_exit);
1654
1655 MODULE_LICENSE("GPL v2");