fix short copy handling in copy_mc_pipe_to_iter()
[sfrench/cifs-2.6.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/blk-integrity.h>
17 #include <linux/types.h>
18 #include <linux/list.h>
19 #include <linux/mutex.h>
20 #include <linux/scatterlist.h>
21 #include <linux/nvme.h>
22 #include <asm/unaligned.h>
23
24 #include <rdma/ib_verbs.h>
25 #include <rdma/rdma_cm.h>
26 #include <linux/nvme-rdma.h>
27
28 #include "nvme.h"
29 #include "fabrics.h"
30
31
32 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
33
34 #define NVME_RDMA_MAX_SEGMENTS          256
35
36 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
37
38 #define NVME_RDMA_DATA_SGL_SIZE \
39         (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
40 #define NVME_RDMA_METADATA_SGL_SIZE \
41         (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42
43 struct nvme_rdma_device {
44         struct ib_device        *dev;
45         struct ib_pd            *pd;
46         struct kref             ref;
47         struct list_head        entry;
48         unsigned int            num_inline_segments;
49 };
50
51 struct nvme_rdma_qe {
52         struct ib_cqe           cqe;
53         void                    *data;
54         u64                     dma;
55 };
56
57 struct nvme_rdma_sgl {
58         int                     nents;
59         struct sg_table         sg_table;
60 };
61
62 struct nvme_rdma_queue;
63 struct nvme_rdma_request {
64         struct nvme_request     req;
65         struct ib_mr            *mr;
66         struct nvme_rdma_qe     sqe;
67         union nvme_result       result;
68         __le16                  status;
69         refcount_t              ref;
70         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71         u32                     num_sge;
72         struct ib_reg_wr        reg_wr;
73         struct ib_cqe           reg_cqe;
74         struct nvme_rdma_queue  *queue;
75         struct nvme_rdma_sgl    data_sgl;
76         struct nvme_rdma_sgl    *metadata_sgl;
77         bool                    use_sig_mr;
78 };
79
80 enum nvme_rdma_queue_flags {
81         NVME_RDMA_Q_ALLOCATED           = 0,
82         NVME_RDMA_Q_LIVE                = 1,
83         NVME_RDMA_Q_TR_READY            = 2,
84 };
85
86 struct nvme_rdma_queue {
87         struct nvme_rdma_qe     *rsp_ring;
88         int                     queue_size;
89         size_t                  cmnd_capsule_len;
90         struct nvme_rdma_ctrl   *ctrl;
91         struct nvme_rdma_device *device;
92         struct ib_cq            *ib_cq;
93         struct ib_qp            *qp;
94
95         unsigned long           flags;
96         struct rdma_cm_id       *cm_id;
97         int                     cm_error;
98         struct completion       cm_done;
99         bool                    pi_support;
100         int                     cq_size;
101         struct mutex            queue_lock;
102 };
103
104 struct nvme_rdma_ctrl {
105         /* read only in the hot path */
106         struct nvme_rdma_queue  *queues;
107
108         /* other member variables */
109         struct blk_mq_tag_set   tag_set;
110         struct work_struct      err_work;
111
112         struct nvme_rdma_qe     async_event_sqe;
113
114         struct delayed_work     reconnect_work;
115
116         struct list_head        list;
117
118         struct blk_mq_tag_set   admin_tag_set;
119         struct nvme_rdma_device *device;
120
121         u32                     max_fr_pages;
122
123         struct sockaddr_storage addr;
124         struct sockaddr_storage src_addr;
125
126         struct nvme_ctrl        ctrl;
127         bool                    use_inline_data;
128         u32                     io_queues[HCTX_MAX_TYPES];
129 };
130
131 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 {
133         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
134 }
135
136 static LIST_HEAD(device_list);
137 static DEFINE_MUTEX(device_list_mutex);
138
139 static LIST_HEAD(nvme_rdma_ctrl_list);
140 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
141
142 /*
143  * Disabling this option makes small I/O goes faster, but is fundamentally
144  * unsafe.  With it turned off we will have to register a global rkey that
145  * allows read and write access to all physical memory.
146  */
147 static bool register_always = true;
148 module_param(register_always, bool, 0444);
149 MODULE_PARM_DESC(register_always,
150          "Use memory registration even for contiguous memory regions");
151
152 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
153                 struct rdma_cm_event *event);
154 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
155 static void nvme_rdma_complete_rq(struct request *rq);
156
157 static const struct blk_mq_ops nvme_rdma_mq_ops;
158 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
159
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162         return queue - queue->ctrl->queues;
163 }
164
165 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
166 {
167         return nvme_rdma_queue_idx(queue) >
168                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
169                 queue->ctrl->io_queues[HCTX_TYPE_READ];
170 }
171
172 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
173 {
174         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
175 }
176
177 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178                 size_t capsule_size, enum dma_data_direction dir)
179 {
180         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
181         kfree(qe->data);
182 }
183
184 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
185                 size_t capsule_size, enum dma_data_direction dir)
186 {
187         qe->data = kzalloc(capsule_size, GFP_KERNEL);
188         if (!qe->data)
189                 return -ENOMEM;
190
191         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
192         if (ib_dma_mapping_error(ibdev, qe->dma)) {
193                 kfree(qe->data);
194                 qe->data = NULL;
195                 return -ENOMEM;
196         }
197
198         return 0;
199 }
200
201 static void nvme_rdma_free_ring(struct ib_device *ibdev,
202                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
203                 size_t capsule_size, enum dma_data_direction dir)
204 {
205         int i;
206
207         for (i = 0; i < ib_queue_size; i++)
208                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
209         kfree(ring);
210 }
211
212 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
213                 size_t ib_queue_size, size_t capsule_size,
214                 enum dma_data_direction dir)
215 {
216         struct nvme_rdma_qe *ring;
217         int i;
218
219         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
220         if (!ring)
221                 return NULL;
222
223         /*
224          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
225          * lifetime. It's safe, since any chage in the underlying RDMA device
226          * will issue error recovery and queue re-creation.
227          */
228         for (i = 0; i < ib_queue_size; i++) {
229                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
230                         goto out_free_ring;
231         }
232
233         return ring;
234
235 out_free_ring:
236         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
237         return NULL;
238 }
239
240 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 {
242         pr_debug("QP event %s (%d)\n",
243                  ib_event_msg(event->event), event->event);
244
245 }
246
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
248 {
249         int ret;
250
251         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
252                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
253         if (ret < 0)
254                 return ret;
255         if (ret == 0)
256                 return -ETIMEDOUT;
257         WARN_ON_ONCE(queue->cm_error > 0);
258         return queue->cm_error;
259 }
260
261 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
262 {
263         struct nvme_rdma_device *dev = queue->device;
264         struct ib_qp_init_attr init_attr;
265         int ret;
266
267         memset(&init_attr, 0, sizeof(init_attr));
268         init_attr.event_handler = nvme_rdma_qp_event;
269         /* +1 for drain */
270         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
271         /* +1 for drain */
272         init_attr.cap.max_recv_wr = queue->queue_size + 1;
273         init_attr.cap.max_recv_sge = 1;
274         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
275         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
276         init_attr.qp_type = IB_QPT_RC;
277         init_attr.send_cq = queue->ib_cq;
278         init_attr.recv_cq = queue->ib_cq;
279         if (queue->pi_support)
280                 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
281         init_attr.qp_context = queue;
282
283         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
284
285         queue->qp = queue->cm_id->qp;
286         return ret;
287 }
288
289 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
290                 struct request *rq, unsigned int hctx_idx)
291 {
292         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293
294         kfree(req->sqe.data);
295 }
296
297 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
298                 struct request *rq, unsigned int hctx_idx,
299                 unsigned int numa_node)
300 {
301         struct nvme_rdma_ctrl *ctrl = set->driver_data;
302         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
303         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
304         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
305
306         nvme_req(rq)->ctrl = &ctrl->ctrl;
307         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
308         if (!req->sqe.data)
309                 return -ENOMEM;
310
311         /* metadata nvme_rdma_sgl struct is located after command's data SGL */
312         if (queue->pi_support)
313                 req->metadata_sgl = (void *)nvme_req(rq) +
314                         sizeof(struct nvme_rdma_request) +
315                         NVME_RDMA_DATA_SGL_SIZE;
316
317         req->queue = queue;
318         nvme_req(rq)->cmd = req->sqe.data;
319
320         return 0;
321 }
322
323 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
324                 unsigned int hctx_idx)
325 {
326         struct nvme_rdma_ctrl *ctrl = data;
327         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
328
329         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
330
331         hctx->driver_data = queue;
332         return 0;
333 }
334
335 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
336                 unsigned int hctx_idx)
337 {
338         struct nvme_rdma_ctrl *ctrl = data;
339         struct nvme_rdma_queue *queue = &ctrl->queues[0];
340
341         BUG_ON(hctx_idx != 0);
342
343         hctx->driver_data = queue;
344         return 0;
345 }
346
347 static void nvme_rdma_free_dev(struct kref *ref)
348 {
349         struct nvme_rdma_device *ndev =
350                 container_of(ref, struct nvme_rdma_device, ref);
351
352         mutex_lock(&device_list_mutex);
353         list_del(&ndev->entry);
354         mutex_unlock(&device_list_mutex);
355
356         ib_dealloc_pd(ndev->pd);
357         kfree(ndev);
358 }
359
360 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
361 {
362         kref_put(&dev->ref, nvme_rdma_free_dev);
363 }
364
365 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
366 {
367         return kref_get_unless_zero(&dev->ref);
368 }
369
370 static struct nvme_rdma_device *
371 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
372 {
373         struct nvme_rdma_device *ndev;
374
375         mutex_lock(&device_list_mutex);
376         list_for_each_entry(ndev, &device_list, entry) {
377                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
378                     nvme_rdma_dev_get(ndev))
379                         goto out_unlock;
380         }
381
382         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
383         if (!ndev)
384                 goto out_err;
385
386         ndev->dev = cm_id->device;
387         kref_init(&ndev->ref);
388
389         ndev->pd = ib_alloc_pd(ndev->dev,
390                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
391         if (IS_ERR(ndev->pd))
392                 goto out_free_dev;
393
394         if (!(ndev->dev->attrs.device_cap_flags &
395               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
396                 dev_err(&ndev->dev->dev,
397                         "Memory registrations not supported.\n");
398                 goto out_free_pd;
399         }
400
401         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
402                                         ndev->dev->attrs.max_send_sge - 1);
403         list_add(&ndev->entry, &device_list);
404 out_unlock:
405         mutex_unlock(&device_list_mutex);
406         return ndev;
407
408 out_free_pd:
409         ib_dealloc_pd(ndev->pd);
410 out_free_dev:
411         kfree(ndev);
412 out_err:
413         mutex_unlock(&device_list_mutex);
414         return NULL;
415 }
416
417 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
418 {
419         if (nvme_rdma_poll_queue(queue))
420                 ib_free_cq(queue->ib_cq);
421         else
422                 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
423 }
424
425 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
426 {
427         struct nvme_rdma_device *dev;
428         struct ib_device *ibdev;
429
430         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
431                 return;
432
433         dev = queue->device;
434         ibdev = dev->dev;
435
436         if (queue->pi_support)
437                 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
438         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
439
440         /*
441          * The cm_id object might have been destroyed during RDMA connection
442          * establishment error flow to avoid getting other cma events, thus
443          * the destruction of the QP shouldn't use rdma_cm API.
444          */
445         ib_destroy_qp(queue->qp);
446         nvme_rdma_free_cq(queue);
447
448         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
449                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
450
451         nvme_rdma_dev_put(dev);
452 }
453
454 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
455 {
456         u32 max_page_list_len;
457
458         if (pi_support)
459                 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
460         else
461                 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
462
463         return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
464 }
465
466 static int nvme_rdma_create_cq(struct ib_device *ibdev,
467                 struct nvme_rdma_queue *queue)
468 {
469         int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
470         enum ib_poll_context poll_ctx;
471
472         /*
473          * Spread I/O queues completion vectors according their queue index.
474          * Admin queues can always go on completion vector 0.
475          */
476         comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
477
478         /* Polling queues need direct cq polling context */
479         if (nvme_rdma_poll_queue(queue)) {
480                 poll_ctx = IB_POLL_DIRECT;
481                 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
482                                            comp_vector, poll_ctx);
483         } else {
484                 poll_ctx = IB_POLL_SOFTIRQ;
485                 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
486                                               comp_vector, poll_ctx);
487         }
488
489         if (IS_ERR(queue->ib_cq)) {
490                 ret = PTR_ERR(queue->ib_cq);
491                 return ret;
492         }
493
494         return 0;
495 }
496
497 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
498 {
499         struct ib_device *ibdev;
500         const int send_wr_factor = 3;                   /* MR, SEND, INV */
501         const int cq_factor = send_wr_factor + 1;       /* + RECV */
502         int ret, pages_per_mr;
503
504         queue->device = nvme_rdma_find_get_device(queue->cm_id);
505         if (!queue->device) {
506                 dev_err(queue->cm_id->device->dev.parent,
507                         "no client data found!\n");
508                 return -ECONNREFUSED;
509         }
510         ibdev = queue->device->dev;
511
512         /* +1 for ib_stop_cq */
513         queue->cq_size = cq_factor * queue->queue_size + 1;
514
515         ret = nvme_rdma_create_cq(ibdev, queue);
516         if (ret)
517                 goto out_put_dev;
518
519         ret = nvme_rdma_create_qp(queue, send_wr_factor);
520         if (ret)
521                 goto out_destroy_ib_cq;
522
523         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
524                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
525         if (!queue->rsp_ring) {
526                 ret = -ENOMEM;
527                 goto out_destroy_qp;
528         }
529
530         /*
531          * Currently we don't use SG_GAPS MR's so if the first entry is
532          * misaligned we'll end up using two entries for a single data page,
533          * so one additional entry is required.
534          */
535         pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
536         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
537                               queue->queue_size,
538                               IB_MR_TYPE_MEM_REG,
539                               pages_per_mr, 0);
540         if (ret) {
541                 dev_err(queue->ctrl->ctrl.device,
542                         "failed to initialize MR pool sized %d for QID %d\n",
543                         queue->queue_size, nvme_rdma_queue_idx(queue));
544                 goto out_destroy_ring;
545         }
546
547         if (queue->pi_support) {
548                 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
549                                       queue->queue_size, IB_MR_TYPE_INTEGRITY,
550                                       pages_per_mr, pages_per_mr);
551                 if (ret) {
552                         dev_err(queue->ctrl->ctrl.device,
553                                 "failed to initialize PI MR pool sized %d for QID %d\n",
554                                 queue->queue_size, nvme_rdma_queue_idx(queue));
555                         goto out_destroy_mr_pool;
556                 }
557         }
558
559         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
560
561         return 0;
562
563 out_destroy_mr_pool:
564         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
565 out_destroy_ring:
566         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
567                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
568 out_destroy_qp:
569         rdma_destroy_qp(queue->cm_id);
570 out_destroy_ib_cq:
571         nvme_rdma_free_cq(queue);
572 out_put_dev:
573         nvme_rdma_dev_put(queue->device);
574         return ret;
575 }
576
577 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
578                 int idx, size_t queue_size)
579 {
580         struct nvme_rdma_queue *queue;
581         struct sockaddr *src_addr = NULL;
582         int ret;
583
584         queue = &ctrl->queues[idx];
585         mutex_init(&queue->queue_lock);
586         queue->ctrl = ctrl;
587         if (idx && ctrl->ctrl.max_integrity_segments)
588                 queue->pi_support = true;
589         else
590                 queue->pi_support = false;
591         init_completion(&queue->cm_done);
592
593         if (idx > 0)
594                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
595         else
596                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
597
598         queue->queue_size = queue_size;
599
600         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
601                         RDMA_PS_TCP, IB_QPT_RC);
602         if (IS_ERR(queue->cm_id)) {
603                 dev_info(ctrl->ctrl.device,
604                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
605                 ret = PTR_ERR(queue->cm_id);
606                 goto out_destroy_mutex;
607         }
608
609         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
610                 src_addr = (struct sockaddr *)&ctrl->src_addr;
611
612         queue->cm_error = -ETIMEDOUT;
613         ret = rdma_resolve_addr(queue->cm_id, src_addr,
614                         (struct sockaddr *)&ctrl->addr,
615                         NVME_RDMA_CONNECT_TIMEOUT_MS);
616         if (ret) {
617                 dev_info(ctrl->ctrl.device,
618                         "rdma_resolve_addr failed (%d).\n", ret);
619                 goto out_destroy_cm_id;
620         }
621
622         ret = nvme_rdma_wait_for_cm(queue);
623         if (ret) {
624                 dev_info(ctrl->ctrl.device,
625                         "rdma connection establishment failed (%d)\n", ret);
626                 goto out_destroy_cm_id;
627         }
628
629         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
630
631         return 0;
632
633 out_destroy_cm_id:
634         rdma_destroy_id(queue->cm_id);
635         nvme_rdma_destroy_queue_ib(queue);
636 out_destroy_mutex:
637         mutex_destroy(&queue->queue_lock);
638         return ret;
639 }
640
641 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
642 {
643         rdma_disconnect(queue->cm_id);
644         ib_drain_qp(queue->qp);
645 }
646
647 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
648 {
649         mutex_lock(&queue->queue_lock);
650         if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
651                 __nvme_rdma_stop_queue(queue);
652         mutex_unlock(&queue->queue_lock);
653 }
654
655 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
656 {
657         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
658                 return;
659
660         rdma_destroy_id(queue->cm_id);
661         nvme_rdma_destroy_queue_ib(queue);
662         mutex_destroy(&queue->queue_lock);
663 }
664
665 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
666 {
667         int i;
668
669         for (i = 1; i < ctrl->ctrl.queue_count; i++)
670                 nvme_rdma_free_queue(&ctrl->queues[i]);
671 }
672
673 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
674 {
675         int i;
676
677         for (i = 1; i < ctrl->ctrl.queue_count; i++)
678                 nvme_rdma_stop_queue(&ctrl->queues[i]);
679 }
680
681 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
682 {
683         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
684         int ret;
685
686         if (idx)
687                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
688         else
689                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
690
691         if (!ret) {
692                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
693         } else {
694                 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
695                         __nvme_rdma_stop_queue(queue);
696                 dev_info(ctrl->ctrl.device,
697                         "failed to connect queue: %d ret=%d\n", idx, ret);
698         }
699         return ret;
700 }
701
702 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
703 {
704         int i, ret = 0;
705
706         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
707                 ret = nvme_rdma_start_queue(ctrl, i);
708                 if (ret)
709                         goto out_stop_queues;
710         }
711
712         return 0;
713
714 out_stop_queues:
715         for (i--; i >= 1; i--)
716                 nvme_rdma_stop_queue(&ctrl->queues[i]);
717         return ret;
718 }
719
720 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
721 {
722         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
723         struct ib_device *ibdev = ctrl->device->dev;
724         unsigned int nr_io_queues, nr_default_queues;
725         unsigned int nr_read_queues, nr_poll_queues;
726         int i, ret;
727
728         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
729                                 min(opts->nr_io_queues, num_online_cpus()));
730         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
731                                 min(opts->nr_write_queues, num_online_cpus()));
732         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
733         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
734
735         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
736         if (ret)
737                 return ret;
738
739         if (nr_io_queues == 0) {
740                 dev_err(ctrl->ctrl.device,
741                         "unable to set any I/O queues\n");
742                 return -ENOMEM;
743         }
744
745         ctrl->ctrl.queue_count = nr_io_queues + 1;
746         dev_info(ctrl->ctrl.device,
747                 "creating %d I/O queues.\n", nr_io_queues);
748
749         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
750                 /*
751                  * separate read/write queues
752                  * hand out dedicated default queues only after we have
753                  * sufficient read queues.
754                  */
755                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
756                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
757                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
758                         min(nr_default_queues, nr_io_queues);
759                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
760         } else {
761                 /*
762                  * shared read/write queues
763                  * either no write queues were requested, or we don't have
764                  * sufficient queue count to have dedicated default queues.
765                  */
766                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
767                         min(nr_read_queues, nr_io_queues);
768                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
769         }
770
771         if (opts->nr_poll_queues && nr_io_queues) {
772                 /* map dedicated poll queues only if we have queues left */
773                 ctrl->io_queues[HCTX_TYPE_POLL] =
774                         min(nr_poll_queues, nr_io_queues);
775         }
776
777         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
778                 ret = nvme_rdma_alloc_queue(ctrl, i,
779                                 ctrl->ctrl.sqsize + 1);
780                 if (ret)
781                         goto out_free_queues;
782         }
783
784         return 0;
785
786 out_free_queues:
787         for (i--; i >= 1; i--)
788                 nvme_rdma_free_queue(&ctrl->queues[i]);
789
790         return ret;
791 }
792
793 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
794                 bool admin)
795 {
796         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
797         struct blk_mq_tag_set *set;
798         int ret;
799
800         if (admin) {
801                 set = &ctrl->admin_tag_set;
802                 memset(set, 0, sizeof(*set));
803                 set->ops = &nvme_rdma_admin_mq_ops;
804                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
805                 set->reserved_tags = NVMF_RESERVED_TAGS;
806                 set->numa_node = nctrl->numa_node;
807                 set->cmd_size = sizeof(struct nvme_rdma_request) +
808                                 NVME_RDMA_DATA_SGL_SIZE;
809                 set->driver_data = ctrl;
810                 set->nr_hw_queues = 1;
811                 set->timeout = NVME_ADMIN_TIMEOUT;
812                 set->flags = BLK_MQ_F_NO_SCHED;
813         } else {
814                 set = &ctrl->tag_set;
815                 memset(set, 0, sizeof(*set));
816                 set->ops = &nvme_rdma_mq_ops;
817                 set->queue_depth = nctrl->sqsize + 1;
818                 set->reserved_tags = NVMF_RESERVED_TAGS;
819                 set->numa_node = nctrl->numa_node;
820                 set->flags = BLK_MQ_F_SHOULD_MERGE;
821                 set->cmd_size = sizeof(struct nvme_rdma_request) +
822                                 NVME_RDMA_DATA_SGL_SIZE;
823                 if (nctrl->max_integrity_segments)
824                         set->cmd_size += sizeof(struct nvme_rdma_sgl) +
825                                          NVME_RDMA_METADATA_SGL_SIZE;
826                 set->driver_data = ctrl;
827                 set->nr_hw_queues = nctrl->queue_count - 1;
828                 set->timeout = NVME_IO_TIMEOUT;
829                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
830         }
831
832         ret = blk_mq_alloc_tag_set(set);
833         if (ret)
834                 return ERR_PTR(ret);
835
836         return set;
837 }
838
839 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
840                 bool remove)
841 {
842         if (remove) {
843                 blk_cleanup_queue(ctrl->ctrl.admin_q);
844                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
845                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
846         }
847         if (ctrl->async_event_sqe.data) {
848                 cancel_work_sync(&ctrl->ctrl.async_event_work);
849                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
850                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
851                 ctrl->async_event_sqe.data = NULL;
852         }
853         nvme_rdma_free_queue(&ctrl->queues[0]);
854 }
855
856 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
857                 bool new)
858 {
859         bool pi_capable = false;
860         int error;
861
862         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
863         if (error)
864                 return error;
865
866         ctrl->device = ctrl->queues[0].device;
867         ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
868
869         /* T10-PI support */
870         if (ctrl->device->dev->attrs.kernel_cap_flags &
871             IBK_INTEGRITY_HANDOVER)
872                 pi_capable = true;
873
874         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
875                                                         pi_capable);
876
877         /*
878          * Bind the async event SQE DMA mapping to the admin queue lifetime.
879          * It's safe, since any chage in the underlying RDMA device will issue
880          * error recovery and queue re-creation.
881          */
882         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
883                         sizeof(struct nvme_command), DMA_TO_DEVICE);
884         if (error)
885                 goto out_free_queue;
886
887         if (new) {
888                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
889                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
890                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
891                         goto out_free_async_qe;
892                 }
893
894                 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
895                 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
896                         error = PTR_ERR(ctrl->ctrl.fabrics_q);
897                         goto out_free_tagset;
898                 }
899
900                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
901                 if (IS_ERR(ctrl->ctrl.admin_q)) {
902                         error = PTR_ERR(ctrl->ctrl.admin_q);
903                         goto out_cleanup_fabrics_q;
904                 }
905         }
906
907         error = nvme_rdma_start_queue(ctrl, 0);
908         if (error)
909                 goto out_cleanup_queue;
910
911         error = nvme_enable_ctrl(&ctrl->ctrl);
912         if (error)
913                 goto out_stop_queue;
914
915         ctrl->ctrl.max_segments = ctrl->max_fr_pages;
916         ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
917         if (pi_capable)
918                 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
919         else
920                 ctrl->ctrl.max_integrity_segments = 0;
921
922         nvme_start_admin_queue(&ctrl->ctrl);
923
924         error = nvme_init_ctrl_finish(&ctrl->ctrl);
925         if (error)
926                 goto out_quiesce_queue;
927
928         return 0;
929
930 out_quiesce_queue:
931         nvme_stop_admin_queue(&ctrl->ctrl);
932         blk_sync_queue(ctrl->ctrl.admin_q);
933 out_stop_queue:
934         nvme_rdma_stop_queue(&ctrl->queues[0]);
935         nvme_cancel_admin_tagset(&ctrl->ctrl);
936 out_cleanup_queue:
937         if (new)
938                 blk_cleanup_queue(ctrl->ctrl.admin_q);
939 out_cleanup_fabrics_q:
940         if (new)
941                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
942 out_free_tagset:
943         if (new)
944                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
945 out_free_async_qe:
946         if (ctrl->async_event_sqe.data) {
947                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
948                         sizeof(struct nvme_command), DMA_TO_DEVICE);
949                 ctrl->async_event_sqe.data = NULL;
950         }
951 out_free_queue:
952         nvme_rdma_free_queue(&ctrl->queues[0]);
953         return error;
954 }
955
956 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
957                 bool remove)
958 {
959         if (remove) {
960                 blk_cleanup_queue(ctrl->ctrl.connect_q);
961                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
962         }
963         nvme_rdma_free_io_queues(ctrl);
964 }
965
966 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
967 {
968         int ret;
969
970         ret = nvme_rdma_alloc_io_queues(ctrl);
971         if (ret)
972                 return ret;
973
974         if (new) {
975                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
976                 if (IS_ERR(ctrl->ctrl.tagset)) {
977                         ret = PTR_ERR(ctrl->ctrl.tagset);
978                         goto out_free_io_queues;
979                 }
980
981                 ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl));
982                 if (ret)
983                         goto out_free_tag_set;
984         }
985
986         ret = nvme_rdma_start_io_queues(ctrl);
987         if (ret)
988                 goto out_cleanup_connect_q;
989
990         if (!new) {
991                 nvme_start_queues(&ctrl->ctrl);
992                 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
993                         /*
994                          * If we timed out waiting for freeze we are likely to
995                          * be stuck.  Fail the controller initialization just
996                          * to be safe.
997                          */
998                         ret = -ENODEV;
999                         goto out_wait_freeze_timed_out;
1000                 }
1001                 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1002                         ctrl->ctrl.queue_count - 1);
1003                 nvme_unfreeze(&ctrl->ctrl);
1004         }
1005
1006         return 0;
1007
1008 out_wait_freeze_timed_out:
1009         nvme_stop_queues(&ctrl->ctrl);
1010         nvme_sync_io_queues(&ctrl->ctrl);
1011         nvme_rdma_stop_io_queues(ctrl);
1012 out_cleanup_connect_q:
1013         nvme_cancel_tagset(&ctrl->ctrl);
1014         if (new)
1015                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1016 out_free_tag_set:
1017         if (new)
1018                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1019 out_free_io_queues:
1020         nvme_rdma_free_io_queues(ctrl);
1021         return ret;
1022 }
1023
1024 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1025                 bool remove)
1026 {
1027         nvme_stop_admin_queue(&ctrl->ctrl);
1028         blk_sync_queue(ctrl->ctrl.admin_q);
1029         nvme_rdma_stop_queue(&ctrl->queues[0]);
1030         nvme_cancel_admin_tagset(&ctrl->ctrl);
1031         if (remove)
1032                 nvme_start_admin_queue(&ctrl->ctrl);
1033         nvme_rdma_destroy_admin_queue(ctrl, remove);
1034 }
1035
1036 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1037                 bool remove)
1038 {
1039         if (ctrl->ctrl.queue_count > 1) {
1040                 nvme_start_freeze(&ctrl->ctrl);
1041                 nvme_stop_queues(&ctrl->ctrl);
1042                 nvme_sync_io_queues(&ctrl->ctrl);
1043                 nvme_rdma_stop_io_queues(ctrl);
1044                 nvme_cancel_tagset(&ctrl->ctrl);
1045                 if (remove)
1046                         nvme_start_queues(&ctrl->ctrl);
1047                 nvme_rdma_destroy_io_queues(ctrl, remove);
1048         }
1049 }
1050
1051 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1052 {
1053         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1054
1055         if (list_empty(&ctrl->list))
1056                 goto free_ctrl;
1057
1058         mutex_lock(&nvme_rdma_ctrl_mutex);
1059         list_del(&ctrl->list);
1060         mutex_unlock(&nvme_rdma_ctrl_mutex);
1061
1062         nvmf_free_options(nctrl->opts);
1063 free_ctrl:
1064         kfree(ctrl->queues);
1065         kfree(ctrl);
1066 }
1067
1068 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1069 {
1070         /* If we are resetting/deleting then do nothing */
1071         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1072                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1073                         ctrl->ctrl.state == NVME_CTRL_LIVE);
1074                 return;
1075         }
1076
1077         if (nvmf_should_reconnect(&ctrl->ctrl)) {
1078                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1079                         ctrl->ctrl.opts->reconnect_delay);
1080                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1081                                 ctrl->ctrl.opts->reconnect_delay * HZ);
1082         } else {
1083                 nvme_delete_ctrl(&ctrl->ctrl);
1084         }
1085 }
1086
1087 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1088 {
1089         int ret;
1090         bool changed;
1091
1092         ret = nvme_rdma_configure_admin_queue(ctrl, new);
1093         if (ret)
1094                 return ret;
1095
1096         if (ctrl->ctrl.icdoff) {
1097                 ret = -EOPNOTSUPP;
1098                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1099                 goto destroy_admin;
1100         }
1101
1102         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1103                 ret = -EOPNOTSUPP;
1104                 dev_err(ctrl->ctrl.device,
1105                         "Mandatory keyed sgls are not supported!\n");
1106                 goto destroy_admin;
1107         }
1108
1109         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1110                 dev_warn(ctrl->ctrl.device,
1111                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1112                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1113         }
1114
1115         if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1116                 dev_warn(ctrl->ctrl.device,
1117                         "ctrl sqsize %u > max queue size %u, clamping down\n",
1118                         ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1119                 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1120         }
1121
1122         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1123                 dev_warn(ctrl->ctrl.device,
1124                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1125                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1126                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1127         }
1128
1129         if (ctrl->ctrl.sgls & (1 << 20))
1130                 ctrl->use_inline_data = true;
1131
1132         if (ctrl->ctrl.queue_count > 1) {
1133                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1134                 if (ret)
1135                         goto destroy_admin;
1136         }
1137
1138         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1139         if (!changed) {
1140                 /*
1141                  * state change failure is ok if we started ctrl delete,
1142                  * unless we're during creation of a new controller to
1143                  * avoid races with teardown flow.
1144                  */
1145                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1146                              ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1147                 WARN_ON_ONCE(new);
1148                 ret = -EINVAL;
1149                 goto destroy_io;
1150         }
1151
1152         nvme_start_ctrl(&ctrl->ctrl);
1153         return 0;
1154
1155 destroy_io:
1156         if (ctrl->ctrl.queue_count > 1) {
1157                 nvme_stop_queues(&ctrl->ctrl);
1158                 nvme_sync_io_queues(&ctrl->ctrl);
1159                 nvme_rdma_stop_io_queues(ctrl);
1160                 nvme_cancel_tagset(&ctrl->ctrl);
1161                 nvme_rdma_destroy_io_queues(ctrl, new);
1162         }
1163 destroy_admin:
1164         nvme_stop_admin_queue(&ctrl->ctrl);
1165         blk_sync_queue(ctrl->ctrl.admin_q);
1166         nvme_rdma_stop_queue(&ctrl->queues[0]);
1167         nvme_cancel_admin_tagset(&ctrl->ctrl);
1168         nvme_rdma_destroy_admin_queue(ctrl, new);
1169         return ret;
1170 }
1171
1172 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1173 {
1174         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1175                         struct nvme_rdma_ctrl, reconnect_work);
1176
1177         ++ctrl->ctrl.nr_reconnects;
1178
1179         if (nvme_rdma_setup_ctrl(ctrl, false))
1180                 goto requeue;
1181
1182         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1183                         ctrl->ctrl.nr_reconnects);
1184
1185         ctrl->ctrl.nr_reconnects = 0;
1186
1187         return;
1188
1189 requeue:
1190         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1191                         ctrl->ctrl.nr_reconnects);
1192         nvme_rdma_reconnect_or_remove(ctrl);
1193 }
1194
1195 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1196 {
1197         struct nvme_rdma_ctrl *ctrl = container_of(work,
1198                         struct nvme_rdma_ctrl, err_work);
1199
1200         nvme_stop_keep_alive(&ctrl->ctrl);
1201         flush_work(&ctrl->ctrl.async_event_work);
1202         nvme_rdma_teardown_io_queues(ctrl, false);
1203         nvme_start_queues(&ctrl->ctrl);
1204         nvme_rdma_teardown_admin_queue(ctrl, false);
1205         nvme_start_admin_queue(&ctrl->ctrl);
1206
1207         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1208                 /* state change failure is ok if we started ctrl delete */
1209                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1210                              ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1211                 return;
1212         }
1213
1214         nvme_rdma_reconnect_or_remove(ctrl);
1215 }
1216
1217 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1218 {
1219         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1220                 return;
1221
1222         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1223         queue_work(nvme_reset_wq, &ctrl->err_work);
1224 }
1225
1226 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1227 {
1228         struct request *rq = blk_mq_rq_from_pdu(req);
1229
1230         if (!refcount_dec_and_test(&req->ref))
1231                 return;
1232         if (!nvme_try_complete_req(rq, req->status, req->result))
1233                 nvme_rdma_complete_rq(rq);
1234 }
1235
1236 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1237                 const char *op)
1238 {
1239         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1240         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1241
1242         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1243                 dev_info(ctrl->ctrl.device,
1244                              "%s for CQE 0x%p failed with status %s (%d)\n",
1245                              op, wc->wr_cqe,
1246                              ib_wc_status_msg(wc->status), wc->status);
1247         nvme_rdma_error_recovery(ctrl);
1248 }
1249
1250 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1251 {
1252         if (unlikely(wc->status != IB_WC_SUCCESS))
1253                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1254 }
1255
1256 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1257 {
1258         struct nvme_rdma_request *req =
1259                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1260
1261         if (unlikely(wc->status != IB_WC_SUCCESS))
1262                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1263         else
1264                 nvme_rdma_end_request(req);
1265 }
1266
1267 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1268                 struct nvme_rdma_request *req)
1269 {
1270         struct ib_send_wr wr = {
1271                 .opcode             = IB_WR_LOCAL_INV,
1272                 .next               = NULL,
1273                 .num_sge            = 0,
1274                 .send_flags         = IB_SEND_SIGNALED,
1275                 .ex.invalidate_rkey = req->mr->rkey,
1276         };
1277
1278         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1279         wr.wr_cqe = &req->reg_cqe;
1280
1281         return ib_post_send(queue->qp, &wr, NULL);
1282 }
1283
1284 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1285 {
1286         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1287
1288         if (blk_integrity_rq(rq)) {
1289                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1290                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1291                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1292                                       NVME_INLINE_METADATA_SG_CNT);
1293         }
1294
1295         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1296                         rq_dma_dir(rq));
1297         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1298 }
1299
1300 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1301                 struct request *rq)
1302 {
1303         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1304         struct nvme_rdma_device *dev = queue->device;
1305         struct ib_device *ibdev = dev->dev;
1306         struct list_head *pool = &queue->qp->rdma_mrs;
1307
1308         if (!blk_rq_nr_phys_segments(rq))
1309                 return;
1310
1311         if (req->use_sig_mr)
1312                 pool = &queue->qp->sig_mrs;
1313
1314         if (req->mr) {
1315                 ib_mr_pool_put(queue->qp, pool, req->mr);
1316                 req->mr = NULL;
1317         }
1318
1319         nvme_rdma_dma_unmap_req(ibdev, rq);
1320 }
1321
1322 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1323 {
1324         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1325
1326         sg->addr = 0;
1327         put_unaligned_le24(0, sg->length);
1328         put_unaligned_le32(0, sg->key);
1329         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1330         return 0;
1331 }
1332
1333 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1334                 struct nvme_rdma_request *req, struct nvme_command *c,
1335                 int count)
1336 {
1337         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1338         struct ib_sge *sge = &req->sge[1];
1339         struct scatterlist *sgl;
1340         u32 len = 0;
1341         int i;
1342
1343         for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1344                 sge->addr = sg_dma_address(sgl);
1345                 sge->length = sg_dma_len(sgl);
1346                 sge->lkey = queue->device->pd->local_dma_lkey;
1347                 len += sge->length;
1348                 sge++;
1349         }
1350
1351         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1352         sg->length = cpu_to_le32(len);
1353         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1354
1355         req->num_sge += count;
1356         return 0;
1357 }
1358
1359 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1360                 struct nvme_rdma_request *req, struct nvme_command *c)
1361 {
1362         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1363
1364         sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1365         put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1366         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1367         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1368         return 0;
1369 }
1370
1371 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1372                 struct nvme_rdma_request *req, struct nvme_command *c,
1373                 int count)
1374 {
1375         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1376         int nr;
1377
1378         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1379         if (WARN_ON_ONCE(!req->mr))
1380                 return -EAGAIN;
1381
1382         /*
1383          * Align the MR to a 4K page size to match the ctrl page size and
1384          * the block virtual boundary.
1385          */
1386         nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1387                           SZ_4K);
1388         if (unlikely(nr < count)) {
1389                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1390                 req->mr = NULL;
1391                 if (nr < 0)
1392                         return nr;
1393                 return -EINVAL;
1394         }
1395
1396         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1397
1398         req->reg_cqe.done = nvme_rdma_memreg_done;
1399         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1400         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1401         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1402         req->reg_wr.wr.num_sge = 0;
1403         req->reg_wr.mr = req->mr;
1404         req->reg_wr.key = req->mr->rkey;
1405         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1406                              IB_ACCESS_REMOTE_READ |
1407                              IB_ACCESS_REMOTE_WRITE;
1408
1409         sg->addr = cpu_to_le64(req->mr->iova);
1410         put_unaligned_le24(req->mr->length, sg->length);
1411         put_unaligned_le32(req->mr->rkey, sg->key);
1412         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1413                         NVME_SGL_FMT_INVALIDATE;
1414
1415         return 0;
1416 }
1417
1418 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1419                 struct nvme_command *cmd, struct ib_sig_domain *domain,
1420                 u16 control, u8 pi_type)
1421 {
1422         domain->sig_type = IB_SIG_TYPE_T10_DIF;
1423         domain->sig.dif.bg_type = IB_T10DIF_CRC;
1424         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1425         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1426         if (control & NVME_RW_PRINFO_PRCHK_REF)
1427                 domain->sig.dif.ref_remap = true;
1428
1429         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1430         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1431         domain->sig.dif.app_escape = true;
1432         if (pi_type == NVME_NS_DPS_PI_TYPE3)
1433                 domain->sig.dif.ref_escape = true;
1434 }
1435
1436 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1437                 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1438                 u8 pi_type)
1439 {
1440         u16 control = le16_to_cpu(cmd->rw.control);
1441
1442         memset(sig_attrs, 0, sizeof(*sig_attrs));
1443         if (control & NVME_RW_PRINFO_PRACT) {
1444                 /* for WRITE_INSERT/READ_STRIP no memory domain */
1445                 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1446                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1447                                          pi_type);
1448                 /* Clear the PRACT bit since HCA will generate/verify the PI */
1449                 control &= ~NVME_RW_PRINFO_PRACT;
1450                 cmd->rw.control = cpu_to_le16(control);
1451         } else {
1452                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1453                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1454                                          pi_type);
1455                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1456                                          pi_type);
1457         }
1458 }
1459
1460 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1461 {
1462         *mask = 0;
1463         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1464                 *mask |= IB_SIG_CHECK_REFTAG;
1465         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1466                 *mask |= IB_SIG_CHECK_GUARD;
1467 }
1468
1469 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1470 {
1471         if (unlikely(wc->status != IB_WC_SUCCESS))
1472                 nvme_rdma_wr_error(cq, wc, "SIG");
1473 }
1474
1475 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1476                 struct nvme_rdma_request *req, struct nvme_command *c,
1477                 int count, int pi_count)
1478 {
1479         struct nvme_rdma_sgl *sgl = &req->data_sgl;
1480         struct ib_reg_wr *wr = &req->reg_wr;
1481         struct request *rq = blk_mq_rq_from_pdu(req);
1482         struct nvme_ns *ns = rq->q->queuedata;
1483         struct bio *bio = rq->bio;
1484         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1485         int nr;
1486
1487         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1488         if (WARN_ON_ONCE(!req->mr))
1489                 return -EAGAIN;
1490
1491         nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1492                              req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1493                              SZ_4K);
1494         if (unlikely(nr))
1495                 goto mr_put;
1496
1497         nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1498                                 req->mr->sig_attrs, ns->pi_type);
1499         nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1500
1501         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1502
1503         req->reg_cqe.done = nvme_rdma_sig_done;
1504         memset(wr, 0, sizeof(*wr));
1505         wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1506         wr->wr.wr_cqe = &req->reg_cqe;
1507         wr->wr.num_sge = 0;
1508         wr->wr.send_flags = 0;
1509         wr->mr = req->mr;
1510         wr->key = req->mr->rkey;
1511         wr->access = IB_ACCESS_LOCAL_WRITE |
1512                      IB_ACCESS_REMOTE_READ |
1513                      IB_ACCESS_REMOTE_WRITE;
1514
1515         sg->addr = cpu_to_le64(req->mr->iova);
1516         put_unaligned_le24(req->mr->length, sg->length);
1517         put_unaligned_le32(req->mr->rkey, sg->key);
1518         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1519
1520         return 0;
1521
1522 mr_put:
1523         ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1524         req->mr = NULL;
1525         if (nr < 0)
1526                 return nr;
1527         return -EINVAL;
1528 }
1529
1530 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1531                 int *count, int *pi_count)
1532 {
1533         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1534         int ret;
1535
1536         req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1537         ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1538                         blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1539                         NVME_INLINE_SG_CNT);
1540         if (ret)
1541                 return -ENOMEM;
1542
1543         req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1544                                             req->data_sgl.sg_table.sgl);
1545
1546         *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1547                                req->data_sgl.nents, rq_dma_dir(rq));
1548         if (unlikely(*count <= 0)) {
1549                 ret = -EIO;
1550                 goto out_free_table;
1551         }
1552
1553         if (blk_integrity_rq(rq)) {
1554                 req->metadata_sgl->sg_table.sgl =
1555                         (struct scatterlist *)(req->metadata_sgl + 1);
1556                 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1557                                 blk_rq_count_integrity_sg(rq->q, rq->bio),
1558                                 req->metadata_sgl->sg_table.sgl,
1559                                 NVME_INLINE_METADATA_SG_CNT);
1560                 if (unlikely(ret)) {
1561                         ret = -ENOMEM;
1562                         goto out_unmap_sg;
1563                 }
1564
1565                 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1566                                 rq->bio, req->metadata_sgl->sg_table.sgl);
1567                 *pi_count = ib_dma_map_sg(ibdev,
1568                                           req->metadata_sgl->sg_table.sgl,
1569                                           req->metadata_sgl->nents,
1570                                           rq_dma_dir(rq));
1571                 if (unlikely(*pi_count <= 0)) {
1572                         ret = -EIO;
1573                         goto out_free_pi_table;
1574                 }
1575         }
1576
1577         return 0;
1578
1579 out_free_pi_table:
1580         sg_free_table_chained(&req->metadata_sgl->sg_table,
1581                               NVME_INLINE_METADATA_SG_CNT);
1582 out_unmap_sg:
1583         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1584                         rq_dma_dir(rq));
1585 out_free_table:
1586         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1587         return ret;
1588 }
1589
1590 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1591                 struct request *rq, struct nvme_command *c)
1592 {
1593         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1594         struct nvme_rdma_device *dev = queue->device;
1595         struct ib_device *ibdev = dev->dev;
1596         int pi_count = 0;
1597         int count, ret;
1598
1599         req->num_sge = 1;
1600         refcount_set(&req->ref, 2); /* send and recv completions */
1601
1602         c->common.flags |= NVME_CMD_SGL_METABUF;
1603
1604         if (!blk_rq_nr_phys_segments(rq))
1605                 return nvme_rdma_set_sg_null(c);
1606
1607         ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1608         if (unlikely(ret))
1609                 return ret;
1610
1611         if (req->use_sig_mr) {
1612                 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1613                 goto out;
1614         }
1615
1616         if (count <= dev->num_inline_segments) {
1617                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1618                     queue->ctrl->use_inline_data &&
1619                     blk_rq_payload_bytes(rq) <=
1620                                 nvme_rdma_inline_data_size(queue)) {
1621                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1622                         goto out;
1623                 }
1624
1625                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1626                         ret = nvme_rdma_map_sg_single(queue, req, c);
1627                         goto out;
1628                 }
1629         }
1630
1631         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1632 out:
1633         if (unlikely(ret))
1634                 goto out_dma_unmap_req;
1635
1636         return 0;
1637
1638 out_dma_unmap_req:
1639         nvme_rdma_dma_unmap_req(ibdev, rq);
1640         return ret;
1641 }
1642
1643 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1644 {
1645         struct nvme_rdma_qe *qe =
1646                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1647         struct nvme_rdma_request *req =
1648                 container_of(qe, struct nvme_rdma_request, sqe);
1649
1650         if (unlikely(wc->status != IB_WC_SUCCESS))
1651                 nvme_rdma_wr_error(cq, wc, "SEND");
1652         else
1653                 nvme_rdma_end_request(req);
1654 }
1655
1656 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1657                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1658                 struct ib_send_wr *first)
1659 {
1660         struct ib_send_wr wr;
1661         int ret;
1662
1663         sge->addr   = qe->dma;
1664         sge->length = sizeof(struct nvme_command);
1665         sge->lkey   = queue->device->pd->local_dma_lkey;
1666
1667         wr.next       = NULL;
1668         wr.wr_cqe     = &qe->cqe;
1669         wr.sg_list    = sge;
1670         wr.num_sge    = num_sge;
1671         wr.opcode     = IB_WR_SEND;
1672         wr.send_flags = IB_SEND_SIGNALED;
1673
1674         if (first)
1675                 first->next = &wr;
1676         else
1677                 first = &wr;
1678
1679         ret = ib_post_send(queue->qp, first, NULL);
1680         if (unlikely(ret)) {
1681                 dev_err(queue->ctrl->ctrl.device,
1682                              "%s failed with error code %d\n", __func__, ret);
1683         }
1684         return ret;
1685 }
1686
1687 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1688                 struct nvme_rdma_qe *qe)
1689 {
1690         struct ib_recv_wr wr;
1691         struct ib_sge list;
1692         int ret;
1693
1694         list.addr   = qe->dma;
1695         list.length = sizeof(struct nvme_completion);
1696         list.lkey   = queue->device->pd->local_dma_lkey;
1697
1698         qe->cqe.done = nvme_rdma_recv_done;
1699
1700         wr.next     = NULL;
1701         wr.wr_cqe   = &qe->cqe;
1702         wr.sg_list  = &list;
1703         wr.num_sge  = 1;
1704
1705         ret = ib_post_recv(queue->qp, &wr, NULL);
1706         if (unlikely(ret)) {
1707                 dev_err(queue->ctrl->ctrl.device,
1708                         "%s failed with error code %d\n", __func__, ret);
1709         }
1710         return ret;
1711 }
1712
1713 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1714 {
1715         u32 queue_idx = nvme_rdma_queue_idx(queue);
1716
1717         if (queue_idx == 0)
1718                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1719         return queue->ctrl->tag_set.tags[queue_idx - 1];
1720 }
1721
1722 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1723 {
1724         if (unlikely(wc->status != IB_WC_SUCCESS))
1725                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1726 }
1727
1728 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1729 {
1730         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1731         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1732         struct ib_device *dev = queue->device->dev;
1733         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1734         struct nvme_command *cmd = sqe->data;
1735         struct ib_sge sge;
1736         int ret;
1737
1738         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1739
1740         memset(cmd, 0, sizeof(*cmd));
1741         cmd->common.opcode = nvme_admin_async_event;
1742         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1743         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1744         nvme_rdma_set_sg_null(cmd);
1745
1746         sqe->cqe.done = nvme_rdma_async_done;
1747
1748         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1749                         DMA_TO_DEVICE);
1750
1751         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1752         WARN_ON_ONCE(ret);
1753 }
1754
1755 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1756                 struct nvme_completion *cqe, struct ib_wc *wc)
1757 {
1758         struct request *rq;
1759         struct nvme_rdma_request *req;
1760
1761         rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1762         if (!rq) {
1763                 dev_err(queue->ctrl->ctrl.device,
1764                         "got bad command_id %#x on QP %#x\n",
1765                         cqe->command_id, queue->qp->qp_num);
1766                 nvme_rdma_error_recovery(queue->ctrl);
1767                 return;
1768         }
1769         req = blk_mq_rq_to_pdu(rq);
1770
1771         req->status = cqe->status;
1772         req->result = cqe->result;
1773
1774         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1775                 if (unlikely(!req->mr ||
1776                              wc->ex.invalidate_rkey != req->mr->rkey)) {
1777                         dev_err(queue->ctrl->ctrl.device,
1778                                 "Bogus remote invalidation for rkey %#x\n",
1779                                 req->mr ? req->mr->rkey : 0);
1780                         nvme_rdma_error_recovery(queue->ctrl);
1781                 }
1782         } else if (req->mr) {
1783                 int ret;
1784
1785                 ret = nvme_rdma_inv_rkey(queue, req);
1786                 if (unlikely(ret < 0)) {
1787                         dev_err(queue->ctrl->ctrl.device,
1788                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1789                                 req->mr->rkey, ret);
1790                         nvme_rdma_error_recovery(queue->ctrl);
1791                 }
1792                 /* the local invalidation completion will end the request */
1793                 return;
1794         }
1795
1796         nvme_rdma_end_request(req);
1797 }
1798
1799 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1800 {
1801         struct nvme_rdma_qe *qe =
1802                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1803         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1804         struct ib_device *ibdev = queue->device->dev;
1805         struct nvme_completion *cqe = qe->data;
1806         const size_t len = sizeof(struct nvme_completion);
1807
1808         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1809                 nvme_rdma_wr_error(cq, wc, "RECV");
1810                 return;
1811         }
1812
1813         /* sanity checking for received data length */
1814         if (unlikely(wc->byte_len < len)) {
1815                 dev_err(queue->ctrl->ctrl.device,
1816                         "Unexpected nvme completion length(%d)\n", wc->byte_len);
1817                 nvme_rdma_error_recovery(queue->ctrl);
1818                 return;
1819         }
1820
1821         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1822         /*
1823          * AEN requests are special as they don't time out and can
1824          * survive any kind of queue freeze and often don't respond to
1825          * aborts.  We don't even bother to allocate a struct request
1826          * for them but rather special case them here.
1827          */
1828         if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1829                                      cqe->command_id)))
1830                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1831                                 &cqe->result);
1832         else
1833                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1834         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1835
1836         nvme_rdma_post_recv(queue, qe);
1837 }
1838
1839 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1840 {
1841         int ret, i;
1842
1843         for (i = 0; i < queue->queue_size; i++) {
1844                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1845                 if (ret)
1846                         return ret;
1847         }
1848
1849         return 0;
1850 }
1851
1852 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1853                 struct rdma_cm_event *ev)
1854 {
1855         struct rdma_cm_id *cm_id = queue->cm_id;
1856         int status = ev->status;
1857         const char *rej_msg;
1858         const struct nvme_rdma_cm_rej *rej_data;
1859         u8 rej_data_len;
1860
1861         rej_msg = rdma_reject_msg(cm_id, status);
1862         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1863
1864         if (rej_data && rej_data_len >= sizeof(u16)) {
1865                 u16 sts = le16_to_cpu(rej_data->sts);
1866
1867                 dev_err(queue->ctrl->ctrl.device,
1868                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1869                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1870         } else {
1871                 dev_err(queue->ctrl->ctrl.device,
1872                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1873         }
1874
1875         return -ECONNRESET;
1876 }
1877
1878 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1879 {
1880         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1881         int ret;
1882
1883         ret = nvme_rdma_create_queue_ib(queue);
1884         if (ret)
1885                 return ret;
1886
1887         if (ctrl->opts->tos >= 0)
1888                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1889         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1890         if (ret) {
1891                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1892                         queue->cm_error);
1893                 goto out_destroy_queue;
1894         }
1895
1896         return 0;
1897
1898 out_destroy_queue:
1899         nvme_rdma_destroy_queue_ib(queue);
1900         return ret;
1901 }
1902
1903 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1904 {
1905         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1906         struct rdma_conn_param param = { };
1907         struct nvme_rdma_cm_req priv = { };
1908         int ret;
1909
1910         param.qp_num = queue->qp->qp_num;
1911         param.flow_control = 1;
1912
1913         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1914         /* maximum retry count */
1915         param.retry_count = 7;
1916         param.rnr_retry_count = 7;
1917         param.private_data = &priv;
1918         param.private_data_len = sizeof(priv);
1919
1920         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1921         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1922         /*
1923          * set the admin queue depth to the minimum size
1924          * specified by the Fabrics standard.
1925          */
1926         if (priv.qid == 0) {
1927                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1928                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1929         } else {
1930                 /*
1931                  * current interpretation of the fabrics spec
1932                  * is at minimum you make hrqsize sqsize+1, or a
1933                  * 1's based representation of sqsize.
1934                  */
1935                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1936                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1937         }
1938
1939         ret = rdma_connect_locked(queue->cm_id, &param);
1940         if (ret) {
1941                 dev_err(ctrl->ctrl.device,
1942                         "rdma_connect_locked failed (%d).\n", ret);
1943                 return ret;
1944         }
1945
1946         return 0;
1947 }
1948
1949 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1950                 struct rdma_cm_event *ev)
1951 {
1952         struct nvme_rdma_queue *queue = cm_id->context;
1953         int cm_error = 0;
1954
1955         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1956                 rdma_event_msg(ev->event), ev->event,
1957                 ev->status, cm_id);
1958
1959         switch (ev->event) {
1960         case RDMA_CM_EVENT_ADDR_RESOLVED:
1961                 cm_error = nvme_rdma_addr_resolved(queue);
1962                 break;
1963         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1964                 cm_error = nvme_rdma_route_resolved(queue);
1965                 break;
1966         case RDMA_CM_EVENT_ESTABLISHED:
1967                 queue->cm_error = nvme_rdma_conn_established(queue);
1968                 /* complete cm_done regardless of success/failure */
1969                 complete(&queue->cm_done);
1970                 return 0;
1971         case RDMA_CM_EVENT_REJECTED:
1972                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1973                 break;
1974         case RDMA_CM_EVENT_ROUTE_ERROR:
1975         case RDMA_CM_EVENT_CONNECT_ERROR:
1976         case RDMA_CM_EVENT_UNREACHABLE:
1977         case RDMA_CM_EVENT_ADDR_ERROR:
1978                 dev_dbg(queue->ctrl->ctrl.device,
1979                         "CM error event %d\n", ev->event);
1980                 cm_error = -ECONNRESET;
1981                 break;
1982         case RDMA_CM_EVENT_DISCONNECTED:
1983         case RDMA_CM_EVENT_ADDR_CHANGE:
1984         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1985                 dev_dbg(queue->ctrl->ctrl.device,
1986                         "disconnect received - connection closed\n");
1987                 nvme_rdma_error_recovery(queue->ctrl);
1988                 break;
1989         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1990                 /* device removal is handled via the ib_client API */
1991                 break;
1992         default:
1993                 dev_err(queue->ctrl->ctrl.device,
1994                         "Unexpected RDMA CM event (%d)\n", ev->event);
1995                 nvme_rdma_error_recovery(queue->ctrl);
1996                 break;
1997         }
1998
1999         if (cm_error) {
2000                 queue->cm_error = cm_error;
2001                 complete(&queue->cm_done);
2002         }
2003
2004         return 0;
2005 }
2006
2007 static void nvme_rdma_complete_timed_out(struct request *rq)
2008 {
2009         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2010         struct nvme_rdma_queue *queue = req->queue;
2011
2012         nvme_rdma_stop_queue(queue);
2013         nvmf_complete_timed_out_request(rq);
2014 }
2015
2016 static enum blk_eh_timer_return
2017 nvme_rdma_timeout(struct request *rq, bool reserved)
2018 {
2019         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2020         struct nvme_rdma_queue *queue = req->queue;
2021         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2022
2023         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2024                  rq->tag, nvme_rdma_queue_idx(queue));
2025
2026         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2027                 /*
2028                  * If we are resetting, connecting or deleting we should
2029                  * complete immediately because we may block controller
2030                  * teardown or setup sequence
2031                  * - ctrl disable/shutdown fabrics requests
2032                  * - connect requests
2033                  * - initialization admin requests
2034                  * - I/O requests that entered after unquiescing and
2035                  *   the controller stopped responding
2036                  *
2037                  * All other requests should be cancelled by the error
2038                  * recovery work, so it's fine that we fail it here.
2039                  */
2040                 nvme_rdma_complete_timed_out(rq);
2041                 return BLK_EH_DONE;
2042         }
2043
2044         /*
2045          * LIVE state should trigger the normal error recovery which will
2046          * handle completing this request.
2047          */
2048         nvme_rdma_error_recovery(ctrl);
2049         return BLK_EH_RESET_TIMER;
2050 }
2051
2052 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2053                 const struct blk_mq_queue_data *bd)
2054 {
2055         struct nvme_ns *ns = hctx->queue->queuedata;
2056         struct nvme_rdma_queue *queue = hctx->driver_data;
2057         struct request *rq = bd->rq;
2058         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2059         struct nvme_rdma_qe *sqe = &req->sqe;
2060         struct nvme_command *c = nvme_req(rq)->cmd;
2061         struct ib_device *dev;
2062         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2063         blk_status_t ret;
2064         int err;
2065
2066         WARN_ON_ONCE(rq->tag < 0);
2067
2068         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2069                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2070
2071         dev = queue->device->dev;
2072
2073         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2074                                          sizeof(struct nvme_command),
2075                                          DMA_TO_DEVICE);
2076         err = ib_dma_mapping_error(dev, req->sqe.dma);
2077         if (unlikely(err))
2078                 return BLK_STS_RESOURCE;
2079
2080         ib_dma_sync_single_for_cpu(dev, sqe->dma,
2081                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2082
2083         ret = nvme_setup_cmd(ns, rq);
2084         if (ret)
2085                 goto unmap_qe;
2086
2087         blk_mq_start_request(rq);
2088
2089         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2090             queue->pi_support &&
2091             (c->common.opcode == nvme_cmd_write ||
2092              c->common.opcode == nvme_cmd_read) &&
2093             nvme_ns_has_pi(ns))
2094                 req->use_sig_mr = true;
2095         else
2096                 req->use_sig_mr = false;
2097
2098         err = nvme_rdma_map_data(queue, rq, c);
2099         if (unlikely(err < 0)) {
2100                 dev_err(queue->ctrl->ctrl.device,
2101                              "Failed to map data (%d)\n", err);
2102                 goto err;
2103         }
2104
2105         sqe->cqe.done = nvme_rdma_send_done;
2106
2107         ib_dma_sync_single_for_device(dev, sqe->dma,
2108                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2109
2110         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2111                         req->mr ? &req->reg_wr.wr : NULL);
2112         if (unlikely(err))
2113                 goto err_unmap;
2114
2115         return BLK_STS_OK;
2116
2117 err_unmap:
2118         nvme_rdma_unmap_data(queue, rq);
2119 err:
2120         if (err == -EIO)
2121                 ret = nvme_host_path_error(rq);
2122         else if (err == -ENOMEM || err == -EAGAIN)
2123                 ret = BLK_STS_RESOURCE;
2124         else
2125                 ret = BLK_STS_IOERR;
2126         nvme_cleanup_cmd(rq);
2127 unmap_qe:
2128         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2129                             DMA_TO_DEVICE);
2130         return ret;
2131 }
2132
2133 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2134 {
2135         struct nvme_rdma_queue *queue = hctx->driver_data;
2136
2137         return ib_process_cq_direct(queue->ib_cq, -1);
2138 }
2139
2140 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2141 {
2142         struct request *rq = blk_mq_rq_from_pdu(req);
2143         struct ib_mr_status mr_status;
2144         int ret;
2145
2146         ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2147         if (ret) {
2148                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2149                 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2150                 return;
2151         }
2152
2153         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2154                 switch (mr_status.sig_err.err_type) {
2155                 case IB_SIG_BAD_GUARD:
2156                         nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2157                         break;
2158                 case IB_SIG_BAD_REFTAG:
2159                         nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2160                         break;
2161                 case IB_SIG_BAD_APPTAG:
2162                         nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2163                         break;
2164                 }
2165                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2166                        mr_status.sig_err.err_type, mr_status.sig_err.expected,
2167                        mr_status.sig_err.actual);
2168         }
2169 }
2170
2171 static void nvme_rdma_complete_rq(struct request *rq)
2172 {
2173         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2174         struct nvme_rdma_queue *queue = req->queue;
2175         struct ib_device *ibdev = queue->device->dev;
2176
2177         if (req->use_sig_mr)
2178                 nvme_rdma_check_pi_status(req);
2179
2180         nvme_rdma_unmap_data(queue, rq);
2181         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2182                             DMA_TO_DEVICE);
2183         nvme_complete_rq(rq);
2184 }
2185
2186 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2187 {
2188         struct nvme_rdma_ctrl *ctrl = set->driver_data;
2189         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2190
2191         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2192                 /* separate read/write queues */
2193                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2194                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2195                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2196                 set->map[HCTX_TYPE_READ].nr_queues =
2197                         ctrl->io_queues[HCTX_TYPE_READ];
2198                 set->map[HCTX_TYPE_READ].queue_offset =
2199                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2200         } else {
2201                 /* shared read/write queues */
2202                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2203                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2204                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2205                 set->map[HCTX_TYPE_READ].nr_queues =
2206                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2207                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2208         }
2209         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2210                         ctrl->device->dev, 0);
2211         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2212                         ctrl->device->dev, 0);
2213
2214         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2215                 /* map dedicated poll queues only if we have queues left */
2216                 set->map[HCTX_TYPE_POLL].nr_queues =
2217                                 ctrl->io_queues[HCTX_TYPE_POLL];
2218                 set->map[HCTX_TYPE_POLL].queue_offset =
2219                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2220                         ctrl->io_queues[HCTX_TYPE_READ];
2221                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2222         }
2223
2224         dev_info(ctrl->ctrl.device,
2225                 "mapped %d/%d/%d default/read/poll queues.\n",
2226                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2227                 ctrl->io_queues[HCTX_TYPE_READ],
2228                 ctrl->io_queues[HCTX_TYPE_POLL]);
2229
2230         return 0;
2231 }
2232
2233 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2234         .queue_rq       = nvme_rdma_queue_rq,
2235         .complete       = nvme_rdma_complete_rq,
2236         .init_request   = nvme_rdma_init_request,
2237         .exit_request   = nvme_rdma_exit_request,
2238         .init_hctx      = nvme_rdma_init_hctx,
2239         .timeout        = nvme_rdma_timeout,
2240         .map_queues     = nvme_rdma_map_queues,
2241         .poll           = nvme_rdma_poll,
2242 };
2243
2244 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2245         .queue_rq       = nvme_rdma_queue_rq,
2246         .complete       = nvme_rdma_complete_rq,
2247         .init_request   = nvme_rdma_init_request,
2248         .exit_request   = nvme_rdma_exit_request,
2249         .init_hctx      = nvme_rdma_init_admin_hctx,
2250         .timeout        = nvme_rdma_timeout,
2251 };
2252
2253 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2254 {
2255         cancel_work_sync(&ctrl->err_work);
2256         cancel_delayed_work_sync(&ctrl->reconnect_work);
2257
2258         nvme_rdma_teardown_io_queues(ctrl, shutdown);
2259         nvme_stop_admin_queue(&ctrl->ctrl);
2260         if (shutdown)
2261                 nvme_shutdown_ctrl(&ctrl->ctrl);
2262         else
2263                 nvme_disable_ctrl(&ctrl->ctrl);
2264         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2265 }
2266
2267 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2268 {
2269         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2270 }
2271
2272 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2273 {
2274         struct nvme_rdma_ctrl *ctrl =
2275                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2276
2277         nvme_stop_ctrl(&ctrl->ctrl);
2278         nvme_rdma_shutdown_ctrl(ctrl, false);
2279
2280         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2281                 /* state change failure should never happen */
2282                 WARN_ON_ONCE(1);
2283                 return;
2284         }
2285
2286         if (nvme_rdma_setup_ctrl(ctrl, false))
2287                 goto out_fail;
2288
2289         return;
2290
2291 out_fail:
2292         ++ctrl->ctrl.nr_reconnects;
2293         nvme_rdma_reconnect_or_remove(ctrl);
2294 }
2295
2296 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2297         .name                   = "rdma",
2298         .module                 = THIS_MODULE,
2299         .flags                  = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2300         .reg_read32             = nvmf_reg_read32,
2301         .reg_read64             = nvmf_reg_read64,
2302         .reg_write32            = nvmf_reg_write32,
2303         .free_ctrl              = nvme_rdma_free_ctrl,
2304         .submit_async_event     = nvme_rdma_submit_async_event,
2305         .delete_ctrl            = nvme_rdma_delete_ctrl,
2306         .get_address            = nvmf_get_address,
2307 };
2308
2309 /*
2310  * Fails a connection request if it matches an existing controller
2311  * (association) with the same tuple:
2312  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2313  *
2314  * if local address is not specified in the request, it will match an
2315  * existing controller with all the other parameters the same and no
2316  * local port address specified as well.
2317  *
2318  * The ports don't need to be compared as they are intrinsically
2319  * already matched by the port pointers supplied.
2320  */
2321 static bool
2322 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2323 {
2324         struct nvme_rdma_ctrl *ctrl;
2325         bool found = false;
2326
2327         mutex_lock(&nvme_rdma_ctrl_mutex);
2328         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2329                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2330                 if (found)
2331                         break;
2332         }
2333         mutex_unlock(&nvme_rdma_ctrl_mutex);
2334
2335         return found;
2336 }
2337
2338 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2339                 struct nvmf_ctrl_options *opts)
2340 {
2341         struct nvme_rdma_ctrl *ctrl;
2342         int ret;
2343         bool changed;
2344
2345         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2346         if (!ctrl)
2347                 return ERR_PTR(-ENOMEM);
2348         ctrl->ctrl.opts = opts;
2349         INIT_LIST_HEAD(&ctrl->list);
2350
2351         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2352                 opts->trsvcid =
2353                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2354                 if (!opts->trsvcid) {
2355                         ret = -ENOMEM;
2356                         goto out_free_ctrl;
2357                 }
2358                 opts->mask |= NVMF_OPT_TRSVCID;
2359         }
2360
2361         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2362                         opts->traddr, opts->trsvcid, &ctrl->addr);
2363         if (ret) {
2364                 pr_err("malformed address passed: %s:%s\n",
2365                         opts->traddr, opts->trsvcid);
2366                 goto out_free_ctrl;
2367         }
2368
2369         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2370                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2371                         opts->host_traddr, NULL, &ctrl->src_addr);
2372                 if (ret) {
2373                         pr_err("malformed src address passed: %s\n",
2374                                opts->host_traddr);
2375                         goto out_free_ctrl;
2376                 }
2377         }
2378
2379         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2380                 ret = -EALREADY;
2381                 goto out_free_ctrl;
2382         }
2383
2384         INIT_DELAYED_WORK(&ctrl->reconnect_work,
2385                         nvme_rdma_reconnect_ctrl_work);
2386         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2387         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2388
2389         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2390                                 opts->nr_poll_queues + 1;
2391         ctrl->ctrl.sqsize = opts->queue_size - 1;
2392         ctrl->ctrl.kato = opts->kato;
2393
2394         ret = -ENOMEM;
2395         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2396                                 GFP_KERNEL);
2397         if (!ctrl->queues)
2398                 goto out_free_ctrl;
2399
2400         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2401                                 0 /* no quirks, we're perfect! */);
2402         if (ret)
2403                 goto out_kfree_queues;
2404
2405         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2406         WARN_ON_ONCE(!changed);
2407
2408         ret = nvme_rdma_setup_ctrl(ctrl, true);
2409         if (ret)
2410                 goto out_uninit_ctrl;
2411
2412         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2413                 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2414
2415         mutex_lock(&nvme_rdma_ctrl_mutex);
2416         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2417         mutex_unlock(&nvme_rdma_ctrl_mutex);
2418
2419         return &ctrl->ctrl;
2420
2421 out_uninit_ctrl:
2422         nvme_uninit_ctrl(&ctrl->ctrl);
2423         nvme_put_ctrl(&ctrl->ctrl);
2424         if (ret > 0)
2425                 ret = -EIO;
2426         return ERR_PTR(ret);
2427 out_kfree_queues:
2428         kfree(ctrl->queues);
2429 out_free_ctrl:
2430         kfree(ctrl);
2431         return ERR_PTR(ret);
2432 }
2433
2434 static struct nvmf_transport_ops nvme_rdma_transport = {
2435         .name           = "rdma",
2436         .module         = THIS_MODULE,
2437         .required_opts  = NVMF_OPT_TRADDR,
2438         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2439                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2440                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2441                           NVMF_OPT_TOS,
2442         .create_ctrl    = nvme_rdma_create_ctrl,
2443 };
2444
2445 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2446 {
2447         struct nvme_rdma_ctrl *ctrl;
2448         struct nvme_rdma_device *ndev;
2449         bool found = false;
2450
2451         mutex_lock(&device_list_mutex);
2452         list_for_each_entry(ndev, &device_list, entry) {
2453                 if (ndev->dev == ib_device) {
2454                         found = true;
2455                         break;
2456                 }
2457         }
2458         mutex_unlock(&device_list_mutex);
2459
2460         if (!found)
2461                 return;
2462
2463         /* Delete all controllers using this device */
2464         mutex_lock(&nvme_rdma_ctrl_mutex);
2465         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2466                 if (ctrl->device->dev != ib_device)
2467                         continue;
2468                 nvme_delete_ctrl(&ctrl->ctrl);
2469         }
2470         mutex_unlock(&nvme_rdma_ctrl_mutex);
2471
2472         flush_workqueue(nvme_delete_wq);
2473 }
2474
2475 static struct ib_client nvme_rdma_ib_client = {
2476         .name   = "nvme_rdma",
2477         .remove = nvme_rdma_remove_one
2478 };
2479
2480 static int __init nvme_rdma_init_module(void)
2481 {
2482         int ret;
2483
2484         ret = ib_register_client(&nvme_rdma_ib_client);
2485         if (ret)
2486                 return ret;
2487
2488         ret = nvmf_register_transport(&nvme_rdma_transport);
2489         if (ret)
2490                 goto err_unreg_client;
2491
2492         return 0;
2493
2494 err_unreg_client:
2495         ib_unregister_client(&nvme_rdma_ib_client);
2496         return ret;
2497 }
2498
2499 static void __exit nvme_rdma_cleanup_module(void)
2500 {
2501         struct nvme_rdma_ctrl *ctrl;
2502
2503         nvmf_unregister_transport(&nvme_rdma_transport);
2504         ib_unregister_client(&nvme_rdma_ib_client);
2505
2506         mutex_lock(&nvme_rdma_ctrl_mutex);
2507         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2508                 nvme_delete_ctrl(&ctrl->ctrl);
2509         mutex_unlock(&nvme_rdma_ctrl_mutex);
2510         flush_workqueue(nvme_delete_wq);
2511 }
2512
2513 module_init(nvme_rdma_init_module);
2514 module_exit(nvme_rdma_cleanup_module);
2515
2516 MODULE_LICENSE("GPL v2");