cf36dd39f2a500fc00f7acf2f33b470f3bcac3cd
[sfrench/cifs-2.6.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33
34 #include "nvme.h"
35
36 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 static int use_threaded_interrupts;
42 module_param(use_threaded_interrupts, int, 0);
43
44 static bool use_cmb_sqes = true;
45 module_param(use_cmb_sqes, bool, 0644);
46 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47
48 static unsigned int max_host_mem_size_mb = 128;
49 module_param(max_host_mem_size_mb, uint, 0444);
50 MODULE_PARM_DESC(max_host_mem_size_mb,
51         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52
53 static unsigned int sgl_threshold = SZ_32K;
54 module_param(sgl_threshold, uint, 0644);
55 MODULE_PARM_DESC(sgl_threshold,
56                 "Use SGLs when average request segment size is larger or equal to "
57                 "this size. Use 0 to disable SGLs.");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue *queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned online_queues;
87         unsigned max_qid;
88         unsigned int num_vecs;
89         int q_depth;
90         u32 db_stride;
91         void __iomem *bar;
92         unsigned long bar_mapped_size;
93         struct work_struct remove_work;
94         struct mutex shutdown_lock;
95         bool subsystem;
96         void __iomem *cmb;
97         pci_bus_addr_t cmb_bus_addr;
98         u64 cmb_size;
99         u32 cmbsz;
100         u32 cmbloc;
101         struct nvme_ctrl ctrl;
102         struct completion ioq_wait;
103
104         /* shadow doorbell buffer support: */
105         u32 *dbbuf_dbs;
106         dma_addr_t dbbuf_dbs_dma_addr;
107         u32 *dbbuf_eis;
108         dma_addr_t dbbuf_eis_dma_addr;
109
110         /* host memory buffer support: */
111         u64 host_mem_size;
112         u32 nr_host_mem_descs;
113         dma_addr_t host_mem_descs_dma;
114         struct nvme_host_mem_buf_desc *host_mem_descs;
115         void **host_mem_desc_bufs;
116 };
117
118 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
119 {
120         int n = 0, ret;
121
122         ret = kstrtoint(val, 10, &n);
123         if (ret != 0 || n < 2)
124                 return -EINVAL;
125
126         return param_set_int(val, kp);
127 }
128
129 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
130 {
131         return qid * 2 * stride;
132 }
133
134 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
135 {
136         return (qid * 2 + 1) * stride;
137 }
138
139 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
140 {
141         return container_of(ctrl, struct nvme_dev, ctrl);
142 }
143
144 /*
145  * An NVM Express queue.  Each device has at least two (one for admin
146  * commands and one for I/O commands).
147  */
148 struct nvme_queue {
149         struct device *q_dmadev;
150         struct nvme_dev *dev;
151         spinlock_t q_lock;
152         struct nvme_command *sq_cmds;
153         struct nvme_command __iomem *sq_cmds_io;
154         volatile struct nvme_completion *cqes;
155         struct blk_mq_tags **tags;
156         dma_addr_t sq_dma_addr;
157         dma_addr_t cq_dma_addr;
158         u32 __iomem *q_db;
159         u16 q_depth;
160         s16 cq_vector;
161         u16 sq_tail;
162         u16 cq_head;
163         u16 qid;
164         u8 cq_phase;
165         u8 cqe_seen;
166         u32 *dbbuf_sq_db;
167         u32 *dbbuf_cq_db;
168         u32 *dbbuf_sq_ei;
169         u32 *dbbuf_cq_ei;
170 };
171
172 /*
173  * The nvme_iod describes the data in an I/O, including the list of PRP
174  * entries.  You can't see it in this data structure because C doesn't let
175  * me express that.  Use nvme_init_iod to ensure there's enough space
176  * allocated to store the PRP list.
177  */
178 struct nvme_iod {
179         struct nvme_request req;
180         struct nvme_queue *nvmeq;
181         bool use_sgl;
182         int aborted;
183         int npages;             /* In the PRP list. 0 means small pool in use */
184         int nents;              /* Used in scatterlist */
185         int length;             /* Of data, in bytes */
186         dma_addr_t first_dma;
187         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
188         struct scatterlist *sg;
189         struct scatterlist inline_sg[0];
190 };
191
192 /*
193  * Check we didin't inadvertently grow the command struct
194  */
195 static inline void _nvme_check_size(void)
196 {
197         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
204         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
205         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
206         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
207         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
208         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
209         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
210 }
211
212 static inline unsigned int nvme_dbbuf_size(u32 stride)
213 {
214         return ((num_possible_cpus() + 1) * 8 * stride);
215 }
216
217 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
218 {
219         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
220
221         if (dev->dbbuf_dbs)
222                 return 0;
223
224         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
225                                             &dev->dbbuf_dbs_dma_addr,
226                                             GFP_KERNEL);
227         if (!dev->dbbuf_dbs)
228                 return -ENOMEM;
229         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
230                                             &dev->dbbuf_eis_dma_addr,
231                                             GFP_KERNEL);
232         if (!dev->dbbuf_eis) {
233                 dma_free_coherent(dev->dev, mem_size,
234                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
235                 dev->dbbuf_dbs = NULL;
236                 return -ENOMEM;
237         }
238
239         return 0;
240 }
241
242 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
243 {
244         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
245
246         if (dev->dbbuf_dbs) {
247                 dma_free_coherent(dev->dev, mem_size,
248                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
249                 dev->dbbuf_dbs = NULL;
250         }
251         if (dev->dbbuf_eis) {
252                 dma_free_coherent(dev->dev, mem_size,
253                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
254                 dev->dbbuf_eis = NULL;
255         }
256 }
257
258 static void nvme_dbbuf_init(struct nvme_dev *dev,
259                             struct nvme_queue *nvmeq, int qid)
260 {
261         if (!dev->dbbuf_dbs || !qid)
262                 return;
263
264         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
266         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
267         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
268 }
269
270 static void nvme_dbbuf_set(struct nvme_dev *dev)
271 {
272         struct nvme_command c;
273
274         if (!dev->dbbuf_dbs)
275                 return;
276
277         memset(&c, 0, sizeof(c));
278         c.dbbuf.opcode = nvme_admin_dbbuf;
279         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
280         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
281
282         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
283                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
284                 /* Free memory and continue on */
285                 nvme_dbbuf_dma_free(dev);
286         }
287 }
288
289 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
290 {
291         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
292 }
293
294 /* Update dbbuf and return true if an MMIO is required */
295 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
296                                               volatile u32 *dbbuf_ei)
297 {
298         if (dbbuf_db) {
299                 u16 old_value;
300
301                 /*
302                  * Ensure that the queue is written before updating
303                  * the doorbell in memory
304                  */
305                 wmb();
306
307                 old_value = *dbbuf_db;
308                 *dbbuf_db = value;
309
310                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
311                         return false;
312         }
313
314         return true;
315 }
316
317 /*
318  * Max size of iod being embedded in the request payload
319  */
320 #define NVME_INT_PAGES          2
321 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
322
323 /*
324  * Will slightly overestimate the number of pages needed.  This is OK
325  * as it only leads to a small amount of wasted memory for the lifetime of
326  * the I/O.
327  */
328 static int nvme_npages(unsigned size, struct nvme_dev *dev)
329 {
330         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
331                                       dev->ctrl.page_size);
332         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
333 }
334
335 /*
336  * Calculates the number of pages needed for the SGL segments. For example a 4k
337  * page can accommodate 256 SGL descriptors.
338  */
339 static int nvme_pci_npages_sgl(unsigned int num_seg)
340 {
341         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
342 }
343
344 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
345                 unsigned int size, unsigned int nseg, bool use_sgl)
346 {
347         size_t alloc_size;
348
349         if (use_sgl)
350                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
351         else
352                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
353
354         return alloc_size + sizeof(struct scatterlist) * nseg;
355 }
356
357 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
358 {
359         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
360                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
361                                     use_sgl);
362
363         return sizeof(struct nvme_iod) + alloc_size;
364 }
365
366 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
367                                 unsigned int hctx_idx)
368 {
369         struct nvme_dev *dev = data;
370         struct nvme_queue *nvmeq = &dev->queues[0];
371
372         WARN_ON(hctx_idx != 0);
373         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
374         WARN_ON(nvmeq->tags);
375
376         hctx->driver_data = nvmeq;
377         nvmeq->tags = &dev->admin_tagset.tags[0];
378         return 0;
379 }
380
381 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
382 {
383         struct nvme_queue *nvmeq = hctx->driver_data;
384
385         nvmeq->tags = NULL;
386 }
387
388 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
389                           unsigned int hctx_idx)
390 {
391         struct nvme_dev *dev = data;
392         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
393
394         if (!nvmeq->tags)
395                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
396
397         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
398         hctx->driver_data = nvmeq;
399         return 0;
400 }
401
402 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
403                 unsigned int hctx_idx, unsigned int numa_node)
404 {
405         struct nvme_dev *dev = set->driver_data;
406         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
407         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
408         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
409
410         BUG_ON(!nvmeq);
411         iod->nvmeq = nvmeq;
412         return 0;
413 }
414
415 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
416 {
417         struct nvme_dev *dev = set->driver_data;
418
419         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
420                         dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
421 }
422
423 /**
424  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
425  * @nvmeq: The queue to use
426  * @cmd: The command to send
427  *
428  * Safe to use from interrupt context
429  */
430 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
431                                                 struct nvme_command *cmd)
432 {
433         u16 tail = nvmeq->sq_tail;
434
435         if (nvmeq->sq_cmds_io)
436                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
437         else
438                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
439
440         if (++tail == nvmeq->q_depth)
441                 tail = 0;
442         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
443                                               nvmeq->dbbuf_sq_ei))
444                 writel(tail, nvmeq->q_db);
445         nvmeq->sq_tail = tail;
446 }
447
448 static void **nvme_pci_iod_list(struct request *req)
449 {
450         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
451         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
452 }
453
454 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
455 {
456         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457         int nseg = blk_rq_nr_phys_segments(req);
458         unsigned int avg_seg_size;
459
460         if (nseg == 0)
461                 return false;
462
463         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
464
465         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
466                 return false;
467         if (!iod->nvmeq->qid)
468                 return false;
469         if (!sgl_threshold || avg_seg_size < sgl_threshold)
470                 return false;
471         return true;
472 }
473
474 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
475 {
476         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
477         int nseg = blk_rq_nr_phys_segments(rq);
478         unsigned int size = blk_rq_payload_bytes(rq);
479
480         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
481
482         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
483                 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
484                                 iod->use_sgl);
485
486                 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
487                 if (!iod->sg)
488                         return BLK_STS_RESOURCE;
489         } else {
490                 iod->sg = iod->inline_sg;
491         }
492
493         iod->aborted = 0;
494         iod->npages = -1;
495         iod->nents = 0;
496         iod->length = size;
497
498         return BLK_STS_OK;
499 }
500
501 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
502 {
503         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
504         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
505         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
506
507         int i;
508
509         if (iod->npages == 0)
510                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
511                         dma_addr);
512
513         for (i = 0; i < iod->npages; i++) {
514                 void *addr = nvme_pci_iod_list(req)[i];
515
516                 if (iod->use_sgl) {
517                         struct nvme_sgl_desc *sg_list = addr;
518
519                         next_dma_addr =
520                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
521                 } else {
522                         __le64 *prp_list = addr;
523
524                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
525                 }
526
527                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
528                 dma_addr = next_dma_addr;
529         }
530
531         if (iod->sg != iod->inline_sg)
532                 kfree(iod->sg);
533 }
534
535 #ifdef CONFIG_BLK_DEV_INTEGRITY
536 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
537 {
538         if (be32_to_cpu(pi->ref_tag) == v)
539                 pi->ref_tag = cpu_to_be32(p);
540 }
541
542 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
543 {
544         if (be32_to_cpu(pi->ref_tag) == p)
545                 pi->ref_tag = cpu_to_be32(v);
546 }
547
548 /**
549  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
550  *
551  * The virtual start sector is the one that was originally submitted by the
552  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
553  * start sector may be different. Remap protection information to match the
554  * physical LBA on writes, and back to the original seed on reads.
555  *
556  * Type 0 and 3 do not have a ref tag, so no remapping required.
557  */
558 static void nvme_dif_remap(struct request *req,
559                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
560 {
561         struct nvme_ns *ns = req->rq_disk->private_data;
562         struct bio_integrity_payload *bip;
563         struct t10_pi_tuple *pi;
564         void *p, *pmap;
565         u32 i, nlb, ts, phys, virt;
566
567         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
568                 return;
569
570         bip = bio_integrity(req->bio);
571         if (!bip)
572                 return;
573
574         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
575
576         p = pmap;
577         virt = bip_get_seed(bip);
578         phys = nvme_block_nr(ns, blk_rq_pos(req));
579         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
580         ts = ns->disk->queue->integrity.tuple_size;
581
582         for (i = 0; i < nlb; i++, virt++, phys++) {
583                 pi = (struct t10_pi_tuple *)p;
584                 dif_swap(phys, virt, pi);
585                 p += ts;
586         }
587         kunmap_atomic(pmap);
588 }
589 #else /* CONFIG_BLK_DEV_INTEGRITY */
590 static void nvme_dif_remap(struct request *req,
591                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
592 {
593 }
594 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
595 {
596 }
597 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
598 {
599 }
600 #endif
601
602 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
603 {
604         int i;
605         struct scatterlist *sg;
606
607         for_each_sg(sgl, sg, nents, i) {
608                 dma_addr_t phys = sg_phys(sg);
609                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
610                         "dma_address:%pad dma_length:%d\n",
611                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
612                         sg_dma_len(sg));
613         }
614 }
615
616 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
617                 struct request *req, struct nvme_rw_command *cmnd)
618 {
619         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
620         struct dma_pool *pool;
621         int length = blk_rq_payload_bytes(req);
622         struct scatterlist *sg = iod->sg;
623         int dma_len = sg_dma_len(sg);
624         u64 dma_addr = sg_dma_address(sg);
625         u32 page_size = dev->ctrl.page_size;
626         int offset = dma_addr & (page_size - 1);
627         __le64 *prp_list;
628         void **list = nvme_pci_iod_list(req);
629         dma_addr_t prp_dma;
630         int nprps, i;
631
632         length -= (page_size - offset);
633         if (length <= 0) {
634                 iod->first_dma = 0;
635                 goto done;
636         }
637
638         dma_len -= (page_size - offset);
639         if (dma_len) {
640                 dma_addr += (page_size - offset);
641         } else {
642                 sg = sg_next(sg);
643                 dma_addr = sg_dma_address(sg);
644                 dma_len = sg_dma_len(sg);
645         }
646
647         if (length <= page_size) {
648                 iod->first_dma = dma_addr;
649                 goto done;
650         }
651
652         nprps = DIV_ROUND_UP(length, page_size);
653         if (nprps <= (256 / 8)) {
654                 pool = dev->prp_small_pool;
655                 iod->npages = 0;
656         } else {
657                 pool = dev->prp_page_pool;
658                 iod->npages = 1;
659         }
660
661         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
662         if (!prp_list) {
663                 iod->first_dma = dma_addr;
664                 iod->npages = -1;
665                 return BLK_STS_RESOURCE;
666         }
667         list[0] = prp_list;
668         iod->first_dma = prp_dma;
669         i = 0;
670         for (;;) {
671                 if (i == page_size >> 3) {
672                         __le64 *old_prp_list = prp_list;
673                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
674                         if (!prp_list)
675                                 return BLK_STS_RESOURCE;
676                         list[iod->npages++] = prp_list;
677                         prp_list[0] = old_prp_list[i - 1];
678                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
679                         i = 1;
680                 }
681                 prp_list[i++] = cpu_to_le64(dma_addr);
682                 dma_len -= page_size;
683                 dma_addr += page_size;
684                 length -= page_size;
685                 if (length <= 0)
686                         break;
687                 if (dma_len > 0)
688                         continue;
689                 if (unlikely(dma_len < 0))
690                         goto bad_sgl;
691                 sg = sg_next(sg);
692                 dma_addr = sg_dma_address(sg);
693                 dma_len = sg_dma_len(sg);
694         }
695
696 done:
697         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
698         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
699
700         return BLK_STS_OK;
701
702  bad_sgl:
703         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
704                         "Invalid SGL for payload:%d nents:%d\n",
705                         blk_rq_payload_bytes(req), iod->nents);
706         return BLK_STS_IOERR;
707 }
708
709 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
710                 struct scatterlist *sg)
711 {
712         sge->addr = cpu_to_le64(sg_dma_address(sg));
713         sge->length = cpu_to_le32(sg_dma_len(sg));
714         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
715 }
716
717 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
718                 dma_addr_t dma_addr, int entries)
719 {
720         sge->addr = cpu_to_le64(dma_addr);
721         if (entries < SGES_PER_PAGE) {
722                 sge->length = cpu_to_le32(entries * sizeof(*sge));
723                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
724         } else {
725                 sge->length = cpu_to_le32(PAGE_SIZE);
726                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
727         }
728 }
729
730 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
731                 struct request *req, struct nvme_rw_command *cmd, int entries)
732 {
733         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
734         struct dma_pool *pool;
735         struct nvme_sgl_desc *sg_list;
736         struct scatterlist *sg = iod->sg;
737         dma_addr_t sgl_dma;
738         int i = 0;
739
740         /* setting the transfer type as SGL */
741         cmd->flags = NVME_CMD_SGL_METABUF;
742
743         if (entries == 1) {
744                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
745                 return BLK_STS_OK;
746         }
747
748         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
749                 pool = dev->prp_small_pool;
750                 iod->npages = 0;
751         } else {
752                 pool = dev->prp_page_pool;
753                 iod->npages = 1;
754         }
755
756         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
757         if (!sg_list) {
758                 iod->npages = -1;
759                 return BLK_STS_RESOURCE;
760         }
761
762         nvme_pci_iod_list(req)[0] = sg_list;
763         iod->first_dma = sgl_dma;
764
765         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
766
767         do {
768                 if (i == SGES_PER_PAGE) {
769                         struct nvme_sgl_desc *old_sg_desc = sg_list;
770                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
771
772                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
773                         if (!sg_list)
774                                 return BLK_STS_RESOURCE;
775
776                         i = 0;
777                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
778                         sg_list[i++] = *link;
779                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
780                 }
781
782                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
783                 sg = sg_next(sg);
784         } while (--entries > 0);
785
786         return BLK_STS_OK;
787 }
788
789 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
790                 struct nvme_command *cmnd)
791 {
792         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
793         struct request_queue *q = req->q;
794         enum dma_data_direction dma_dir = rq_data_dir(req) ?
795                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
796         blk_status_t ret = BLK_STS_IOERR;
797         int nr_mapped;
798
799         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
800         iod->nents = blk_rq_map_sg(q, req, iod->sg);
801         if (!iod->nents)
802                 goto out;
803
804         ret = BLK_STS_RESOURCE;
805         nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
806                         DMA_ATTR_NO_WARN);
807         if (!nr_mapped)
808                 goto out;
809
810         if (iod->use_sgl)
811                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
812         else
813                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
814
815         if (ret != BLK_STS_OK)
816                 goto out_unmap;
817
818         ret = BLK_STS_IOERR;
819         if (blk_integrity_rq(req)) {
820                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
821                         goto out_unmap;
822
823                 sg_init_table(&iod->meta_sg, 1);
824                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
825                         goto out_unmap;
826
827                 if (req_op(req) == REQ_OP_WRITE)
828                         nvme_dif_remap(req, nvme_dif_prep);
829
830                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
831                         goto out_unmap;
832         }
833
834         if (blk_integrity_rq(req))
835                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
836         return BLK_STS_OK;
837
838 out_unmap:
839         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
840 out:
841         return ret;
842 }
843
844 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
845 {
846         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847         enum dma_data_direction dma_dir = rq_data_dir(req) ?
848                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
849
850         if (iod->nents) {
851                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
852                 if (blk_integrity_rq(req)) {
853                         if (req_op(req) == REQ_OP_READ)
854                                 nvme_dif_remap(req, nvme_dif_complete);
855                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
856                 }
857         }
858
859         nvme_cleanup_cmd(req);
860         nvme_free_iod(dev, req);
861 }
862
863 /*
864  * NOTE: ns is NULL when called on the admin queue.
865  */
866 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
867                          const struct blk_mq_queue_data *bd)
868 {
869         struct nvme_ns *ns = hctx->queue->queuedata;
870         struct nvme_queue *nvmeq = hctx->driver_data;
871         struct nvme_dev *dev = nvmeq->dev;
872         struct request *req = bd->rq;
873         struct nvme_command cmnd;
874         blk_status_t ret;
875
876         ret = nvme_setup_cmd(ns, req, &cmnd);
877         if (ret)
878                 return ret;
879
880         ret = nvme_init_iod(req, dev);
881         if (ret)
882                 goto out_free_cmd;
883
884         if (blk_rq_nr_phys_segments(req)) {
885                 ret = nvme_map_data(dev, req, &cmnd);
886                 if (ret)
887                         goto out_cleanup_iod;
888         }
889
890         blk_mq_start_request(req);
891
892         spin_lock_irq(&nvmeq->q_lock);
893         if (unlikely(nvmeq->cq_vector < 0)) {
894                 ret = BLK_STS_IOERR;
895                 spin_unlock_irq(&nvmeq->q_lock);
896                 goto out_cleanup_iod;
897         }
898         __nvme_submit_cmd(nvmeq, &cmnd);
899         nvme_process_cq(nvmeq);
900         spin_unlock_irq(&nvmeq->q_lock);
901         return BLK_STS_OK;
902 out_cleanup_iod:
903         nvme_free_iod(dev, req);
904 out_free_cmd:
905         nvme_cleanup_cmd(req);
906         return ret;
907 }
908
909 static void nvme_pci_complete_rq(struct request *req)
910 {
911         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912
913         nvme_unmap_data(iod->nvmeq->dev, req);
914         nvme_complete_rq(req);
915 }
916
917 /* We read the CQE phase first to check if the rest of the entry is valid */
918 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
919 {
920         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
921                         nvmeq->cq_phase;
922 }
923
924 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
925 {
926         u16 head = nvmeq->cq_head;
927
928         if (likely(nvmeq->cq_vector >= 0)) {
929                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
930                                                       nvmeq->dbbuf_cq_ei))
931                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
932         }
933 }
934
935 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
936                 struct nvme_completion *cqe)
937 {
938         struct request *req;
939
940         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
941                 dev_warn(nvmeq->dev->ctrl.device,
942                         "invalid id %d completed on queue %d\n",
943                         cqe->command_id, le16_to_cpu(cqe->sq_id));
944                 return;
945         }
946
947         /*
948          * AEN requests are special as they don't time out and can
949          * survive any kind of queue freeze and often don't respond to
950          * aborts.  We don't even bother to allocate a struct request
951          * for them but rather special case them here.
952          */
953         if (unlikely(nvmeq->qid == 0 &&
954                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
955                 nvme_complete_async_event(&nvmeq->dev->ctrl,
956                                 cqe->status, &cqe->result);
957                 return;
958         }
959
960         nvmeq->cqe_seen = 1;
961         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
962         nvme_end_request(req, cqe->status, cqe->result);
963 }
964
965 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
966                 struct nvme_completion *cqe)
967 {
968         if (nvme_cqe_pending(nvmeq)) {
969                 *cqe = nvmeq->cqes[nvmeq->cq_head];
970
971                 if (++nvmeq->cq_head == nvmeq->q_depth) {
972                         nvmeq->cq_head = 0;
973                         nvmeq->cq_phase = !nvmeq->cq_phase;
974                 }
975                 return true;
976         }
977         return false;
978 }
979
980 static void nvme_process_cq(struct nvme_queue *nvmeq)
981 {
982         struct nvme_completion cqe;
983         int consumed = 0;
984
985         while (nvme_read_cqe(nvmeq, &cqe)) {
986                 nvme_handle_cqe(nvmeq, &cqe);
987                 consumed++;
988         }
989
990         if (consumed)
991                 nvme_ring_cq_doorbell(nvmeq);
992 }
993
994 static irqreturn_t nvme_irq(int irq, void *data)
995 {
996         irqreturn_t result;
997         struct nvme_queue *nvmeq = data;
998         spin_lock(&nvmeq->q_lock);
999         nvme_process_cq(nvmeq);
1000         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1001         nvmeq->cqe_seen = 0;
1002         spin_unlock(&nvmeq->q_lock);
1003         return result;
1004 }
1005
1006 static irqreturn_t nvme_irq_check(int irq, void *data)
1007 {
1008         struct nvme_queue *nvmeq = data;
1009         if (nvme_cqe_pending(nvmeq))
1010                 return IRQ_WAKE_THREAD;
1011         return IRQ_NONE;
1012 }
1013
1014 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1015 {
1016         struct nvme_completion cqe;
1017         int found = 0, consumed = 0;
1018
1019         if (!nvme_cqe_pending(nvmeq))
1020                 return 0;
1021
1022         spin_lock_irq(&nvmeq->q_lock);
1023         while (nvme_read_cqe(nvmeq, &cqe)) {
1024                 nvme_handle_cqe(nvmeq, &cqe);
1025                 consumed++;
1026
1027                 if (tag == cqe.command_id) {
1028                         found = 1;
1029                         break;
1030                 }
1031        }
1032
1033         if (consumed)
1034                 nvme_ring_cq_doorbell(nvmeq);
1035         spin_unlock_irq(&nvmeq->q_lock);
1036
1037         return found;
1038 }
1039
1040 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1041 {
1042         struct nvme_queue *nvmeq = hctx->driver_data;
1043
1044         return __nvme_poll(nvmeq, tag);
1045 }
1046
1047 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1048 {
1049         struct nvme_dev *dev = to_nvme_dev(ctrl);
1050         struct nvme_queue *nvmeq = &dev->queues[0];
1051         struct nvme_command c;
1052
1053         memset(&c, 0, sizeof(c));
1054         c.common.opcode = nvme_admin_async_event;
1055         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1056
1057         spin_lock_irq(&nvmeq->q_lock);
1058         __nvme_submit_cmd(nvmeq, &c);
1059         spin_unlock_irq(&nvmeq->q_lock);
1060 }
1061
1062 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1063 {
1064         struct nvme_command c;
1065
1066         memset(&c, 0, sizeof(c));
1067         c.delete_queue.opcode = opcode;
1068         c.delete_queue.qid = cpu_to_le16(id);
1069
1070         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1071 }
1072
1073 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1074                                                 struct nvme_queue *nvmeq)
1075 {
1076         struct nvme_command c;
1077         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1078
1079         /*
1080          * Note: we (ab)use the fact that the prp fields survive if no data
1081          * is attached to the request.
1082          */
1083         memset(&c, 0, sizeof(c));
1084         c.create_cq.opcode = nvme_admin_create_cq;
1085         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1086         c.create_cq.cqid = cpu_to_le16(qid);
1087         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1088         c.create_cq.cq_flags = cpu_to_le16(flags);
1089         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1090
1091         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1092 }
1093
1094 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1095                                                 struct nvme_queue *nvmeq)
1096 {
1097         struct nvme_command c;
1098         int flags = NVME_QUEUE_PHYS_CONTIG;
1099
1100         /*
1101          * Note: we (ab)use the fact that the prp fields survive if no data
1102          * is attached to the request.
1103          */
1104         memset(&c, 0, sizeof(c));
1105         c.create_sq.opcode = nvme_admin_create_sq;
1106         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1107         c.create_sq.sqid = cpu_to_le16(qid);
1108         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1109         c.create_sq.sq_flags = cpu_to_le16(flags);
1110         c.create_sq.cqid = cpu_to_le16(qid);
1111
1112         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1113 }
1114
1115 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1116 {
1117         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1118 }
1119
1120 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1121 {
1122         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1123 }
1124
1125 static void abort_endio(struct request *req, blk_status_t error)
1126 {
1127         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1128         struct nvme_queue *nvmeq = iod->nvmeq;
1129
1130         dev_warn(nvmeq->dev->ctrl.device,
1131                  "Abort status: 0x%x", nvme_req(req)->status);
1132         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1133         blk_mq_free_request(req);
1134 }
1135
1136 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1137 {
1138
1139         /* If true, indicates loss of adapter communication, possibly by a
1140          * NVMe Subsystem reset.
1141          */
1142         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1143
1144         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1145         switch (dev->ctrl.state) {
1146         case NVME_CTRL_RESETTING:
1147         case NVME_CTRL_CONNECTING:
1148                 return false;
1149         default:
1150                 break;
1151         }
1152
1153         /* We shouldn't reset unless the controller is on fatal error state
1154          * _or_ if we lost the communication with it.
1155          */
1156         if (!(csts & NVME_CSTS_CFS) && !nssro)
1157                 return false;
1158
1159         return true;
1160 }
1161
1162 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1163 {
1164         /* Read a config register to help see what died. */
1165         u16 pci_status;
1166         int result;
1167
1168         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1169                                       &pci_status);
1170         if (result == PCIBIOS_SUCCESSFUL)
1171                 dev_warn(dev->ctrl.device,
1172                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1173                          csts, pci_status);
1174         else
1175                 dev_warn(dev->ctrl.device,
1176                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1177                          csts, result);
1178 }
1179
1180 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1181 {
1182         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1183         struct nvme_queue *nvmeq = iod->nvmeq;
1184         struct nvme_dev *dev = nvmeq->dev;
1185         struct request *abort_req;
1186         struct nvme_command cmd;
1187         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1188
1189         /* If PCI error recovery process is happening, we cannot reset or
1190          * the recovery mechanism will surely fail.
1191          */
1192         mb();
1193         if (pci_channel_offline(to_pci_dev(dev->dev)))
1194                 return BLK_EH_RESET_TIMER;
1195
1196         /*
1197          * Reset immediately if the controller is failed
1198          */
1199         if (nvme_should_reset(dev, csts)) {
1200                 nvme_warn_reset(dev, csts);
1201                 nvme_dev_disable(dev, false);
1202                 nvme_reset_ctrl(&dev->ctrl);
1203                 return BLK_EH_HANDLED;
1204         }
1205
1206         /*
1207          * Did we miss an interrupt?
1208          */
1209         if (__nvme_poll(nvmeq, req->tag)) {
1210                 dev_warn(dev->ctrl.device,
1211                          "I/O %d QID %d timeout, completion polled\n",
1212                          req->tag, nvmeq->qid);
1213                 return BLK_EH_HANDLED;
1214         }
1215
1216         /*
1217          * Shutdown immediately if controller times out while starting. The
1218          * reset work will see the pci device disabled when it gets the forced
1219          * cancellation error. All outstanding requests are completed on
1220          * shutdown, so we return BLK_EH_HANDLED.
1221          */
1222         switch (dev->ctrl.state) {
1223         case NVME_CTRL_CONNECTING:
1224         case NVME_CTRL_RESETTING:
1225                 dev_warn(dev->ctrl.device,
1226                          "I/O %d QID %d timeout, disable controller\n",
1227                          req->tag, nvmeq->qid);
1228                 nvme_dev_disable(dev, false);
1229                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1230                 return BLK_EH_HANDLED;
1231         default:
1232                 break;
1233         }
1234
1235         /*
1236          * Shutdown the controller immediately and schedule a reset if the
1237          * command was already aborted once before and still hasn't been
1238          * returned to the driver, or if this is the admin queue.
1239          */
1240         if (!nvmeq->qid || iod->aborted) {
1241                 dev_warn(dev->ctrl.device,
1242                          "I/O %d QID %d timeout, reset controller\n",
1243                          req->tag, nvmeq->qid);
1244                 nvme_dev_disable(dev, false);
1245                 nvme_reset_ctrl(&dev->ctrl);
1246
1247                 /*
1248                  * Mark the request as handled, since the inline shutdown
1249                  * forces all outstanding requests to complete.
1250                  */
1251                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1252                 return BLK_EH_HANDLED;
1253         }
1254
1255         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1256                 atomic_inc(&dev->ctrl.abort_limit);
1257                 return BLK_EH_RESET_TIMER;
1258         }
1259         iod->aborted = 1;
1260
1261         memset(&cmd, 0, sizeof(cmd));
1262         cmd.abort.opcode = nvme_admin_abort_cmd;
1263         cmd.abort.cid = req->tag;
1264         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1265
1266         dev_warn(nvmeq->dev->ctrl.device,
1267                 "I/O %d QID %d timeout, aborting\n",
1268                  req->tag, nvmeq->qid);
1269
1270         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1271                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1272         if (IS_ERR(abort_req)) {
1273                 atomic_inc(&dev->ctrl.abort_limit);
1274                 return BLK_EH_RESET_TIMER;
1275         }
1276
1277         abort_req->timeout = ADMIN_TIMEOUT;
1278         abort_req->end_io_data = NULL;
1279         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1280
1281         /*
1282          * The aborted req will be completed on receiving the abort req.
1283          * We enable the timer again. If hit twice, it'll cause a device reset,
1284          * as the device then is in a faulty state.
1285          */
1286         return BLK_EH_RESET_TIMER;
1287 }
1288
1289 static void nvme_free_queue(struct nvme_queue *nvmeq)
1290 {
1291         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1292                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1293         if (nvmeq->sq_cmds)
1294                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1295                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1296 }
1297
1298 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1299 {
1300         int i;
1301
1302         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1303                 dev->ctrl.queue_count--;
1304                 nvme_free_queue(&dev->queues[i]);
1305         }
1306 }
1307
1308 /**
1309  * nvme_suspend_queue - put queue into suspended state
1310  * @nvmeq - queue to suspend
1311  */
1312 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1313 {
1314         int vector;
1315
1316         spin_lock_irq(&nvmeq->q_lock);
1317         if (nvmeq->cq_vector == -1) {
1318                 spin_unlock_irq(&nvmeq->q_lock);
1319                 return 1;
1320         }
1321         vector = nvmeq->cq_vector;
1322         nvmeq->dev->online_queues--;
1323         nvmeq->cq_vector = -1;
1324         spin_unlock_irq(&nvmeq->q_lock);
1325
1326         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1327                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1328
1329         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1330
1331         return 0;
1332 }
1333
1334 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1335 {
1336         struct nvme_queue *nvmeq = &dev->queues[0];
1337
1338         if (shutdown)
1339                 nvme_shutdown_ctrl(&dev->ctrl);
1340         else
1341                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1342
1343         spin_lock_irq(&nvmeq->q_lock);
1344         nvme_process_cq(nvmeq);
1345         spin_unlock_irq(&nvmeq->q_lock);
1346 }
1347
1348 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1349                                 int entry_size)
1350 {
1351         int q_depth = dev->q_depth;
1352         unsigned q_size_aligned = roundup(q_depth * entry_size,
1353                                           dev->ctrl.page_size);
1354
1355         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1356                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1357                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1358                 q_depth = div_u64(mem_per_q, entry_size);
1359
1360                 /*
1361                  * Ensure the reduced q_depth is above some threshold where it
1362                  * would be better to map queues in system memory with the
1363                  * original depth
1364                  */
1365                 if (q_depth < 64)
1366                         return -ENOMEM;
1367         }
1368
1369         return q_depth;
1370 }
1371
1372 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1373                                 int qid, int depth)
1374 {
1375         /* CMB SQEs will be mapped before creation */
1376         if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1377                 return 0;
1378
1379         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1380                                             &nvmeq->sq_dma_addr, GFP_KERNEL);
1381         if (!nvmeq->sq_cmds)
1382                 return -ENOMEM;
1383         return 0;
1384 }
1385
1386 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1387 {
1388         struct nvme_queue *nvmeq = &dev->queues[qid];
1389
1390         if (dev->ctrl.queue_count > qid)
1391                 return 0;
1392
1393         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1394                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1395         if (!nvmeq->cqes)
1396                 goto free_nvmeq;
1397
1398         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1399                 goto free_cqdma;
1400
1401         nvmeq->q_dmadev = dev->dev;
1402         nvmeq->dev = dev;
1403         spin_lock_init(&nvmeq->q_lock);
1404         nvmeq->cq_head = 0;
1405         nvmeq->cq_phase = 1;
1406         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1407         nvmeq->q_depth = depth;
1408         nvmeq->qid = qid;
1409         nvmeq->cq_vector = -1;
1410         dev->ctrl.queue_count++;
1411
1412         return 0;
1413
1414  free_cqdma:
1415         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1416                                                         nvmeq->cq_dma_addr);
1417  free_nvmeq:
1418         return -ENOMEM;
1419 }
1420
1421 static int queue_request_irq(struct nvme_queue *nvmeq)
1422 {
1423         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1424         int nr = nvmeq->dev->ctrl.instance;
1425
1426         if (use_threaded_interrupts) {
1427                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1428                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1429         } else {
1430                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1431                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1432         }
1433 }
1434
1435 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1436 {
1437         struct nvme_dev *dev = nvmeq->dev;
1438
1439         spin_lock_irq(&nvmeq->q_lock);
1440         nvmeq->sq_tail = 0;
1441         nvmeq->cq_head = 0;
1442         nvmeq->cq_phase = 1;
1443         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1444         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1445         nvme_dbbuf_init(dev, nvmeq, qid);
1446         dev->online_queues++;
1447         spin_unlock_irq(&nvmeq->q_lock);
1448 }
1449
1450 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1451 {
1452         struct nvme_dev *dev = nvmeq->dev;
1453         int result;
1454
1455         if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1456                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1457                                                       dev->ctrl.page_size);
1458                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1459                 nvmeq->sq_cmds_io = dev->cmb + offset;
1460         }
1461
1462         /*
1463          * A queue's vector matches the queue identifier unless the controller
1464          * has only one vector available.
1465          */
1466         nvmeq->cq_vector = dev->num_vecs == 1 ? 0 : qid;
1467         result = adapter_alloc_cq(dev, qid, nvmeq);
1468         if (result < 0)
1469                 goto release_vector;
1470
1471         result = adapter_alloc_sq(dev, qid, nvmeq);
1472         if (result < 0)
1473                 goto release_cq;
1474
1475         nvme_init_queue(nvmeq, qid);
1476         result = queue_request_irq(nvmeq);
1477         if (result < 0)
1478                 goto release_sq;
1479
1480         return result;
1481
1482  release_sq:
1483         dev->online_queues--;
1484         adapter_delete_sq(dev, qid);
1485  release_cq:
1486         adapter_delete_cq(dev, qid);
1487  release_vector:
1488         nvmeq->cq_vector = -1;
1489         return result;
1490 }
1491
1492 static const struct blk_mq_ops nvme_mq_admin_ops = {
1493         .queue_rq       = nvme_queue_rq,
1494         .complete       = nvme_pci_complete_rq,
1495         .init_hctx      = nvme_admin_init_hctx,
1496         .exit_hctx      = nvme_admin_exit_hctx,
1497         .init_request   = nvme_init_request,
1498         .timeout        = nvme_timeout,
1499 };
1500
1501 static const struct blk_mq_ops nvme_mq_ops = {
1502         .queue_rq       = nvme_queue_rq,
1503         .complete       = nvme_pci_complete_rq,
1504         .init_hctx      = nvme_init_hctx,
1505         .init_request   = nvme_init_request,
1506         .map_queues     = nvme_pci_map_queues,
1507         .timeout        = nvme_timeout,
1508         .poll           = nvme_poll,
1509 };
1510
1511 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1512 {
1513         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1514                 /*
1515                  * If the controller was reset during removal, it's possible
1516                  * user requests may be waiting on a stopped queue. Start the
1517                  * queue to flush these to completion.
1518                  */
1519                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1520                 blk_cleanup_queue(dev->ctrl.admin_q);
1521                 blk_mq_free_tag_set(&dev->admin_tagset);
1522         }
1523 }
1524
1525 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1526 {
1527         if (!dev->ctrl.admin_q) {
1528                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1529                 dev->admin_tagset.nr_hw_queues = 1;
1530
1531                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1532                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1533                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1534                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1535                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1536                 dev->admin_tagset.driver_data = dev;
1537
1538                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1539                         return -ENOMEM;
1540                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1541
1542                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1543                 if (IS_ERR(dev->ctrl.admin_q)) {
1544                         blk_mq_free_tag_set(&dev->admin_tagset);
1545                         return -ENOMEM;
1546                 }
1547                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1548                         nvme_dev_remove_admin(dev);
1549                         dev->ctrl.admin_q = NULL;
1550                         return -ENODEV;
1551                 }
1552         } else
1553                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1554
1555         return 0;
1556 }
1557
1558 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1559 {
1560         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1561 }
1562
1563 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1564 {
1565         struct pci_dev *pdev = to_pci_dev(dev->dev);
1566
1567         if (size <= dev->bar_mapped_size)
1568                 return 0;
1569         if (size > pci_resource_len(pdev, 0))
1570                 return -ENOMEM;
1571         if (dev->bar)
1572                 iounmap(dev->bar);
1573         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1574         if (!dev->bar) {
1575                 dev->bar_mapped_size = 0;
1576                 return -ENOMEM;
1577         }
1578         dev->bar_mapped_size = size;
1579         dev->dbs = dev->bar + NVME_REG_DBS;
1580
1581         return 0;
1582 }
1583
1584 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1585 {
1586         int result;
1587         u32 aqa;
1588         struct nvme_queue *nvmeq;
1589
1590         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1591         if (result < 0)
1592                 return result;
1593
1594         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1595                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1596
1597         if (dev->subsystem &&
1598             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1599                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1600
1601         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1602         if (result < 0)
1603                 return result;
1604
1605         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1606         if (result)
1607                 return result;
1608
1609         nvmeq = &dev->queues[0];
1610         aqa = nvmeq->q_depth - 1;
1611         aqa |= aqa << 16;
1612
1613         writel(aqa, dev->bar + NVME_REG_AQA);
1614         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1615         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1616
1617         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1618         if (result)
1619                 return result;
1620
1621         nvmeq->cq_vector = 0;
1622         nvme_init_queue(nvmeq, 0);
1623         result = queue_request_irq(nvmeq);
1624         if (result) {
1625                 nvmeq->cq_vector = -1;
1626                 return result;
1627         }
1628
1629         return result;
1630 }
1631
1632 static int nvme_create_io_queues(struct nvme_dev *dev)
1633 {
1634         unsigned i, max;
1635         int ret = 0;
1636
1637         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1638                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1639                         ret = -ENOMEM;
1640                         break;
1641                 }
1642         }
1643
1644         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1645         for (i = dev->online_queues; i <= max; i++) {
1646                 ret = nvme_create_queue(&dev->queues[i], i);
1647                 if (ret)
1648                         break;
1649         }
1650
1651         /*
1652          * Ignore failing Create SQ/CQ commands, we can continue with less
1653          * than the desired amount of queues, and even a controller without
1654          * I/O queues can still be used to issue admin commands.  This might
1655          * be useful to upgrade a buggy firmware for example.
1656          */
1657         return ret >= 0 ? 0 : ret;
1658 }
1659
1660 static ssize_t nvme_cmb_show(struct device *dev,
1661                              struct device_attribute *attr,
1662                              char *buf)
1663 {
1664         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1665
1666         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1667                        ndev->cmbloc, ndev->cmbsz);
1668 }
1669 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1670
1671 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1672 {
1673         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1674
1675         return 1ULL << (12 + 4 * szu);
1676 }
1677
1678 static u32 nvme_cmb_size(struct nvme_dev *dev)
1679 {
1680         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1681 }
1682
1683 static void nvme_map_cmb(struct nvme_dev *dev)
1684 {
1685         u64 size, offset;
1686         resource_size_t bar_size;
1687         struct pci_dev *pdev = to_pci_dev(dev->dev);
1688         int bar;
1689
1690         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1691         if (!dev->cmbsz)
1692                 return;
1693         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1694
1695         if (!use_cmb_sqes)
1696                 return;
1697
1698         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1699         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1700         bar = NVME_CMB_BIR(dev->cmbloc);
1701         bar_size = pci_resource_len(pdev, bar);
1702
1703         if (offset > bar_size)
1704                 return;
1705
1706         /*
1707          * Controllers may support a CMB size larger than their BAR,
1708          * for example, due to being behind a bridge. Reduce the CMB to
1709          * the reported size of the BAR
1710          */
1711         if (size > bar_size - offset)
1712                 size = bar_size - offset;
1713
1714         dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1715         if (!dev->cmb)
1716                 return;
1717         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1718         dev->cmb_size = size;
1719
1720         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1721                                     &dev_attr_cmb.attr, NULL))
1722                 dev_warn(dev->ctrl.device,
1723                          "failed to add sysfs attribute for CMB\n");
1724 }
1725
1726 static inline void nvme_release_cmb(struct nvme_dev *dev)
1727 {
1728         if (dev->cmb) {
1729                 iounmap(dev->cmb);
1730                 dev->cmb = NULL;
1731                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1732                                              &dev_attr_cmb.attr, NULL);
1733                 dev->cmbsz = 0;
1734         }
1735 }
1736
1737 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1738 {
1739         u64 dma_addr = dev->host_mem_descs_dma;
1740         struct nvme_command c;
1741         int ret;
1742
1743         memset(&c, 0, sizeof(c));
1744         c.features.opcode       = nvme_admin_set_features;
1745         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1746         c.features.dword11      = cpu_to_le32(bits);
1747         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1748                                               ilog2(dev->ctrl.page_size));
1749         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1750         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1751         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1752
1753         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1754         if (ret) {
1755                 dev_warn(dev->ctrl.device,
1756                          "failed to set host mem (err %d, flags %#x).\n",
1757                          ret, bits);
1758         }
1759         return ret;
1760 }
1761
1762 static void nvme_free_host_mem(struct nvme_dev *dev)
1763 {
1764         int i;
1765
1766         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1767                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1768                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1769
1770                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1771                                 le64_to_cpu(desc->addr));
1772         }
1773
1774         kfree(dev->host_mem_desc_bufs);
1775         dev->host_mem_desc_bufs = NULL;
1776         dma_free_coherent(dev->dev,
1777                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1778                         dev->host_mem_descs, dev->host_mem_descs_dma);
1779         dev->host_mem_descs = NULL;
1780         dev->nr_host_mem_descs = 0;
1781 }
1782
1783 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1784                 u32 chunk_size)
1785 {
1786         struct nvme_host_mem_buf_desc *descs;
1787         u32 max_entries, len;
1788         dma_addr_t descs_dma;
1789         int i = 0;
1790         void **bufs;
1791         u64 size, tmp;
1792
1793         tmp = (preferred + chunk_size - 1);
1794         do_div(tmp, chunk_size);
1795         max_entries = tmp;
1796
1797         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1798                 max_entries = dev->ctrl.hmmaxd;
1799
1800         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1801                         &descs_dma, GFP_KERNEL);
1802         if (!descs)
1803                 goto out;
1804
1805         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1806         if (!bufs)
1807                 goto out_free_descs;
1808
1809         for (size = 0; size < preferred && i < max_entries; size += len) {
1810                 dma_addr_t dma_addr;
1811
1812                 len = min_t(u64, chunk_size, preferred - size);
1813                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1814                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1815                 if (!bufs[i])
1816                         break;
1817
1818                 descs[i].addr = cpu_to_le64(dma_addr);
1819                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1820                 i++;
1821         }
1822
1823         if (!size)
1824                 goto out_free_bufs;
1825
1826         dev->nr_host_mem_descs = i;
1827         dev->host_mem_size = size;
1828         dev->host_mem_descs = descs;
1829         dev->host_mem_descs_dma = descs_dma;
1830         dev->host_mem_desc_bufs = bufs;
1831         return 0;
1832
1833 out_free_bufs:
1834         while (--i >= 0) {
1835                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1836
1837                 dma_free_coherent(dev->dev, size, bufs[i],
1838                                 le64_to_cpu(descs[i].addr));
1839         }
1840
1841         kfree(bufs);
1842 out_free_descs:
1843         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1844                         descs_dma);
1845 out:
1846         dev->host_mem_descs = NULL;
1847         return -ENOMEM;
1848 }
1849
1850 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1851 {
1852         u32 chunk_size;
1853
1854         /* start big and work our way down */
1855         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1856              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1857              chunk_size /= 2) {
1858                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1859                         if (!min || dev->host_mem_size >= min)
1860                                 return 0;
1861                         nvme_free_host_mem(dev);
1862                 }
1863         }
1864
1865         return -ENOMEM;
1866 }
1867
1868 static int nvme_setup_host_mem(struct nvme_dev *dev)
1869 {
1870         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1871         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1872         u64 min = (u64)dev->ctrl.hmmin * 4096;
1873         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1874         int ret;
1875
1876         preferred = min(preferred, max);
1877         if (min > max) {
1878                 dev_warn(dev->ctrl.device,
1879                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1880                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1881                 nvme_free_host_mem(dev);
1882                 return 0;
1883         }
1884
1885         /*
1886          * If we already have a buffer allocated check if we can reuse it.
1887          */
1888         if (dev->host_mem_descs) {
1889                 if (dev->host_mem_size >= min)
1890                         enable_bits |= NVME_HOST_MEM_RETURN;
1891                 else
1892                         nvme_free_host_mem(dev);
1893         }
1894
1895         if (!dev->host_mem_descs) {
1896                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1897                         dev_warn(dev->ctrl.device,
1898                                 "failed to allocate host memory buffer.\n");
1899                         return 0; /* controller must work without HMB */
1900                 }
1901
1902                 dev_info(dev->ctrl.device,
1903                         "allocated %lld MiB host memory buffer.\n",
1904                         dev->host_mem_size >> ilog2(SZ_1M));
1905         }
1906
1907         ret = nvme_set_host_mem(dev, enable_bits);
1908         if (ret)
1909                 nvme_free_host_mem(dev);
1910         return ret;
1911 }
1912
1913 static int nvme_setup_io_queues(struct nvme_dev *dev)
1914 {
1915         struct nvme_queue *adminq = &dev->queues[0];
1916         struct pci_dev *pdev = to_pci_dev(dev->dev);
1917         int result, nr_io_queues;
1918         unsigned long size;
1919
1920         struct irq_affinity affd = {
1921                 .pre_vectors = 1
1922         };
1923
1924         nr_io_queues = num_possible_cpus();
1925         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1926         if (result < 0)
1927                 return result;
1928
1929         if (nr_io_queues == 0)
1930                 return 0;
1931
1932         if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1933                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1934                                 sizeof(struct nvme_command));
1935                 if (result > 0)
1936                         dev->q_depth = result;
1937                 else
1938                         nvme_release_cmb(dev);
1939         }
1940
1941         do {
1942                 size = db_bar_size(dev, nr_io_queues);
1943                 result = nvme_remap_bar(dev, size);
1944                 if (!result)
1945                         break;
1946                 if (!--nr_io_queues)
1947                         return -ENOMEM;
1948         } while (1);
1949         adminq->q_db = dev->dbs;
1950
1951         /* Deregister the admin queue's interrupt */
1952         pci_free_irq(pdev, 0, adminq);
1953
1954         /*
1955          * If we enable msix early due to not intx, disable it again before
1956          * setting up the full range we need.
1957          */
1958         pci_free_irq_vectors(pdev);
1959         result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1960                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1961         if (result <= 0)
1962                 return -EIO;
1963         dev->num_vecs = result;
1964         dev->max_qid = max(result - 1, 1);
1965
1966         /*
1967          * Should investigate if there's a performance win from allocating
1968          * more queues than interrupt vectors; it might allow the submission
1969          * path to scale better, even if the receive path is limited by the
1970          * number of interrupts.
1971          */
1972
1973         result = queue_request_irq(adminq);
1974         if (result) {
1975                 adminq->cq_vector = -1;
1976                 return result;
1977         }
1978         return nvme_create_io_queues(dev);
1979 }
1980
1981 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1982 {
1983         struct nvme_queue *nvmeq = req->end_io_data;
1984
1985         blk_mq_free_request(req);
1986         complete(&nvmeq->dev->ioq_wait);
1987 }
1988
1989 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1990 {
1991         struct nvme_queue *nvmeq = req->end_io_data;
1992
1993         if (!error) {
1994                 unsigned long flags;
1995
1996                 /*
1997                  * We might be called with the AQ q_lock held
1998                  * and the I/O queue q_lock should always
1999                  * nest inside the AQ one.
2000                  */
2001                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
2002                                         SINGLE_DEPTH_NESTING);
2003                 nvme_process_cq(nvmeq);
2004                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
2005         }
2006
2007         nvme_del_queue_end(req, error);
2008 }
2009
2010 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2011 {
2012         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2013         struct request *req;
2014         struct nvme_command cmd;
2015
2016         memset(&cmd, 0, sizeof(cmd));
2017         cmd.delete_queue.opcode = opcode;
2018         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2019
2020         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2021         if (IS_ERR(req))
2022                 return PTR_ERR(req);
2023
2024         req->timeout = ADMIN_TIMEOUT;
2025         req->end_io_data = nvmeq;
2026
2027         blk_execute_rq_nowait(q, NULL, req, false,
2028                         opcode == nvme_admin_delete_cq ?
2029                                 nvme_del_cq_end : nvme_del_queue_end);
2030         return 0;
2031 }
2032
2033 static void nvme_disable_io_queues(struct nvme_dev *dev)
2034 {
2035         int pass, queues = dev->online_queues - 1;
2036         unsigned long timeout;
2037         u8 opcode = nvme_admin_delete_sq;
2038
2039         for (pass = 0; pass < 2; pass++) {
2040                 int sent = 0, i = queues;
2041
2042                 reinit_completion(&dev->ioq_wait);
2043  retry:
2044                 timeout = ADMIN_TIMEOUT;
2045                 for (; i > 0; i--, sent++)
2046                         if (nvme_delete_queue(&dev->queues[i], opcode))
2047                                 break;
2048
2049                 while (sent--) {
2050                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2051                         if (timeout == 0)
2052                                 return;
2053                         if (i)
2054                                 goto retry;
2055                 }
2056                 opcode = nvme_admin_delete_cq;
2057         }
2058 }
2059
2060 /*
2061  * return error value only when tagset allocation failed
2062  */
2063 static int nvme_dev_add(struct nvme_dev *dev)
2064 {
2065         int ret;
2066
2067         if (!dev->ctrl.tagset) {
2068                 dev->tagset.ops = &nvme_mq_ops;
2069                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2070                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2071                 dev->tagset.numa_node = dev_to_node(dev->dev);
2072                 dev->tagset.queue_depth =
2073                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2074                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2075                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2076                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2077                                         nvme_pci_cmd_size(dev, true));
2078                 }
2079                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2080                 dev->tagset.driver_data = dev;
2081
2082                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2083                 if (ret) {
2084                         dev_warn(dev->ctrl.device,
2085                                 "IO queues tagset allocation failed %d\n", ret);
2086                         return ret;
2087                 }
2088                 dev->ctrl.tagset = &dev->tagset;
2089
2090                 nvme_dbbuf_set(dev);
2091         } else {
2092                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2093
2094                 /* Free previously allocated queues that are no longer usable */
2095                 nvme_free_queues(dev, dev->online_queues);
2096         }
2097
2098         return 0;
2099 }
2100
2101 static int nvme_pci_enable(struct nvme_dev *dev)
2102 {
2103         int result = -ENOMEM;
2104         struct pci_dev *pdev = to_pci_dev(dev->dev);
2105
2106         if (pci_enable_device_mem(pdev))
2107                 return result;
2108
2109         pci_set_master(pdev);
2110
2111         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2112             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2113                 goto disable;
2114
2115         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2116                 result = -ENODEV;
2117                 goto disable;
2118         }
2119
2120         /*
2121          * Some devices and/or platforms don't advertise or work with INTx
2122          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2123          * adjust this later.
2124          */
2125         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2126         if (result < 0)
2127                 return result;
2128
2129         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2130
2131         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2132                                 io_queue_depth);
2133         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2134         dev->dbs = dev->bar + 4096;
2135
2136         /*
2137          * Temporary fix for the Apple controller found in the MacBook8,1 and
2138          * some MacBook7,1 to avoid controller resets and data loss.
2139          */
2140         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2141                 dev->q_depth = 2;
2142                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2143                         "set queue depth=%u to work around controller resets\n",
2144                         dev->q_depth);
2145         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2146                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2147                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2148                 dev->q_depth = 64;
2149                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2150                         "set queue depth=%u\n", dev->q_depth);
2151         }
2152
2153         nvme_map_cmb(dev);
2154
2155         pci_enable_pcie_error_reporting(pdev);
2156         pci_save_state(pdev);
2157         return 0;
2158
2159  disable:
2160         pci_disable_device(pdev);
2161         return result;
2162 }
2163
2164 static void nvme_dev_unmap(struct nvme_dev *dev)
2165 {
2166         if (dev->bar)
2167                 iounmap(dev->bar);
2168         pci_release_mem_regions(to_pci_dev(dev->dev));
2169 }
2170
2171 static void nvme_pci_disable(struct nvme_dev *dev)
2172 {
2173         struct pci_dev *pdev = to_pci_dev(dev->dev);
2174
2175         nvme_release_cmb(dev);
2176         pci_free_irq_vectors(pdev);
2177
2178         if (pci_is_enabled(pdev)) {
2179                 pci_disable_pcie_error_reporting(pdev);
2180                 pci_disable_device(pdev);
2181         }
2182 }
2183
2184 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2185 {
2186         int i;
2187         bool dead = true;
2188         struct pci_dev *pdev = to_pci_dev(dev->dev);
2189
2190         mutex_lock(&dev->shutdown_lock);
2191         if (pci_is_enabled(pdev)) {
2192                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2193
2194                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2195                     dev->ctrl.state == NVME_CTRL_RESETTING)
2196                         nvme_start_freeze(&dev->ctrl);
2197                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2198                         pdev->error_state  != pci_channel_io_normal);
2199         }
2200
2201         /*
2202          * Give the controller a chance to complete all entered requests if
2203          * doing a safe shutdown.
2204          */
2205         if (!dead) {
2206                 if (shutdown)
2207                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2208         }
2209
2210         nvme_stop_queues(&dev->ctrl);
2211
2212         if (!dead && dev->ctrl.queue_count > 0) {
2213                 /*
2214                  * If the controller is still alive tell it to stop using the
2215                  * host memory buffer.  In theory the shutdown / reset should
2216                  * make sure that it doesn't access the host memoery anymore,
2217                  * but I'd rather be safe than sorry..
2218                  */
2219                 if (dev->host_mem_descs)
2220                         nvme_set_host_mem(dev, 0);
2221                 nvme_disable_io_queues(dev);
2222                 nvme_disable_admin_queue(dev, shutdown);
2223         }
2224         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2225                 nvme_suspend_queue(&dev->queues[i]);
2226
2227         nvme_pci_disable(dev);
2228
2229         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2230         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2231
2232         /*
2233          * The driver will not be starting up queues again if shutting down so
2234          * must flush all entered requests to their failed completion to avoid
2235          * deadlocking blk-mq hot-cpu notifier.
2236          */
2237         if (shutdown)
2238                 nvme_start_queues(&dev->ctrl);
2239         mutex_unlock(&dev->shutdown_lock);
2240 }
2241
2242 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2243 {
2244         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2245                                                 PAGE_SIZE, PAGE_SIZE, 0);
2246         if (!dev->prp_page_pool)
2247                 return -ENOMEM;
2248
2249         /* Optimisation for I/Os between 4k and 128k */
2250         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2251                                                 256, 256, 0);
2252         if (!dev->prp_small_pool) {
2253                 dma_pool_destroy(dev->prp_page_pool);
2254                 return -ENOMEM;
2255         }
2256         return 0;
2257 }
2258
2259 static void nvme_release_prp_pools(struct nvme_dev *dev)
2260 {
2261         dma_pool_destroy(dev->prp_page_pool);
2262         dma_pool_destroy(dev->prp_small_pool);
2263 }
2264
2265 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2266 {
2267         struct nvme_dev *dev = to_nvme_dev(ctrl);
2268
2269         nvme_dbbuf_dma_free(dev);
2270         put_device(dev->dev);
2271         if (dev->tagset.tags)
2272                 blk_mq_free_tag_set(&dev->tagset);
2273         if (dev->ctrl.admin_q)
2274                 blk_put_queue(dev->ctrl.admin_q);
2275         kfree(dev->queues);
2276         free_opal_dev(dev->ctrl.opal_dev);
2277         kfree(dev);
2278 }
2279
2280 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2281 {
2282         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2283
2284         nvme_get_ctrl(&dev->ctrl);
2285         nvme_dev_disable(dev, false);
2286         if (!queue_work(nvme_wq, &dev->remove_work))
2287                 nvme_put_ctrl(&dev->ctrl);
2288 }
2289
2290 static void nvme_reset_work(struct work_struct *work)
2291 {
2292         struct nvme_dev *dev =
2293                 container_of(work, struct nvme_dev, ctrl.reset_work);
2294         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2295         int result = -ENODEV;
2296         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2297
2298         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2299                 goto out;
2300
2301         /*
2302          * If we're called to reset a live controller first shut it down before
2303          * moving on.
2304          */
2305         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2306                 nvme_dev_disable(dev, false);
2307
2308         /*
2309          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2310          * initializing procedure here.
2311          */
2312         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2313                 dev_warn(dev->ctrl.device,
2314                         "failed to mark controller CONNECTING\n");
2315                 goto out;
2316         }
2317
2318         result = nvme_pci_enable(dev);
2319         if (result)
2320                 goto out;
2321
2322         result = nvme_pci_configure_admin_queue(dev);
2323         if (result)
2324                 goto out;
2325
2326         result = nvme_alloc_admin_tags(dev);
2327         if (result)
2328                 goto out;
2329
2330         result = nvme_init_identify(&dev->ctrl);
2331         if (result)
2332                 goto out;
2333
2334         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2335                 if (!dev->ctrl.opal_dev)
2336                         dev->ctrl.opal_dev =
2337                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2338                 else if (was_suspend)
2339                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2340         } else {
2341                 free_opal_dev(dev->ctrl.opal_dev);
2342                 dev->ctrl.opal_dev = NULL;
2343         }
2344
2345         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2346                 result = nvme_dbbuf_dma_alloc(dev);
2347                 if (result)
2348                         dev_warn(dev->dev,
2349                                  "unable to allocate dma for dbbuf\n");
2350         }
2351
2352         if (dev->ctrl.hmpre) {
2353                 result = nvme_setup_host_mem(dev);
2354                 if (result < 0)
2355                         goto out;
2356         }
2357
2358         result = nvme_setup_io_queues(dev);
2359         if (result)
2360                 goto out;
2361
2362         /*
2363          * Keep the controller around but remove all namespaces if we don't have
2364          * any working I/O queue.
2365          */
2366         if (dev->online_queues < 2) {
2367                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2368                 nvme_kill_queues(&dev->ctrl);
2369                 nvme_remove_namespaces(&dev->ctrl);
2370                 new_state = NVME_CTRL_ADMIN_ONLY;
2371         } else {
2372                 nvme_start_queues(&dev->ctrl);
2373                 nvme_wait_freeze(&dev->ctrl);
2374                 /* hit this only when allocate tagset fails */
2375                 if (nvme_dev_add(dev))
2376                         new_state = NVME_CTRL_ADMIN_ONLY;
2377                 nvme_unfreeze(&dev->ctrl);
2378         }
2379
2380         /*
2381          * If only admin queue live, keep it to do further investigation or
2382          * recovery.
2383          */
2384         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2385                 dev_warn(dev->ctrl.device,
2386                         "failed to mark controller state %d\n", new_state);
2387                 goto out;
2388         }
2389
2390         nvme_start_ctrl(&dev->ctrl);
2391         return;
2392
2393  out:
2394         nvme_remove_dead_ctrl(dev, result);
2395 }
2396
2397 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2398 {
2399         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2400         struct pci_dev *pdev = to_pci_dev(dev->dev);
2401
2402         nvme_kill_queues(&dev->ctrl);
2403         if (pci_get_drvdata(pdev))
2404                 device_release_driver(&pdev->dev);
2405         nvme_put_ctrl(&dev->ctrl);
2406 }
2407
2408 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2409 {
2410         *val = readl(to_nvme_dev(ctrl)->bar + off);
2411         return 0;
2412 }
2413
2414 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2415 {
2416         writel(val, to_nvme_dev(ctrl)->bar + off);
2417         return 0;
2418 }
2419
2420 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2421 {
2422         *val = readq(to_nvme_dev(ctrl)->bar + off);
2423         return 0;
2424 }
2425
2426 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2427 {
2428         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2429
2430         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2431 }
2432
2433 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2434         .name                   = "pcie",
2435         .module                 = THIS_MODULE,
2436         .flags                  = NVME_F_METADATA_SUPPORTED,
2437         .reg_read32             = nvme_pci_reg_read32,
2438         .reg_write32            = nvme_pci_reg_write32,
2439         .reg_read64             = nvme_pci_reg_read64,
2440         .free_ctrl              = nvme_pci_free_ctrl,
2441         .submit_async_event     = nvme_pci_submit_async_event,
2442         .get_address            = nvme_pci_get_address,
2443 };
2444
2445 static int nvme_dev_map(struct nvme_dev *dev)
2446 {
2447         struct pci_dev *pdev = to_pci_dev(dev->dev);
2448
2449         if (pci_request_mem_regions(pdev, "nvme"))
2450                 return -ENODEV;
2451
2452         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2453                 goto release;
2454
2455         return 0;
2456   release:
2457         pci_release_mem_regions(pdev);
2458         return -ENODEV;
2459 }
2460
2461 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2462 {
2463         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2464                 /*
2465                  * Several Samsung devices seem to drop off the PCIe bus
2466                  * randomly when APST is on and uses the deepest sleep state.
2467                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2468                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2469                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2470                  * laptops.
2471                  */
2472                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2473                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2474                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2475                         return NVME_QUIRK_NO_DEEPEST_PS;
2476         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2477                 /*
2478                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2479                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2480                  * within few minutes after bootup on a Coffee Lake board -
2481                  * ASUS PRIME Z370-A
2482                  */
2483                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2484                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2485                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2486                         return NVME_QUIRK_NO_APST;
2487         }
2488
2489         return 0;
2490 }
2491
2492 static void nvme_async_probe(void *data, async_cookie_t cookie)
2493 {
2494         struct nvme_dev *dev = data;
2495
2496         nvme_reset_ctrl_sync(&dev->ctrl);
2497         flush_work(&dev->ctrl.scan_work);
2498         nvme_put_ctrl(&dev->ctrl);
2499 }
2500
2501 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2502 {
2503         int node, result = -ENOMEM;
2504         struct nvme_dev *dev;
2505         unsigned long quirks = id->driver_data;
2506
2507         node = dev_to_node(&pdev->dev);
2508         if (node == NUMA_NO_NODE)
2509                 set_dev_node(&pdev->dev, first_memory_node);
2510
2511         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2512         if (!dev)
2513                 return -ENOMEM;
2514
2515         dev->queues = kcalloc_node(num_possible_cpus() + 1,
2516                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2517         if (!dev->queues)
2518                 goto free;
2519
2520         dev->dev = get_device(&pdev->dev);
2521         pci_set_drvdata(pdev, dev);
2522
2523         result = nvme_dev_map(dev);
2524         if (result)
2525                 goto put_pci;
2526
2527         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2528         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2529         mutex_init(&dev->shutdown_lock);
2530         init_completion(&dev->ioq_wait);
2531
2532         result = nvme_setup_prp_pools(dev);
2533         if (result)
2534                 goto unmap;
2535
2536         quirks |= check_vendor_combination_bug(pdev);
2537
2538         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2539                         quirks);
2540         if (result)
2541                 goto release_pools;
2542
2543         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2544
2545         nvme_get_ctrl(&dev->ctrl);
2546         async_schedule(nvme_async_probe, dev);
2547
2548         return 0;
2549
2550  release_pools:
2551         nvme_release_prp_pools(dev);
2552  unmap:
2553         nvme_dev_unmap(dev);
2554  put_pci:
2555         put_device(dev->dev);
2556  free:
2557         kfree(dev->queues);
2558         kfree(dev);
2559         return result;
2560 }
2561
2562 static void nvme_reset_prepare(struct pci_dev *pdev)
2563 {
2564         struct nvme_dev *dev = pci_get_drvdata(pdev);
2565         nvme_dev_disable(dev, false);
2566 }
2567
2568 static void nvme_reset_done(struct pci_dev *pdev)
2569 {
2570         struct nvme_dev *dev = pci_get_drvdata(pdev);
2571         nvme_reset_ctrl_sync(&dev->ctrl);
2572 }
2573
2574 static void nvme_shutdown(struct pci_dev *pdev)
2575 {
2576         struct nvme_dev *dev = pci_get_drvdata(pdev);
2577         nvme_dev_disable(dev, true);
2578 }
2579
2580 /*
2581  * The driver's remove may be called on a device in a partially initialized
2582  * state. This function must not have any dependencies on the device state in
2583  * order to proceed.
2584  */
2585 static void nvme_remove(struct pci_dev *pdev)
2586 {
2587         struct nvme_dev *dev = pci_get_drvdata(pdev);
2588
2589         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2590
2591         cancel_work_sync(&dev->ctrl.reset_work);
2592         pci_set_drvdata(pdev, NULL);
2593
2594         if (!pci_device_is_present(pdev)) {
2595                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2596                 nvme_dev_disable(dev, false);
2597         }
2598
2599         flush_work(&dev->ctrl.reset_work);
2600         nvme_stop_ctrl(&dev->ctrl);
2601         nvme_remove_namespaces(&dev->ctrl);
2602         nvme_dev_disable(dev, true);
2603         nvme_free_host_mem(dev);
2604         nvme_dev_remove_admin(dev);
2605         nvme_free_queues(dev, 0);
2606         nvme_uninit_ctrl(&dev->ctrl);
2607         nvme_release_prp_pools(dev);
2608         nvme_dev_unmap(dev);
2609         nvme_put_ctrl(&dev->ctrl);
2610 }
2611
2612 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2613 {
2614         int ret = 0;
2615
2616         if (numvfs == 0) {
2617                 if (pci_vfs_assigned(pdev)) {
2618                         dev_warn(&pdev->dev,
2619                                 "Cannot disable SR-IOV VFs while assigned\n");
2620                         return -EPERM;
2621                 }
2622                 pci_disable_sriov(pdev);
2623                 return 0;
2624         }
2625
2626         ret = pci_enable_sriov(pdev, numvfs);
2627         return ret ? ret : numvfs;
2628 }
2629
2630 #ifdef CONFIG_PM_SLEEP
2631 static int nvme_suspend(struct device *dev)
2632 {
2633         struct pci_dev *pdev = to_pci_dev(dev);
2634         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2635
2636         nvme_dev_disable(ndev, true);
2637         return 0;
2638 }
2639
2640 static int nvme_resume(struct device *dev)
2641 {
2642         struct pci_dev *pdev = to_pci_dev(dev);
2643         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2644
2645         nvme_reset_ctrl(&ndev->ctrl);
2646         return 0;
2647 }
2648 #endif
2649
2650 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2651
2652 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2653                                                 pci_channel_state_t state)
2654 {
2655         struct nvme_dev *dev = pci_get_drvdata(pdev);
2656
2657         /*
2658          * A frozen channel requires a reset. When detected, this method will
2659          * shutdown the controller to quiesce. The controller will be restarted
2660          * after the slot reset through driver's slot_reset callback.
2661          */
2662         switch (state) {
2663         case pci_channel_io_normal:
2664                 return PCI_ERS_RESULT_CAN_RECOVER;
2665         case pci_channel_io_frozen:
2666                 dev_warn(dev->ctrl.device,
2667                         "frozen state error detected, reset controller\n");
2668                 nvme_dev_disable(dev, false);
2669                 return PCI_ERS_RESULT_NEED_RESET;
2670         case pci_channel_io_perm_failure:
2671                 dev_warn(dev->ctrl.device,
2672                         "failure state error detected, request disconnect\n");
2673                 return PCI_ERS_RESULT_DISCONNECT;
2674         }
2675         return PCI_ERS_RESULT_NEED_RESET;
2676 }
2677
2678 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2679 {
2680         struct nvme_dev *dev = pci_get_drvdata(pdev);
2681
2682         dev_info(dev->ctrl.device, "restart after slot reset\n");
2683         pci_restore_state(pdev);
2684         nvme_reset_ctrl_sync(&dev->ctrl);
2685
2686         switch (dev->ctrl.state) {
2687         case NVME_CTRL_LIVE:
2688         case NVME_CTRL_ADMIN_ONLY:
2689                 return PCI_ERS_RESULT_RECOVERED;
2690         default:
2691                 return PCI_ERS_RESULT_DISCONNECT;
2692         }
2693 }
2694
2695 static void nvme_error_resume(struct pci_dev *pdev)
2696 {
2697         pci_cleanup_aer_uncorrect_error_status(pdev);
2698 }
2699
2700 static const struct pci_error_handlers nvme_err_handler = {
2701         .error_detected = nvme_error_detected,
2702         .slot_reset     = nvme_slot_reset,
2703         .resume         = nvme_error_resume,
2704         .reset_prepare  = nvme_reset_prepare,
2705         .reset_done     = nvme_reset_done,
2706 };
2707
2708 static const struct pci_device_id nvme_id_table[] = {
2709         { PCI_VDEVICE(INTEL, 0x0953),
2710                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2711                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2712         { PCI_VDEVICE(INTEL, 0x0a53),
2713                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2714                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2715         { PCI_VDEVICE(INTEL, 0x0a54),
2716                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2717                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2718         { PCI_VDEVICE(INTEL, 0x0a55),
2719                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2720                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2721         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2722                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2723         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2724                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2725         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2726                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2727         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2728                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2729         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2730                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2731         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2732                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2733         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2734                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2735         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2736                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2737         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2738                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2739         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2740                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2741         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2742                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2743         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2744         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2745         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2746         { 0, }
2747 };
2748 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2749
2750 static struct pci_driver nvme_driver = {
2751         .name           = "nvme",
2752         .id_table       = nvme_id_table,
2753         .probe          = nvme_probe,
2754         .remove         = nvme_remove,
2755         .shutdown       = nvme_shutdown,
2756         .driver         = {
2757                 .pm     = &nvme_dev_pm_ops,
2758         },
2759         .sriov_configure = nvme_pci_sriov_configure,
2760         .err_handler    = &nvme_err_handler,
2761 };
2762
2763 static int __init nvme_init(void)
2764 {
2765         return pci_register_driver(&nvme_driver);
2766 }
2767
2768 static void __exit nvme_exit(void)
2769 {
2770         pci_unregister_driver(&nvme_driver);
2771         flush_workqueue(nvme_wq);
2772         _nvme_check_size();
2773 }
2774
2775 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2776 MODULE_LICENSE("GPL");
2777 MODULE_VERSION("1.0");
2778 module_init(nvme_init);
2779 module_exit(nvme_exit);