7fbb6f94b56132691b669aafc1c74da9aad0fc0b
[sfrench/cifs-2.6.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33
34 #include "nvme.h"
35
36 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 static int use_threaded_interrupts;
42 module_param(use_threaded_interrupts, int, 0);
43
44 static bool use_cmb_sqes = true;
45 module_param(use_cmb_sqes, bool, 0644);
46 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47
48 static unsigned int max_host_mem_size_mb = 128;
49 module_param(max_host_mem_size_mb, uint, 0444);
50 MODULE_PARM_DESC(max_host_mem_size_mb,
51         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52
53 static unsigned int sgl_threshold = SZ_32K;
54 module_param(sgl_threshold, uint, 0644);
55 MODULE_PARM_DESC(sgl_threshold,
56                 "Use SGLs when average request segment size is larger or equal to "
57                 "this size. Use 0 to disable SGLs.");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
73
74 /*
75  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
76  */
77 struct nvme_dev {
78         struct nvme_queue *queues;
79         struct blk_mq_tag_set tagset;
80         struct blk_mq_tag_set admin_tagset;
81         u32 __iomem *dbs;
82         struct device *dev;
83         struct dma_pool *prp_page_pool;
84         struct dma_pool *prp_small_pool;
85         unsigned online_queues;
86         unsigned max_qid;
87         unsigned int num_vecs;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         pci_bus_addr_t cmb_bus_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         dma_addr_t host_mem_descs_dma;
113         struct nvme_host_mem_buf_desc *host_mem_descs;
114         void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119         int n = 0, ret;
120
121         ret = kstrtoint(val, 10, &n);
122         if (ret != 0 || n < 2)
123                 return -EINVAL;
124
125         return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130         return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135         return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140         return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144  * An NVM Express queue.  Each device has at least two (one for admin
145  * commands and one for I/O commands).
146  */
147 struct nvme_queue {
148         struct device *q_dmadev;
149         struct nvme_dev *dev;
150         spinlock_t q_lock;
151         struct nvme_command *sq_cmds;
152         struct nvme_command __iomem *sq_cmds_io;
153         volatile struct nvme_completion *cqes;
154         struct blk_mq_tags **tags;
155         dma_addr_t sq_dma_addr;
156         dma_addr_t cq_dma_addr;
157         u32 __iomem *q_db;
158         u16 q_depth;
159         s16 cq_vector;
160         u16 sq_tail;
161         u16 cq_head;
162         u16 qid;
163         u8 cq_phase;
164         u32 *dbbuf_sq_db;
165         u32 *dbbuf_cq_db;
166         u32 *dbbuf_sq_ei;
167         u32 *dbbuf_cq_ei;
168 };
169
170 /*
171  * The nvme_iod describes the data in an I/O, including the list of PRP
172  * entries.  You can't see it in this data structure because C doesn't let
173  * me express that.  Use nvme_init_iod to ensure there's enough space
174  * allocated to store the PRP list.
175  */
176 struct nvme_iod {
177         struct nvme_request req;
178         struct nvme_queue *nvmeq;
179         bool use_sgl;
180         int aborted;
181         int npages;             /* In the PRP list. 0 means small pool in use */
182         int nents;              /* Used in scatterlist */
183         int length;             /* Of data, in bytes */
184         dma_addr_t first_dma;
185         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186         struct scatterlist *sg;
187         struct scatterlist inline_sg[0];
188 };
189
190 /*
191  * Check we didin't inadvertently grow the command struct
192  */
193 static inline void _nvme_check_size(void)
194 {
195         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212         return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219         if (dev->dbbuf_dbs)
220                 return 0;
221
222         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223                                             &dev->dbbuf_dbs_dma_addr,
224                                             GFP_KERNEL);
225         if (!dev->dbbuf_dbs)
226                 return -ENOMEM;
227         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228                                             &dev->dbbuf_eis_dma_addr,
229                                             GFP_KERNEL);
230         if (!dev->dbbuf_eis) {
231                 dma_free_coherent(dev->dev, mem_size,
232                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233                 dev->dbbuf_dbs = NULL;
234                 return -ENOMEM;
235         }
236
237         return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244         if (dev->dbbuf_dbs) {
245                 dma_free_coherent(dev->dev, mem_size,
246                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247                 dev->dbbuf_dbs = NULL;
248         }
249         if (dev->dbbuf_eis) {
250                 dma_free_coherent(dev->dev, mem_size,
251                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252                 dev->dbbuf_eis = NULL;
253         }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257                             struct nvme_queue *nvmeq, int qid)
258 {
259         if (!dev->dbbuf_dbs || !qid)
260                 return;
261
262         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270         struct nvme_command c;
271
272         if (!dev->dbbuf_dbs)
273                 return;
274
275         memset(&c, 0, sizeof(c));
276         c.dbbuf.opcode = nvme_admin_dbbuf;
277         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282                 /* Free memory and continue on */
283                 nvme_dbbuf_dma_free(dev);
284         }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294                                               volatile u32 *dbbuf_ei)
295 {
296         if (dbbuf_db) {
297                 u16 old_value;
298
299                 /*
300                  * Ensure that the queue is written before updating
301                  * the doorbell in memory
302                  */
303                 wmb();
304
305                 old_value = *dbbuf_db;
306                 *dbbuf_db = value;
307
308                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309                         return false;
310         }
311
312         return true;
313 }
314
315 /*
316  * Max size of iod being embedded in the request payload
317  */
318 #define NVME_INT_PAGES          2
319 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322  * Will slightly overestimate the number of pages needed.  This is OK
323  * as it only leads to a small amount of wasted memory for the lifetime of
324  * the I/O.
325  */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329                                       dev->ctrl.page_size);
330         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 /*
334  * Calculates the number of pages needed for the SGL segments. For example a 4k
335  * page can accommodate 256 SGL descriptors.
336  */
337 static int nvme_pci_npages_sgl(unsigned int num_seg)
338 {
339         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
340 }
341
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
343                 unsigned int size, unsigned int nseg, bool use_sgl)
344 {
345         size_t alloc_size;
346
347         if (use_sgl)
348                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
349         else
350                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
351
352         return alloc_size + sizeof(struct scatterlist) * nseg;
353 }
354
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
356 {
357         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
358                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
359                                     use_sgl);
360
361         return sizeof(struct nvme_iod) + alloc_size;
362 }
363
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
365                                 unsigned int hctx_idx)
366 {
367         struct nvme_dev *dev = data;
368         struct nvme_queue *nvmeq = &dev->queues[0];
369
370         WARN_ON(hctx_idx != 0);
371         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
372         WARN_ON(nvmeq->tags);
373
374         hctx->driver_data = nvmeq;
375         nvmeq->tags = &dev->admin_tagset.tags[0];
376         return 0;
377 }
378
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380 {
381         struct nvme_queue *nvmeq = hctx->driver_data;
382
383         nvmeq->tags = NULL;
384 }
385
386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
387                           unsigned int hctx_idx)
388 {
389         struct nvme_dev *dev = data;
390         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
391
392         if (!nvmeq->tags)
393                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
394
395         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
396         hctx->driver_data = nvmeq;
397         return 0;
398 }
399
400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
401                 unsigned int hctx_idx, unsigned int numa_node)
402 {
403         struct nvme_dev *dev = set->driver_data;
404         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
405         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
406         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
407
408         BUG_ON(!nvmeq);
409         iod->nvmeq = nvmeq;
410         return 0;
411 }
412
413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
414 {
415         struct nvme_dev *dev = set->driver_data;
416
417         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
418                         dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
419 }
420
421 /**
422  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
423  * @nvmeq: The queue to use
424  * @cmd: The command to send
425  *
426  * Safe to use from interrupt context
427  */
428 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
429                                                 struct nvme_command *cmd)
430 {
431         u16 tail = nvmeq->sq_tail;
432
433         if (nvmeq->sq_cmds_io)
434                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
435         else
436                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
437
438         if (++tail == nvmeq->q_depth)
439                 tail = 0;
440         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
441                                               nvmeq->dbbuf_sq_ei))
442                 writel(tail, nvmeq->q_db);
443         nvmeq->sq_tail = tail;
444 }
445
446 static void **nvme_pci_iod_list(struct request *req)
447 {
448         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
449         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
450 }
451
452 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
453 {
454         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
455         int nseg = blk_rq_nr_phys_segments(req);
456         unsigned int avg_seg_size;
457
458         if (nseg == 0)
459                 return false;
460
461         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
462
463         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
464                 return false;
465         if (!iod->nvmeq->qid)
466                 return false;
467         if (!sgl_threshold || avg_seg_size < sgl_threshold)
468                 return false;
469         return true;
470 }
471
472 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
473 {
474         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
475         int nseg = blk_rq_nr_phys_segments(rq);
476         unsigned int size = blk_rq_payload_bytes(rq);
477
478         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
479
480         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
481                 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
482                                 iod->use_sgl);
483
484                 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
485                 if (!iod->sg)
486                         return BLK_STS_RESOURCE;
487         } else {
488                 iod->sg = iod->inline_sg;
489         }
490
491         iod->aborted = 0;
492         iod->npages = -1;
493         iod->nents = 0;
494         iod->length = size;
495
496         return BLK_STS_OK;
497 }
498
499 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
500 {
501         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
502         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
503         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
504
505         int i;
506
507         if (iod->npages == 0)
508                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
509                         dma_addr);
510
511         for (i = 0; i < iod->npages; i++) {
512                 void *addr = nvme_pci_iod_list(req)[i];
513
514                 if (iod->use_sgl) {
515                         struct nvme_sgl_desc *sg_list = addr;
516
517                         next_dma_addr =
518                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
519                 } else {
520                         __le64 *prp_list = addr;
521
522                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
523                 }
524
525                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
526                 dma_addr = next_dma_addr;
527         }
528
529         if (iod->sg != iod->inline_sg)
530                 kfree(iod->sg);
531 }
532
533 #ifdef CONFIG_BLK_DEV_INTEGRITY
534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 {
536         if (be32_to_cpu(pi->ref_tag) == v)
537                 pi->ref_tag = cpu_to_be32(p);
538 }
539
540 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
541 {
542         if (be32_to_cpu(pi->ref_tag) == p)
543                 pi->ref_tag = cpu_to_be32(v);
544 }
545
546 /**
547  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548  *
549  * The virtual start sector is the one that was originally submitted by the
550  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
551  * start sector may be different. Remap protection information to match the
552  * physical LBA on writes, and back to the original seed on reads.
553  *
554  * Type 0 and 3 do not have a ref tag, so no remapping required.
555  */
556 static void nvme_dif_remap(struct request *req,
557                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
558 {
559         struct nvme_ns *ns = req->rq_disk->private_data;
560         struct bio_integrity_payload *bip;
561         struct t10_pi_tuple *pi;
562         void *p, *pmap;
563         u32 i, nlb, ts, phys, virt;
564
565         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
566                 return;
567
568         bip = bio_integrity(req->bio);
569         if (!bip)
570                 return;
571
572         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
573
574         p = pmap;
575         virt = bip_get_seed(bip);
576         phys = nvme_block_nr(ns, blk_rq_pos(req));
577         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
578         ts = ns->disk->queue->integrity.tuple_size;
579
580         for (i = 0; i < nlb; i++, virt++, phys++) {
581                 pi = (struct t10_pi_tuple *)p;
582                 dif_swap(phys, virt, pi);
583                 p += ts;
584         }
585         kunmap_atomic(pmap);
586 }
587 #else /* CONFIG_BLK_DEV_INTEGRITY */
588 static void nvme_dif_remap(struct request *req,
589                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590 {
591 }
592 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596 {
597 }
598 #endif
599
600 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
601 {
602         int i;
603         struct scatterlist *sg;
604
605         for_each_sg(sgl, sg, nents, i) {
606                 dma_addr_t phys = sg_phys(sg);
607                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
608                         "dma_address:%pad dma_length:%d\n",
609                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
610                         sg_dma_len(sg));
611         }
612 }
613
614 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
615                 struct request *req, struct nvme_rw_command *cmnd)
616 {
617         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
618         struct dma_pool *pool;
619         int length = blk_rq_payload_bytes(req);
620         struct scatterlist *sg = iod->sg;
621         int dma_len = sg_dma_len(sg);
622         u64 dma_addr = sg_dma_address(sg);
623         u32 page_size = dev->ctrl.page_size;
624         int offset = dma_addr & (page_size - 1);
625         __le64 *prp_list;
626         void **list = nvme_pci_iod_list(req);
627         dma_addr_t prp_dma;
628         int nprps, i;
629
630         length -= (page_size - offset);
631         if (length <= 0) {
632                 iod->first_dma = 0;
633                 goto done;
634         }
635
636         dma_len -= (page_size - offset);
637         if (dma_len) {
638                 dma_addr += (page_size - offset);
639         } else {
640                 sg = sg_next(sg);
641                 dma_addr = sg_dma_address(sg);
642                 dma_len = sg_dma_len(sg);
643         }
644
645         if (length <= page_size) {
646                 iod->first_dma = dma_addr;
647                 goto done;
648         }
649
650         nprps = DIV_ROUND_UP(length, page_size);
651         if (nprps <= (256 / 8)) {
652                 pool = dev->prp_small_pool;
653                 iod->npages = 0;
654         } else {
655                 pool = dev->prp_page_pool;
656                 iod->npages = 1;
657         }
658
659         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
660         if (!prp_list) {
661                 iod->first_dma = dma_addr;
662                 iod->npages = -1;
663                 return BLK_STS_RESOURCE;
664         }
665         list[0] = prp_list;
666         iod->first_dma = prp_dma;
667         i = 0;
668         for (;;) {
669                 if (i == page_size >> 3) {
670                         __le64 *old_prp_list = prp_list;
671                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
672                         if (!prp_list)
673                                 return BLK_STS_RESOURCE;
674                         list[iod->npages++] = prp_list;
675                         prp_list[0] = old_prp_list[i - 1];
676                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
677                         i = 1;
678                 }
679                 prp_list[i++] = cpu_to_le64(dma_addr);
680                 dma_len -= page_size;
681                 dma_addr += page_size;
682                 length -= page_size;
683                 if (length <= 0)
684                         break;
685                 if (dma_len > 0)
686                         continue;
687                 if (unlikely(dma_len < 0))
688                         goto bad_sgl;
689                 sg = sg_next(sg);
690                 dma_addr = sg_dma_address(sg);
691                 dma_len = sg_dma_len(sg);
692         }
693
694 done:
695         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
696         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
697
698         return BLK_STS_OK;
699
700  bad_sgl:
701         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
702                         "Invalid SGL for payload:%d nents:%d\n",
703                         blk_rq_payload_bytes(req), iod->nents);
704         return BLK_STS_IOERR;
705 }
706
707 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
708                 struct scatterlist *sg)
709 {
710         sge->addr = cpu_to_le64(sg_dma_address(sg));
711         sge->length = cpu_to_le32(sg_dma_len(sg));
712         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
713 }
714
715 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
716                 dma_addr_t dma_addr, int entries)
717 {
718         sge->addr = cpu_to_le64(dma_addr);
719         if (entries < SGES_PER_PAGE) {
720                 sge->length = cpu_to_le32(entries * sizeof(*sge));
721                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
722         } else {
723                 sge->length = cpu_to_le32(PAGE_SIZE);
724                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
725         }
726 }
727
728 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
729                 struct request *req, struct nvme_rw_command *cmd, int entries)
730 {
731         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
732         struct dma_pool *pool;
733         struct nvme_sgl_desc *sg_list;
734         struct scatterlist *sg = iod->sg;
735         dma_addr_t sgl_dma;
736         int i = 0;
737
738         /* setting the transfer type as SGL */
739         cmd->flags = NVME_CMD_SGL_METABUF;
740
741         if (entries == 1) {
742                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
743                 return BLK_STS_OK;
744         }
745
746         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
747                 pool = dev->prp_small_pool;
748                 iod->npages = 0;
749         } else {
750                 pool = dev->prp_page_pool;
751                 iod->npages = 1;
752         }
753
754         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
755         if (!sg_list) {
756                 iod->npages = -1;
757                 return BLK_STS_RESOURCE;
758         }
759
760         nvme_pci_iod_list(req)[0] = sg_list;
761         iod->first_dma = sgl_dma;
762
763         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
764
765         do {
766                 if (i == SGES_PER_PAGE) {
767                         struct nvme_sgl_desc *old_sg_desc = sg_list;
768                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
769
770                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
771                         if (!sg_list)
772                                 return BLK_STS_RESOURCE;
773
774                         i = 0;
775                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
776                         sg_list[i++] = *link;
777                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
778                 }
779
780                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
781                 sg = sg_next(sg);
782         } while (--entries > 0);
783
784         return BLK_STS_OK;
785 }
786
787 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
788                 struct nvme_command *cmnd)
789 {
790         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
791         struct request_queue *q = req->q;
792         enum dma_data_direction dma_dir = rq_data_dir(req) ?
793                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
794         blk_status_t ret = BLK_STS_IOERR;
795         int nr_mapped;
796
797         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
798         iod->nents = blk_rq_map_sg(q, req, iod->sg);
799         if (!iod->nents)
800                 goto out;
801
802         ret = BLK_STS_RESOURCE;
803         nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
804                         DMA_ATTR_NO_WARN);
805         if (!nr_mapped)
806                 goto out;
807
808         if (iod->use_sgl)
809                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
810         else
811                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
812
813         if (ret != BLK_STS_OK)
814                 goto out_unmap;
815
816         ret = BLK_STS_IOERR;
817         if (blk_integrity_rq(req)) {
818                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
819                         goto out_unmap;
820
821                 sg_init_table(&iod->meta_sg, 1);
822                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
823                         goto out_unmap;
824
825                 if (req_op(req) == REQ_OP_WRITE)
826                         nvme_dif_remap(req, nvme_dif_prep);
827
828                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
829                         goto out_unmap;
830         }
831
832         if (blk_integrity_rq(req))
833                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
834         return BLK_STS_OK;
835
836 out_unmap:
837         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
838 out:
839         return ret;
840 }
841
842 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
843 {
844         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
845         enum dma_data_direction dma_dir = rq_data_dir(req) ?
846                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
847
848         if (iod->nents) {
849                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
850                 if (blk_integrity_rq(req)) {
851                         if (req_op(req) == REQ_OP_READ)
852                                 nvme_dif_remap(req, nvme_dif_complete);
853                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
854                 }
855         }
856
857         nvme_cleanup_cmd(req);
858         nvme_free_iod(dev, req);
859 }
860
861 /*
862  * NOTE: ns is NULL when called on the admin queue.
863  */
864 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
865                          const struct blk_mq_queue_data *bd)
866 {
867         struct nvme_ns *ns = hctx->queue->queuedata;
868         struct nvme_queue *nvmeq = hctx->driver_data;
869         struct nvme_dev *dev = nvmeq->dev;
870         struct request *req = bd->rq;
871         struct nvme_command cmnd;
872         blk_status_t ret;
873
874         /*
875          * We should not need to do this, but we're still using this to
876          * ensure we can drain requests on a dying queue.
877          */
878         if (unlikely(nvmeq->cq_vector < 0))
879                 return BLK_STS_IOERR;
880
881         ret = nvme_setup_cmd(ns, req, &cmnd);
882         if (ret)
883                 return ret;
884
885         ret = nvme_init_iod(req, dev);
886         if (ret)
887                 goto out_free_cmd;
888
889         if (blk_rq_nr_phys_segments(req)) {
890                 ret = nvme_map_data(dev, req, &cmnd);
891                 if (ret)
892                         goto out_cleanup_iod;
893         }
894
895         blk_mq_start_request(req);
896
897         spin_lock_irq(&nvmeq->q_lock);
898         __nvme_submit_cmd(nvmeq, &cmnd);
899         spin_unlock_irq(&nvmeq->q_lock);
900         return BLK_STS_OK;
901 out_cleanup_iod:
902         nvme_free_iod(dev, req);
903 out_free_cmd:
904         nvme_cleanup_cmd(req);
905         return ret;
906 }
907
908 static void nvme_pci_complete_rq(struct request *req)
909 {
910         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911
912         nvme_unmap_data(iod->nvmeq->dev, req);
913         nvme_complete_rq(req);
914 }
915
916 /* We read the CQE phase first to check if the rest of the entry is valid */
917 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
918 {
919         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
920                         nvmeq->cq_phase;
921 }
922
923 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
924 {
925         u16 head = nvmeq->cq_head;
926
927         if (likely(nvmeq->cq_vector >= 0)) {
928                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
929                                                       nvmeq->dbbuf_cq_ei))
930                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
931         }
932 }
933
934 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
935 {
936         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
937         struct request *req;
938
939         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
940                 dev_warn(nvmeq->dev->ctrl.device,
941                         "invalid id %d completed on queue %d\n",
942                         cqe->command_id, le16_to_cpu(cqe->sq_id));
943                 return;
944         }
945
946         /*
947          * AEN requests are special as they don't time out and can
948          * survive any kind of queue freeze and often don't respond to
949          * aborts.  We don't even bother to allocate a struct request
950          * for them but rather special case them here.
951          */
952         if (unlikely(nvmeq->qid == 0 &&
953                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
954                 nvme_complete_async_event(&nvmeq->dev->ctrl,
955                                 cqe->status, &cqe->result);
956                 return;
957         }
958
959         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
960         nvme_end_request(req, cqe->status, cqe->result);
961 }
962
963 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
964 {
965         while (start != end) {
966                 nvme_handle_cqe(nvmeq, start);
967                 if (++start == nvmeq->q_depth)
968                         start = 0;
969         }
970 }
971
972 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
973 {
974         if (++nvmeq->cq_head == nvmeq->q_depth) {
975                 nvmeq->cq_head = 0;
976                 nvmeq->cq_phase = !nvmeq->cq_phase;
977         }
978 }
979
980 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
981                 u16 *end, int tag)
982 {
983         bool found = false;
984
985         *start = nvmeq->cq_head;
986         while (!found && nvme_cqe_pending(nvmeq)) {
987                 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
988                         found = true;
989                 nvme_update_cq_head(nvmeq);
990         }
991         *end = nvmeq->cq_head;
992
993         if (*start != *end)
994                 nvme_ring_cq_doorbell(nvmeq);
995         return found;
996 }
997
998 static irqreturn_t nvme_irq(int irq, void *data)
999 {
1000         struct nvme_queue *nvmeq = data;
1001         u16 start, end;
1002
1003         spin_lock(&nvmeq->q_lock);
1004         nvme_process_cq(nvmeq, &start, &end, -1);
1005         spin_unlock(&nvmeq->q_lock);
1006
1007         if (start == end)
1008                 return IRQ_NONE;
1009         nvme_complete_cqes(nvmeq, start, end);
1010         return IRQ_HANDLED;
1011 }
1012
1013 static irqreturn_t nvme_irq_check(int irq, void *data)
1014 {
1015         struct nvme_queue *nvmeq = data;
1016         if (nvme_cqe_pending(nvmeq))
1017                 return IRQ_WAKE_THREAD;
1018         return IRQ_NONE;
1019 }
1020
1021 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1022 {
1023         u16 start, end;
1024         bool found;
1025
1026         if (!nvme_cqe_pending(nvmeq))
1027                 return 0;
1028
1029         spin_lock_irq(&nvmeq->q_lock);
1030         found = nvme_process_cq(nvmeq, &start, &end, tag);
1031         spin_unlock_irq(&nvmeq->q_lock);
1032
1033         nvme_complete_cqes(nvmeq, start, end);
1034         return found;
1035 }
1036
1037 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1038 {
1039         struct nvme_queue *nvmeq = hctx->driver_data;
1040
1041         return __nvme_poll(nvmeq, tag);
1042 }
1043
1044 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1045 {
1046         struct nvme_dev *dev = to_nvme_dev(ctrl);
1047         struct nvme_queue *nvmeq = &dev->queues[0];
1048         struct nvme_command c;
1049
1050         memset(&c, 0, sizeof(c));
1051         c.common.opcode = nvme_admin_async_event;
1052         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1053
1054         spin_lock_irq(&nvmeq->q_lock);
1055         __nvme_submit_cmd(nvmeq, &c);
1056         spin_unlock_irq(&nvmeq->q_lock);
1057 }
1058
1059 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1060 {
1061         struct nvme_command c;
1062
1063         memset(&c, 0, sizeof(c));
1064         c.delete_queue.opcode = opcode;
1065         c.delete_queue.qid = cpu_to_le16(id);
1066
1067         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1068 }
1069
1070 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1071                                                 struct nvme_queue *nvmeq)
1072 {
1073         struct nvme_command c;
1074         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1075
1076         /*
1077          * Note: we (ab)use the fact that the prp fields survive if no data
1078          * is attached to the request.
1079          */
1080         memset(&c, 0, sizeof(c));
1081         c.create_cq.opcode = nvme_admin_create_cq;
1082         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1083         c.create_cq.cqid = cpu_to_le16(qid);
1084         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1085         c.create_cq.cq_flags = cpu_to_le16(flags);
1086         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1087
1088         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1089 }
1090
1091 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1092                                                 struct nvme_queue *nvmeq)
1093 {
1094         struct nvme_command c;
1095         int flags = NVME_QUEUE_PHYS_CONTIG;
1096
1097         /*
1098          * Note: we (ab)use the fact that the prp fields survive if no data
1099          * is attached to the request.
1100          */
1101         memset(&c, 0, sizeof(c));
1102         c.create_sq.opcode = nvme_admin_create_sq;
1103         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1104         c.create_sq.sqid = cpu_to_le16(qid);
1105         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1106         c.create_sq.sq_flags = cpu_to_le16(flags);
1107         c.create_sq.cqid = cpu_to_le16(qid);
1108
1109         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1110 }
1111
1112 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1113 {
1114         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1115 }
1116
1117 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1118 {
1119         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1120 }
1121
1122 static void abort_endio(struct request *req, blk_status_t error)
1123 {
1124         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1125         struct nvme_queue *nvmeq = iod->nvmeq;
1126
1127         dev_warn(nvmeq->dev->ctrl.device,
1128                  "Abort status: 0x%x", nvme_req(req)->status);
1129         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1130         blk_mq_free_request(req);
1131 }
1132
1133 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1134 {
1135
1136         /* If true, indicates loss of adapter communication, possibly by a
1137          * NVMe Subsystem reset.
1138          */
1139         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1140
1141         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1142         switch (dev->ctrl.state) {
1143         case NVME_CTRL_RESETTING:
1144         case NVME_CTRL_CONNECTING:
1145                 return false;
1146         default:
1147                 break;
1148         }
1149
1150         /* We shouldn't reset unless the controller is on fatal error state
1151          * _or_ if we lost the communication with it.
1152          */
1153         if (!(csts & NVME_CSTS_CFS) && !nssro)
1154                 return false;
1155
1156         return true;
1157 }
1158
1159 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1160 {
1161         /* Read a config register to help see what died. */
1162         u16 pci_status;
1163         int result;
1164
1165         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1166                                       &pci_status);
1167         if (result == PCIBIOS_SUCCESSFUL)
1168                 dev_warn(dev->ctrl.device,
1169                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1170                          csts, pci_status);
1171         else
1172                 dev_warn(dev->ctrl.device,
1173                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1174                          csts, result);
1175 }
1176
1177 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1178 {
1179         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1180         struct nvme_queue *nvmeq = iod->nvmeq;
1181         struct nvme_dev *dev = nvmeq->dev;
1182         struct request *abort_req;
1183         struct nvme_command cmd;
1184         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1185
1186         /* If PCI error recovery process is happening, we cannot reset or
1187          * the recovery mechanism will surely fail.
1188          */
1189         mb();
1190         if (pci_channel_offline(to_pci_dev(dev->dev)))
1191                 return BLK_EH_RESET_TIMER;
1192
1193         /*
1194          * Reset immediately if the controller is failed
1195          */
1196         if (nvme_should_reset(dev, csts)) {
1197                 nvme_warn_reset(dev, csts);
1198                 nvme_dev_disable(dev, false);
1199                 nvme_reset_ctrl(&dev->ctrl);
1200                 return BLK_EH_HANDLED;
1201         }
1202
1203         /*
1204          * Did we miss an interrupt?
1205          */
1206         if (__nvme_poll(nvmeq, req->tag)) {
1207                 dev_warn(dev->ctrl.device,
1208                          "I/O %d QID %d timeout, completion polled\n",
1209                          req->tag, nvmeq->qid);
1210                 return BLK_EH_HANDLED;
1211         }
1212
1213         /*
1214          * Shutdown immediately if controller times out while starting. The
1215          * reset work will see the pci device disabled when it gets the forced
1216          * cancellation error. All outstanding requests are completed on
1217          * shutdown, so we return BLK_EH_HANDLED.
1218          */
1219         switch (dev->ctrl.state) {
1220         case NVME_CTRL_CONNECTING:
1221         case NVME_CTRL_RESETTING:
1222                 dev_warn(dev->ctrl.device,
1223                          "I/O %d QID %d timeout, disable controller\n",
1224                          req->tag, nvmeq->qid);
1225                 nvme_dev_disable(dev, false);
1226                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1227                 return BLK_EH_HANDLED;
1228         default:
1229                 break;
1230         }
1231
1232         /*
1233          * Shutdown the controller immediately and schedule a reset if the
1234          * command was already aborted once before and still hasn't been
1235          * returned to the driver, or if this is the admin queue.
1236          */
1237         if (!nvmeq->qid || iod->aborted) {
1238                 dev_warn(dev->ctrl.device,
1239                          "I/O %d QID %d timeout, reset controller\n",
1240                          req->tag, nvmeq->qid);
1241                 nvme_dev_disable(dev, false);
1242                 nvme_reset_ctrl(&dev->ctrl);
1243
1244                 /*
1245                  * Mark the request as handled, since the inline shutdown
1246                  * forces all outstanding requests to complete.
1247                  */
1248                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1249                 return BLK_EH_HANDLED;
1250         }
1251
1252         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1253                 atomic_inc(&dev->ctrl.abort_limit);
1254                 return BLK_EH_RESET_TIMER;
1255         }
1256         iod->aborted = 1;
1257
1258         memset(&cmd, 0, sizeof(cmd));
1259         cmd.abort.opcode = nvme_admin_abort_cmd;
1260         cmd.abort.cid = req->tag;
1261         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1262
1263         dev_warn(nvmeq->dev->ctrl.device,
1264                 "I/O %d QID %d timeout, aborting\n",
1265                  req->tag, nvmeq->qid);
1266
1267         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1268                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1269         if (IS_ERR(abort_req)) {
1270                 atomic_inc(&dev->ctrl.abort_limit);
1271                 return BLK_EH_RESET_TIMER;
1272         }
1273
1274         abort_req->timeout = ADMIN_TIMEOUT;
1275         abort_req->end_io_data = NULL;
1276         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1277
1278         /*
1279          * The aborted req will be completed on receiving the abort req.
1280          * We enable the timer again. If hit twice, it'll cause a device reset,
1281          * as the device then is in a faulty state.
1282          */
1283         return BLK_EH_RESET_TIMER;
1284 }
1285
1286 static void nvme_free_queue(struct nvme_queue *nvmeq)
1287 {
1288         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1289                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1290         if (nvmeq->sq_cmds)
1291                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1292                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1293 }
1294
1295 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1296 {
1297         int i;
1298
1299         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1300                 dev->ctrl.queue_count--;
1301                 nvme_free_queue(&dev->queues[i]);
1302         }
1303 }
1304
1305 /**
1306  * nvme_suspend_queue - put queue into suspended state
1307  * @nvmeq - queue to suspend
1308  */
1309 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1310 {
1311         int vector;
1312
1313         spin_lock_irq(&nvmeq->q_lock);
1314         if (nvmeq->cq_vector == -1) {
1315                 spin_unlock_irq(&nvmeq->q_lock);
1316                 return 1;
1317         }
1318         vector = nvmeq->cq_vector;
1319         nvmeq->dev->online_queues--;
1320         nvmeq->cq_vector = -1;
1321         spin_unlock_irq(&nvmeq->q_lock);
1322
1323         /*
1324          * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1325          * having to grab the lock.
1326          */
1327         mb();
1328
1329         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1330                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1331
1332         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1333
1334         return 0;
1335 }
1336
1337 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1338 {
1339         struct nvme_queue *nvmeq = &dev->queues[0];
1340         u16 start, end;
1341
1342         if (shutdown)
1343                 nvme_shutdown_ctrl(&dev->ctrl);
1344         else
1345                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1346
1347         spin_lock_irq(&nvmeq->q_lock);
1348         nvme_process_cq(nvmeq, &start, &end, -1);
1349         spin_unlock_irq(&nvmeq->q_lock);
1350
1351         nvme_complete_cqes(nvmeq, start, end);
1352 }
1353
1354 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1355                                 int entry_size)
1356 {
1357         int q_depth = dev->q_depth;
1358         unsigned q_size_aligned = roundup(q_depth * entry_size,
1359                                           dev->ctrl.page_size);
1360
1361         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1362                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1363                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1364                 q_depth = div_u64(mem_per_q, entry_size);
1365
1366                 /*
1367                  * Ensure the reduced q_depth is above some threshold where it
1368                  * would be better to map queues in system memory with the
1369                  * original depth
1370                  */
1371                 if (q_depth < 64)
1372                         return -ENOMEM;
1373         }
1374
1375         return q_depth;
1376 }
1377
1378 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1379                                 int qid, int depth)
1380 {
1381         /* CMB SQEs will be mapped before creation */
1382         if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1383                 return 0;
1384
1385         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1386                                             &nvmeq->sq_dma_addr, GFP_KERNEL);
1387         if (!nvmeq->sq_cmds)
1388                 return -ENOMEM;
1389         return 0;
1390 }
1391
1392 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1393 {
1394         struct nvme_queue *nvmeq = &dev->queues[qid];
1395
1396         if (dev->ctrl.queue_count > qid)
1397                 return 0;
1398
1399         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1400                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1401         if (!nvmeq->cqes)
1402                 goto free_nvmeq;
1403
1404         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1405                 goto free_cqdma;
1406
1407         nvmeq->q_dmadev = dev->dev;
1408         nvmeq->dev = dev;
1409         spin_lock_init(&nvmeq->q_lock);
1410         nvmeq->cq_head = 0;
1411         nvmeq->cq_phase = 1;
1412         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1413         nvmeq->q_depth = depth;
1414         nvmeq->qid = qid;
1415         nvmeq->cq_vector = -1;
1416         dev->ctrl.queue_count++;
1417
1418         return 0;
1419
1420  free_cqdma:
1421         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1422                                                         nvmeq->cq_dma_addr);
1423  free_nvmeq:
1424         return -ENOMEM;
1425 }
1426
1427 static int queue_request_irq(struct nvme_queue *nvmeq)
1428 {
1429         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1430         int nr = nvmeq->dev->ctrl.instance;
1431
1432         if (use_threaded_interrupts) {
1433                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1434                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1435         } else {
1436                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1437                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1438         }
1439 }
1440
1441 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1442 {
1443         struct nvme_dev *dev = nvmeq->dev;
1444
1445         spin_lock_irq(&nvmeq->q_lock);
1446         nvmeq->sq_tail = 0;
1447         nvmeq->cq_head = 0;
1448         nvmeq->cq_phase = 1;
1449         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1450         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1451         nvme_dbbuf_init(dev, nvmeq, qid);
1452         dev->online_queues++;
1453         spin_unlock_irq(&nvmeq->q_lock);
1454 }
1455
1456 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1457 {
1458         struct nvme_dev *dev = nvmeq->dev;
1459         int result;
1460
1461         if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1462                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1463                                                       dev->ctrl.page_size);
1464                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1465                 nvmeq->sq_cmds_io = dev->cmb + offset;
1466         }
1467
1468         /*
1469          * A queue's vector matches the queue identifier unless the controller
1470          * has only one vector available.
1471          */
1472         nvmeq->cq_vector = dev->num_vecs == 1 ? 0 : qid;
1473         result = adapter_alloc_cq(dev, qid, nvmeq);
1474         if (result < 0)
1475                 goto release_vector;
1476
1477         result = adapter_alloc_sq(dev, qid, nvmeq);
1478         if (result < 0)
1479                 goto release_cq;
1480
1481         nvme_init_queue(nvmeq, qid);
1482         result = queue_request_irq(nvmeq);
1483         if (result < 0)
1484                 goto release_sq;
1485
1486         return result;
1487
1488  release_sq:
1489         dev->online_queues--;
1490         adapter_delete_sq(dev, qid);
1491  release_cq:
1492         adapter_delete_cq(dev, qid);
1493  release_vector:
1494         nvmeq->cq_vector = -1;
1495         return result;
1496 }
1497
1498 static const struct blk_mq_ops nvme_mq_admin_ops = {
1499         .queue_rq       = nvme_queue_rq,
1500         .complete       = nvme_pci_complete_rq,
1501         .init_hctx      = nvme_admin_init_hctx,
1502         .exit_hctx      = nvme_admin_exit_hctx,
1503         .init_request   = nvme_init_request,
1504         .timeout        = nvme_timeout,
1505 };
1506
1507 static const struct blk_mq_ops nvme_mq_ops = {
1508         .queue_rq       = nvme_queue_rq,
1509         .complete       = nvme_pci_complete_rq,
1510         .init_hctx      = nvme_init_hctx,
1511         .init_request   = nvme_init_request,
1512         .map_queues     = nvme_pci_map_queues,
1513         .timeout        = nvme_timeout,
1514         .poll           = nvme_poll,
1515 };
1516
1517 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1518 {
1519         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1520                 /*
1521                  * If the controller was reset during removal, it's possible
1522                  * user requests may be waiting on a stopped queue. Start the
1523                  * queue to flush these to completion.
1524                  */
1525                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1526                 blk_cleanup_queue(dev->ctrl.admin_q);
1527                 blk_mq_free_tag_set(&dev->admin_tagset);
1528         }
1529 }
1530
1531 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1532 {
1533         if (!dev->ctrl.admin_q) {
1534                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1535                 dev->admin_tagset.nr_hw_queues = 1;
1536
1537                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1538                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1539                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1540                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1541                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1542                 dev->admin_tagset.driver_data = dev;
1543
1544                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1545                         return -ENOMEM;
1546                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1547
1548                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1549                 if (IS_ERR(dev->ctrl.admin_q)) {
1550                         blk_mq_free_tag_set(&dev->admin_tagset);
1551                         return -ENOMEM;
1552                 }
1553                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1554                         nvme_dev_remove_admin(dev);
1555                         dev->ctrl.admin_q = NULL;
1556                         return -ENODEV;
1557                 }
1558         } else
1559                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1560
1561         return 0;
1562 }
1563
1564 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1565 {
1566         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1567 }
1568
1569 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1570 {
1571         struct pci_dev *pdev = to_pci_dev(dev->dev);
1572
1573         if (size <= dev->bar_mapped_size)
1574                 return 0;
1575         if (size > pci_resource_len(pdev, 0))
1576                 return -ENOMEM;
1577         if (dev->bar)
1578                 iounmap(dev->bar);
1579         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1580         if (!dev->bar) {
1581                 dev->bar_mapped_size = 0;
1582                 return -ENOMEM;
1583         }
1584         dev->bar_mapped_size = size;
1585         dev->dbs = dev->bar + NVME_REG_DBS;
1586
1587         return 0;
1588 }
1589
1590 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1591 {
1592         int result;
1593         u32 aqa;
1594         struct nvme_queue *nvmeq;
1595
1596         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1597         if (result < 0)
1598                 return result;
1599
1600         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1601                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1602
1603         if (dev->subsystem &&
1604             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1605                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1606
1607         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1608         if (result < 0)
1609                 return result;
1610
1611         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1612         if (result)
1613                 return result;
1614
1615         nvmeq = &dev->queues[0];
1616         aqa = nvmeq->q_depth - 1;
1617         aqa |= aqa << 16;
1618
1619         writel(aqa, dev->bar + NVME_REG_AQA);
1620         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1621         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1622
1623         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1624         if (result)
1625                 return result;
1626
1627         nvmeq->cq_vector = 0;
1628         nvme_init_queue(nvmeq, 0);
1629         result = queue_request_irq(nvmeq);
1630         if (result) {
1631                 nvmeq->cq_vector = -1;
1632                 return result;
1633         }
1634
1635         return result;
1636 }
1637
1638 static int nvme_create_io_queues(struct nvme_dev *dev)
1639 {
1640         unsigned i, max;
1641         int ret = 0;
1642
1643         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1644                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1645                         ret = -ENOMEM;
1646                         break;
1647                 }
1648         }
1649
1650         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1651         for (i = dev->online_queues; i <= max; i++) {
1652                 ret = nvme_create_queue(&dev->queues[i], i);
1653                 if (ret)
1654                         break;
1655         }
1656
1657         /*
1658          * Ignore failing Create SQ/CQ commands, we can continue with less
1659          * than the desired amount of queues, and even a controller without
1660          * I/O queues can still be used to issue admin commands.  This might
1661          * be useful to upgrade a buggy firmware for example.
1662          */
1663         return ret >= 0 ? 0 : ret;
1664 }
1665
1666 static ssize_t nvme_cmb_show(struct device *dev,
1667                              struct device_attribute *attr,
1668                              char *buf)
1669 {
1670         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1671
1672         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1673                        ndev->cmbloc, ndev->cmbsz);
1674 }
1675 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1676
1677 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1678 {
1679         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1680
1681         return 1ULL << (12 + 4 * szu);
1682 }
1683
1684 static u32 nvme_cmb_size(struct nvme_dev *dev)
1685 {
1686         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1687 }
1688
1689 static void nvme_map_cmb(struct nvme_dev *dev)
1690 {
1691         u64 size, offset;
1692         resource_size_t bar_size;
1693         struct pci_dev *pdev = to_pci_dev(dev->dev);
1694         int bar;
1695
1696         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1697         if (!dev->cmbsz)
1698                 return;
1699         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1700
1701         if (!use_cmb_sqes)
1702                 return;
1703
1704         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1705         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1706         bar = NVME_CMB_BIR(dev->cmbloc);
1707         bar_size = pci_resource_len(pdev, bar);
1708
1709         if (offset > bar_size)
1710                 return;
1711
1712         /*
1713          * Controllers may support a CMB size larger than their BAR,
1714          * for example, due to being behind a bridge. Reduce the CMB to
1715          * the reported size of the BAR
1716          */
1717         if (size > bar_size - offset)
1718                 size = bar_size - offset;
1719
1720         dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1721         if (!dev->cmb)
1722                 return;
1723         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1724         dev->cmb_size = size;
1725
1726         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1727                                     &dev_attr_cmb.attr, NULL))
1728                 dev_warn(dev->ctrl.device,
1729                          "failed to add sysfs attribute for CMB\n");
1730 }
1731
1732 static inline void nvme_release_cmb(struct nvme_dev *dev)
1733 {
1734         if (dev->cmb) {
1735                 iounmap(dev->cmb);
1736                 dev->cmb = NULL;
1737                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1738                                              &dev_attr_cmb.attr, NULL);
1739                 dev->cmbsz = 0;
1740         }
1741 }
1742
1743 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1744 {
1745         u64 dma_addr = dev->host_mem_descs_dma;
1746         struct nvme_command c;
1747         int ret;
1748
1749         memset(&c, 0, sizeof(c));
1750         c.features.opcode       = nvme_admin_set_features;
1751         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1752         c.features.dword11      = cpu_to_le32(bits);
1753         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1754                                               ilog2(dev->ctrl.page_size));
1755         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1756         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1757         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1758
1759         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1760         if (ret) {
1761                 dev_warn(dev->ctrl.device,
1762                          "failed to set host mem (err %d, flags %#x).\n",
1763                          ret, bits);
1764         }
1765         return ret;
1766 }
1767
1768 static void nvme_free_host_mem(struct nvme_dev *dev)
1769 {
1770         int i;
1771
1772         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1773                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1774                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1775
1776                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1777                                 le64_to_cpu(desc->addr));
1778         }
1779
1780         kfree(dev->host_mem_desc_bufs);
1781         dev->host_mem_desc_bufs = NULL;
1782         dma_free_coherent(dev->dev,
1783                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1784                         dev->host_mem_descs, dev->host_mem_descs_dma);
1785         dev->host_mem_descs = NULL;
1786         dev->nr_host_mem_descs = 0;
1787 }
1788
1789 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1790                 u32 chunk_size)
1791 {
1792         struct nvme_host_mem_buf_desc *descs;
1793         u32 max_entries, len;
1794         dma_addr_t descs_dma;
1795         int i = 0;
1796         void **bufs;
1797         u64 size, tmp;
1798
1799         tmp = (preferred + chunk_size - 1);
1800         do_div(tmp, chunk_size);
1801         max_entries = tmp;
1802
1803         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1804                 max_entries = dev->ctrl.hmmaxd;
1805
1806         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1807                         &descs_dma, GFP_KERNEL);
1808         if (!descs)
1809                 goto out;
1810
1811         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1812         if (!bufs)
1813                 goto out_free_descs;
1814
1815         for (size = 0; size < preferred && i < max_entries; size += len) {
1816                 dma_addr_t dma_addr;
1817
1818                 len = min_t(u64, chunk_size, preferred - size);
1819                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1820                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1821                 if (!bufs[i])
1822                         break;
1823
1824                 descs[i].addr = cpu_to_le64(dma_addr);
1825                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1826                 i++;
1827         }
1828
1829         if (!size)
1830                 goto out_free_bufs;
1831
1832         dev->nr_host_mem_descs = i;
1833         dev->host_mem_size = size;
1834         dev->host_mem_descs = descs;
1835         dev->host_mem_descs_dma = descs_dma;
1836         dev->host_mem_desc_bufs = bufs;
1837         return 0;
1838
1839 out_free_bufs:
1840         while (--i >= 0) {
1841                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1842
1843                 dma_free_coherent(dev->dev, size, bufs[i],
1844                                 le64_to_cpu(descs[i].addr));
1845         }
1846
1847         kfree(bufs);
1848 out_free_descs:
1849         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1850                         descs_dma);
1851 out:
1852         dev->host_mem_descs = NULL;
1853         return -ENOMEM;
1854 }
1855
1856 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1857 {
1858         u32 chunk_size;
1859
1860         /* start big and work our way down */
1861         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1862              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1863              chunk_size /= 2) {
1864                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1865                         if (!min || dev->host_mem_size >= min)
1866                                 return 0;
1867                         nvme_free_host_mem(dev);
1868                 }
1869         }
1870
1871         return -ENOMEM;
1872 }
1873
1874 static int nvme_setup_host_mem(struct nvme_dev *dev)
1875 {
1876         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1877         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1878         u64 min = (u64)dev->ctrl.hmmin * 4096;
1879         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1880         int ret;
1881
1882         preferred = min(preferred, max);
1883         if (min > max) {
1884                 dev_warn(dev->ctrl.device,
1885                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1886                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1887                 nvme_free_host_mem(dev);
1888                 return 0;
1889         }
1890
1891         /*
1892          * If we already have a buffer allocated check if we can reuse it.
1893          */
1894         if (dev->host_mem_descs) {
1895                 if (dev->host_mem_size >= min)
1896                         enable_bits |= NVME_HOST_MEM_RETURN;
1897                 else
1898                         nvme_free_host_mem(dev);
1899         }
1900
1901         if (!dev->host_mem_descs) {
1902                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1903                         dev_warn(dev->ctrl.device,
1904                                 "failed to allocate host memory buffer.\n");
1905                         return 0; /* controller must work without HMB */
1906                 }
1907
1908                 dev_info(dev->ctrl.device,
1909                         "allocated %lld MiB host memory buffer.\n",
1910                         dev->host_mem_size >> ilog2(SZ_1M));
1911         }
1912
1913         ret = nvme_set_host_mem(dev, enable_bits);
1914         if (ret)
1915                 nvme_free_host_mem(dev);
1916         return ret;
1917 }
1918
1919 static int nvme_setup_io_queues(struct nvme_dev *dev)
1920 {
1921         struct nvme_queue *adminq = &dev->queues[0];
1922         struct pci_dev *pdev = to_pci_dev(dev->dev);
1923         int result, nr_io_queues;
1924         unsigned long size;
1925
1926         struct irq_affinity affd = {
1927                 .pre_vectors = 1
1928         };
1929
1930         nr_io_queues = num_possible_cpus();
1931         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1932         if (result < 0)
1933                 return result;
1934
1935         if (nr_io_queues == 0)
1936                 return 0;
1937
1938         if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1939                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1940                                 sizeof(struct nvme_command));
1941                 if (result > 0)
1942                         dev->q_depth = result;
1943                 else
1944                         nvme_release_cmb(dev);
1945         }
1946
1947         do {
1948                 size = db_bar_size(dev, nr_io_queues);
1949                 result = nvme_remap_bar(dev, size);
1950                 if (!result)
1951                         break;
1952                 if (!--nr_io_queues)
1953                         return -ENOMEM;
1954         } while (1);
1955         adminq->q_db = dev->dbs;
1956
1957         /* Deregister the admin queue's interrupt */
1958         pci_free_irq(pdev, 0, adminq);
1959
1960         /*
1961          * If we enable msix early due to not intx, disable it again before
1962          * setting up the full range we need.
1963          */
1964         pci_free_irq_vectors(pdev);
1965         result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1966                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1967         if (result <= 0)
1968                 return -EIO;
1969         dev->num_vecs = result;
1970         dev->max_qid = max(result - 1, 1);
1971
1972         /*
1973          * Should investigate if there's a performance win from allocating
1974          * more queues than interrupt vectors; it might allow the submission
1975          * path to scale better, even if the receive path is limited by the
1976          * number of interrupts.
1977          */
1978
1979         result = queue_request_irq(adminq);
1980         if (result) {
1981                 adminq->cq_vector = -1;
1982                 return result;
1983         }
1984         return nvme_create_io_queues(dev);
1985 }
1986
1987 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1988 {
1989         struct nvme_queue *nvmeq = req->end_io_data;
1990
1991         blk_mq_free_request(req);
1992         complete(&nvmeq->dev->ioq_wait);
1993 }
1994
1995 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1996 {
1997         struct nvme_queue *nvmeq = req->end_io_data;
1998         u16 start, end;
1999
2000         if (!error) {
2001                 unsigned long flags;
2002
2003                 /*
2004                  * We might be called with the AQ q_lock held
2005                  * and the I/O queue q_lock should always
2006                  * nest inside the AQ one.
2007                  */
2008                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
2009                                         SINGLE_DEPTH_NESTING);
2010                 nvme_process_cq(nvmeq, &start, &end, -1);
2011                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
2012
2013                 nvme_complete_cqes(nvmeq, start, end);
2014         }
2015
2016         nvme_del_queue_end(req, error);
2017 }
2018
2019 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2020 {
2021         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2022         struct request *req;
2023         struct nvme_command cmd;
2024
2025         memset(&cmd, 0, sizeof(cmd));
2026         cmd.delete_queue.opcode = opcode;
2027         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2028
2029         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2030         if (IS_ERR(req))
2031                 return PTR_ERR(req);
2032
2033         req->timeout = ADMIN_TIMEOUT;
2034         req->end_io_data = nvmeq;
2035
2036         blk_execute_rq_nowait(q, NULL, req, false,
2037                         opcode == nvme_admin_delete_cq ?
2038                                 nvme_del_cq_end : nvme_del_queue_end);
2039         return 0;
2040 }
2041
2042 static void nvme_disable_io_queues(struct nvme_dev *dev)
2043 {
2044         int pass, queues = dev->online_queues - 1;
2045         unsigned long timeout;
2046         u8 opcode = nvme_admin_delete_sq;
2047
2048         for (pass = 0; pass < 2; pass++) {
2049                 int sent = 0, i = queues;
2050
2051                 reinit_completion(&dev->ioq_wait);
2052  retry:
2053                 timeout = ADMIN_TIMEOUT;
2054                 for (; i > 0; i--, sent++)
2055                         if (nvme_delete_queue(&dev->queues[i], opcode))
2056                                 break;
2057
2058                 while (sent--) {
2059                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2060                         if (timeout == 0)
2061                                 return;
2062                         if (i)
2063                                 goto retry;
2064                 }
2065                 opcode = nvme_admin_delete_cq;
2066         }
2067 }
2068
2069 /*
2070  * return error value only when tagset allocation failed
2071  */
2072 static int nvme_dev_add(struct nvme_dev *dev)
2073 {
2074         int ret;
2075
2076         if (!dev->ctrl.tagset) {
2077                 dev->tagset.ops = &nvme_mq_ops;
2078                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2079                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2080                 dev->tagset.numa_node = dev_to_node(dev->dev);
2081                 dev->tagset.queue_depth =
2082                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2083                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2084                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2085                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2086                                         nvme_pci_cmd_size(dev, true));
2087                 }
2088                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2089                 dev->tagset.driver_data = dev;
2090
2091                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2092                 if (ret) {
2093                         dev_warn(dev->ctrl.device,
2094                                 "IO queues tagset allocation failed %d\n", ret);
2095                         return ret;
2096                 }
2097                 dev->ctrl.tagset = &dev->tagset;
2098
2099                 nvme_dbbuf_set(dev);
2100         } else {
2101                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2102
2103                 /* Free previously allocated queues that are no longer usable */
2104                 nvme_free_queues(dev, dev->online_queues);
2105         }
2106
2107         return 0;
2108 }
2109
2110 static int nvme_pci_enable(struct nvme_dev *dev)
2111 {
2112         int result = -ENOMEM;
2113         struct pci_dev *pdev = to_pci_dev(dev->dev);
2114
2115         if (pci_enable_device_mem(pdev))
2116                 return result;
2117
2118         pci_set_master(pdev);
2119
2120         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2121             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2122                 goto disable;
2123
2124         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2125                 result = -ENODEV;
2126                 goto disable;
2127         }
2128
2129         /*
2130          * Some devices and/or platforms don't advertise or work with INTx
2131          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2132          * adjust this later.
2133          */
2134         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2135         if (result < 0)
2136                 return result;
2137
2138         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2139
2140         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2141                                 io_queue_depth);
2142         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2143         dev->dbs = dev->bar + 4096;
2144
2145         /*
2146          * Temporary fix for the Apple controller found in the MacBook8,1 and
2147          * some MacBook7,1 to avoid controller resets and data loss.
2148          */
2149         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2150                 dev->q_depth = 2;
2151                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2152                         "set queue depth=%u to work around controller resets\n",
2153                         dev->q_depth);
2154         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2155                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2156                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2157                 dev->q_depth = 64;
2158                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2159                         "set queue depth=%u\n", dev->q_depth);
2160         }
2161
2162         nvme_map_cmb(dev);
2163
2164         pci_enable_pcie_error_reporting(pdev);
2165         pci_save_state(pdev);
2166         return 0;
2167
2168  disable:
2169         pci_disable_device(pdev);
2170         return result;
2171 }
2172
2173 static void nvme_dev_unmap(struct nvme_dev *dev)
2174 {
2175         if (dev->bar)
2176                 iounmap(dev->bar);
2177         pci_release_mem_regions(to_pci_dev(dev->dev));
2178 }
2179
2180 static void nvme_pci_disable(struct nvme_dev *dev)
2181 {
2182         struct pci_dev *pdev = to_pci_dev(dev->dev);
2183
2184         nvme_release_cmb(dev);
2185         pci_free_irq_vectors(pdev);
2186
2187         if (pci_is_enabled(pdev)) {
2188                 pci_disable_pcie_error_reporting(pdev);
2189                 pci_disable_device(pdev);
2190         }
2191 }
2192
2193 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2194 {
2195         int i;
2196         bool dead = true;
2197         struct pci_dev *pdev = to_pci_dev(dev->dev);
2198
2199         mutex_lock(&dev->shutdown_lock);
2200         if (pci_is_enabled(pdev)) {
2201                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2202
2203                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2204                     dev->ctrl.state == NVME_CTRL_RESETTING)
2205                         nvme_start_freeze(&dev->ctrl);
2206                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2207                         pdev->error_state  != pci_channel_io_normal);
2208         }
2209
2210         /*
2211          * Give the controller a chance to complete all entered requests if
2212          * doing a safe shutdown.
2213          */
2214         if (!dead) {
2215                 if (shutdown)
2216                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2217         }
2218
2219         nvme_stop_queues(&dev->ctrl);
2220
2221         if (!dead && dev->ctrl.queue_count > 0) {
2222                 /*
2223                  * If the controller is still alive tell it to stop using the
2224                  * host memory buffer.  In theory the shutdown / reset should
2225                  * make sure that it doesn't access the host memoery anymore,
2226                  * but I'd rather be safe than sorry..
2227                  */
2228                 if (dev->host_mem_descs)
2229                         nvme_set_host_mem(dev, 0);
2230                 nvme_disable_io_queues(dev);
2231                 nvme_disable_admin_queue(dev, shutdown);
2232         }
2233         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2234                 nvme_suspend_queue(&dev->queues[i]);
2235
2236         nvme_pci_disable(dev);
2237
2238         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2239         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2240
2241         /*
2242          * The driver will not be starting up queues again if shutting down so
2243          * must flush all entered requests to their failed completion to avoid
2244          * deadlocking blk-mq hot-cpu notifier.
2245          */
2246         if (shutdown)
2247                 nvme_start_queues(&dev->ctrl);
2248         mutex_unlock(&dev->shutdown_lock);
2249 }
2250
2251 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2252 {
2253         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2254                                                 PAGE_SIZE, PAGE_SIZE, 0);
2255         if (!dev->prp_page_pool)
2256                 return -ENOMEM;
2257
2258         /* Optimisation for I/Os between 4k and 128k */
2259         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2260                                                 256, 256, 0);
2261         if (!dev->prp_small_pool) {
2262                 dma_pool_destroy(dev->prp_page_pool);
2263                 return -ENOMEM;
2264         }
2265         return 0;
2266 }
2267
2268 static void nvme_release_prp_pools(struct nvme_dev *dev)
2269 {
2270         dma_pool_destroy(dev->prp_page_pool);
2271         dma_pool_destroy(dev->prp_small_pool);
2272 }
2273
2274 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2275 {
2276         struct nvme_dev *dev = to_nvme_dev(ctrl);
2277
2278         nvme_dbbuf_dma_free(dev);
2279         put_device(dev->dev);
2280         if (dev->tagset.tags)
2281                 blk_mq_free_tag_set(&dev->tagset);
2282         if (dev->ctrl.admin_q)
2283                 blk_put_queue(dev->ctrl.admin_q);
2284         kfree(dev->queues);
2285         free_opal_dev(dev->ctrl.opal_dev);
2286         kfree(dev);
2287 }
2288
2289 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2290 {
2291         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2292
2293         nvme_get_ctrl(&dev->ctrl);
2294         nvme_dev_disable(dev, false);
2295         if (!queue_work(nvme_wq, &dev->remove_work))
2296                 nvme_put_ctrl(&dev->ctrl);
2297 }
2298
2299 static void nvme_reset_work(struct work_struct *work)
2300 {
2301         struct nvme_dev *dev =
2302                 container_of(work, struct nvme_dev, ctrl.reset_work);
2303         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2304         int result = -ENODEV;
2305         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2306
2307         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2308                 goto out;
2309
2310         /*
2311          * If we're called to reset a live controller first shut it down before
2312          * moving on.
2313          */
2314         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2315                 nvme_dev_disable(dev, false);
2316
2317         /*
2318          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2319          * initializing procedure here.
2320          */
2321         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2322                 dev_warn(dev->ctrl.device,
2323                         "failed to mark controller CONNECTING\n");
2324                 goto out;
2325         }
2326
2327         result = nvme_pci_enable(dev);
2328         if (result)
2329                 goto out;
2330
2331         result = nvme_pci_configure_admin_queue(dev);
2332         if (result)
2333                 goto out;
2334
2335         result = nvme_alloc_admin_tags(dev);
2336         if (result)
2337                 goto out;
2338
2339         result = nvme_init_identify(&dev->ctrl);
2340         if (result)
2341                 goto out;
2342
2343         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2344                 if (!dev->ctrl.opal_dev)
2345                         dev->ctrl.opal_dev =
2346                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2347                 else if (was_suspend)
2348                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2349         } else {
2350                 free_opal_dev(dev->ctrl.opal_dev);
2351                 dev->ctrl.opal_dev = NULL;
2352         }
2353
2354         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2355                 result = nvme_dbbuf_dma_alloc(dev);
2356                 if (result)
2357                         dev_warn(dev->dev,
2358                                  "unable to allocate dma for dbbuf\n");
2359         }
2360
2361         if (dev->ctrl.hmpre) {
2362                 result = nvme_setup_host_mem(dev);
2363                 if (result < 0)
2364                         goto out;
2365         }
2366
2367         result = nvme_setup_io_queues(dev);
2368         if (result)
2369                 goto out;
2370
2371         /*
2372          * Keep the controller around but remove all namespaces if we don't have
2373          * any working I/O queue.
2374          */
2375         if (dev->online_queues < 2) {
2376                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2377                 nvme_kill_queues(&dev->ctrl);
2378                 nvme_remove_namespaces(&dev->ctrl);
2379                 new_state = NVME_CTRL_ADMIN_ONLY;
2380         } else {
2381                 nvme_start_queues(&dev->ctrl);
2382                 nvme_wait_freeze(&dev->ctrl);
2383                 /* hit this only when allocate tagset fails */
2384                 if (nvme_dev_add(dev))
2385                         new_state = NVME_CTRL_ADMIN_ONLY;
2386                 nvme_unfreeze(&dev->ctrl);
2387         }
2388
2389         /*
2390          * If only admin queue live, keep it to do further investigation or
2391          * recovery.
2392          */
2393         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2394                 dev_warn(dev->ctrl.device,
2395                         "failed to mark controller state %d\n", new_state);
2396                 goto out;
2397         }
2398
2399         nvme_start_ctrl(&dev->ctrl);
2400         return;
2401
2402  out:
2403         nvme_remove_dead_ctrl(dev, result);
2404 }
2405
2406 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2407 {
2408         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2409         struct pci_dev *pdev = to_pci_dev(dev->dev);
2410
2411         nvme_kill_queues(&dev->ctrl);
2412         if (pci_get_drvdata(pdev))
2413                 device_release_driver(&pdev->dev);
2414         nvme_put_ctrl(&dev->ctrl);
2415 }
2416
2417 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2418 {
2419         *val = readl(to_nvme_dev(ctrl)->bar + off);
2420         return 0;
2421 }
2422
2423 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2424 {
2425         writel(val, to_nvme_dev(ctrl)->bar + off);
2426         return 0;
2427 }
2428
2429 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2430 {
2431         *val = readq(to_nvme_dev(ctrl)->bar + off);
2432         return 0;
2433 }
2434
2435 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2436 {
2437         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2438
2439         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2440 }
2441
2442 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2443         .name                   = "pcie",
2444         .module                 = THIS_MODULE,
2445         .flags                  = NVME_F_METADATA_SUPPORTED,
2446         .reg_read32             = nvme_pci_reg_read32,
2447         .reg_write32            = nvme_pci_reg_write32,
2448         .reg_read64             = nvme_pci_reg_read64,
2449         .free_ctrl              = nvme_pci_free_ctrl,
2450         .submit_async_event     = nvme_pci_submit_async_event,
2451         .get_address            = nvme_pci_get_address,
2452 };
2453
2454 static int nvme_dev_map(struct nvme_dev *dev)
2455 {
2456         struct pci_dev *pdev = to_pci_dev(dev->dev);
2457
2458         if (pci_request_mem_regions(pdev, "nvme"))
2459                 return -ENODEV;
2460
2461         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2462                 goto release;
2463
2464         return 0;
2465   release:
2466         pci_release_mem_regions(pdev);
2467         return -ENODEV;
2468 }
2469
2470 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2471 {
2472         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2473                 /*
2474                  * Several Samsung devices seem to drop off the PCIe bus
2475                  * randomly when APST is on and uses the deepest sleep state.
2476                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2477                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2478                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2479                  * laptops.
2480                  */
2481                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2482                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2483                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2484                         return NVME_QUIRK_NO_DEEPEST_PS;
2485         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2486                 /*
2487                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2488                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2489                  * within few minutes after bootup on a Coffee Lake board -
2490                  * ASUS PRIME Z370-A
2491                  */
2492                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2493                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2494                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2495                         return NVME_QUIRK_NO_APST;
2496         }
2497
2498         return 0;
2499 }
2500
2501 static void nvme_async_probe(void *data, async_cookie_t cookie)
2502 {
2503         struct nvme_dev *dev = data;
2504
2505         nvme_reset_ctrl_sync(&dev->ctrl);
2506         flush_work(&dev->ctrl.scan_work);
2507         nvme_put_ctrl(&dev->ctrl);
2508 }
2509
2510 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2511 {
2512         int node, result = -ENOMEM;
2513         struct nvme_dev *dev;
2514         unsigned long quirks = id->driver_data;
2515
2516         node = dev_to_node(&pdev->dev);
2517         if (node == NUMA_NO_NODE)
2518                 set_dev_node(&pdev->dev, first_memory_node);
2519
2520         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2521         if (!dev)
2522                 return -ENOMEM;
2523
2524         dev->queues = kcalloc_node(num_possible_cpus() + 1,
2525                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2526         if (!dev->queues)
2527                 goto free;
2528
2529         dev->dev = get_device(&pdev->dev);
2530         pci_set_drvdata(pdev, dev);
2531
2532         result = nvme_dev_map(dev);
2533         if (result)
2534                 goto put_pci;
2535
2536         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2537         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2538         mutex_init(&dev->shutdown_lock);
2539         init_completion(&dev->ioq_wait);
2540
2541         result = nvme_setup_prp_pools(dev);
2542         if (result)
2543                 goto unmap;
2544
2545         quirks |= check_vendor_combination_bug(pdev);
2546
2547         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2548                         quirks);
2549         if (result)
2550                 goto release_pools;
2551
2552         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2553
2554         nvme_get_ctrl(&dev->ctrl);
2555         async_schedule(nvme_async_probe, dev);
2556
2557         return 0;
2558
2559  release_pools:
2560         nvme_release_prp_pools(dev);
2561  unmap:
2562         nvme_dev_unmap(dev);
2563  put_pci:
2564         put_device(dev->dev);
2565  free:
2566         kfree(dev->queues);
2567         kfree(dev);
2568         return result;
2569 }
2570
2571 static void nvme_reset_prepare(struct pci_dev *pdev)
2572 {
2573         struct nvme_dev *dev = pci_get_drvdata(pdev);
2574         nvme_dev_disable(dev, false);
2575 }
2576
2577 static void nvme_reset_done(struct pci_dev *pdev)
2578 {
2579         struct nvme_dev *dev = pci_get_drvdata(pdev);
2580         nvme_reset_ctrl_sync(&dev->ctrl);
2581 }
2582
2583 static void nvme_shutdown(struct pci_dev *pdev)
2584 {
2585         struct nvme_dev *dev = pci_get_drvdata(pdev);
2586         nvme_dev_disable(dev, true);
2587 }
2588
2589 /*
2590  * The driver's remove may be called on a device in a partially initialized
2591  * state. This function must not have any dependencies on the device state in
2592  * order to proceed.
2593  */
2594 static void nvme_remove(struct pci_dev *pdev)
2595 {
2596         struct nvme_dev *dev = pci_get_drvdata(pdev);
2597
2598         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2599
2600         cancel_work_sync(&dev->ctrl.reset_work);
2601         pci_set_drvdata(pdev, NULL);
2602
2603         if (!pci_device_is_present(pdev)) {
2604                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2605                 nvme_dev_disable(dev, false);
2606         }
2607
2608         flush_work(&dev->ctrl.reset_work);
2609         nvme_stop_ctrl(&dev->ctrl);
2610         nvme_remove_namespaces(&dev->ctrl);
2611         nvme_dev_disable(dev, true);
2612         nvme_free_host_mem(dev);
2613         nvme_dev_remove_admin(dev);
2614         nvme_free_queues(dev, 0);
2615         nvme_uninit_ctrl(&dev->ctrl);
2616         nvme_release_prp_pools(dev);
2617         nvme_dev_unmap(dev);
2618         nvme_put_ctrl(&dev->ctrl);
2619 }
2620
2621 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2622 {
2623         int ret = 0;
2624
2625         if (numvfs == 0) {
2626                 if (pci_vfs_assigned(pdev)) {
2627                         dev_warn(&pdev->dev,
2628                                 "Cannot disable SR-IOV VFs while assigned\n");
2629                         return -EPERM;
2630                 }
2631                 pci_disable_sriov(pdev);
2632                 return 0;
2633         }
2634
2635         ret = pci_enable_sriov(pdev, numvfs);
2636         return ret ? ret : numvfs;
2637 }
2638
2639 #ifdef CONFIG_PM_SLEEP
2640 static int nvme_suspend(struct device *dev)
2641 {
2642         struct pci_dev *pdev = to_pci_dev(dev);
2643         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2644
2645         nvme_dev_disable(ndev, true);
2646         return 0;
2647 }
2648
2649 static int nvme_resume(struct device *dev)
2650 {
2651         struct pci_dev *pdev = to_pci_dev(dev);
2652         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2653
2654         nvme_reset_ctrl(&ndev->ctrl);
2655         return 0;
2656 }
2657 #endif
2658
2659 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2660
2661 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2662                                                 pci_channel_state_t state)
2663 {
2664         struct nvme_dev *dev = pci_get_drvdata(pdev);
2665
2666         /*
2667          * A frozen channel requires a reset. When detected, this method will
2668          * shutdown the controller to quiesce. The controller will be restarted
2669          * after the slot reset through driver's slot_reset callback.
2670          */
2671         switch (state) {
2672         case pci_channel_io_normal:
2673                 return PCI_ERS_RESULT_CAN_RECOVER;
2674         case pci_channel_io_frozen:
2675                 dev_warn(dev->ctrl.device,
2676                         "frozen state error detected, reset controller\n");
2677                 nvme_dev_disable(dev, false);
2678                 return PCI_ERS_RESULT_NEED_RESET;
2679         case pci_channel_io_perm_failure:
2680                 dev_warn(dev->ctrl.device,
2681                         "failure state error detected, request disconnect\n");
2682                 return PCI_ERS_RESULT_DISCONNECT;
2683         }
2684         return PCI_ERS_RESULT_NEED_RESET;
2685 }
2686
2687 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2688 {
2689         struct nvme_dev *dev = pci_get_drvdata(pdev);
2690
2691         dev_info(dev->ctrl.device, "restart after slot reset\n");
2692         pci_restore_state(pdev);
2693         nvme_reset_ctrl_sync(&dev->ctrl);
2694
2695         switch (dev->ctrl.state) {
2696         case NVME_CTRL_LIVE:
2697         case NVME_CTRL_ADMIN_ONLY:
2698                 return PCI_ERS_RESULT_RECOVERED;
2699         default:
2700                 return PCI_ERS_RESULT_DISCONNECT;
2701         }
2702 }
2703
2704 static void nvme_error_resume(struct pci_dev *pdev)
2705 {
2706         pci_cleanup_aer_uncorrect_error_status(pdev);
2707 }
2708
2709 static const struct pci_error_handlers nvme_err_handler = {
2710         .error_detected = nvme_error_detected,
2711         .slot_reset     = nvme_slot_reset,
2712         .resume         = nvme_error_resume,
2713         .reset_prepare  = nvme_reset_prepare,
2714         .reset_done     = nvme_reset_done,
2715 };
2716
2717 static const struct pci_device_id nvme_id_table[] = {
2718         { PCI_VDEVICE(INTEL, 0x0953),
2719                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2720                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2721         { PCI_VDEVICE(INTEL, 0x0a53),
2722                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2723                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2724         { PCI_VDEVICE(INTEL, 0x0a54),
2725                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2726                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2727         { PCI_VDEVICE(INTEL, 0x0a55),
2728                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2729                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2730         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2731                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2732         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2733                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2734         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2735                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2736         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2737                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2738         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2739                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2740         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2741                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2742         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2743                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2744         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2745                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2746         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2747                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2748         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2749                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2750         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2751                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2752         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2753         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2754         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2755         { 0, }
2756 };
2757 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2758
2759 static struct pci_driver nvme_driver = {
2760         .name           = "nvme",
2761         .id_table       = nvme_id_table,
2762         .probe          = nvme_probe,
2763         .remove         = nvme_remove,
2764         .shutdown       = nvme_shutdown,
2765         .driver         = {
2766                 .pm     = &nvme_dev_pm_ops,
2767         },
2768         .sriov_configure = nvme_pci_sriov_configure,
2769         .err_handler    = &nvme_err_handler,
2770 };
2771
2772 static int __init nvme_init(void)
2773 {
2774         return pci_register_driver(&nvme_driver);
2775 }
2776
2777 static void __exit nvme_exit(void)
2778 {
2779         pci_unregister_driver(&nvme_driver);
2780         flush_workqueue(nvme_wq);
2781         _nvme_check_size();
2782 }
2783
2784 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2785 MODULE_LICENSE("GPL");
2786 MODULE_VERSION("1.0");
2787 module_init(nvme_init);
2788 module_exit(nvme_exit);