regmap: Fix unused warning
[sfrench/cifs-2.6.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
40
41 /*
42  * We handle AEN commands ourselves and don't even let the
43  * block layer know about them.
44  */
45 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue **queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned online_queues;
87         unsigned max_qid;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         dma_addr_t cmb_dma_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         dma_addr_t host_mem_descs_dma;
113         struct nvme_host_mem_buf_desc *host_mem_descs;
114         void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119         int n = 0, ret;
120
121         ret = kstrtoint(val, 10, &n);
122         if (ret != 0 || n < 2)
123                 return -EINVAL;
124
125         return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130         return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135         return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140         return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144  * An NVM Express queue.  Each device has at least two (one for admin
145  * commands and one for I/O commands).
146  */
147 struct nvme_queue {
148         struct device *q_dmadev;
149         struct nvme_dev *dev;
150         spinlock_t q_lock;
151         struct nvme_command *sq_cmds;
152         struct nvme_command __iomem *sq_cmds_io;
153         volatile struct nvme_completion *cqes;
154         struct blk_mq_tags **tags;
155         dma_addr_t sq_dma_addr;
156         dma_addr_t cq_dma_addr;
157         u32 __iomem *q_db;
158         u16 q_depth;
159         s16 cq_vector;
160         u16 sq_tail;
161         u16 cq_head;
162         u16 qid;
163         u8 cq_phase;
164         u8 cqe_seen;
165         u32 *dbbuf_sq_db;
166         u32 *dbbuf_cq_db;
167         u32 *dbbuf_sq_ei;
168         u32 *dbbuf_cq_ei;
169 };
170
171 /*
172  * The nvme_iod describes the data in an I/O, including the list of PRP
173  * entries.  You can't see it in this data structure because C doesn't let
174  * me express that.  Use nvme_init_iod to ensure there's enough space
175  * allocated to store the PRP list.
176  */
177 struct nvme_iod {
178         struct nvme_request req;
179         struct nvme_queue *nvmeq;
180         int aborted;
181         int npages;             /* In the PRP list. 0 means small pool in use */
182         int nents;              /* Used in scatterlist */
183         int length;             /* Of data, in bytes */
184         dma_addr_t first_dma;
185         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186         struct scatterlist *sg;
187         struct scatterlist inline_sg[0];
188 };
189
190 /*
191  * Check we didin't inadvertently grow the command struct
192  */
193 static inline void _nvme_check_size(void)
194 {
195         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212         return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219         if (dev->dbbuf_dbs)
220                 return 0;
221
222         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223                                             &dev->dbbuf_dbs_dma_addr,
224                                             GFP_KERNEL);
225         if (!dev->dbbuf_dbs)
226                 return -ENOMEM;
227         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228                                             &dev->dbbuf_eis_dma_addr,
229                                             GFP_KERNEL);
230         if (!dev->dbbuf_eis) {
231                 dma_free_coherent(dev->dev, mem_size,
232                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233                 dev->dbbuf_dbs = NULL;
234                 return -ENOMEM;
235         }
236
237         return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244         if (dev->dbbuf_dbs) {
245                 dma_free_coherent(dev->dev, mem_size,
246                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247                 dev->dbbuf_dbs = NULL;
248         }
249         if (dev->dbbuf_eis) {
250                 dma_free_coherent(dev->dev, mem_size,
251                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252                 dev->dbbuf_eis = NULL;
253         }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257                             struct nvme_queue *nvmeq, int qid)
258 {
259         if (!dev->dbbuf_dbs || !qid)
260                 return;
261
262         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270         struct nvme_command c;
271
272         if (!dev->dbbuf_dbs)
273                 return;
274
275         memset(&c, 0, sizeof(c));
276         c.dbbuf.opcode = nvme_admin_dbbuf;
277         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282                 /* Free memory and continue on */
283                 nvme_dbbuf_dma_free(dev);
284         }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294                                               volatile u32 *dbbuf_ei)
295 {
296         if (dbbuf_db) {
297                 u16 old_value;
298
299                 /*
300                  * Ensure that the queue is written before updating
301                  * the doorbell in memory
302                  */
303                 wmb();
304
305                 old_value = *dbbuf_db;
306                 *dbbuf_db = value;
307
308                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309                         return false;
310         }
311
312         return true;
313 }
314
315 /*
316  * Max size of iod being embedded in the request payload
317  */
318 #define NVME_INT_PAGES          2
319 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322  * Will slightly overestimate the number of pages needed.  This is OK
323  * as it only leads to a small amount of wasted memory for the lifetime of
324  * the I/O.
325  */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329                                       dev->ctrl.page_size);
330         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
334                 unsigned int size, unsigned int nseg)
335 {
336         return sizeof(__le64 *) * nvme_npages(size, dev) +
337                         sizeof(struct scatterlist) * nseg;
338 }
339
340 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
341 {
342         return sizeof(struct nvme_iod) +
343                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
344 }
345
346 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
347                                 unsigned int hctx_idx)
348 {
349         struct nvme_dev *dev = data;
350         struct nvme_queue *nvmeq = dev->queues[0];
351
352         WARN_ON(hctx_idx != 0);
353         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
354         WARN_ON(nvmeq->tags);
355
356         hctx->driver_data = nvmeq;
357         nvmeq->tags = &dev->admin_tagset.tags[0];
358         return 0;
359 }
360
361 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
362 {
363         struct nvme_queue *nvmeq = hctx->driver_data;
364
365         nvmeq->tags = NULL;
366 }
367
368 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
369                           unsigned int hctx_idx)
370 {
371         struct nvme_dev *dev = data;
372         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
373
374         if (!nvmeq->tags)
375                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
376
377         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
378         hctx->driver_data = nvmeq;
379         return 0;
380 }
381
382 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
383                 unsigned int hctx_idx, unsigned int numa_node)
384 {
385         struct nvme_dev *dev = set->driver_data;
386         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
387         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
388         struct nvme_queue *nvmeq = dev->queues[queue_idx];
389
390         BUG_ON(!nvmeq);
391         iod->nvmeq = nvmeq;
392         return 0;
393 }
394
395 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
396 {
397         struct nvme_dev *dev = set->driver_data;
398
399         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
400 }
401
402 /**
403  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
404  * @nvmeq: The queue to use
405  * @cmd: The command to send
406  *
407  * Safe to use from interrupt context
408  */
409 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
410                                                 struct nvme_command *cmd)
411 {
412         u16 tail = nvmeq->sq_tail;
413
414         if (nvmeq->sq_cmds_io)
415                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
416         else
417                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
418
419         if (++tail == nvmeq->q_depth)
420                 tail = 0;
421         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
422                                               nvmeq->dbbuf_sq_ei))
423                 writel(tail, nvmeq->q_db);
424         nvmeq->sq_tail = tail;
425 }
426
427 static __le64 **iod_list(struct request *req)
428 {
429         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
430         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
431 }
432
433 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
434 {
435         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
436         int nseg = blk_rq_nr_phys_segments(rq);
437         unsigned int size = blk_rq_payload_bytes(rq);
438
439         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
440                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
441                 if (!iod->sg)
442                         return BLK_STS_RESOURCE;
443         } else {
444                 iod->sg = iod->inline_sg;
445         }
446
447         iod->aborted = 0;
448         iod->npages = -1;
449         iod->nents = 0;
450         iod->length = size;
451
452         return BLK_STS_OK;
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
456 {
457         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
458         const int last_prp = dev->ctrl.page_size / 8 - 1;
459         int i;
460         __le64 **list = iod_list(req);
461         dma_addr_t prp_dma = iod->first_dma;
462
463         if (iod->npages == 0)
464                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
465         for (i = 0; i < iod->npages; i++) {
466                 __le64 *prp_list = list[i];
467                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
468                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
469                 prp_dma = next_prp_dma;
470         }
471
472         if (iod->sg != iod->inline_sg)
473                 kfree(iod->sg);
474 }
475
476 #ifdef CONFIG_BLK_DEV_INTEGRITY
477 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
478 {
479         if (be32_to_cpu(pi->ref_tag) == v)
480                 pi->ref_tag = cpu_to_be32(p);
481 }
482
483 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
484 {
485         if (be32_to_cpu(pi->ref_tag) == p)
486                 pi->ref_tag = cpu_to_be32(v);
487 }
488
489 /**
490  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
491  *
492  * The virtual start sector is the one that was originally submitted by the
493  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
494  * start sector may be different. Remap protection information to match the
495  * physical LBA on writes, and back to the original seed on reads.
496  *
497  * Type 0 and 3 do not have a ref tag, so no remapping required.
498  */
499 static void nvme_dif_remap(struct request *req,
500                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
501 {
502         struct nvme_ns *ns = req->rq_disk->private_data;
503         struct bio_integrity_payload *bip;
504         struct t10_pi_tuple *pi;
505         void *p, *pmap;
506         u32 i, nlb, ts, phys, virt;
507
508         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
509                 return;
510
511         bip = bio_integrity(req->bio);
512         if (!bip)
513                 return;
514
515         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
516
517         p = pmap;
518         virt = bip_get_seed(bip);
519         phys = nvme_block_nr(ns, blk_rq_pos(req));
520         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
521         ts = ns->disk->queue->integrity.tuple_size;
522
523         for (i = 0; i < nlb; i++, virt++, phys++) {
524                 pi = (struct t10_pi_tuple *)p;
525                 dif_swap(phys, virt, pi);
526                 p += ts;
527         }
528         kunmap_atomic(pmap);
529 }
530 #else /* CONFIG_BLK_DEV_INTEGRITY */
531 static void nvme_dif_remap(struct request *req,
532                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
533 {
534 }
535 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537 }
538 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540 }
541 #endif
542
543 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
544 {
545         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
546         struct dma_pool *pool;
547         int length = blk_rq_payload_bytes(req);
548         struct scatterlist *sg = iod->sg;
549         int dma_len = sg_dma_len(sg);
550         u64 dma_addr = sg_dma_address(sg);
551         u32 page_size = dev->ctrl.page_size;
552         int offset = dma_addr & (page_size - 1);
553         __le64 *prp_list;
554         __le64 **list = iod_list(req);
555         dma_addr_t prp_dma;
556         int nprps, i;
557
558         length -= (page_size - offset);
559         if (length <= 0) {
560                 iod->first_dma = 0;
561                 return BLK_STS_OK;
562         }
563
564         dma_len -= (page_size - offset);
565         if (dma_len) {
566                 dma_addr += (page_size - offset);
567         } else {
568                 sg = sg_next(sg);
569                 dma_addr = sg_dma_address(sg);
570                 dma_len = sg_dma_len(sg);
571         }
572
573         if (length <= page_size) {
574                 iod->first_dma = dma_addr;
575                 return BLK_STS_OK;
576         }
577
578         nprps = DIV_ROUND_UP(length, page_size);
579         if (nprps <= (256 / 8)) {
580                 pool = dev->prp_small_pool;
581                 iod->npages = 0;
582         } else {
583                 pool = dev->prp_page_pool;
584                 iod->npages = 1;
585         }
586
587         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
588         if (!prp_list) {
589                 iod->first_dma = dma_addr;
590                 iod->npages = -1;
591                 return BLK_STS_RESOURCE;
592         }
593         list[0] = prp_list;
594         iod->first_dma = prp_dma;
595         i = 0;
596         for (;;) {
597                 if (i == page_size >> 3) {
598                         __le64 *old_prp_list = prp_list;
599                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
600                         if (!prp_list)
601                                 return BLK_STS_RESOURCE;
602                         list[iod->npages++] = prp_list;
603                         prp_list[0] = old_prp_list[i - 1];
604                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
605                         i = 1;
606                 }
607                 prp_list[i++] = cpu_to_le64(dma_addr);
608                 dma_len -= page_size;
609                 dma_addr += page_size;
610                 length -= page_size;
611                 if (length <= 0)
612                         break;
613                 if (dma_len > 0)
614                         continue;
615                 if (unlikely(dma_len < 0))
616                         goto bad_sgl;
617                 sg = sg_next(sg);
618                 dma_addr = sg_dma_address(sg);
619                 dma_len = sg_dma_len(sg);
620         }
621
622         return BLK_STS_OK;
623
624  bad_sgl:
625         if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
626                                 blk_rq_payload_bytes(req), iod->nents)) {
627                 for_each_sg(iod->sg, sg, iod->nents, i) {
628                         dma_addr_t phys = sg_phys(sg);
629                         pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
630                                "dma_address:%pad dma_length:%d\n", i, &phys,
631                                         sg->offset, sg->length,
632                                         &sg_dma_address(sg),
633                                         sg_dma_len(sg));
634                 }
635         }
636         return BLK_STS_IOERR;
637
638 }
639
640 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
641                 struct nvme_command *cmnd)
642 {
643         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
644         struct request_queue *q = req->q;
645         enum dma_data_direction dma_dir = rq_data_dir(req) ?
646                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
647         blk_status_t ret = BLK_STS_IOERR;
648
649         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
650         iod->nents = blk_rq_map_sg(q, req, iod->sg);
651         if (!iod->nents)
652                 goto out;
653
654         ret = BLK_STS_RESOURCE;
655         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
656                                 DMA_ATTR_NO_WARN))
657                 goto out;
658
659         ret = nvme_setup_prps(dev, req);
660         if (ret != BLK_STS_OK)
661                 goto out_unmap;
662
663         ret = BLK_STS_IOERR;
664         if (blk_integrity_rq(req)) {
665                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
666                         goto out_unmap;
667
668                 sg_init_table(&iod->meta_sg, 1);
669                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
670                         goto out_unmap;
671
672                 if (req_op(req) == REQ_OP_WRITE)
673                         nvme_dif_remap(req, nvme_dif_prep);
674
675                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
676                         goto out_unmap;
677         }
678
679         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
680         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
681         if (blk_integrity_rq(req))
682                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
683         return BLK_STS_OK;
684
685 out_unmap:
686         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
687 out:
688         return ret;
689 }
690
691 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
692 {
693         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694         enum dma_data_direction dma_dir = rq_data_dir(req) ?
695                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
696
697         if (iod->nents) {
698                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
699                 if (blk_integrity_rq(req)) {
700                         if (req_op(req) == REQ_OP_READ)
701                                 nvme_dif_remap(req, nvme_dif_complete);
702                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
703                 }
704         }
705
706         nvme_cleanup_cmd(req);
707         nvme_free_iod(dev, req);
708 }
709
710 /*
711  * NOTE: ns is NULL when called on the admin queue.
712  */
713 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
714                          const struct blk_mq_queue_data *bd)
715 {
716         struct nvme_ns *ns = hctx->queue->queuedata;
717         struct nvme_queue *nvmeq = hctx->driver_data;
718         struct nvme_dev *dev = nvmeq->dev;
719         struct request *req = bd->rq;
720         struct nvme_command cmnd;
721         blk_status_t ret;
722
723         ret = nvme_setup_cmd(ns, req, &cmnd);
724         if (ret)
725                 return ret;
726
727         ret = nvme_init_iod(req, dev);
728         if (ret)
729                 goto out_free_cmd;
730
731         if (blk_rq_nr_phys_segments(req)) {
732                 ret = nvme_map_data(dev, req, &cmnd);
733                 if (ret)
734                         goto out_cleanup_iod;
735         }
736
737         blk_mq_start_request(req);
738
739         spin_lock_irq(&nvmeq->q_lock);
740         if (unlikely(nvmeq->cq_vector < 0)) {
741                 ret = BLK_STS_IOERR;
742                 spin_unlock_irq(&nvmeq->q_lock);
743                 goto out_cleanup_iod;
744         }
745         __nvme_submit_cmd(nvmeq, &cmnd);
746         nvme_process_cq(nvmeq);
747         spin_unlock_irq(&nvmeq->q_lock);
748         return BLK_STS_OK;
749 out_cleanup_iod:
750         nvme_free_iod(dev, req);
751 out_free_cmd:
752         nvme_cleanup_cmd(req);
753         return ret;
754 }
755
756 static void nvme_pci_complete_rq(struct request *req)
757 {
758         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
759
760         nvme_unmap_data(iod->nvmeq->dev, req);
761         nvme_complete_rq(req);
762 }
763
764 /* We read the CQE phase first to check if the rest of the entry is valid */
765 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
766                 u16 phase)
767 {
768         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
769 }
770
771 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
772 {
773         u16 head = nvmeq->cq_head;
774
775         if (likely(nvmeq->cq_vector >= 0)) {
776                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
777                                                       nvmeq->dbbuf_cq_ei))
778                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
779         }
780 }
781
782 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
783                 struct nvme_completion *cqe)
784 {
785         struct request *req;
786
787         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
788                 dev_warn(nvmeq->dev->ctrl.device,
789                         "invalid id %d completed on queue %d\n",
790                         cqe->command_id, le16_to_cpu(cqe->sq_id));
791                 return;
792         }
793
794         /*
795          * AEN requests are special as they don't time out and can
796          * survive any kind of queue freeze and often don't respond to
797          * aborts.  We don't even bother to allocate a struct request
798          * for them but rather special case them here.
799          */
800         if (unlikely(nvmeq->qid == 0 &&
801                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
802                 nvme_complete_async_event(&nvmeq->dev->ctrl,
803                                 cqe->status, &cqe->result);
804                 return;
805         }
806
807         nvmeq->cqe_seen = 1;
808         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
809         nvme_end_request(req, cqe->status, cqe->result);
810 }
811
812 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
813                 struct nvme_completion *cqe)
814 {
815         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
816                 *cqe = nvmeq->cqes[nvmeq->cq_head];
817
818                 if (++nvmeq->cq_head == nvmeq->q_depth) {
819                         nvmeq->cq_head = 0;
820                         nvmeq->cq_phase = !nvmeq->cq_phase;
821                 }
822                 return true;
823         }
824         return false;
825 }
826
827 static void nvme_process_cq(struct nvme_queue *nvmeq)
828 {
829         struct nvme_completion cqe;
830         int consumed = 0;
831
832         while (nvme_read_cqe(nvmeq, &cqe)) {
833                 nvme_handle_cqe(nvmeq, &cqe);
834                 consumed++;
835         }
836
837         if (consumed)
838                 nvme_ring_cq_doorbell(nvmeq);
839 }
840
841 static irqreturn_t nvme_irq(int irq, void *data)
842 {
843         irqreturn_t result;
844         struct nvme_queue *nvmeq = data;
845         spin_lock(&nvmeq->q_lock);
846         nvme_process_cq(nvmeq);
847         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
848         nvmeq->cqe_seen = 0;
849         spin_unlock(&nvmeq->q_lock);
850         return result;
851 }
852
853 static irqreturn_t nvme_irq_check(int irq, void *data)
854 {
855         struct nvme_queue *nvmeq = data;
856         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
857                 return IRQ_WAKE_THREAD;
858         return IRQ_NONE;
859 }
860
861 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
862 {
863         struct nvme_completion cqe;
864         int found = 0, consumed = 0;
865
866         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
867                 return 0;
868
869         spin_lock_irq(&nvmeq->q_lock);
870         while (nvme_read_cqe(nvmeq, &cqe)) {
871                 nvme_handle_cqe(nvmeq, &cqe);
872                 consumed++;
873
874                 if (tag == cqe.command_id) {
875                         found = 1;
876                         break;
877                 }
878        }
879
880         if (consumed)
881                 nvme_ring_cq_doorbell(nvmeq);
882         spin_unlock_irq(&nvmeq->q_lock);
883
884         return found;
885 }
886
887 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
888 {
889         struct nvme_queue *nvmeq = hctx->driver_data;
890
891         return __nvme_poll(nvmeq, tag);
892 }
893
894 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
895 {
896         struct nvme_dev *dev = to_nvme_dev(ctrl);
897         struct nvme_queue *nvmeq = dev->queues[0];
898         struct nvme_command c;
899
900         memset(&c, 0, sizeof(c));
901         c.common.opcode = nvme_admin_async_event;
902         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
903
904         spin_lock_irq(&nvmeq->q_lock);
905         __nvme_submit_cmd(nvmeq, &c);
906         spin_unlock_irq(&nvmeq->q_lock);
907 }
908
909 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
910 {
911         struct nvme_command c;
912
913         memset(&c, 0, sizeof(c));
914         c.delete_queue.opcode = opcode;
915         c.delete_queue.qid = cpu_to_le16(id);
916
917         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
918 }
919
920 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
921                                                 struct nvme_queue *nvmeq)
922 {
923         struct nvme_command c;
924         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
925
926         /*
927          * Note: we (ab)use the fact the the prp fields survive if no data
928          * is attached to the request.
929          */
930         memset(&c, 0, sizeof(c));
931         c.create_cq.opcode = nvme_admin_create_cq;
932         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
933         c.create_cq.cqid = cpu_to_le16(qid);
934         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
935         c.create_cq.cq_flags = cpu_to_le16(flags);
936         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
937
938         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
939 }
940
941 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
942                                                 struct nvme_queue *nvmeq)
943 {
944         struct nvme_command c;
945         int flags = NVME_QUEUE_PHYS_CONTIG;
946
947         /*
948          * Note: we (ab)use the fact the the prp fields survive if no data
949          * is attached to the request.
950          */
951         memset(&c, 0, sizeof(c));
952         c.create_sq.opcode = nvme_admin_create_sq;
953         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
954         c.create_sq.sqid = cpu_to_le16(qid);
955         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
956         c.create_sq.sq_flags = cpu_to_le16(flags);
957         c.create_sq.cqid = cpu_to_le16(qid);
958
959         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
960 }
961
962 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
963 {
964         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
965 }
966
967 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
968 {
969         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
970 }
971
972 static void abort_endio(struct request *req, blk_status_t error)
973 {
974         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
975         struct nvme_queue *nvmeq = iod->nvmeq;
976
977         dev_warn(nvmeq->dev->ctrl.device,
978                  "Abort status: 0x%x", nvme_req(req)->status);
979         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
980         blk_mq_free_request(req);
981 }
982
983 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
984 {
985
986         /* If true, indicates loss of adapter communication, possibly by a
987          * NVMe Subsystem reset.
988          */
989         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
990
991         /* If there is a reset ongoing, we shouldn't reset again. */
992         if (dev->ctrl.state == NVME_CTRL_RESETTING)
993                 return false;
994
995         /* We shouldn't reset unless the controller is on fatal error state
996          * _or_ if we lost the communication with it.
997          */
998         if (!(csts & NVME_CSTS_CFS) && !nssro)
999                 return false;
1000
1001         /* If PCI error recovery process is happening, we cannot reset or
1002          * the recovery mechanism will surely fail.
1003          */
1004         if (pci_channel_offline(to_pci_dev(dev->dev)))
1005                 return false;
1006
1007         return true;
1008 }
1009
1010 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1011 {
1012         /* Read a config register to help see what died. */
1013         u16 pci_status;
1014         int result;
1015
1016         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1017                                       &pci_status);
1018         if (result == PCIBIOS_SUCCESSFUL)
1019                 dev_warn(dev->ctrl.device,
1020                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1021                          csts, pci_status);
1022         else
1023                 dev_warn(dev->ctrl.device,
1024                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1025                          csts, result);
1026 }
1027
1028 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1029 {
1030         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1031         struct nvme_queue *nvmeq = iod->nvmeq;
1032         struct nvme_dev *dev = nvmeq->dev;
1033         struct request *abort_req;
1034         struct nvme_command cmd;
1035         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1036
1037         /*
1038          * Reset immediately if the controller is failed
1039          */
1040         if (nvme_should_reset(dev, csts)) {
1041                 nvme_warn_reset(dev, csts);
1042                 nvme_dev_disable(dev, false);
1043                 nvme_reset_ctrl(&dev->ctrl);
1044                 return BLK_EH_HANDLED;
1045         }
1046
1047         /*
1048          * Did we miss an interrupt?
1049          */
1050         if (__nvme_poll(nvmeq, req->tag)) {
1051                 dev_warn(dev->ctrl.device,
1052                          "I/O %d QID %d timeout, completion polled\n",
1053                          req->tag, nvmeq->qid);
1054                 return BLK_EH_HANDLED;
1055         }
1056
1057         /*
1058          * Shutdown immediately if controller times out while starting. The
1059          * reset work will see the pci device disabled when it gets the forced
1060          * cancellation error. All outstanding requests are completed on
1061          * shutdown, so we return BLK_EH_HANDLED.
1062          */
1063         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1064                 dev_warn(dev->ctrl.device,
1065                          "I/O %d QID %d timeout, disable controller\n",
1066                          req->tag, nvmeq->qid);
1067                 nvme_dev_disable(dev, false);
1068                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1069                 return BLK_EH_HANDLED;
1070         }
1071
1072         /*
1073          * Shutdown the controller immediately and schedule a reset if the
1074          * command was already aborted once before and still hasn't been
1075          * returned to the driver, or if this is the admin queue.
1076          */
1077         if (!nvmeq->qid || iod->aborted) {
1078                 dev_warn(dev->ctrl.device,
1079                          "I/O %d QID %d timeout, reset controller\n",
1080                          req->tag, nvmeq->qid);
1081                 nvme_dev_disable(dev, false);
1082                 nvme_reset_ctrl(&dev->ctrl);
1083
1084                 /*
1085                  * Mark the request as handled, since the inline shutdown
1086                  * forces all outstanding requests to complete.
1087                  */
1088                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1089                 return BLK_EH_HANDLED;
1090         }
1091
1092         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1093                 atomic_inc(&dev->ctrl.abort_limit);
1094                 return BLK_EH_RESET_TIMER;
1095         }
1096         iod->aborted = 1;
1097
1098         memset(&cmd, 0, sizeof(cmd));
1099         cmd.abort.opcode = nvme_admin_abort_cmd;
1100         cmd.abort.cid = req->tag;
1101         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1102
1103         dev_warn(nvmeq->dev->ctrl.device,
1104                 "I/O %d QID %d timeout, aborting\n",
1105                  req->tag, nvmeq->qid);
1106
1107         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1108                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1109         if (IS_ERR(abort_req)) {
1110                 atomic_inc(&dev->ctrl.abort_limit);
1111                 return BLK_EH_RESET_TIMER;
1112         }
1113
1114         abort_req->timeout = ADMIN_TIMEOUT;
1115         abort_req->end_io_data = NULL;
1116         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1117
1118         /*
1119          * The aborted req will be completed on receiving the abort req.
1120          * We enable the timer again. If hit twice, it'll cause a device reset,
1121          * as the device then is in a faulty state.
1122          */
1123         return BLK_EH_RESET_TIMER;
1124 }
1125
1126 static void nvme_free_queue(struct nvme_queue *nvmeq)
1127 {
1128         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1129                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1130         if (nvmeq->sq_cmds)
1131                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1132                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1133         kfree(nvmeq);
1134 }
1135
1136 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1137 {
1138         int i;
1139
1140         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1141                 struct nvme_queue *nvmeq = dev->queues[i];
1142                 dev->ctrl.queue_count--;
1143                 dev->queues[i] = NULL;
1144                 nvme_free_queue(nvmeq);
1145         }
1146 }
1147
1148 /**
1149  * nvme_suspend_queue - put queue into suspended state
1150  * @nvmeq - queue to suspend
1151  */
1152 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1153 {
1154         int vector;
1155
1156         spin_lock_irq(&nvmeq->q_lock);
1157         if (nvmeq->cq_vector == -1) {
1158                 spin_unlock_irq(&nvmeq->q_lock);
1159                 return 1;
1160         }
1161         vector = nvmeq->cq_vector;
1162         nvmeq->dev->online_queues--;
1163         nvmeq->cq_vector = -1;
1164         spin_unlock_irq(&nvmeq->q_lock);
1165
1166         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1167                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1168
1169         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1170
1171         return 0;
1172 }
1173
1174 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1175 {
1176         struct nvme_queue *nvmeq = dev->queues[0];
1177
1178         if (!nvmeq)
1179                 return;
1180         if (nvme_suspend_queue(nvmeq))
1181                 return;
1182
1183         if (shutdown)
1184                 nvme_shutdown_ctrl(&dev->ctrl);
1185         else
1186                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1187
1188         spin_lock_irq(&nvmeq->q_lock);
1189         nvme_process_cq(nvmeq);
1190         spin_unlock_irq(&nvmeq->q_lock);
1191 }
1192
1193 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1194                                 int entry_size)
1195 {
1196         int q_depth = dev->q_depth;
1197         unsigned q_size_aligned = roundup(q_depth * entry_size,
1198                                           dev->ctrl.page_size);
1199
1200         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1201                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1202                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1203                 q_depth = div_u64(mem_per_q, entry_size);
1204
1205                 /*
1206                  * Ensure the reduced q_depth is above some threshold where it
1207                  * would be better to map queues in system memory with the
1208                  * original depth
1209                  */
1210                 if (q_depth < 64)
1211                         return -ENOMEM;
1212         }
1213
1214         return q_depth;
1215 }
1216
1217 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1218                                 int qid, int depth)
1219 {
1220         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1221                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1222                                                       dev->ctrl.page_size);
1223                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1224                 nvmeq->sq_cmds_io = dev->cmb + offset;
1225         } else {
1226                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1227                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1228                 if (!nvmeq->sq_cmds)
1229                         return -ENOMEM;
1230         }
1231
1232         return 0;
1233 }
1234
1235 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1236                                                         int depth, int node)
1237 {
1238         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1239                                                         node);
1240         if (!nvmeq)
1241                 return NULL;
1242
1243         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1244                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1245         if (!nvmeq->cqes)
1246                 goto free_nvmeq;
1247
1248         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1249                 goto free_cqdma;
1250
1251         nvmeq->q_dmadev = dev->dev;
1252         nvmeq->dev = dev;
1253         spin_lock_init(&nvmeq->q_lock);
1254         nvmeq->cq_head = 0;
1255         nvmeq->cq_phase = 1;
1256         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1257         nvmeq->q_depth = depth;
1258         nvmeq->qid = qid;
1259         nvmeq->cq_vector = -1;
1260         dev->queues[qid] = nvmeq;
1261         dev->ctrl.queue_count++;
1262
1263         return nvmeq;
1264
1265  free_cqdma:
1266         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1267                                                         nvmeq->cq_dma_addr);
1268  free_nvmeq:
1269         kfree(nvmeq);
1270         return NULL;
1271 }
1272
1273 static int queue_request_irq(struct nvme_queue *nvmeq)
1274 {
1275         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1276         int nr = nvmeq->dev->ctrl.instance;
1277
1278         if (use_threaded_interrupts) {
1279                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1280                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1281         } else {
1282                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1283                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1284         }
1285 }
1286
1287 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1288 {
1289         struct nvme_dev *dev = nvmeq->dev;
1290
1291         spin_lock_irq(&nvmeq->q_lock);
1292         nvmeq->sq_tail = 0;
1293         nvmeq->cq_head = 0;
1294         nvmeq->cq_phase = 1;
1295         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1296         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1297         nvme_dbbuf_init(dev, nvmeq, qid);
1298         dev->online_queues++;
1299         spin_unlock_irq(&nvmeq->q_lock);
1300 }
1301
1302 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1303 {
1304         struct nvme_dev *dev = nvmeq->dev;
1305         int result;
1306
1307         nvmeq->cq_vector = qid - 1;
1308         result = adapter_alloc_cq(dev, qid, nvmeq);
1309         if (result < 0)
1310                 return result;
1311
1312         result = adapter_alloc_sq(dev, qid, nvmeq);
1313         if (result < 0)
1314                 goto release_cq;
1315
1316         result = queue_request_irq(nvmeq);
1317         if (result < 0)
1318                 goto release_sq;
1319
1320         nvme_init_queue(nvmeq, qid);
1321         return result;
1322
1323  release_sq:
1324         adapter_delete_sq(dev, qid);
1325  release_cq:
1326         adapter_delete_cq(dev, qid);
1327         return result;
1328 }
1329
1330 static const struct blk_mq_ops nvme_mq_admin_ops = {
1331         .queue_rq       = nvme_queue_rq,
1332         .complete       = nvme_pci_complete_rq,
1333         .init_hctx      = nvme_admin_init_hctx,
1334         .exit_hctx      = nvme_admin_exit_hctx,
1335         .init_request   = nvme_init_request,
1336         .timeout        = nvme_timeout,
1337 };
1338
1339 static const struct blk_mq_ops nvme_mq_ops = {
1340         .queue_rq       = nvme_queue_rq,
1341         .complete       = nvme_pci_complete_rq,
1342         .init_hctx      = nvme_init_hctx,
1343         .init_request   = nvme_init_request,
1344         .map_queues     = nvme_pci_map_queues,
1345         .timeout        = nvme_timeout,
1346         .poll           = nvme_poll,
1347 };
1348
1349 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1350 {
1351         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1352                 /*
1353                  * If the controller was reset during removal, it's possible
1354                  * user requests may be waiting on a stopped queue. Start the
1355                  * queue to flush these to completion.
1356                  */
1357                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1358                 blk_cleanup_queue(dev->ctrl.admin_q);
1359                 blk_mq_free_tag_set(&dev->admin_tagset);
1360         }
1361 }
1362
1363 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1364 {
1365         if (!dev->ctrl.admin_q) {
1366                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1367                 dev->admin_tagset.nr_hw_queues = 1;
1368
1369                 /*
1370                  * Subtract one to leave an empty queue entry for 'Full Queue'
1371                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1372                  */
1373                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1374                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1375                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1376                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1377                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1378                 dev->admin_tagset.driver_data = dev;
1379
1380                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1381                         return -ENOMEM;
1382                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1383
1384                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1385                 if (IS_ERR(dev->ctrl.admin_q)) {
1386                         blk_mq_free_tag_set(&dev->admin_tagset);
1387                         return -ENOMEM;
1388                 }
1389                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1390                         nvme_dev_remove_admin(dev);
1391                         dev->ctrl.admin_q = NULL;
1392                         return -ENODEV;
1393                 }
1394         } else
1395                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1396
1397         return 0;
1398 }
1399
1400 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1401 {
1402         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1403 }
1404
1405 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1406 {
1407         struct pci_dev *pdev = to_pci_dev(dev->dev);
1408
1409         if (size <= dev->bar_mapped_size)
1410                 return 0;
1411         if (size > pci_resource_len(pdev, 0))
1412                 return -ENOMEM;
1413         if (dev->bar)
1414                 iounmap(dev->bar);
1415         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1416         if (!dev->bar) {
1417                 dev->bar_mapped_size = 0;
1418                 return -ENOMEM;
1419         }
1420         dev->bar_mapped_size = size;
1421         dev->dbs = dev->bar + NVME_REG_DBS;
1422
1423         return 0;
1424 }
1425
1426 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1427 {
1428         int result;
1429         u32 aqa;
1430         struct nvme_queue *nvmeq;
1431
1432         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1433         if (result < 0)
1434                 return result;
1435
1436         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1437                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1438
1439         if (dev->subsystem &&
1440             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1441                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1442
1443         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1444         if (result < 0)
1445                 return result;
1446
1447         nvmeq = dev->queues[0];
1448         if (!nvmeq) {
1449                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1450                                         dev_to_node(dev->dev));
1451                 if (!nvmeq)
1452                         return -ENOMEM;
1453         }
1454
1455         aqa = nvmeq->q_depth - 1;
1456         aqa |= aqa << 16;
1457
1458         writel(aqa, dev->bar + NVME_REG_AQA);
1459         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1460         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1461
1462         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1463         if (result)
1464                 return result;
1465
1466         nvmeq->cq_vector = 0;
1467         result = queue_request_irq(nvmeq);
1468         if (result) {
1469                 nvmeq->cq_vector = -1;
1470                 return result;
1471         }
1472
1473         return result;
1474 }
1475
1476 static int nvme_create_io_queues(struct nvme_dev *dev)
1477 {
1478         unsigned i, max;
1479         int ret = 0;
1480
1481         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1482                 /* vector == qid - 1, match nvme_create_queue */
1483                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1484                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1485                         ret = -ENOMEM;
1486                         break;
1487                 }
1488         }
1489
1490         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1491         for (i = dev->online_queues; i <= max; i++) {
1492                 ret = nvme_create_queue(dev->queues[i], i);
1493                 if (ret)
1494                         break;
1495         }
1496
1497         /*
1498          * Ignore failing Create SQ/CQ commands, we can continue with less
1499          * than the desired aount of queues, and even a controller without
1500          * I/O queues an still be used to issue admin commands.  This might
1501          * be useful to upgrade a buggy firmware for example.
1502          */
1503         return ret >= 0 ? 0 : ret;
1504 }
1505
1506 static ssize_t nvme_cmb_show(struct device *dev,
1507                              struct device_attribute *attr,
1508                              char *buf)
1509 {
1510         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1511
1512         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1513                        ndev->cmbloc, ndev->cmbsz);
1514 }
1515 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1516
1517 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1518 {
1519         u64 szu, size, offset;
1520         resource_size_t bar_size;
1521         struct pci_dev *pdev = to_pci_dev(dev->dev);
1522         void __iomem *cmb;
1523         dma_addr_t dma_addr;
1524
1525         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1526         if (!(NVME_CMB_SZ(dev->cmbsz)))
1527                 return NULL;
1528         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1529
1530         if (!use_cmb_sqes)
1531                 return NULL;
1532
1533         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1534         size = szu * NVME_CMB_SZ(dev->cmbsz);
1535         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1536         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1537
1538         if (offset > bar_size)
1539                 return NULL;
1540
1541         /*
1542          * Controllers may support a CMB size larger than their BAR,
1543          * for example, due to being behind a bridge. Reduce the CMB to
1544          * the reported size of the BAR
1545          */
1546         if (size > bar_size - offset)
1547                 size = bar_size - offset;
1548
1549         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1550         cmb = ioremap_wc(dma_addr, size);
1551         if (!cmb)
1552                 return NULL;
1553
1554         dev->cmb_dma_addr = dma_addr;
1555         dev->cmb_size = size;
1556         return cmb;
1557 }
1558
1559 static inline void nvme_release_cmb(struct nvme_dev *dev)
1560 {
1561         if (dev->cmb) {
1562                 iounmap(dev->cmb);
1563                 dev->cmb = NULL;
1564                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1565                                              &dev_attr_cmb.attr, NULL);
1566                 dev->cmbsz = 0;
1567         }
1568 }
1569
1570 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1571 {
1572         u64 dma_addr = dev->host_mem_descs_dma;
1573         struct nvme_command c;
1574         int ret;
1575
1576         memset(&c, 0, sizeof(c));
1577         c.features.opcode       = nvme_admin_set_features;
1578         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1579         c.features.dword11      = cpu_to_le32(bits);
1580         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1581                                               ilog2(dev->ctrl.page_size));
1582         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1583         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1584         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1585
1586         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1587         if (ret) {
1588                 dev_warn(dev->ctrl.device,
1589                          "failed to set host mem (err %d, flags %#x).\n",
1590                          ret, bits);
1591         }
1592         return ret;
1593 }
1594
1595 static void nvme_free_host_mem(struct nvme_dev *dev)
1596 {
1597         int i;
1598
1599         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1600                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1601                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1602
1603                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1604                                 le64_to_cpu(desc->addr));
1605         }
1606
1607         kfree(dev->host_mem_desc_bufs);
1608         dev->host_mem_desc_bufs = NULL;
1609         dma_free_coherent(dev->dev,
1610                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1611                         dev->host_mem_descs, dev->host_mem_descs_dma);
1612         dev->host_mem_descs = NULL;
1613 }
1614
1615 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1616                 u32 chunk_size)
1617 {
1618         struct nvme_host_mem_buf_desc *descs;
1619         u32 max_entries, len;
1620         dma_addr_t descs_dma;
1621         int i = 0;
1622         void **bufs;
1623         u64 size = 0, tmp;
1624
1625         tmp = (preferred + chunk_size - 1);
1626         do_div(tmp, chunk_size);
1627         max_entries = tmp;
1628
1629         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1630                 max_entries = dev->ctrl.hmmaxd;
1631
1632         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1633                         &descs_dma, GFP_KERNEL);
1634         if (!descs)
1635                 goto out;
1636
1637         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1638         if (!bufs)
1639                 goto out_free_descs;
1640
1641         for (size = 0; size < preferred; size += len) {
1642                 dma_addr_t dma_addr;
1643
1644                 len = min_t(u64, chunk_size, preferred - size);
1645                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1646                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1647                 if (!bufs[i])
1648                         break;
1649
1650                 descs[i].addr = cpu_to_le64(dma_addr);
1651                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1652                 i++;
1653         }
1654
1655         if (!size)
1656                 goto out_free_bufs;
1657
1658         dev->nr_host_mem_descs = i;
1659         dev->host_mem_size = size;
1660         dev->host_mem_descs = descs;
1661         dev->host_mem_descs_dma = descs_dma;
1662         dev->host_mem_desc_bufs = bufs;
1663         return 0;
1664
1665 out_free_bufs:
1666         while (--i >= 0) {
1667                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1668
1669                 dma_free_coherent(dev->dev, size, bufs[i],
1670                                 le64_to_cpu(descs[i].addr));
1671         }
1672
1673         kfree(bufs);
1674 out_free_descs:
1675         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1676                         descs_dma);
1677 out:
1678         dev->host_mem_descs = NULL;
1679         return -ENOMEM;
1680 }
1681
1682 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1683 {
1684         u32 chunk_size;
1685
1686         /* start big and work our way down */
1687         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1688              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1689              chunk_size /= 2) {
1690                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1691                         if (!min || dev->host_mem_size >= min)
1692                                 return 0;
1693                         nvme_free_host_mem(dev);
1694                 }
1695         }
1696
1697         return -ENOMEM;
1698 }
1699
1700 static int nvme_setup_host_mem(struct nvme_dev *dev)
1701 {
1702         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1703         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1704         u64 min = (u64)dev->ctrl.hmmin * 4096;
1705         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1706         int ret = 0;
1707
1708         preferred = min(preferred, max);
1709         if (min > max) {
1710                 dev_warn(dev->ctrl.device,
1711                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1712                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1713                 nvme_free_host_mem(dev);
1714                 return 0;
1715         }
1716
1717         /*
1718          * If we already have a buffer allocated check if we can reuse it.
1719          */
1720         if (dev->host_mem_descs) {
1721                 if (dev->host_mem_size >= min)
1722                         enable_bits |= NVME_HOST_MEM_RETURN;
1723                 else
1724                         nvme_free_host_mem(dev);
1725         }
1726
1727         if (!dev->host_mem_descs) {
1728                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1729                         dev_warn(dev->ctrl.device,
1730                                 "failed to allocate host memory buffer.\n");
1731                         return 0; /* controller must work without HMB */
1732                 }
1733
1734                 dev_info(dev->ctrl.device,
1735                         "allocated %lld MiB host memory buffer.\n",
1736                         dev->host_mem_size >> ilog2(SZ_1M));
1737         }
1738
1739         ret = nvme_set_host_mem(dev, enable_bits);
1740         if (ret)
1741                 nvme_free_host_mem(dev);
1742         return ret;
1743 }
1744
1745 static int nvme_setup_io_queues(struct nvme_dev *dev)
1746 {
1747         struct nvme_queue *adminq = dev->queues[0];
1748         struct pci_dev *pdev = to_pci_dev(dev->dev);
1749         int result, nr_io_queues;
1750         unsigned long size;
1751
1752         nr_io_queues = num_present_cpus();
1753         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1754         if (result < 0)
1755                 return result;
1756
1757         if (nr_io_queues == 0)
1758                 return 0;
1759
1760         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1761                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1762                                 sizeof(struct nvme_command));
1763                 if (result > 0)
1764                         dev->q_depth = result;
1765                 else
1766                         nvme_release_cmb(dev);
1767         }
1768
1769         do {
1770                 size = db_bar_size(dev, nr_io_queues);
1771                 result = nvme_remap_bar(dev, size);
1772                 if (!result)
1773                         break;
1774                 if (!--nr_io_queues)
1775                         return -ENOMEM;
1776         } while (1);
1777         adminq->q_db = dev->dbs;
1778
1779         /* Deregister the admin queue's interrupt */
1780         pci_free_irq(pdev, 0, adminq);
1781
1782         /*
1783          * If we enable msix early due to not intx, disable it again before
1784          * setting up the full range we need.
1785          */
1786         pci_free_irq_vectors(pdev);
1787         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1788                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1789         if (nr_io_queues <= 0)
1790                 return -EIO;
1791         dev->max_qid = nr_io_queues;
1792
1793         /*
1794          * Should investigate if there's a performance win from allocating
1795          * more queues than interrupt vectors; it might allow the submission
1796          * path to scale better, even if the receive path is limited by the
1797          * number of interrupts.
1798          */
1799
1800         result = queue_request_irq(adminq);
1801         if (result) {
1802                 adminq->cq_vector = -1;
1803                 return result;
1804         }
1805         return nvme_create_io_queues(dev);
1806 }
1807
1808 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1809 {
1810         struct nvme_queue *nvmeq = req->end_io_data;
1811
1812         blk_mq_free_request(req);
1813         complete(&nvmeq->dev->ioq_wait);
1814 }
1815
1816 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1817 {
1818         struct nvme_queue *nvmeq = req->end_io_data;
1819
1820         if (!error) {
1821                 unsigned long flags;
1822
1823                 /*
1824                  * We might be called with the AQ q_lock held
1825                  * and the I/O queue q_lock should always
1826                  * nest inside the AQ one.
1827                  */
1828                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1829                                         SINGLE_DEPTH_NESTING);
1830                 nvme_process_cq(nvmeq);
1831                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1832         }
1833
1834         nvme_del_queue_end(req, error);
1835 }
1836
1837 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1838 {
1839         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1840         struct request *req;
1841         struct nvme_command cmd;
1842
1843         memset(&cmd, 0, sizeof(cmd));
1844         cmd.delete_queue.opcode = opcode;
1845         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1846
1847         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1848         if (IS_ERR(req))
1849                 return PTR_ERR(req);
1850
1851         req->timeout = ADMIN_TIMEOUT;
1852         req->end_io_data = nvmeq;
1853
1854         blk_execute_rq_nowait(q, NULL, req, false,
1855                         opcode == nvme_admin_delete_cq ?
1856                                 nvme_del_cq_end : nvme_del_queue_end);
1857         return 0;
1858 }
1859
1860 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1861 {
1862         int pass;
1863         unsigned long timeout;
1864         u8 opcode = nvme_admin_delete_sq;
1865
1866         for (pass = 0; pass < 2; pass++) {
1867                 int sent = 0, i = queues;
1868
1869                 reinit_completion(&dev->ioq_wait);
1870  retry:
1871                 timeout = ADMIN_TIMEOUT;
1872                 for (; i > 0; i--, sent++)
1873                         if (nvme_delete_queue(dev->queues[i], opcode))
1874                                 break;
1875
1876                 while (sent--) {
1877                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1878                         if (timeout == 0)
1879                                 return;
1880                         if (i)
1881                                 goto retry;
1882                 }
1883                 opcode = nvme_admin_delete_cq;
1884         }
1885 }
1886
1887 /*
1888  * Return: error value if an error occurred setting up the queues or calling
1889  * Identify Device.  0 if these succeeded, even if adding some of the
1890  * namespaces failed.  At the moment, these failures are silent.  TBD which
1891  * failures should be reported.
1892  */
1893 static int nvme_dev_add(struct nvme_dev *dev)
1894 {
1895         if (!dev->ctrl.tagset) {
1896                 dev->tagset.ops = &nvme_mq_ops;
1897                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1898                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1899                 dev->tagset.numa_node = dev_to_node(dev->dev);
1900                 dev->tagset.queue_depth =
1901                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1902                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1903                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1904                 dev->tagset.driver_data = dev;
1905
1906                 if (blk_mq_alloc_tag_set(&dev->tagset))
1907                         return 0;
1908                 dev->ctrl.tagset = &dev->tagset;
1909
1910                 nvme_dbbuf_set(dev);
1911         } else {
1912                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1913
1914                 /* Free previously allocated queues that are no longer usable */
1915                 nvme_free_queues(dev, dev->online_queues);
1916         }
1917
1918         return 0;
1919 }
1920
1921 static int nvme_pci_enable(struct nvme_dev *dev)
1922 {
1923         int result = -ENOMEM;
1924         struct pci_dev *pdev = to_pci_dev(dev->dev);
1925
1926         if (pci_enable_device_mem(pdev))
1927                 return result;
1928
1929         pci_set_master(pdev);
1930
1931         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1932             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1933                 goto disable;
1934
1935         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1936                 result = -ENODEV;
1937                 goto disable;
1938         }
1939
1940         /*
1941          * Some devices and/or platforms don't advertise or work with INTx
1942          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1943          * adjust this later.
1944          */
1945         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1946         if (result < 0)
1947                 return result;
1948
1949         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1950
1951         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1952                                 io_queue_depth);
1953         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1954         dev->dbs = dev->bar + 4096;
1955
1956         /*
1957          * Temporary fix for the Apple controller found in the MacBook8,1 and
1958          * some MacBook7,1 to avoid controller resets and data loss.
1959          */
1960         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1961                 dev->q_depth = 2;
1962                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1963                         "set queue depth=%u to work around controller resets\n",
1964                         dev->q_depth);
1965         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1966                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1967                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1968                 dev->q_depth = 64;
1969                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1970                         "set queue depth=%u\n", dev->q_depth);
1971         }
1972
1973         /*
1974          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1975          * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1976          * has no name we can pass NULL as final argument to
1977          * sysfs_add_file_to_group.
1978          */
1979
1980         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1981                 dev->cmb = nvme_map_cmb(dev);
1982                 if (dev->cmb) {
1983                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1984                                                     &dev_attr_cmb.attr, NULL))
1985                                 dev_warn(dev->ctrl.device,
1986                                          "failed to add sysfs attribute for CMB\n");
1987                 }
1988         }
1989
1990         pci_enable_pcie_error_reporting(pdev);
1991         pci_save_state(pdev);
1992         return 0;
1993
1994  disable:
1995         pci_disable_device(pdev);
1996         return result;
1997 }
1998
1999 static void nvme_dev_unmap(struct nvme_dev *dev)
2000 {
2001         if (dev->bar)
2002                 iounmap(dev->bar);
2003         pci_release_mem_regions(to_pci_dev(dev->dev));
2004 }
2005
2006 static void nvme_pci_disable(struct nvme_dev *dev)
2007 {
2008         struct pci_dev *pdev = to_pci_dev(dev->dev);
2009
2010         nvme_release_cmb(dev);
2011         pci_free_irq_vectors(pdev);
2012
2013         if (pci_is_enabled(pdev)) {
2014                 pci_disable_pcie_error_reporting(pdev);
2015                 pci_disable_device(pdev);
2016         }
2017 }
2018
2019 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2020 {
2021         int i, queues;
2022         bool dead = true;
2023         struct pci_dev *pdev = to_pci_dev(dev->dev);
2024
2025         mutex_lock(&dev->shutdown_lock);
2026         if (pci_is_enabled(pdev)) {
2027                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2028
2029                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2030                     dev->ctrl.state == NVME_CTRL_RESETTING)
2031                         nvme_start_freeze(&dev->ctrl);
2032                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2033                         pdev->error_state  != pci_channel_io_normal);
2034         }
2035
2036         /*
2037          * Give the controller a chance to complete all entered requests if
2038          * doing a safe shutdown.
2039          */
2040         if (!dead) {
2041                 if (shutdown)
2042                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2043
2044                 /*
2045                  * If the controller is still alive tell it to stop using the
2046                  * host memory buffer.  In theory the shutdown / reset should
2047                  * make sure that it doesn't access the host memoery anymore,
2048                  * but I'd rather be safe than sorry..
2049                  */
2050                 if (dev->host_mem_descs)
2051                         nvme_set_host_mem(dev, 0);
2052
2053         }
2054         nvme_stop_queues(&dev->ctrl);
2055
2056         queues = dev->online_queues - 1;
2057         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2058                 nvme_suspend_queue(dev->queues[i]);
2059
2060         if (dead) {
2061                 /* A device might become IO incapable very soon during
2062                  * probe, before the admin queue is configured. Thus,
2063                  * queue_count can be 0 here.
2064                  */
2065                 if (dev->ctrl.queue_count)
2066                         nvme_suspend_queue(dev->queues[0]);
2067         } else {
2068                 nvme_disable_io_queues(dev, queues);
2069                 nvme_disable_admin_queue(dev, shutdown);
2070         }
2071         nvme_pci_disable(dev);
2072
2073         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2074         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2075
2076         /*
2077          * The driver will not be starting up queues again if shutting down so
2078          * must flush all entered requests to their failed completion to avoid
2079          * deadlocking blk-mq hot-cpu notifier.
2080          */
2081         if (shutdown)
2082                 nvme_start_queues(&dev->ctrl);
2083         mutex_unlock(&dev->shutdown_lock);
2084 }
2085
2086 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2087 {
2088         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2089                                                 PAGE_SIZE, PAGE_SIZE, 0);
2090         if (!dev->prp_page_pool)
2091                 return -ENOMEM;
2092
2093         /* Optimisation for I/Os between 4k and 128k */
2094         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2095                                                 256, 256, 0);
2096         if (!dev->prp_small_pool) {
2097                 dma_pool_destroy(dev->prp_page_pool);
2098                 return -ENOMEM;
2099         }
2100         return 0;
2101 }
2102
2103 static void nvme_release_prp_pools(struct nvme_dev *dev)
2104 {
2105         dma_pool_destroy(dev->prp_page_pool);
2106         dma_pool_destroy(dev->prp_small_pool);
2107 }
2108
2109 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2110 {
2111         struct nvme_dev *dev = to_nvme_dev(ctrl);
2112
2113         nvme_dbbuf_dma_free(dev);
2114         put_device(dev->dev);
2115         if (dev->tagset.tags)
2116                 blk_mq_free_tag_set(&dev->tagset);
2117         if (dev->ctrl.admin_q)
2118                 blk_put_queue(dev->ctrl.admin_q);
2119         kfree(dev->queues);
2120         free_opal_dev(dev->ctrl.opal_dev);
2121         kfree(dev);
2122 }
2123
2124 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2125 {
2126         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2127
2128         kref_get(&dev->ctrl.kref);
2129         nvme_dev_disable(dev, false);
2130         if (!schedule_work(&dev->remove_work))
2131                 nvme_put_ctrl(&dev->ctrl);
2132 }
2133
2134 static void nvme_reset_work(struct work_struct *work)
2135 {
2136         struct nvme_dev *dev =
2137                 container_of(work, struct nvme_dev, ctrl.reset_work);
2138         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2139         int result = -ENODEV;
2140
2141         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2142                 goto out;
2143
2144         /*
2145          * If we're called to reset a live controller first shut it down before
2146          * moving on.
2147          */
2148         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2149                 nvme_dev_disable(dev, false);
2150
2151         result = nvme_pci_enable(dev);
2152         if (result)
2153                 goto out;
2154
2155         result = nvme_pci_configure_admin_queue(dev);
2156         if (result)
2157                 goto out;
2158
2159         nvme_init_queue(dev->queues[0], 0);
2160         result = nvme_alloc_admin_tags(dev);
2161         if (result)
2162                 goto out;
2163
2164         result = nvme_init_identify(&dev->ctrl);
2165         if (result)
2166                 goto out;
2167
2168         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2169                 if (!dev->ctrl.opal_dev)
2170                         dev->ctrl.opal_dev =
2171                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2172                 else if (was_suspend)
2173                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2174         } else {
2175                 free_opal_dev(dev->ctrl.opal_dev);
2176                 dev->ctrl.opal_dev = NULL;
2177         }
2178
2179         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2180                 result = nvme_dbbuf_dma_alloc(dev);
2181                 if (result)
2182                         dev_warn(dev->dev,
2183                                  "unable to allocate dma for dbbuf\n");
2184         }
2185
2186         if (dev->ctrl.hmpre) {
2187                 result = nvme_setup_host_mem(dev);
2188                 if (result < 0)
2189                         goto out;
2190         }
2191
2192         result = nvme_setup_io_queues(dev);
2193         if (result)
2194                 goto out;
2195
2196         /*
2197          * Keep the controller around but remove all namespaces if we don't have
2198          * any working I/O queue.
2199          */
2200         if (dev->online_queues < 2) {
2201                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2202                 nvme_kill_queues(&dev->ctrl);
2203                 nvme_remove_namespaces(&dev->ctrl);
2204         } else {
2205                 nvme_start_queues(&dev->ctrl);
2206                 nvme_wait_freeze(&dev->ctrl);
2207                 nvme_dev_add(dev);
2208                 nvme_unfreeze(&dev->ctrl);
2209         }
2210
2211         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2212                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2213                 goto out;
2214         }
2215
2216         nvme_start_ctrl(&dev->ctrl);
2217         return;
2218
2219  out:
2220         nvme_remove_dead_ctrl(dev, result);
2221 }
2222
2223 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2224 {
2225         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2226         struct pci_dev *pdev = to_pci_dev(dev->dev);
2227
2228         nvme_kill_queues(&dev->ctrl);
2229         if (pci_get_drvdata(pdev))
2230                 device_release_driver(&pdev->dev);
2231         nvme_put_ctrl(&dev->ctrl);
2232 }
2233
2234 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2235 {
2236         *val = readl(to_nvme_dev(ctrl)->bar + off);
2237         return 0;
2238 }
2239
2240 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2241 {
2242         writel(val, to_nvme_dev(ctrl)->bar + off);
2243         return 0;
2244 }
2245
2246 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2247 {
2248         *val = readq(to_nvme_dev(ctrl)->bar + off);
2249         return 0;
2250 }
2251
2252 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2253         .name                   = "pcie",
2254         .module                 = THIS_MODULE,
2255         .flags                  = NVME_F_METADATA_SUPPORTED,
2256         .reg_read32             = nvme_pci_reg_read32,
2257         .reg_write32            = nvme_pci_reg_write32,
2258         .reg_read64             = nvme_pci_reg_read64,
2259         .free_ctrl              = nvme_pci_free_ctrl,
2260         .submit_async_event     = nvme_pci_submit_async_event,
2261 };
2262
2263 static int nvme_dev_map(struct nvme_dev *dev)
2264 {
2265         struct pci_dev *pdev = to_pci_dev(dev->dev);
2266
2267         if (pci_request_mem_regions(pdev, "nvme"))
2268                 return -ENODEV;
2269
2270         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2271                 goto release;
2272
2273         return 0;
2274   release:
2275         pci_release_mem_regions(pdev);
2276         return -ENODEV;
2277 }
2278
2279 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2280 {
2281         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2282                 /*
2283                  * Several Samsung devices seem to drop off the PCIe bus
2284                  * randomly when APST is on and uses the deepest sleep state.
2285                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2286                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2287                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2288                  * laptops.
2289                  */
2290                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2291                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2292                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2293                         return NVME_QUIRK_NO_DEEPEST_PS;
2294         }
2295
2296         return 0;
2297 }
2298
2299 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2300 {
2301         int node, result = -ENOMEM;
2302         struct nvme_dev *dev;
2303         unsigned long quirks = id->driver_data;
2304
2305         node = dev_to_node(&pdev->dev);
2306         if (node == NUMA_NO_NODE)
2307                 set_dev_node(&pdev->dev, first_memory_node);
2308
2309         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2310         if (!dev)
2311                 return -ENOMEM;
2312         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2313                                                         GFP_KERNEL, node);
2314         if (!dev->queues)
2315                 goto free;
2316
2317         dev->dev = get_device(&pdev->dev);
2318         pci_set_drvdata(pdev, dev);
2319
2320         result = nvme_dev_map(dev);
2321         if (result)
2322                 goto put_pci;
2323
2324         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2325         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2326         mutex_init(&dev->shutdown_lock);
2327         init_completion(&dev->ioq_wait);
2328
2329         result = nvme_setup_prp_pools(dev);
2330         if (result)
2331                 goto unmap;
2332
2333         quirks |= check_dell_samsung_bug(pdev);
2334
2335         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2336                         quirks);
2337         if (result)
2338                 goto release_pools;
2339
2340         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2341         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2342
2343         queue_work(nvme_wq, &dev->ctrl.reset_work);
2344         return 0;
2345
2346  release_pools:
2347         nvme_release_prp_pools(dev);
2348  unmap:
2349         nvme_dev_unmap(dev);
2350  put_pci:
2351         put_device(dev->dev);
2352  free:
2353         kfree(dev->queues);
2354         kfree(dev);
2355         return result;
2356 }
2357
2358 static void nvme_reset_prepare(struct pci_dev *pdev)
2359 {
2360         struct nvme_dev *dev = pci_get_drvdata(pdev);
2361         nvme_dev_disable(dev, false);
2362 }
2363
2364 static void nvme_reset_done(struct pci_dev *pdev)
2365 {
2366         struct nvme_dev *dev = pci_get_drvdata(pdev);
2367         nvme_reset_ctrl(&dev->ctrl);
2368 }
2369
2370 static void nvme_shutdown(struct pci_dev *pdev)
2371 {
2372         struct nvme_dev *dev = pci_get_drvdata(pdev);
2373         nvme_dev_disable(dev, true);
2374 }
2375
2376 /*
2377  * The driver's remove may be called on a device in a partially initialized
2378  * state. This function must not have any dependencies on the device state in
2379  * order to proceed.
2380  */
2381 static void nvme_remove(struct pci_dev *pdev)
2382 {
2383         struct nvme_dev *dev = pci_get_drvdata(pdev);
2384
2385         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2386
2387         cancel_work_sync(&dev->ctrl.reset_work);
2388         pci_set_drvdata(pdev, NULL);
2389
2390         if (!pci_device_is_present(pdev)) {
2391                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2392                 nvme_dev_disable(dev, false);
2393         }
2394
2395         flush_work(&dev->ctrl.reset_work);
2396         nvme_stop_ctrl(&dev->ctrl);
2397         nvme_remove_namespaces(&dev->ctrl);
2398         nvme_dev_disable(dev, true);
2399         nvme_free_host_mem(dev);
2400         nvme_dev_remove_admin(dev);
2401         nvme_free_queues(dev, 0);
2402         nvme_uninit_ctrl(&dev->ctrl);
2403         nvme_release_prp_pools(dev);
2404         nvme_dev_unmap(dev);
2405         nvme_put_ctrl(&dev->ctrl);
2406 }
2407
2408 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2409 {
2410         int ret = 0;
2411
2412         if (numvfs == 0) {
2413                 if (pci_vfs_assigned(pdev)) {
2414                         dev_warn(&pdev->dev,
2415                                 "Cannot disable SR-IOV VFs while assigned\n");
2416                         return -EPERM;
2417                 }
2418                 pci_disable_sriov(pdev);
2419                 return 0;
2420         }
2421
2422         ret = pci_enable_sriov(pdev, numvfs);
2423         return ret ? ret : numvfs;
2424 }
2425
2426 #ifdef CONFIG_PM_SLEEP
2427 static int nvme_suspend(struct device *dev)
2428 {
2429         struct pci_dev *pdev = to_pci_dev(dev);
2430         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2431
2432         nvme_dev_disable(ndev, true);
2433         return 0;
2434 }
2435
2436 static int nvme_resume(struct device *dev)
2437 {
2438         struct pci_dev *pdev = to_pci_dev(dev);
2439         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2440
2441         nvme_reset_ctrl(&ndev->ctrl);
2442         return 0;
2443 }
2444 #endif
2445
2446 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2447
2448 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2449                                                 pci_channel_state_t state)
2450 {
2451         struct nvme_dev *dev = pci_get_drvdata(pdev);
2452
2453         /*
2454          * A frozen channel requires a reset. When detected, this method will
2455          * shutdown the controller to quiesce. The controller will be restarted
2456          * after the slot reset through driver's slot_reset callback.
2457          */
2458         switch (state) {
2459         case pci_channel_io_normal:
2460                 return PCI_ERS_RESULT_CAN_RECOVER;
2461         case pci_channel_io_frozen:
2462                 dev_warn(dev->ctrl.device,
2463                         "frozen state error detected, reset controller\n");
2464                 nvme_dev_disable(dev, false);
2465                 return PCI_ERS_RESULT_NEED_RESET;
2466         case pci_channel_io_perm_failure:
2467                 dev_warn(dev->ctrl.device,
2468                         "failure state error detected, request disconnect\n");
2469                 return PCI_ERS_RESULT_DISCONNECT;
2470         }
2471         return PCI_ERS_RESULT_NEED_RESET;
2472 }
2473
2474 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2475 {
2476         struct nvme_dev *dev = pci_get_drvdata(pdev);
2477
2478         dev_info(dev->ctrl.device, "restart after slot reset\n");
2479         pci_restore_state(pdev);
2480         nvme_reset_ctrl(&dev->ctrl);
2481         return PCI_ERS_RESULT_RECOVERED;
2482 }
2483
2484 static void nvme_error_resume(struct pci_dev *pdev)
2485 {
2486         pci_cleanup_aer_uncorrect_error_status(pdev);
2487 }
2488
2489 static const struct pci_error_handlers nvme_err_handler = {
2490         .error_detected = nvme_error_detected,
2491         .slot_reset     = nvme_slot_reset,
2492         .resume         = nvme_error_resume,
2493         .reset_prepare  = nvme_reset_prepare,
2494         .reset_done     = nvme_reset_done,
2495 };
2496
2497 static const struct pci_device_id nvme_id_table[] = {
2498         { PCI_VDEVICE(INTEL, 0x0953),
2499                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2500                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2501         { PCI_VDEVICE(INTEL, 0x0a53),
2502                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2503                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2504         { PCI_VDEVICE(INTEL, 0x0a54),
2505                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2506                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2507         { PCI_VDEVICE(INTEL, 0x0a55),
2508                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2509                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2510         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2511                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2512         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2513                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2514         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2515                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2516         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2517                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2518         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2519                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2520         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2521                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2522         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2523                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2524         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2525                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2526         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2527         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2528         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2529         { 0, }
2530 };
2531 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2532
2533 static struct pci_driver nvme_driver = {
2534         .name           = "nvme",
2535         .id_table       = nvme_id_table,
2536         .probe          = nvme_probe,
2537         .remove         = nvme_remove,
2538         .shutdown       = nvme_shutdown,
2539         .driver         = {
2540                 .pm     = &nvme_dev_pm_ops,
2541         },
2542         .sriov_configure = nvme_pci_sriov_configure,
2543         .err_handler    = &nvme_err_handler,
2544 };
2545
2546 static int __init nvme_init(void)
2547 {
2548         return pci_register_driver(&nvme_driver);
2549 }
2550
2551 static void __exit nvme_exit(void)
2552 {
2553         pci_unregister_driver(&nvme_driver);
2554         _nvme_check_size();
2555 }
2556
2557 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2558 MODULE_LICENSE("GPL");
2559 MODULE_VERSION("1.0");
2560 module_init(nvme_init);
2561 module_exit(nvme_exit);