Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[sfrench/cifs-2.6.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15         "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18         [NVME_IOPOLICY_NUMA]    = "numa",
19         [NVME_IOPOLICY_RR]      = "round-robin",
20 };
21
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23
24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26         if (!val)
27                 return -EINVAL;
28         if (!strncmp(val, "numa", 4))
29                 iopolicy = NVME_IOPOLICY_NUMA;
30         else if (!strncmp(val, "round-robin", 11))
31                 iopolicy = NVME_IOPOLICY_RR;
32         else
33                 return -EINVAL;
34
35         return 0;
36 }
37
38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40         return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44         &iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46         "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50         subsys->iopolicy = iopolicy;
51 }
52
53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55         struct nvme_ns_head *h;
56
57         lockdep_assert_held(&subsys->lock);
58         list_for_each_entry(h, &subsys->nsheads, entry)
59                 if (h->disk)
60                         blk_mq_unfreeze_queue(h->disk->queue);
61 }
62
63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65         struct nvme_ns_head *h;
66
67         lockdep_assert_held(&subsys->lock);
68         list_for_each_entry(h, &subsys->nsheads, entry)
69                 if (h->disk)
70                         blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72
73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75         struct nvme_ns_head *h;
76
77         lockdep_assert_held(&subsys->lock);
78         list_for_each_entry(h, &subsys->nsheads, entry)
79                 if (h->disk)
80                         blk_freeze_queue_start(h->disk->queue);
81 }
82
83 void nvme_failover_req(struct request *req)
84 {
85         struct nvme_ns *ns = req->q->queuedata;
86         u16 status = nvme_req(req)->status & 0x7ff;
87         unsigned long flags;
88         struct bio *bio;
89
90         nvme_mpath_clear_current_path(ns);
91
92         /*
93          * If we got back an ANA error, we know the controller is alive but not
94          * ready to serve this namespace.  Kick of a re-read of the ANA
95          * information page, and just try any other available path for now.
96          */
97         if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98                 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99                 queue_work(nvme_wq, &ns->ctrl->ana_work);
100         }
101
102         spin_lock_irqsave(&ns->head->requeue_lock, flags);
103         for (bio = req->bio; bio; bio = bio->bi_next) {
104                 bio_set_dev(bio, ns->head->disk->part0);
105                 if (bio->bi_opf & REQ_POLLED) {
106                         bio->bi_opf &= ~REQ_POLLED;
107                         bio->bi_cookie = BLK_QC_T_NONE;
108                 }
109         }
110         blk_steal_bios(&ns->head->requeue_list, req);
111         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
112
113         blk_mq_end_request(req, 0);
114         kblockd_schedule_work(&ns->head->requeue_work);
115 }
116
117 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
118 {
119         struct nvme_ns *ns;
120
121         down_read(&ctrl->namespaces_rwsem);
122         list_for_each_entry(ns, &ctrl->namespaces, list) {
123                 if (!ns->head->disk)
124                         continue;
125                 kblockd_schedule_work(&ns->head->requeue_work);
126                 if (ctrl->state == NVME_CTRL_LIVE)
127                         disk_uevent(ns->head->disk, KOBJ_CHANGE);
128         }
129         up_read(&ctrl->namespaces_rwsem);
130 }
131
132 static const char *nvme_ana_state_names[] = {
133         [0]                             = "invalid state",
134         [NVME_ANA_OPTIMIZED]            = "optimized",
135         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
136         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
137         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
138         [NVME_ANA_CHANGE]               = "change",
139 };
140
141 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
142 {
143         struct nvme_ns_head *head = ns->head;
144         bool changed = false;
145         int node;
146
147         if (!head)
148                 goto out;
149
150         for_each_node(node) {
151                 if (ns == rcu_access_pointer(head->current_path[node])) {
152                         rcu_assign_pointer(head->current_path[node], NULL);
153                         changed = true;
154                 }
155         }
156 out:
157         return changed;
158 }
159
160 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
161 {
162         struct nvme_ns *ns;
163
164         down_read(&ctrl->namespaces_rwsem);
165         list_for_each_entry(ns, &ctrl->namespaces, list) {
166                 nvme_mpath_clear_current_path(ns);
167                 kblockd_schedule_work(&ns->head->requeue_work);
168         }
169         up_read(&ctrl->namespaces_rwsem);
170 }
171
172 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
173 {
174         struct nvme_ns_head *head = ns->head;
175         sector_t capacity = get_capacity(head->disk);
176         int node;
177
178         list_for_each_entry_rcu(ns, &head->list, siblings) {
179                 if (capacity != get_capacity(ns->disk))
180                         clear_bit(NVME_NS_READY, &ns->flags);
181         }
182
183         for_each_node(node)
184                 rcu_assign_pointer(head->current_path[node], NULL);
185 }
186
187 static bool nvme_path_is_disabled(struct nvme_ns *ns)
188 {
189         /*
190          * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
191          * still be able to complete assuming that the controller is connected.
192          * Otherwise it will fail immediately and return to the requeue list.
193          */
194         if (ns->ctrl->state != NVME_CTRL_LIVE &&
195             ns->ctrl->state != NVME_CTRL_DELETING)
196                 return true;
197         if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
198             !test_bit(NVME_NS_READY, &ns->flags))
199                 return true;
200         return false;
201 }
202
203 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
204 {
205         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
206         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
207
208         list_for_each_entry_rcu(ns, &head->list, siblings) {
209                 if (nvme_path_is_disabled(ns))
210                         continue;
211
212                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
213                         distance = node_distance(node, ns->ctrl->numa_node);
214                 else
215                         distance = LOCAL_DISTANCE;
216
217                 switch (ns->ana_state) {
218                 case NVME_ANA_OPTIMIZED:
219                         if (distance < found_distance) {
220                                 found_distance = distance;
221                                 found = ns;
222                         }
223                         break;
224                 case NVME_ANA_NONOPTIMIZED:
225                         if (distance < fallback_distance) {
226                                 fallback_distance = distance;
227                                 fallback = ns;
228                         }
229                         break;
230                 default:
231                         break;
232                 }
233         }
234
235         if (!found)
236                 found = fallback;
237         if (found)
238                 rcu_assign_pointer(head->current_path[node], found);
239         return found;
240 }
241
242 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
243                 struct nvme_ns *ns)
244 {
245         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
246                         siblings);
247         if (ns)
248                 return ns;
249         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
250 }
251
252 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
253                 int node, struct nvme_ns *old)
254 {
255         struct nvme_ns *ns, *found = NULL;
256
257         if (list_is_singular(&head->list)) {
258                 if (nvme_path_is_disabled(old))
259                         return NULL;
260                 return old;
261         }
262
263         for (ns = nvme_next_ns(head, old);
264              ns && ns != old;
265              ns = nvme_next_ns(head, ns)) {
266                 if (nvme_path_is_disabled(ns))
267                         continue;
268
269                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
270                         found = ns;
271                         goto out;
272                 }
273                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
274                         found = ns;
275         }
276
277         /*
278          * The loop above skips the current path for round-robin semantics.
279          * Fall back to the current path if either:
280          *  - no other optimized path found and current is optimized,
281          *  - no other usable path found and current is usable.
282          */
283         if (!nvme_path_is_disabled(old) &&
284             (old->ana_state == NVME_ANA_OPTIMIZED ||
285              (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
286                 return old;
287
288         if (!found)
289                 return NULL;
290 out:
291         rcu_assign_pointer(head->current_path[node], found);
292         return found;
293 }
294
295 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
296 {
297         return ns->ctrl->state == NVME_CTRL_LIVE &&
298                 ns->ana_state == NVME_ANA_OPTIMIZED;
299 }
300
301 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
302 {
303         int node = numa_node_id();
304         struct nvme_ns *ns;
305
306         ns = srcu_dereference(head->current_path[node], &head->srcu);
307         if (unlikely(!ns))
308                 return __nvme_find_path(head, node);
309
310         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
311                 return nvme_round_robin_path(head, node, ns);
312         if (unlikely(!nvme_path_is_optimized(ns)))
313                 return __nvme_find_path(head, node);
314         return ns;
315 }
316
317 static bool nvme_available_path(struct nvme_ns_head *head)
318 {
319         struct nvme_ns *ns;
320
321         list_for_each_entry_rcu(ns, &head->list, siblings) {
322                 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
323                         continue;
324                 switch (ns->ctrl->state) {
325                 case NVME_CTRL_LIVE:
326                 case NVME_CTRL_RESETTING:
327                 case NVME_CTRL_CONNECTING:
328                         /* fallthru */
329                         return true;
330                 default:
331                         break;
332                 }
333         }
334         return false;
335 }
336
337 static void nvme_ns_head_submit_bio(struct bio *bio)
338 {
339         struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
340         struct device *dev = disk_to_dev(head->disk);
341         struct nvme_ns *ns;
342         int srcu_idx;
343
344         /*
345          * The namespace might be going away and the bio might be moved to a
346          * different queue via blk_steal_bios(), so we need to use the bio_split
347          * pool from the original queue to allocate the bvecs from.
348          */
349         blk_queue_split(&bio);
350
351         srcu_idx = srcu_read_lock(&head->srcu);
352         ns = nvme_find_path(head);
353         if (likely(ns)) {
354                 bio_set_dev(bio, ns->disk->part0);
355                 bio->bi_opf |= REQ_NVME_MPATH;
356                 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
357                                       bio->bi_iter.bi_sector);
358                 submit_bio_noacct(bio);
359         } else if (nvme_available_path(head)) {
360                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
361
362                 spin_lock_irq(&head->requeue_lock);
363                 bio_list_add(&head->requeue_list, bio);
364                 spin_unlock_irq(&head->requeue_lock);
365         } else {
366                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
367
368                 bio_io_error(bio);
369         }
370
371         srcu_read_unlock(&head->srcu, srcu_idx);
372 }
373
374 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
375 {
376         if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
377                 return -ENXIO;
378         return 0;
379 }
380
381 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
382 {
383         nvme_put_ns_head(disk->private_data);
384 }
385
386 #ifdef CONFIG_BLK_DEV_ZONED
387 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
388                 unsigned int nr_zones, report_zones_cb cb, void *data)
389 {
390         struct nvme_ns_head *head = disk->private_data;
391         struct nvme_ns *ns;
392         int srcu_idx, ret = -EWOULDBLOCK;
393
394         srcu_idx = srcu_read_lock(&head->srcu);
395         ns = nvme_find_path(head);
396         if (ns)
397                 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
398         srcu_read_unlock(&head->srcu, srcu_idx);
399         return ret;
400 }
401 #else
402 #define nvme_ns_head_report_zones       NULL
403 #endif /* CONFIG_BLK_DEV_ZONED */
404
405 const struct block_device_operations nvme_ns_head_ops = {
406         .owner          = THIS_MODULE,
407         .submit_bio     = nvme_ns_head_submit_bio,
408         .open           = nvme_ns_head_open,
409         .release        = nvme_ns_head_release,
410         .ioctl          = nvme_ns_head_ioctl,
411         .getgeo         = nvme_getgeo,
412         .report_zones   = nvme_ns_head_report_zones,
413         .pr_ops         = &nvme_pr_ops,
414 };
415
416 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
417 {
418         return container_of(cdev, struct nvme_ns_head, cdev);
419 }
420
421 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
422 {
423         if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
424                 return -ENXIO;
425         return 0;
426 }
427
428 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
429 {
430         nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
431         return 0;
432 }
433
434 static const struct file_operations nvme_ns_head_chr_fops = {
435         .owner          = THIS_MODULE,
436         .open           = nvme_ns_head_chr_open,
437         .release        = nvme_ns_head_chr_release,
438         .unlocked_ioctl = nvme_ns_head_chr_ioctl,
439         .compat_ioctl   = compat_ptr_ioctl,
440 };
441
442 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
443 {
444         int ret;
445
446         head->cdev_device.parent = &head->subsys->dev;
447         ret = dev_set_name(&head->cdev_device, "ng%dn%d",
448                            head->subsys->instance, head->instance);
449         if (ret)
450                 return ret;
451         ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
452                             &nvme_ns_head_chr_fops, THIS_MODULE);
453         return ret;
454 }
455
456 static void nvme_requeue_work(struct work_struct *work)
457 {
458         struct nvme_ns_head *head =
459                 container_of(work, struct nvme_ns_head, requeue_work);
460         struct bio *bio, *next;
461
462         spin_lock_irq(&head->requeue_lock);
463         next = bio_list_get(&head->requeue_list);
464         spin_unlock_irq(&head->requeue_lock);
465
466         while ((bio = next) != NULL) {
467                 next = bio->bi_next;
468                 bio->bi_next = NULL;
469
470                 submit_bio_noacct(bio);
471         }
472 }
473
474 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
475 {
476         bool vwc = false;
477
478         mutex_init(&head->lock);
479         bio_list_init(&head->requeue_list);
480         spin_lock_init(&head->requeue_lock);
481         INIT_WORK(&head->requeue_work, nvme_requeue_work);
482
483         /*
484          * Add a multipath node if the subsystems supports multiple controllers.
485          * We also do this for private namespaces as the namespace sharing flag
486          * could change after a rescan.
487          */
488         if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
489             !nvme_is_unique_nsid(ctrl, head) || !multipath)
490                 return 0;
491
492         head->disk = blk_alloc_disk(ctrl->numa_node);
493         if (!head->disk)
494                 return -ENOMEM;
495         head->disk->fops = &nvme_ns_head_ops;
496         head->disk->private_data = head;
497         sprintf(head->disk->disk_name, "nvme%dn%d",
498                         ctrl->subsys->instance, head->instance);
499
500         blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
501         blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
502         /*
503          * This assumes all controllers that refer to a namespace either
504          * support poll queues or not.  That is not a strict guarantee,
505          * but if the assumption is wrong the effect is only suboptimal
506          * performance but not correctness problem.
507          */
508         if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
509             ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
510                 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
511
512         /* set to a default value of 512 until the disk is validated */
513         blk_queue_logical_block_size(head->disk->queue, 512);
514         blk_set_stacking_limits(&head->disk->queue->limits);
515
516         /* we need to propagate up the VMC settings */
517         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
518                 vwc = true;
519         blk_queue_write_cache(head->disk->queue, vwc, vwc);
520         return 0;
521 }
522
523 static void nvme_mpath_set_live(struct nvme_ns *ns)
524 {
525         struct nvme_ns_head *head = ns->head;
526         int rc;
527
528         if (!head->disk)
529                 return;
530
531         /*
532          * test_and_set_bit() is used because it is protecting against two nvme
533          * paths simultaneously calling device_add_disk() on the same namespace
534          * head.
535          */
536         if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
537                 rc = device_add_disk(&head->subsys->dev, head->disk,
538                                      nvme_ns_id_attr_groups);
539                 if (rc) {
540                         clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
541                         return;
542                 }
543                 nvme_add_ns_head_cdev(head);
544         }
545
546         mutex_lock(&head->lock);
547         if (nvme_path_is_optimized(ns)) {
548                 int node, srcu_idx;
549
550                 srcu_idx = srcu_read_lock(&head->srcu);
551                 for_each_node(node)
552                         __nvme_find_path(head, node);
553                 srcu_read_unlock(&head->srcu, srcu_idx);
554         }
555         mutex_unlock(&head->lock);
556
557         synchronize_srcu(&head->srcu);
558         kblockd_schedule_work(&head->requeue_work);
559 }
560
561 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
562                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
563                         void *))
564 {
565         void *base = ctrl->ana_log_buf;
566         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
567         int error, i;
568
569         lockdep_assert_held(&ctrl->ana_lock);
570
571         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
572                 struct nvme_ana_group_desc *desc = base + offset;
573                 u32 nr_nsids;
574                 size_t nsid_buf_size;
575
576                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
577                         return -EINVAL;
578
579                 nr_nsids = le32_to_cpu(desc->nnsids);
580                 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
581
582                 if (WARN_ON_ONCE(desc->grpid == 0))
583                         return -EINVAL;
584                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
585                         return -EINVAL;
586                 if (WARN_ON_ONCE(desc->state == 0))
587                         return -EINVAL;
588                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
589                         return -EINVAL;
590
591                 offset += sizeof(*desc);
592                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
593                         return -EINVAL;
594
595                 error = cb(ctrl, desc, data);
596                 if (error)
597                         return error;
598
599                 offset += nsid_buf_size;
600         }
601
602         return 0;
603 }
604
605 static inline bool nvme_state_is_live(enum nvme_ana_state state)
606 {
607         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
608 }
609
610 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
611                 struct nvme_ns *ns)
612 {
613         ns->ana_grpid = le32_to_cpu(desc->grpid);
614         ns->ana_state = desc->state;
615         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
616         /*
617          * nvme_mpath_set_live() will trigger I/O to the multipath path device
618          * and in turn to this path device.  However we cannot accept this I/O
619          * if the controller is not live.  This may deadlock if called from
620          * nvme_mpath_init_identify() and the ctrl will never complete
621          * initialization, preventing I/O from completing.  For this case we
622          * will reprocess the ANA log page in nvme_mpath_update() once the
623          * controller is ready.
624          */
625         if (nvme_state_is_live(ns->ana_state) &&
626             ns->ctrl->state == NVME_CTRL_LIVE)
627                 nvme_mpath_set_live(ns);
628 }
629
630 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
631                 struct nvme_ana_group_desc *desc, void *data)
632 {
633         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
634         unsigned *nr_change_groups = data;
635         struct nvme_ns *ns;
636
637         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
638                         le32_to_cpu(desc->grpid),
639                         nvme_ana_state_names[desc->state]);
640
641         if (desc->state == NVME_ANA_CHANGE)
642                 (*nr_change_groups)++;
643
644         if (!nr_nsids)
645                 return 0;
646
647         down_read(&ctrl->namespaces_rwsem);
648         list_for_each_entry(ns, &ctrl->namespaces, list) {
649                 unsigned nsid;
650 again:
651                 nsid = le32_to_cpu(desc->nsids[n]);
652                 if (ns->head->ns_id < nsid)
653                         continue;
654                 if (ns->head->ns_id == nsid)
655                         nvme_update_ns_ana_state(desc, ns);
656                 if (++n == nr_nsids)
657                         break;
658                 if (ns->head->ns_id > nsid)
659                         goto again;
660         }
661         up_read(&ctrl->namespaces_rwsem);
662         return 0;
663 }
664
665 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
666 {
667         u32 nr_change_groups = 0;
668         int error;
669
670         mutex_lock(&ctrl->ana_lock);
671         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
672                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
673         if (error) {
674                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
675                 goto out_unlock;
676         }
677
678         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
679                         nvme_update_ana_state);
680         if (error)
681                 goto out_unlock;
682
683         /*
684          * In theory we should have an ANATT timer per group as they might enter
685          * the change state at different times.  But that is a lot of overhead
686          * just to protect against a target that keeps entering new changes
687          * states while never finishing previous ones.  But we'll still
688          * eventually time out once all groups are in change state, so this
689          * isn't a big deal.
690          *
691          * We also double the ANATT value to provide some slack for transports
692          * or AEN processing overhead.
693          */
694         if (nr_change_groups)
695                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
696         else
697                 del_timer_sync(&ctrl->anatt_timer);
698 out_unlock:
699         mutex_unlock(&ctrl->ana_lock);
700         return error;
701 }
702
703 static void nvme_ana_work(struct work_struct *work)
704 {
705         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
706
707         if (ctrl->state != NVME_CTRL_LIVE)
708                 return;
709
710         nvme_read_ana_log(ctrl);
711 }
712
713 void nvme_mpath_update(struct nvme_ctrl *ctrl)
714 {
715         u32 nr_change_groups = 0;
716
717         if (!ctrl->ana_log_buf)
718                 return;
719
720         mutex_lock(&ctrl->ana_lock);
721         nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
722         mutex_unlock(&ctrl->ana_lock);
723 }
724
725 static void nvme_anatt_timeout(struct timer_list *t)
726 {
727         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
728
729         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
730         nvme_reset_ctrl(ctrl);
731 }
732
733 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
734 {
735         if (!nvme_ctrl_use_ana(ctrl))
736                 return;
737         del_timer_sync(&ctrl->anatt_timer);
738         cancel_work_sync(&ctrl->ana_work);
739 }
740
741 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
742         struct device_attribute subsys_attr_##_name =   \
743                 __ATTR(_name, _mode, _show, _store)
744
745 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
746                 struct device_attribute *attr, char *buf)
747 {
748         struct nvme_subsystem *subsys =
749                 container_of(dev, struct nvme_subsystem, dev);
750
751         return sysfs_emit(buf, "%s\n",
752                           nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
753 }
754
755 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
756                 struct device_attribute *attr, const char *buf, size_t count)
757 {
758         struct nvme_subsystem *subsys =
759                 container_of(dev, struct nvme_subsystem, dev);
760         int i;
761
762         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
763                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
764                         WRITE_ONCE(subsys->iopolicy, i);
765                         return count;
766                 }
767         }
768
769         return -EINVAL;
770 }
771 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
772                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
773
774 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
775                 char *buf)
776 {
777         return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
778 }
779 DEVICE_ATTR_RO(ana_grpid);
780
781 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
782                 char *buf)
783 {
784         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
785
786         return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
787 }
788 DEVICE_ATTR_RO(ana_state);
789
790 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
791                 struct nvme_ana_group_desc *desc, void *data)
792 {
793         struct nvme_ana_group_desc *dst = data;
794
795         if (desc->grpid != dst->grpid)
796                 return 0;
797
798         *dst = *desc;
799         return -ENXIO; /* just break out of the loop */
800 }
801
802 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
803 {
804         if (nvme_ctrl_use_ana(ns->ctrl)) {
805                 struct nvme_ana_group_desc desc = {
806                         .grpid = id->anagrpid,
807                         .state = 0,
808                 };
809
810                 mutex_lock(&ns->ctrl->ana_lock);
811                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
812                 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
813                 mutex_unlock(&ns->ctrl->ana_lock);
814                 if (desc.state) {
815                         /* found the group desc: update */
816                         nvme_update_ns_ana_state(&desc, ns);
817                 } else {
818                         /* group desc not found: trigger a re-read */
819                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
820                         queue_work(nvme_wq, &ns->ctrl->ana_work);
821                 }
822         } else {
823                 ns->ana_state = NVME_ANA_OPTIMIZED;
824                 nvme_mpath_set_live(ns);
825         }
826
827         if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
828                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
829                                    ns->head->disk->queue);
830 #ifdef CONFIG_BLK_DEV_ZONED
831         if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
832                 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
833 #endif
834 }
835
836 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
837 {
838         if (!head->disk)
839                 return;
840         kblockd_schedule_work(&head->requeue_work);
841         if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
842                 nvme_cdev_del(&head->cdev, &head->cdev_device);
843                 del_gendisk(head->disk);
844         }
845 }
846
847 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
848 {
849         if (!head->disk)
850                 return;
851         blk_mark_disk_dead(head->disk);
852         /* make sure all pending bios are cleaned up */
853         kblockd_schedule_work(&head->requeue_work);
854         flush_work(&head->requeue_work);
855         blk_cleanup_disk(head->disk);
856 }
857
858 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
859 {
860         mutex_init(&ctrl->ana_lock);
861         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
862         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
863 }
864
865 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
866 {
867         size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
868         size_t ana_log_size;
869         int error = 0;
870
871         /* check if multipath is enabled and we have the capability */
872         if (!multipath || !ctrl->subsys ||
873             !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
874                 return 0;
875
876         if (!ctrl->max_namespaces ||
877             ctrl->max_namespaces > le32_to_cpu(id->nn)) {
878                 dev_err(ctrl->device,
879                         "Invalid MNAN value %u\n", ctrl->max_namespaces);
880                 return -EINVAL;
881         }
882
883         ctrl->anacap = id->anacap;
884         ctrl->anatt = id->anatt;
885         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
886         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
887
888         ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
889                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
890                 ctrl->max_namespaces * sizeof(__le32);
891         if (ana_log_size > max_transfer_size) {
892                 dev_err(ctrl->device,
893                         "ANA log page size (%zd) larger than MDTS (%zd).\n",
894                         ana_log_size, max_transfer_size);
895                 dev_err(ctrl->device, "disabling ANA support.\n");
896                 goto out_uninit;
897         }
898         if (ana_log_size > ctrl->ana_log_size) {
899                 nvme_mpath_stop(ctrl);
900                 nvme_mpath_uninit(ctrl);
901                 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
902                 if (!ctrl->ana_log_buf)
903                         return -ENOMEM;
904         }
905         ctrl->ana_log_size = ana_log_size;
906         error = nvme_read_ana_log(ctrl);
907         if (error)
908                 goto out_uninit;
909         return 0;
910
911 out_uninit:
912         nvme_mpath_uninit(ctrl);
913         return error;
914 }
915
916 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
917 {
918         kvfree(ctrl->ana_log_buf);
919         ctrl->ana_log_buf = NULL;
920         ctrl->ana_log_size = 0;
921 }