ahci: don't ignore result code of ahci_reset_controller()
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61                  "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76
77 static struct class *nvme_class;
78
79 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
80 {
81         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
82                 return -EBUSY;
83         if (!queue_work(nvme_wq, &ctrl->reset_work))
84                 return -EBUSY;
85         return 0;
86 }
87 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
88
89 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
90 {
91         int ret;
92
93         ret = nvme_reset_ctrl(ctrl);
94         if (!ret)
95                 flush_work(&ctrl->reset_work);
96         return ret;
97 }
98
99 static blk_status_t nvme_error_status(struct request *req)
100 {
101         switch (nvme_req(req)->status & 0x7ff) {
102         case NVME_SC_SUCCESS:
103                 return BLK_STS_OK;
104         case NVME_SC_CAP_EXCEEDED:
105                 return BLK_STS_NOSPC;
106         case NVME_SC_ONCS_NOT_SUPPORTED:
107                 return BLK_STS_NOTSUPP;
108         case NVME_SC_WRITE_FAULT:
109         case NVME_SC_READ_ERROR:
110         case NVME_SC_UNWRITTEN_BLOCK:
111                 return BLK_STS_MEDIUM;
112         default:
113                 return BLK_STS_IOERR;
114         }
115 }
116
117 static inline bool nvme_req_needs_retry(struct request *req)
118 {
119         if (blk_noretry_request(req))
120                 return false;
121         if (nvme_req(req)->status & NVME_SC_DNR)
122                 return false;
123         if (jiffies - req->start_time >= req->timeout)
124                 return false;
125         if (nvme_req(req)->retries >= nvme_max_retries)
126                 return false;
127         return true;
128 }
129
130 void nvme_complete_rq(struct request *req)
131 {
132         if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
133                 nvme_req(req)->retries++;
134                 blk_mq_requeue_request(req, true);
135                 return;
136         }
137
138         blk_mq_end_request(req, nvme_error_status(req));
139 }
140 EXPORT_SYMBOL_GPL(nvme_complete_rq);
141
142 void nvme_cancel_request(struct request *req, void *data, bool reserved)
143 {
144         int status;
145
146         if (!blk_mq_request_started(req))
147                 return;
148
149         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
150                                 "Cancelling I/O %d", req->tag);
151
152         status = NVME_SC_ABORT_REQ;
153         if (blk_queue_dying(req->q))
154                 status |= NVME_SC_DNR;
155         nvme_req(req)->status = status;
156         blk_mq_complete_request(req);
157
158 }
159 EXPORT_SYMBOL_GPL(nvme_cancel_request);
160
161 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
162                 enum nvme_ctrl_state new_state)
163 {
164         enum nvme_ctrl_state old_state;
165         bool changed = false;
166
167         spin_lock_irq(&ctrl->lock);
168
169         old_state = ctrl->state;
170         switch (new_state) {
171         case NVME_CTRL_LIVE:
172                 switch (old_state) {
173                 case NVME_CTRL_NEW:
174                 case NVME_CTRL_RESETTING:
175                 case NVME_CTRL_RECONNECTING:
176                         changed = true;
177                         /* FALLTHRU */
178                 default:
179                         break;
180                 }
181                 break;
182         case NVME_CTRL_RESETTING:
183                 switch (old_state) {
184                 case NVME_CTRL_NEW:
185                 case NVME_CTRL_LIVE:
186                         changed = true;
187                         /* FALLTHRU */
188                 default:
189                         break;
190                 }
191                 break;
192         case NVME_CTRL_RECONNECTING:
193                 switch (old_state) {
194                 case NVME_CTRL_LIVE:
195                         changed = true;
196                         /* FALLTHRU */
197                 default:
198                         break;
199                 }
200                 break;
201         case NVME_CTRL_DELETING:
202                 switch (old_state) {
203                 case NVME_CTRL_LIVE:
204                 case NVME_CTRL_RESETTING:
205                 case NVME_CTRL_RECONNECTING:
206                         changed = true;
207                         /* FALLTHRU */
208                 default:
209                         break;
210                 }
211                 break;
212         case NVME_CTRL_DEAD:
213                 switch (old_state) {
214                 case NVME_CTRL_DELETING:
215                         changed = true;
216                         /* FALLTHRU */
217                 default:
218                         break;
219                 }
220                 break;
221         default:
222                 break;
223         }
224
225         if (changed)
226                 ctrl->state = new_state;
227
228         spin_unlock_irq(&ctrl->lock);
229
230         return changed;
231 }
232 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
233
234 static void nvme_free_ns(struct kref *kref)
235 {
236         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
237
238         if (ns->ndev)
239                 nvme_nvm_unregister(ns);
240
241         if (ns->disk) {
242                 spin_lock(&dev_list_lock);
243                 ns->disk->private_data = NULL;
244                 spin_unlock(&dev_list_lock);
245         }
246
247         put_disk(ns->disk);
248         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
249         nvme_put_ctrl(ns->ctrl);
250         kfree(ns);
251 }
252
253 static void nvme_put_ns(struct nvme_ns *ns)
254 {
255         kref_put(&ns->kref, nvme_free_ns);
256 }
257
258 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
259 {
260         struct nvme_ns *ns;
261
262         spin_lock(&dev_list_lock);
263         ns = disk->private_data;
264         if (ns) {
265                 if (!kref_get_unless_zero(&ns->kref))
266                         goto fail;
267                 if (!try_module_get(ns->ctrl->ops->module))
268                         goto fail_put_ns;
269         }
270         spin_unlock(&dev_list_lock);
271
272         return ns;
273
274 fail_put_ns:
275         kref_put(&ns->kref, nvme_free_ns);
276 fail:
277         spin_unlock(&dev_list_lock);
278         return NULL;
279 }
280
281 struct request *nvme_alloc_request(struct request_queue *q,
282                 struct nvme_command *cmd, unsigned int flags, int qid)
283 {
284         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
285         struct request *req;
286
287         if (qid == NVME_QID_ANY) {
288                 req = blk_mq_alloc_request(q, op, flags);
289         } else {
290                 req = blk_mq_alloc_request_hctx(q, op, flags,
291                                 qid ? qid - 1 : 0);
292         }
293         if (IS_ERR(req))
294                 return req;
295
296         req->cmd_flags |= REQ_FAILFAST_DRIVER;
297         nvme_req(req)->cmd = cmd;
298
299         return req;
300 }
301 EXPORT_SYMBOL_GPL(nvme_alloc_request);
302
303 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
304 {
305         struct nvme_command c;
306
307         memset(&c, 0, sizeof(c));
308
309         c.directive.opcode = nvme_admin_directive_send;
310         c.directive.nsid = cpu_to_le32(0xffffffff);
311         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
312         c.directive.dtype = NVME_DIR_IDENTIFY;
313         c.directive.tdtype = NVME_DIR_STREAMS;
314         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
315
316         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
317 }
318
319 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
320 {
321         return nvme_toggle_streams(ctrl, false);
322 }
323
324 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
325 {
326         return nvme_toggle_streams(ctrl, true);
327 }
328
329 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
330                                   struct streams_directive_params *s, u32 nsid)
331 {
332         struct nvme_command c;
333
334         memset(&c, 0, sizeof(c));
335         memset(s, 0, sizeof(*s));
336
337         c.directive.opcode = nvme_admin_directive_recv;
338         c.directive.nsid = cpu_to_le32(nsid);
339         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
340         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
341         c.directive.dtype = NVME_DIR_STREAMS;
342
343         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
344 }
345
346 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
347 {
348         struct streams_directive_params s;
349         int ret;
350
351         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
352                 return 0;
353         if (!streams)
354                 return 0;
355
356         ret = nvme_enable_streams(ctrl);
357         if (ret)
358                 return ret;
359
360         ret = nvme_get_stream_params(ctrl, &s, 0xffffffff);
361         if (ret)
362                 return ret;
363
364         ctrl->nssa = le16_to_cpu(s.nssa);
365         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
366                 dev_info(ctrl->device, "too few streams (%u) available\n",
367                                         ctrl->nssa);
368                 nvme_disable_streams(ctrl);
369                 return 0;
370         }
371
372         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
373         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
374         return 0;
375 }
376
377 /*
378  * Check if 'req' has a write hint associated with it. If it does, assign
379  * a valid namespace stream to the write.
380  */
381 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
382                                      struct request *req, u16 *control,
383                                      u32 *dsmgmt)
384 {
385         enum rw_hint streamid = req->write_hint;
386
387         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
388                 streamid = 0;
389         else {
390                 streamid--;
391                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
392                         return;
393
394                 *control |= NVME_RW_DTYPE_STREAMS;
395                 *dsmgmt |= streamid << 16;
396         }
397
398         if (streamid < ARRAY_SIZE(req->q->write_hints))
399                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
400 }
401
402 static inline void nvme_setup_flush(struct nvme_ns *ns,
403                 struct nvme_command *cmnd)
404 {
405         memset(cmnd, 0, sizeof(*cmnd));
406         cmnd->common.opcode = nvme_cmd_flush;
407         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
408 }
409
410 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
411                 struct nvme_command *cmnd)
412 {
413         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
414         struct nvme_dsm_range *range;
415         struct bio *bio;
416
417         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
418         if (!range)
419                 return BLK_STS_RESOURCE;
420
421         __rq_for_each_bio(bio, req) {
422                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
423                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
424
425                 range[n].cattr = cpu_to_le32(0);
426                 range[n].nlb = cpu_to_le32(nlb);
427                 range[n].slba = cpu_to_le64(slba);
428                 n++;
429         }
430
431         if (WARN_ON_ONCE(n != segments)) {
432                 kfree(range);
433                 return BLK_STS_IOERR;
434         }
435
436         memset(cmnd, 0, sizeof(*cmnd));
437         cmnd->dsm.opcode = nvme_cmd_dsm;
438         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
439         cmnd->dsm.nr = cpu_to_le32(segments - 1);
440         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
441
442         req->special_vec.bv_page = virt_to_page(range);
443         req->special_vec.bv_offset = offset_in_page(range);
444         req->special_vec.bv_len = sizeof(*range) * segments;
445         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
446
447         return BLK_STS_OK;
448 }
449
450 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
451                 struct request *req, struct nvme_command *cmnd)
452 {
453         struct nvme_ctrl *ctrl = ns->ctrl;
454         u16 control = 0;
455         u32 dsmgmt = 0;
456
457         /*
458          * If formated with metadata, require the block layer provide a buffer
459          * unless this namespace is formated such that the metadata can be
460          * stripped/generated by the controller with PRACT=1.
461          */
462         if (ns && ns->ms &&
463             (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
464             !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
465                 return BLK_STS_NOTSUPP;
466
467         if (req->cmd_flags & REQ_FUA)
468                 control |= NVME_RW_FUA;
469         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
470                 control |= NVME_RW_LR;
471
472         if (req->cmd_flags & REQ_RAHEAD)
473                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
474
475         memset(cmnd, 0, sizeof(*cmnd));
476         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
477         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
478         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
479         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
480
481         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
482                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
483
484         if (ns->ms) {
485                 switch (ns->pi_type) {
486                 case NVME_NS_DPS_PI_TYPE3:
487                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
488                         break;
489                 case NVME_NS_DPS_PI_TYPE1:
490                 case NVME_NS_DPS_PI_TYPE2:
491                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
492                                         NVME_RW_PRINFO_PRCHK_REF;
493                         cmnd->rw.reftag = cpu_to_le32(
494                                         nvme_block_nr(ns, blk_rq_pos(req)));
495                         break;
496                 }
497                 if (!blk_integrity_rq(req))
498                         control |= NVME_RW_PRINFO_PRACT;
499         }
500
501         cmnd->rw.control = cpu_to_le16(control);
502         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
503         return 0;
504 }
505
506 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
507                 struct nvme_command *cmd)
508 {
509         blk_status_t ret = BLK_STS_OK;
510
511         if (!(req->rq_flags & RQF_DONTPREP)) {
512                 nvme_req(req)->retries = 0;
513                 nvme_req(req)->flags = 0;
514                 req->rq_flags |= RQF_DONTPREP;
515         }
516
517         switch (req_op(req)) {
518         case REQ_OP_DRV_IN:
519         case REQ_OP_DRV_OUT:
520                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
521                 break;
522         case REQ_OP_FLUSH:
523                 nvme_setup_flush(ns, cmd);
524                 break;
525         case REQ_OP_WRITE_ZEROES:
526                 /* currently only aliased to deallocate for a few ctrls: */
527         case REQ_OP_DISCARD:
528                 ret = nvme_setup_discard(ns, req, cmd);
529                 break;
530         case REQ_OP_READ:
531         case REQ_OP_WRITE:
532                 ret = nvme_setup_rw(ns, req, cmd);
533                 break;
534         default:
535                 WARN_ON_ONCE(1);
536                 return BLK_STS_IOERR;
537         }
538
539         cmd->common.command_id = req->tag;
540         return ret;
541 }
542 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
543
544 /*
545  * Returns 0 on success.  If the result is negative, it's a Linux error code;
546  * if the result is positive, it's an NVM Express status code
547  */
548 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
549                 union nvme_result *result, void *buffer, unsigned bufflen,
550                 unsigned timeout, int qid, int at_head, int flags)
551 {
552         struct request *req;
553         int ret;
554
555         req = nvme_alloc_request(q, cmd, flags, qid);
556         if (IS_ERR(req))
557                 return PTR_ERR(req);
558
559         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
560
561         if (buffer && bufflen) {
562                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
563                 if (ret)
564                         goto out;
565         }
566
567         blk_execute_rq(req->q, NULL, req, at_head);
568         if (result)
569                 *result = nvme_req(req)->result;
570         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
571                 ret = -EINTR;
572         else
573                 ret = nvme_req(req)->status;
574  out:
575         blk_mq_free_request(req);
576         return ret;
577 }
578 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
579
580 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
581                 void *buffer, unsigned bufflen)
582 {
583         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
584                         NVME_QID_ANY, 0, 0);
585 }
586 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
587
588 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
589                 void __user *ubuffer, unsigned bufflen,
590                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
591                 u32 *result, unsigned timeout)
592 {
593         bool write = nvme_is_write(cmd);
594         struct nvme_ns *ns = q->queuedata;
595         struct gendisk *disk = ns ? ns->disk : NULL;
596         struct request *req;
597         struct bio *bio = NULL;
598         void *meta = NULL;
599         int ret;
600
601         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
602         if (IS_ERR(req))
603                 return PTR_ERR(req);
604
605         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
606
607         if (ubuffer && bufflen) {
608                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
609                                 GFP_KERNEL);
610                 if (ret)
611                         goto out;
612                 bio = req->bio;
613
614                 if (!disk)
615                         goto submit;
616                 bio->bi_disk = disk;
617
618                 if (meta_buffer && meta_len) {
619                         struct bio_integrity_payload *bip;
620
621                         meta = kmalloc(meta_len, GFP_KERNEL);
622                         if (!meta) {
623                                 ret = -ENOMEM;
624                                 goto out_unmap;
625                         }
626
627                         if (write) {
628                                 if (copy_from_user(meta, meta_buffer,
629                                                 meta_len)) {
630                                         ret = -EFAULT;
631                                         goto out_free_meta;
632                                 }
633                         }
634
635                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
636                         if (IS_ERR(bip)) {
637                                 ret = PTR_ERR(bip);
638                                 goto out_free_meta;
639                         }
640
641                         bip->bip_iter.bi_size = meta_len;
642                         bip->bip_iter.bi_sector = meta_seed;
643
644                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
645                                         meta_len, offset_in_page(meta));
646                         if (ret != meta_len) {
647                                 ret = -ENOMEM;
648                                 goto out_free_meta;
649                         }
650                 }
651         }
652  submit:
653         blk_execute_rq(req->q, disk, req, 0);
654         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
655                 ret = -EINTR;
656         else
657                 ret = nvme_req(req)->status;
658         if (result)
659                 *result = le32_to_cpu(nvme_req(req)->result.u32);
660         if (meta && !ret && !write) {
661                 if (copy_to_user(meta_buffer, meta, meta_len))
662                         ret = -EFAULT;
663         }
664  out_free_meta:
665         kfree(meta);
666  out_unmap:
667         if (bio)
668                 blk_rq_unmap_user(bio);
669  out:
670         blk_mq_free_request(req);
671         return ret;
672 }
673
674 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
675                 void __user *ubuffer, unsigned bufflen, u32 *result,
676                 unsigned timeout)
677 {
678         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
679                         result, timeout);
680 }
681
682 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
683 {
684         struct nvme_ctrl *ctrl = rq->end_io_data;
685
686         blk_mq_free_request(rq);
687
688         if (status) {
689                 dev_err(ctrl->device,
690                         "failed nvme_keep_alive_end_io error=%d\n",
691                                 status);
692                 return;
693         }
694
695         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
696 }
697
698 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
699 {
700         struct nvme_command c;
701         struct request *rq;
702
703         memset(&c, 0, sizeof(c));
704         c.common.opcode = nvme_admin_keep_alive;
705
706         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
707                         NVME_QID_ANY);
708         if (IS_ERR(rq))
709                 return PTR_ERR(rq);
710
711         rq->timeout = ctrl->kato * HZ;
712         rq->end_io_data = ctrl;
713
714         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
715
716         return 0;
717 }
718
719 static void nvme_keep_alive_work(struct work_struct *work)
720 {
721         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
722                         struct nvme_ctrl, ka_work);
723
724         if (nvme_keep_alive(ctrl)) {
725                 /* allocation failure, reset the controller */
726                 dev_err(ctrl->device, "keep-alive failed\n");
727                 nvme_reset_ctrl(ctrl);
728                 return;
729         }
730 }
731
732 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
733 {
734         if (unlikely(ctrl->kato == 0))
735                 return;
736
737         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
738         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
739 }
740 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
741
742 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
743 {
744         if (unlikely(ctrl->kato == 0))
745                 return;
746
747         cancel_delayed_work_sync(&ctrl->ka_work);
748 }
749 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
750
751 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
752 {
753         struct nvme_command c = { };
754         int error;
755
756         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
757         c.identify.opcode = nvme_admin_identify;
758         c.identify.cns = NVME_ID_CNS_CTRL;
759
760         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
761         if (!*id)
762                 return -ENOMEM;
763
764         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
765                         sizeof(struct nvme_id_ctrl));
766         if (error)
767                 kfree(*id);
768         return error;
769 }
770
771 static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
772 {
773         struct nvme_command c = { };
774         int status;
775         void *data;
776         int pos;
777         int len;
778
779         c.identify.opcode = nvme_admin_identify;
780         c.identify.nsid = cpu_to_le32(nsid);
781         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
782
783         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
784         if (!data)
785                 return -ENOMEM;
786
787         status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
788                                       NVME_IDENTIFY_DATA_SIZE);
789         if (status)
790                 goto free_data;
791
792         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
793                 struct nvme_ns_id_desc *cur = data + pos;
794
795                 if (cur->nidl == 0)
796                         break;
797
798                 switch (cur->nidt) {
799                 case NVME_NIDT_EUI64:
800                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
801                                 dev_warn(ns->ctrl->device,
802                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
803                                          cur->nidl);
804                                 goto free_data;
805                         }
806                         len = NVME_NIDT_EUI64_LEN;
807                         memcpy(ns->eui, data + pos + sizeof(*cur), len);
808                         break;
809                 case NVME_NIDT_NGUID:
810                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
811                                 dev_warn(ns->ctrl->device,
812                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
813                                          cur->nidl);
814                                 goto free_data;
815                         }
816                         len = NVME_NIDT_NGUID_LEN;
817                         memcpy(ns->nguid, data + pos + sizeof(*cur), len);
818                         break;
819                 case NVME_NIDT_UUID:
820                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
821                                 dev_warn(ns->ctrl->device,
822                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
823                                          cur->nidl);
824                                 goto free_data;
825                         }
826                         len = NVME_NIDT_UUID_LEN;
827                         uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
828                         break;
829                 default:
830                         /* Skip unnkown types */
831                         len = cur->nidl;
832                         break;
833                 }
834
835                 len += sizeof(*cur);
836         }
837 free_data:
838         kfree(data);
839         return status;
840 }
841
842 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
843 {
844         struct nvme_command c = { };
845
846         c.identify.opcode = nvme_admin_identify;
847         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
848         c.identify.nsid = cpu_to_le32(nsid);
849         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
850 }
851
852 static int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
853                 struct nvme_id_ns **id)
854 {
855         struct nvme_command c = { };
856         int error;
857
858         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
859         c.identify.opcode = nvme_admin_identify;
860         c.identify.nsid = cpu_to_le32(nsid);
861         c.identify.cns = NVME_ID_CNS_NS;
862
863         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
864         if (!*id)
865                 return -ENOMEM;
866
867         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
868                         sizeof(struct nvme_id_ns));
869         if (error)
870                 kfree(*id);
871         return error;
872 }
873
874 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
875                       void *buffer, size_t buflen, u32 *result)
876 {
877         struct nvme_command c;
878         union nvme_result res;
879         int ret;
880
881         memset(&c, 0, sizeof(c));
882         c.features.opcode = nvme_admin_set_features;
883         c.features.fid = cpu_to_le32(fid);
884         c.features.dword11 = cpu_to_le32(dword11);
885
886         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
887                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
888         if (ret >= 0 && result)
889                 *result = le32_to_cpu(res.u32);
890         return ret;
891 }
892
893 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
894 {
895         u32 q_count = (*count - 1) | ((*count - 1) << 16);
896         u32 result;
897         int status, nr_io_queues;
898
899         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
900                         &result);
901         if (status < 0)
902                 return status;
903
904         /*
905          * Degraded controllers might return an error when setting the queue
906          * count.  We still want to be able to bring them online and offer
907          * access to the admin queue, as that might be only way to fix them up.
908          */
909         if (status > 0) {
910                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
911                 *count = 0;
912         } else {
913                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
914                 *count = min(*count, nr_io_queues);
915         }
916
917         return 0;
918 }
919 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
920
921 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
922 {
923         struct nvme_user_io io;
924         struct nvme_command c;
925         unsigned length, meta_len;
926         void __user *metadata;
927
928         if (copy_from_user(&io, uio, sizeof(io)))
929                 return -EFAULT;
930         if (io.flags)
931                 return -EINVAL;
932
933         switch (io.opcode) {
934         case nvme_cmd_write:
935         case nvme_cmd_read:
936         case nvme_cmd_compare:
937                 break;
938         default:
939                 return -EINVAL;
940         }
941
942         length = (io.nblocks + 1) << ns->lba_shift;
943         meta_len = (io.nblocks + 1) * ns->ms;
944         metadata = (void __user *)(uintptr_t)io.metadata;
945
946         if (ns->ext) {
947                 length += meta_len;
948                 meta_len = 0;
949         } else if (meta_len) {
950                 if ((io.metadata & 3) || !io.metadata)
951                         return -EINVAL;
952         }
953
954         memset(&c, 0, sizeof(c));
955         c.rw.opcode = io.opcode;
956         c.rw.flags = io.flags;
957         c.rw.nsid = cpu_to_le32(ns->ns_id);
958         c.rw.slba = cpu_to_le64(io.slba);
959         c.rw.length = cpu_to_le16(io.nblocks);
960         c.rw.control = cpu_to_le16(io.control);
961         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
962         c.rw.reftag = cpu_to_le32(io.reftag);
963         c.rw.apptag = cpu_to_le16(io.apptag);
964         c.rw.appmask = cpu_to_le16(io.appmask);
965
966         return __nvme_submit_user_cmd(ns->queue, &c,
967                         (void __user *)(uintptr_t)io.addr, length,
968                         metadata, meta_len, io.slba, NULL, 0);
969 }
970
971 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
972                         struct nvme_passthru_cmd __user *ucmd)
973 {
974         struct nvme_passthru_cmd cmd;
975         struct nvme_command c;
976         unsigned timeout = 0;
977         int status;
978
979         if (!capable(CAP_SYS_ADMIN))
980                 return -EACCES;
981         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
982                 return -EFAULT;
983         if (cmd.flags)
984                 return -EINVAL;
985
986         memset(&c, 0, sizeof(c));
987         c.common.opcode = cmd.opcode;
988         c.common.flags = cmd.flags;
989         c.common.nsid = cpu_to_le32(cmd.nsid);
990         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
991         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
992         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
993         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
994         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
995         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
996         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
997         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
998
999         if (cmd.timeout_ms)
1000                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1001
1002         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1003                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1004                         &cmd.result, timeout);
1005         if (status >= 0) {
1006                 if (put_user(cmd.result, &ucmd->result))
1007                         return -EFAULT;
1008         }
1009
1010         return status;
1011 }
1012
1013 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1014                 unsigned int cmd, unsigned long arg)
1015 {
1016         struct nvme_ns *ns = bdev->bd_disk->private_data;
1017
1018         switch (cmd) {
1019         case NVME_IOCTL_ID:
1020                 force_successful_syscall_return();
1021                 return ns->ns_id;
1022         case NVME_IOCTL_ADMIN_CMD:
1023                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1024         case NVME_IOCTL_IO_CMD:
1025                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1026         case NVME_IOCTL_SUBMIT_IO:
1027                 return nvme_submit_io(ns, (void __user *)arg);
1028         default:
1029 #ifdef CONFIG_NVM
1030                 if (ns->ndev)
1031                         return nvme_nvm_ioctl(ns, cmd, arg);
1032 #endif
1033                 if (is_sed_ioctl(cmd))
1034                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
1035                                          (void __user *) arg);
1036                 return -ENOTTY;
1037         }
1038 }
1039
1040 #ifdef CONFIG_COMPAT
1041 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1042                         unsigned int cmd, unsigned long arg)
1043 {
1044         return nvme_ioctl(bdev, mode, cmd, arg);
1045 }
1046 #else
1047 #define nvme_compat_ioctl       NULL
1048 #endif
1049
1050 static int nvme_open(struct block_device *bdev, fmode_t mode)
1051 {
1052         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1053 }
1054
1055 static void nvme_release(struct gendisk *disk, fmode_t mode)
1056 {
1057         struct nvme_ns *ns = disk->private_data;
1058
1059         module_put(ns->ctrl->ops->module);
1060         nvme_put_ns(ns);
1061 }
1062
1063 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1064 {
1065         /* some standard values */
1066         geo->heads = 1 << 6;
1067         geo->sectors = 1 << 5;
1068         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1069         return 0;
1070 }
1071
1072 #ifdef CONFIG_BLK_DEV_INTEGRITY
1073 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1074                 u16 bs)
1075 {
1076         struct nvme_ns *ns = disk->private_data;
1077         u16 old_ms = ns->ms;
1078         u8 pi_type = 0;
1079
1080         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1081         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1082
1083         /* PI implementation requires metadata equal t10 pi tuple size */
1084         if (ns->ms == sizeof(struct t10_pi_tuple))
1085                 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1086
1087         if (blk_get_integrity(disk) &&
1088             (ns->pi_type != pi_type || ns->ms != old_ms ||
1089              bs != queue_logical_block_size(disk->queue) ||
1090              (ns->ms && ns->ext)))
1091                 blk_integrity_unregister(disk);
1092
1093         ns->pi_type = pi_type;
1094 }
1095
1096 static void nvme_init_integrity(struct nvme_ns *ns)
1097 {
1098         struct blk_integrity integrity;
1099
1100         memset(&integrity, 0, sizeof(integrity));
1101         switch (ns->pi_type) {
1102         case NVME_NS_DPS_PI_TYPE3:
1103                 integrity.profile = &t10_pi_type3_crc;
1104                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1105                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1106                 break;
1107         case NVME_NS_DPS_PI_TYPE1:
1108         case NVME_NS_DPS_PI_TYPE2:
1109                 integrity.profile = &t10_pi_type1_crc;
1110                 integrity.tag_size = sizeof(u16);
1111                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1112                 break;
1113         default:
1114                 integrity.profile = NULL;
1115                 break;
1116         }
1117         integrity.tuple_size = ns->ms;
1118         blk_integrity_register(ns->disk, &integrity);
1119         blk_queue_max_integrity_segments(ns->queue, 1);
1120 }
1121 #else
1122 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1123                 u16 bs)
1124 {
1125 }
1126 static void nvme_init_integrity(struct nvme_ns *ns)
1127 {
1128 }
1129 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1130
1131 static void nvme_set_chunk_size(struct nvme_ns *ns)
1132 {
1133         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1134         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1135 }
1136
1137 static void nvme_config_discard(struct nvme_ns *ns)
1138 {
1139         struct nvme_ctrl *ctrl = ns->ctrl;
1140         u32 logical_block_size = queue_logical_block_size(ns->queue);
1141
1142         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1143                         NVME_DSM_MAX_RANGES);
1144
1145         if (ctrl->nr_streams && ns->sws && ns->sgs) {
1146                 unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1147
1148                 ns->queue->limits.discard_alignment = sz;
1149                 ns->queue->limits.discard_granularity = sz;
1150         } else {
1151                 ns->queue->limits.discard_alignment = logical_block_size;
1152                 ns->queue->limits.discard_granularity = logical_block_size;
1153         }
1154         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1155         blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1156         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1157
1158         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1159                 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1160 }
1161
1162 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1163 {
1164         if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1165                 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1166                 return -ENODEV;
1167         }
1168
1169         if ((*id)->ncap == 0) {
1170                 kfree(*id);
1171                 return -ENODEV;
1172         }
1173
1174         if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1175                 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1176         if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1177                 memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1178         if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
1179                  /* Don't treat error as fatal we potentially
1180                   * already have a NGUID or EUI-64
1181                   */
1182                 if (nvme_identify_ns_descs(ns, ns->ns_id))
1183                         dev_warn(ns->ctrl->device,
1184                                  "%s: Identify Descriptors failed\n", __func__);
1185         }
1186
1187         return 0;
1188 }
1189
1190 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1191 {
1192         struct nvme_ns *ns = disk->private_data;
1193         struct nvme_ctrl *ctrl = ns->ctrl;
1194         u16 bs;
1195
1196         /*
1197          * If identify namespace failed, use default 512 byte block size so
1198          * block layer can use before failing read/write for 0 capacity.
1199          */
1200         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1201         if (ns->lba_shift == 0)
1202                 ns->lba_shift = 9;
1203         bs = 1 << ns->lba_shift;
1204         ns->noiob = le16_to_cpu(id->noiob);
1205
1206         blk_mq_freeze_queue(disk->queue);
1207
1208         if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1209                 nvme_prep_integrity(disk, id, bs);
1210         blk_queue_logical_block_size(ns->queue, bs);
1211         if (ns->noiob)
1212                 nvme_set_chunk_size(ns);
1213         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1214                 nvme_init_integrity(ns);
1215         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1216                 set_capacity(disk, 0);
1217         else
1218                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1219
1220         if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1221                 nvme_config_discard(ns);
1222         blk_mq_unfreeze_queue(disk->queue);
1223 }
1224
1225 static int nvme_revalidate_disk(struct gendisk *disk)
1226 {
1227         struct nvme_ns *ns = disk->private_data;
1228         struct nvme_id_ns *id = NULL;
1229         int ret;
1230
1231         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1232                 set_capacity(disk, 0);
1233                 return -ENODEV;
1234         }
1235
1236         ret = nvme_revalidate_ns(ns, &id);
1237         if (ret)
1238                 return ret;
1239
1240         __nvme_revalidate_disk(disk, id);
1241         kfree(id);
1242
1243         return 0;
1244 }
1245
1246 static char nvme_pr_type(enum pr_type type)
1247 {
1248         switch (type) {
1249         case PR_WRITE_EXCLUSIVE:
1250                 return 1;
1251         case PR_EXCLUSIVE_ACCESS:
1252                 return 2;
1253         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1254                 return 3;
1255         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1256                 return 4;
1257         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1258                 return 5;
1259         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1260                 return 6;
1261         default:
1262                 return 0;
1263         }
1264 };
1265
1266 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1267                                 u64 key, u64 sa_key, u8 op)
1268 {
1269         struct nvme_ns *ns = bdev->bd_disk->private_data;
1270         struct nvme_command c;
1271         u8 data[16] = { 0, };
1272
1273         put_unaligned_le64(key, &data[0]);
1274         put_unaligned_le64(sa_key, &data[8]);
1275
1276         memset(&c, 0, sizeof(c));
1277         c.common.opcode = op;
1278         c.common.nsid = cpu_to_le32(ns->ns_id);
1279         c.common.cdw10[0] = cpu_to_le32(cdw10);
1280
1281         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1282 }
1283
1284 static int nvme_pr_register(struct block_device *bdev, u64 old,
1285                 u64 new, unsigned flags)
1286 {
1287         u32 cdw10;
1288
1289         if (flags & ~PR_FL_IGNORE_KEY)
1290                 return -EOPNOTSUPP;
1291
1292         cdw10 = old ? 2 : 0;
1293         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1294         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1295         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1296 }
1297
1298 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1299                 enum pr_type type, unsigned flags)
1300 {
1301         u32 cdw10;
1302
1303         if (flags & ~PR_FL_IGNORE_KEY)
1304                 return -EOPNOTSUPP;
1305
1306         cdw10 = nvme_pr_type(type) << 8;
1307         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1308         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1309 }
1310
1311 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1312                 enum pr_type type, bool abort)
1313 {
1314         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1315         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1316 }
1317
1318 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1319 {
1320         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1321         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1322 }
1323
1324 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1325 {
1326         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1327         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1328 }
1329
1330 static const struct pr_ops nvme_pr_ops = {
1331         .pr_register    = nvme_pr_register,
1332         .pr_reserve     = nvme_pr_reserve,
1333         .pr_release     = nvme_pr_release,
1334         .pr_preempt     = nvme_pr_preempt,
1335         .pr_clear       = nvme_pr_clear,
1336 };
1337
1338 #ifdef CONFIG_BLK_SED_OPAL
1339 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1340                 bool send)
1341 {
1342         struct nvme_ctrl *ctrl = data;
1343         struct nvme_command cmd;
1344
1345         memset(&cmd, 0, sizeof(cmd));
1346         if (send)
1347                 cmd.common.opcode = nvme_admin_security_send;
1348         else
1349                 cmd.common.opcode = nvme_admin_security_recv;
1350         cmd.common.nsid = 0;
1351         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1352         cmd.common.cdw10[1] = cpu_to_le32(len);
1353
1354         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1355                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1356 }
1357 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1358 #endif /* CONFIG_BLK_SED_OPAL */
1359
1360 static const struct block_device_operations nvme_fops = {
1361         .owner          = THIS_MODULE,
1362         .ioctl          = nvme_ioctl,
1363         .compat_ioctl   = nvme_compat_ioctl,
1364         .open           = nvme_open,
1365         .release        = nvme_release,
1366         .getgeo         = nvme_getgeo,
1367         .revalidate_disk= nvme_revalidate_disk,
1368         .pr_ops         = &nvme_pr_ops,
1369 };
1370
1371 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1372 {
1373         unsigned long timeout =
1374                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1375         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1376         int ret;
1377
1378         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1379                 if (csts == ~0)
1380                         return -ENODEV;
1381                 if ((csts & NVME_CSTS_RDY) == bit)
1382                         break;
1383
1384                 msleep(100);
1385                 if (fatal_signal_pending(current))
1386                         return -EINTR;
1387                 if (time_after(jiffies, timeout)) {
1388                         dev_err(ctrl->device,
1389                                 "Device not ready; aborting %s\n", enabled ?
1390                                                 "initialisation" : "reset");
1391                         return -ENODEV;
1392                 }
1393         }
1394
1395         return ret;
1396 }
1397
1398 /*
1399  * If the device has been passed off to us in an enabled state, just clear
1400  * the enabled bit.  The spec says we should set the 'shutdown notification
1401  * bits', but doing so may cause the device to complete commands to the
1402  * admin queue ... and we don't know what memory that might be pointing at!
1403  */
1404 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1405 {
1406         int ret;
1407
1408         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1409         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1410
1411         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1412         if (ret)
1413                 return ret;
1414
1415         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1416                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1417
1418         return nvme_wait_ready(ctrl, cap, false);
1419 }
1420 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1421
1422 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1423 {
1424         /*
1425          * Default to a 4K page size, with the intention to update this
1426          * path in the future to accomodate architectures with differing
1427          * kernel and IO page sizes.
1428          */
1429         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1430         int ret;
1431
1432         if (page_shift < dev_page_min) {
1433                 dev_err(ctrl->device,
1434                         "Minimum device page size %u too large for host (%u)\n",
1435                         1 << dev_page_min, 1 << page_shift);
1436                 return -ENODEV;
1437         }
1438
1439         ctrl->page_size = 1 << page_shift;
1440
1441         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1442         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1443         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1444         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1445         ctrl->ctrl_config |= NVME_CC_ENABLE;
1446
1447         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1448         if (ret)
1449                 return ret;
1450         return nvme_wait_ready(ctrl, cap, true);
1451 }
1452 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1453
1454 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1455 {
1456         unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1457         u32 csts;
1458         int ret;
1459
1460         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1461         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1462
1463         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1464         if (ret)
1465                 return ret;
1466
1467         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1468                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1469                         break;
1470
1471                 msleep(100);
1472                 if (fatal_signal_pending(current))
1473                         return -EINTR;
1474                 if (time_after(jiffies, timeout)) {
1475                         dev_err(ctrl->device,
1476                                 "Device shutdown incomplete; abort shutdown\n");
1477                         return -ENODEV;
1478                 }
1479         }
1480
1481         return ret;
1482 }
1483 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1484
1485 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1486                 struct request_queue *q)
1487 {
1488         bool vwc = false;
1489
1490         if (ctrl->max_hw_sectors) {
1491                 u32 max_segments =
1492                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1493
1494                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1495                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1496         }
1497         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1498                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1499         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1500         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1501                 vwc = true;
1502         blk_queue_write_cache(q, vwc, vwc);
1503 }
1504
1505 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1506 {
1507         /*
1508          * APST (Autonomous Power State Transition) lets us program a
1509          * table of power state transitions that the controller will
1510          * perform automatically.  We configure it with a simple
1511          * heuristic: we are willing to spend at most 2% of the time
1512          * transitioning between power states.  Therefore, when running
1513          * in any given state, we will enter the next lower-power
1514          * non-operational state after waiting 50 * (enlat + exlat)
1515          * microseconds, as long as that state's exit latency is under
1516          * the requested maximum latency.
1517          *
1518          * We will not autonomously enter any non-operational state for
1519          * which the total latency exceeds ps_max_latency_us.  Users
1520          * can set ps_max_latency_us to zero to turn off APST.
1521          */
1522
1523         unsigned apste;
1524         struct nvme_feat_auto_pst *table;
1525         u64 max_lat_us = 0;
1526         int max_ps = -1;
1527         int ret;
1528
1529         /*
1530          * If APST isn't supported or if we haven't been initialized yet,
1531          * then don't do anything.
1532          */
1533         if (!ctrl->apsta)
1534                 return 0;
1535
1536         if (ctrl->npss > 31) {
1537                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1538                 return 0;
1539         }
1540
1541         table = kzalloc(sizeof(*table), GFP_KERNEL);
1542         if (!table)
1543                 return 0;
1544
1545         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1546                 /* Turn off APST. */
1547                 apste = 0;
1548                 dev_dbg(ctrl->device, "APST disabled\n");
1549         } else {
1550                 __le64 target = cpu_to_le64(0);
1551                 int state;
1552
1553                 /*
1554                  * Walk through all states from lowest- to highest-power.
1555                  * According to the spec, lower-numbered states use more
1556                  * power.  NPSS, despite the name, is the index of the
1557                  * lowest-power state, not the number of states.
1558                  */
1559                 for (state = (int)ctrl->npss; state >= 0; state--) {
1560                         u64 total_latency_us, exit_latency_us, transition_ms;
1561
1562                         if (target)
1563                                 table->entries[state] = target;
1564
1565                         /*
1566                          * Don't allow transitions to the deepest state
1567                          * if it's quirked off.
1568                          */
1569                         if (state == ctrl->npss &&
1570                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1571                                 continue;
1572
1573                         /*
1574                          * Is this state a useful non-operational state for
1575                          * higher-power states to autonomously transition to?
1576                          */
1577                         if (!(ctrl->psd[state].flags &
1578                               NVME_PS_FLAGS_NON_OP_STATE))
1579                                 continue;
1580
1581                         exit_latency_us =
1582                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1583                         if (exit_latency_us > ctrl->ps_max_latency_us)
1584                                 continue;
1585
1586                         total_latency_us =
1587                                 exit_latency_us +
1588                                 le32_to_cpu(ctrl->psd[state].entry_lat);
1589
1590                         /*
1591                          * This state is good.  Use it as the APST idle
1592                          * target for higher power states.
1593                          */
1594                         transition_ms = total_latency_us + 19;
1595                         do_div(transition_ms, 20);
1596                         if (transition_ms > (1 << 24) - 1)
1597                                 transition_ms = (1 << 24) - 1;
1598
1599                         target = cpu_to_le64((state << 3) |
1600                                              (transition_ms << 8));
1601
1602                         if (max_ps == -1)
1603                                 max_ps = state;
1604
1605                         if (total_latency_us > max_lat_us)
1606                                 max_lat_us = total_latency_us;
1607                 }
1608
1609                 apste = 1;
1610
1611                 if (max_ps == -1) {
1612                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1613                 } else {
1614                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1615                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1616                 }
1617         }
1618
1619         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1620                                 table, sizeof(*table), NULL);
1621         if (ret)
1622                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1623
1624         kfree(table);
1625         return ret;
1626 }
1627
1628 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1629 {
1630         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1631         u64 latency;
1632
1633         switch (val) {
1634         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1635         case PM_QOS_LATENCY_ANY:
1636                 latency = U64_MAX;
1637                 break;
1638
1639         default:
1640                 latency = val;
1641         }
1642
1643         if (ctrl->ps_max_latency_us != latency) {
1644                 ctrl->ps_max_latency_us = latency;
1645                 nvme_configure_apst(ctrl);
1646         }
1647 }
1648
1649 struct nvme_core_quirk_entry {
1650         /*
1651          * NVMe model and firmware strings are padded with spaces.  For
1652          * simplicity, strings in the quirk table are padded with NULLs
1653          * instead.
1654          */
1655         u16 vid;
1656         const char *mn;
1657         const char *fr;
1658         unsigned long quirks;
1659 };
1660
1661 static const struct nvme_core_quirk_entry core_quirks[] = {
1662         {
1663                 /*
1664                  * This Toshiba device seems to die using any APST states.  See:
1665                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1666                  */
1667                 .vid = 0x1179,
1668                 .mn = "THNSF5256GPUK TOSHIBA",
1669                 .quirks = NVME_QUIRK_NO_APST,
1670         }
1671 };
1672
1673 /* match is null-terminated but idstr is space-padded. */
1674 static bool string_matches(const char *idstr, const char *match, size_t len)
1675 {
1676         size_t matchlen;
1677
1678         if (!match)
1679                 return true;
1680
1681         matchlen = strlen(match);
1682         WARN_ON_ONCE(matchlen > len);
1683
1684         if (memcmp(idstr, match, matchlen))
1685                 return false;
1686
1687         for (; matchlen < len; matchlen++)
1688                 if (idstr[matchlen] != ' ')
1689                         return false;
1690
1691         return true;
1692 }
1693
1694 static bool quirk_matches(const struct nvme_id_ctrl *id,
1695                           const struct nvme_core_quirk_entry *q)
1696 {
1697         return q->vid == le16_to_cpu(id->vid) &&
1698                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1699                 string_matches(id->fr, q->fr, sizeof(id->fr));
1700 }
1701
1702 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1703 {
1704         size_t nqnlen;
1705         int off;
1706
1707         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1708         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1709                 strcpy(ctrl->subnqn, id->subnqn);
1710                 return;
1711         }
1712
1713         if (ctrl->vs >= NVME_VS(1, 2, 1))
1714                 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1715
1716         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1717         off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1718                         "nqn.2014.08.org.nvmexpress:%4x%4x",
1719                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1720         memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1721         off += sizeof(id->sn);
1722         memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1723         off += sizeof(id->mn);
1724         memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1725 }
1726
1727 /*
1728  * Initialize the cached copies of the Identify data and various controller
1729  * register in our nvme_ctrl structure.  This should be called as soon as
1730  * the admin queue is fully up and running.
1731  */
1732 int nvme_init_identify(struct nvme_ctrl *ctrl)
1733 {
1734         struct nvme_id_ctrl *id;
1735         u64 cap;
1736         int ret, page_shift;
1737         u32 max_hw_sectors;
1738         bool prev_apst_enabled;
1739
1740         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1741         if (ret) {
1742                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1743                 return ret;
1744         }
1745
1746         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1747         if (ret) {
1748                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1749                 return ret;
1750         }
1751         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1752
1753         if (ctrl->vs >= NVME_VS(1, 1, 0))
1754                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1755
1756         ret = nvme_identify_ctrl(ctrl, &id);
1757         if (ret) {
1758                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1759                 return -EIO;
1760         }
1761
1762         nvme_init_subnqn(ctrl, id);
1763
1764         if (!ctrl->identified) {
1765                 /*
1766                  * Check for quirks.  Quirk can depend on firmware version,
1767                  * so, in principle, the set of quirks present can change
1768                  * across a reset.  As a possible future enhancement, we
1769                  * could re-scan for quirks every time we reinitialize
1770                  * the device, but we'd have to make sure that the driver
1771                  * behaves intelligently if the quirks change.
1772                  */
1773
1774                 int i;
1775
1776                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1777                         if (quirk_matches(id, &core_quirks[i]))
1778                                 ctrl->quirks |= core_quirks[i].quirks;
1779                 }
1780         }
1781
1782         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1783                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1784                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1785         }
1786
1787         ctrl->oacs = le16_to_cpu(id->oacs);
1788         ctrl->vid = le16_to_cpu(id->vid);
1789         ctrl->oncs = le16_to_cpup(&id->oncs);
1790         atomic_set(&ctrl->abort_limit, id->acl + 1);
1791         ctrl->vwc = id->vwc;
1792         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1793         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1794         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1795         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1796         if (id->mdts)
1797                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1798         else
1799                 max_hw_sectors = UINT_MAX;
1800         ctrl->max_hw_sectors =
1801                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1802
1803         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1804         ctrl->sgls = le32_to_cpu(id->sgls);
1805         ctrl->kas = le16_to_cpu(id->kas);
1806
1807         ctrl->npss = id->npss;
1808         ctrl->apsta = id->apsta;
1809         prev_apst_enabled = ctrl->apst_enabled;
1810         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1811                 if (force_apst && id->apsta) {
1812                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1813                         ctrl->apst_enabled = true;
1814                 } else {
1815                         ctrl->apst_enabled = false;
1816                 }
1817         } else {
1818                 ctrl->apst_enabled = id->apsta;
1819         }
1820         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1821
1822         if (ctrl->ops->flags & NVME_F_FABRICS) {
1823                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1824                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1825                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1826                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1827
1828                 /*
1829                  * In fabrics we need to verify the cntlid matches the
1830                  * admin connect
1831                  */
1832                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
1833                         ret = -EINVAL;
1834                         goto out_free;
1835                 }
1836
1837                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1838                         dev_err(ctrl->device,
1839                                 "keep-alive support is mandatory for fabrics\n");
1840                         ret = -EINVAL;
1841                         goto out_free;
1842                 }
1843         } else {
1844                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1845                 ctrl->hmpre = le32_to_cpu(id->hmpre);
1846                 ctrl->hmmin = le32_to_cpu(id->hmmin);
1847         }
1848
1849         kfree(id);
1850
1851         if (ctrl->apst_enabled && !prev_apst_enabled)
1852                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1853         else if (!ctrl->apst_enabled && prev_apst_enabled)
1854                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1855
1856         ret = nvme_configure_apst(ctrl);
1857         if (ret < 0)
1858                 return ret;
1859
1860         ret = nvme_configure_directives(ctrl);
1861         if (ret < 0)
1862                 return ret;
1863
1864         ctrl->identified = true;
1865
1866         return 0;
1867
1868 out_free:
1869         kfree(id);
1870         return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(nvme_init_identify);
1873
1874 static int nvme_dev_open(struct inode *inode, struct file *file)
1875 {
1876         struct nvme_ctrl *ctrl;
1877         int instance = iminor(inode);
1878         int ret = -ENODEV;
1879
1880         spin_lock(&dev_list_lock);
1881         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1882                 if (ctrl->instance != instance)
1883                         continue;
1884
1885                 if (!ctrl->admin_q) {
1886                         ret = -EWOULDBLOCK;
1887                         break;
1888                 }
1889                 if (!kref_get_unless_zero(&ctrl->kref))
1890                         break;
1891                 file->private_data = ctrl;
1892                 ret = 0;
1893                 break;
1894         }
1895         spin_unlock(&dev_list_lock);
1896
1897         return ret;
1898 }
1899
1900 static int nvme_dev_release(struct inode *inode, struct file *file)
1901 {
1902         nvme_put_ctrl(file->private_data);
1903         return 0;
1904 }
1905
1906 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1907 {
1908         struct nvme_ns *ns;
1909         int ret;
1910
1911         mutex_lock(&ctrl->namespaces_mutex);
1912         if (list_empty(&ctrl->namespaces)) {
1913                 ret = -ENOTTY;
1914                 goto out_unlock;
1915         }
1916
1917         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1918         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1919                 dev_warn(ctrl->device,
1920                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1921                 ret = -EINVAL;
1922                 goto out_unlock;
1923         }
1924
1925         dev_warn(ctrl->device,
1926                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1927         kref_get(&ns->kref);
1928         mutex_unlock(&ctrl->namespaces_mutex);
1929
1930         ret = nvme_user_cmd(ctrl, ns, argp);
1931         nvme_put_ns(ns);
1932         return ret;
1933
1934 out_unlock:
1935         mutex_unlock(&ctrl->namespaces_mutex);
1936         return ret;
1937 }
1938
1939 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1940                 unsigned long arg)
1941 {
1942         struct nvme_ctrl *ctrl = file->private_data;
1943         void __user *argp = (void __user *)arg;
1944
1945         switch (cmd) {
1946         case NVME_IOCTL_ADMIN_CMD:
1947                 return nvme_user_cmd(ctrl, NULL, argp);
1948         case NVME_IOCTL_IO_CMD:
1949                 return nvme_dev_user_cmd(ctrl, argp);
1950         case NVME_IOCTL_RESET:
1951                 dev_warn(ctrl->device, "resetting controller\n");
1952                 return nvme_reset_ctrl_sync(ctrl);
1953         case NVME_IOCTL_SUBSYS_RESET:
1954                 return nvme_reset_subsystem(ctrl);
1955         case NVME_IOCTL_RESCAN:
1956                 nvme_queue_scan(ctrl);
1957                 return 0;
1958         default:
1959                 return -ENOTTY;
1960         }
1961 }
1962
1963 static const struct file_operations nvme_dev_fops = {
1964         .owner          = THIS_MODULE,
1965         .open           = nvme_dev_open,
1966         .release        = nvme_dev_release,
1967         .unlocked_ioctl = nvme_dev_ioctl,
1968         .compat_ioctl   = nvme_dev_ioctl,
1969 };
1970
1971 static ssize_t nvme_sysfs_reset(struct device *dev,
1972                                 struct device_attribute *attr, const char *buf,
1973                                 size_t count)
1974 {
1975         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1976         int ret;
1977
1978         ret = nvme_reset_ctrl_sync(ctrl);
1979         if (ret < 0)
1980                 return ret;
1981         return count;
1982 }
1983 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1984
1985 static ssize_t nvme_sysfs_rescan(struct device *dev,
1986                                 struct device_attribute *attr, const char *buf,
1987                                 size_t count)
1988 {
1989         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1990
1991         nvme_queue_scan(ctrl);
1992         return count;
1993 }
1994 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1995
1996 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1997                                                                 char *buf)
1998 {
1999         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2000         struct nvme_ctrl *ctrl = ns->ctrl;
2001         int serial_len = sizeof(ctrl->serial);
2002         int model_len = sizeof(ctrl->model);
2003
2004         if (!uuid_is_null(&ns->uuid))
2005                 return sprintf(buf, "uuid.%pU\n", &ns->uuid);
2006
2007         if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2008                 return sprintf(buf, "eui.%16phN\n", ns->nguid);
2009
2010         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2011                 return sprintf(buf, "eui.%8phN\n", ns->eui);
2012
2013         while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' ||
2014                                   ctrl->serial[serial_len - 1] == '\0'))
2015                 serial_len--;
2016         while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' ||
2017                                  ctrl->model[model_len - 1] == '\0'))
2018                 model_len--;
2019
2020         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2021                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2022 }
2023 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2024
2025 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2026                           char *buf)
2027 {
2028         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2029         return sprintf(buf, "%pU\n", ns->nguid);
2030 }
2031 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2032
2033 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2034                                                                 char *buf)
2035 {
2036         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2037
2038         /* For backward compatibility expose the NGUID to userspace if
2039          * we have no UUID set
2040          */
2041         if (uuid_is_null(&ns->uuid)) {
2042                 printk_ratelimited(KERN_WARNING
2043                                    "No UUID available providing old NGUID\n");
2044                 return sprintf(buf, "%pU\n", ns->nguid);
2045         }
2046         return sprintf(buf, "%pU\n", &ns->uuid);
2047 }
2048 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2049
2050 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2051                                                                 char *buf)
2052 {
2053         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2054         return sprintf(buf, "%8phd\n", ns->eui);
2055 }
2056 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2057
2058 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2059                                                                 char *buf)
2060 {
2061         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2062         return sprintf(buf, "%d\n", ns->ns_id);
2063 }
2064 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2065
2066 static struct attribute *nvme_ns_attrs[] = {
2067         &dev_attr_wwid.attr,
2068         &dev_attr_uuid.attr,
2069         &dev_attr_nguid.attr,
2070         &dev_attr_eui.attr,
2071         &dev_attr_nsid.attr,
2072         NULL,
2073 };
2074
2075 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2076                 struct attribute *a, int n)
2077 {
2078         struct device *dev = container_of(kobj, struct device, kobj);
2079         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2080
2081         if (a == &dev_attr_uuid.attr) {
2082                 if (uuid_is_null(&ns->uuid) ||
2083                     !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2084                         return 0;
2085         }
2086         if (a == &dev_attr_nguid.attr) {
2087                 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2088                         return 0;
2089         }
2090         if (a == &dev_attr_eui.attr) {
2091                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2092                         return 0;
2093         }
2094         return a->mode;
2095 }
2096
2097 static const struct attribute_group nvme_ns_attr_group = {
2098         .attrs          = nvme_ns_attrs,
2099         .is_visible     = nvme_ns_attrs_are_visible,
2100 };
2101
2102 #define nvme_show_str_function(field)                                           \
2103 static ssize_t  field##_show(struct device *dev,                                \
2104                             struct device_attribute *attr, char *buf)           \
2105 {                                                                               \
2106         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2107         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
2108 }                                                                               \
2109 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2110
2111 #define nvme_show_int_function(field)                                           \
2112 static ssize_t  field##_show(struct device *dev,                                \
2113                             struct device_attribute *attr, char *buf)           \
2114 {                                                                               \
2115         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2116         return sprintf(buf, "%d\n", ctrl->field);       \
2117 }                                                                               \
2118 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2119
2120 nvme_show_str_function(model);
2121 nvme_show_str_function(serial);
2122 nvme_show_str_function(firmware_rev);
2123 nvme_show_int_function(cntlid);
2124
2125 static ssize_t nvme_sysfs_delete(struct device *dev,
2126                                 struct device_attribute *attr, const char *buf,
2127                                 size_t count)
2128 {
2129         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2130
2131         if (device_remove_file_self(dev, attr))
2132                 ctrl->ops->delete_ctrl(ctrl);
2133         return count;
2134 }
2135 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2136
2137 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2138                                          struct device_attribute *attr,
2139                                          char *buf)
2140 {
2141         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2142
2143         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2144 }
2145 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2146
2147 static ssize_t nvme_sysfs_show_state(struct device *dev,
2148                                      struct device_attribute *attr,
2149                                      char *buf)
2150 {
2151         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2152         static const char *const state_name[] = {
2153                 [NVME_CTRL_NEW]         = "new",
2154                 [NVME_CTRL_LIVE]        = "live",
2155                 [NVME_CTRL_RESETTING]   = "resetting",
2156                 [NVME_CTRL_RECONNECTING]= "reconnecting",
2157                 [NVME_CTRL_DELETING]    = "deleting",
2158                 [NVME_CTRL_DEAD]        = "dead",
2159         };
2160
2161         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2162             state_name[ctrl->state])
2163                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2164
2165         return sprintf(buf, "unknown state\n");
2166 }
2167
2168 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2169
2170 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2171                                          struct device_attribute *attr,
2172                                          char *buf)
2173 {
2174         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2175
2176         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2177 }
2178 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2179
2180 static ssize_t nvme_sysfs_show_address(struct device *dev,
2181                                          struct device_attribute *attr,
2182                                          char *buf)
2183 {
2184         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2185
2186         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2187 }
2188 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2189
2190 static struct attribute *nvme_dev_attrs[] = {
2191         &dev_attr_reset_controller.attr,
2192         &dev_attr_rescan_controller.attr,
2193         &dev_attr_model.attr,
2194         &dev_attr_serial.attr,
2195         &dev_attr_firmware_rev.attr,
2196         &dev_attr_cntlid.attr,
2197         &dev_attr_delete_controller.attr,
2198         &dev_attr_transport.attr,
2199         &dev_attr_subsysnqn.attr,
2200         &dev_attr_address.attr,
2201         &dev_attr_state.attr,
2202         NULL
2203 };
2204
2205 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2206                 struct attribute *a, int n)
2207 {
2208         struct device *dev = container_of(kobj, struct device, kobj);
2209         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2210
2211         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2212                 return 0;
2213         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2214                 return 0;
2215
2216         return a->mode;
2217 }
2218
2219 static struct attribute_group nvme_dev_attrs_group = {
2220         .attrs          = nvme_dev_attrs,
2221         .is_visible     = nvme_dev_attrs_are_visible,
2222 };
2223
2224 static const struct attribute_group *nvme_dev_attr_groups[] = {
2225         &nvme_dev_attrs_group,
2226         NULL,
2227 };
2228
2229 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2230 {
2231         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2232         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2233
2234         return nsa->ns_id - nsb->ns_id;
2235 }
2236
2237 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2238 {
2239         struct nvme_ns *ns, *ret = NULL;
2240
2241         mutex_lock(&ctrl->namespaces_mutex);
2242         list_for_each_entry(ns, &ctrl->namespaces, list) {
2243                 if (ns->ns_id == nsid) {
2244                         kref_get(&ns->kref);
2245                         ret = ns;
2246                         break;
2247                 }
2248                 if (ns->ns_id > nsid)
2249                         break;
2250         }
2251         mutex_unlock(&ctrl->namespaces_mutex);
2252         return ret;
2253 }
2254
2255 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2256 {
2257         struct streams_directive_params s;
2258         int ret;
2259
2260         if (!ctrl->nr_streams)
2261                 return 0;
2262
2263         ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2264         if (ret)
2265                 return ret;
2266
2267         ns->sws = le32_to_cpu(s.sws);
2268         ns->sgs = le16_to_cpu(s.sgs);
2269
2270         if (ns->sws) {
2271                 unsigned int bs = 1 << ns->lba_shift;
2272
2273                 blk_queue_io_min(ns->queue, bs * ns->sws);
2274                 if (ns->sgs)
2275                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2276         }
2277
2278         return 0;
2279 }
2280
2281 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2282 {
2283         struct nvme_ns *ns;
2284         struct gendisk *disk;
2285         struct nvme_id_ns *id;
2286         char disk_name[DISK_NAME_LEN];
2287         int node = dev_to_node(ctrl->dev);
2288
2289         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2290         if (!ns)
2291                 return;
2292
2293         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2294         if (ns->instance < 0)
2295                 goto out_free_ns;
2296
2297         ns->queue = blk_mq_init_queue(ctrl->tagset);
2298         if (IS_ERR(ns->queue))
2299                 goto out_release_instance;
2300         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2301         ns->queue->queuedata = ns;
2302         ns->ctrl = ctrl;
2303
2304         kref_init(&ns->kref);
2305         ns->ns_id = nsid;
2306         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2307
2308         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2309         nvme_set_queue_limits(ctrl, ns->queue);
2310         nvme_setup_streams_ns(ctrl, ns);
2311
2312         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2313
2314         if (nvme_revalidate_ns(ns, &id))
2315                 goto out_free_queue;
2316
2317         if (nvme_nvm_ns_supported(ns, id) &&
2318                                 nvme_nvm_register(ns, disk_name, node)) {
2319                 dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2320                 goto out_free_id;
2321         }
2322
2323         disk = alloc_disk_node(0, node);
2324         if (!disk)
2325                 goto out_free_id;
2326
2327         disk->fops = &nvme_fops;
2328         disk->private_data = ns;
2329         disk->queue = ns->queue;
2330         disk->flags = GENHD_FL_EXT_DEVT;
2331         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2332         ns->disk = disk;
2333
2334         __nvme_revalidate_disk(disk, id);
2335
2336         mutex_lock(&ctrl->namespaces_mutex);
2337         list_add_tail(&ns->list, &ctrl->namespaces);
2338         mutex_unlock(&ctrl->namespaces_mutex);
2339
2340         kref_get(&ctrl->kref);
2341
2342         kfree(id);
2343
2344         device_add_disk(ctrl->device, ns->disk);
2345         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2346                                         &nvme_ns_attr_group))
2347                 pr_warn("%s: failed to create sysfs group for identification\n",
2348                         ns->disk->disk_name);
2349         if (ns->ndev && nvme_nvm_register_sysfs(ns))
2350                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2351                         ns->disk->disk_name);
2352         return;
2353  out_free_id:
2354         kfree(id);
2355  out_free_queue:
2356         blk_cleanup_queue(ns->queue);
2357  out_release_instance:
2358         ida_simple_remove(&ctrl->ns_ida, ns->instance);
2359  out_free_ns:
2360         kfree(ns);
2361 }
2362
2363 static void nvme_ns_remove(struct nvme_ns *ns)
2364 {
2365         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2366                 return;
2367
2368         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2369                 if (blk_get_integrity(ns->disk))
2370                         blk_integrity_unregister(ns->disk);
2371                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2372                                         &nvme_ns_attr_group);
2373                 if (ns->ndev)
2374                         nvme_nvm_unregister_sysfs(ns);
2375                 del_gendisk(ns->disk);
2376                 blk_cleanup_queue(ns->queue);
2377         }
2378
2379         mutex_lock(&ns->ctrl->namespaces_mutex);
2380         list_del_init(&ns->list);
2381         mutex_unlock(&ns->ctrl->namespaces_mutex);
2382
2383         nvme_put_ns(ns);
2384 }
2385
2386 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2387 {
2388         struct nvme_ns *ns;
2389
2390         ns = nvme_find_get_ns(ctrl, nsid);
2391         if (ns) {
2392                 if (ns->disk && revalidate_disk(ns->disk))
2393                         nvme_ns_remove(ns);
2394                 nvme_put_ns(ns);
2395         } else
2396                 nvme_alloc_ns(ctrl, nsid);
2397 }
2398
2399 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2400                                         unsigned nsid)
2401 {
2402         struct nvme_ns *ns, *next;
2403
2404         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2405                 if (ns->ns_id > nsid)
2406                         nvme_ns_remove(ns);
2407         }
2408 }
2409
2410 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2411 {
2412         struct nvme_ns *ns;
2413         __le32 *ns_list;
2414         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2415         int ret = 0;
2416
2417         ns_list = kzalloc(0x1000, GFP_KERNEL);
2418         if (!ns_list)
2419                 return -ENOMEM;
2420
2421         for (i = 0; i < num_lists; i++) {
2422                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2423                 if (ret)
2424                         goto free;
2425
2426                 for (j = 0; j < min(nn, 1024U); j++) {
2427                         nsid = le32_to_cpu(ns_list[j]);
2428                         if (!nsid)
2429                                 goto out;
2430
2431                         nvme_validate_ns(ctrl, nsid);
2432
2433                         while (++prev < nsid) {
2434                                 ns = nvme_find_get_ns(ctrl, prev);
2435                                 if (ns) {
2436                                         nvme_ns_remove(ns);
2437                                         nvme_put_ns(ns);
2438                                 }
2439                         }
2440                 }
2441                 nn -= j;
2442         }
2443  out:
2444         nvme_remove_invalid_namespaces(ctrl, prev);
2445  free:
2446         kfree(ns_list);
2447         return ret;
2448 }
2449
2450 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2451 {
2452         unsigned i;
2453
2454         for (i = 1; i <= nn; i++)
2455                 nvme_validate_ns(ctrl, i);
2456
2457         nvme_remove_invalid_namespaces(ctrl, nn);
2458 }
2459
2460 static void nvme_scan_work(struct work_struct *work)
2461 {
2462         struct nvme_ctrl *ctrl =
2463                 container_of(work, struct nvme_ctrl, scan_work);
2464         struct nvme_id_ctrl *id;
2465         unsigned nn;
2466
2467         if (ctrl->state != NVME_CTRL_LIVE)
2468                 return;
2469
2470         if (nvme_identify_ctrl(ctrl, &id))
2471                 return;
2472
2473         nn = le32_to_cpu(id->nn);
2474         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2475             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2476                 if (!nvme_scan_ns_list(ctrl, nn))
2477                         goto done;
2478         }
2479         nvme_scan_ns_sequential(ctrl, nn);
2480  done:
2481         mutex_lock(&ctrl->namespaces_mutex);
2482         list_sort(NULL, &ctrl->namespaces, ns_cmp);
2483         mutex_unlock(&ctrl->namespaces_mutex);
2484         kfree(id);
2485 }
2486
2487 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2488 {
2489         /*
2490          * Do not queue new scan work when a controller is reset during
2491          * removal.
2492          */
2493         if (ctrl->state == NVME_CTRL_LIVE)
2494                 queue_work(nvme_wq, &ctrl->scan_work);
2495 }
2496 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2497
2498 /*
2499  * This function iterates the namespace list unlocked to allow recovery from
2500  * controller failure. It is up to the caller to ensure the namespace list is
2501  * not modified by scan work while this function is executing.
2502  */
2503 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2504 {
2505         struct nvme_ns *ns, *next;
2506
2507         /*
2508          * The dead states indicates the controller was not gracefully
2509          * disconnected. In that case, we won't be able to flush any data while
2510          * removing the namespaces' disks; fail all the queues now to avoid
2511          * potentially having to clean up the failed sync later.
2512          */
2513         if (ctrl->state == NVME_CTRL_DEAD)
2514                 nvme_kill_queues(ctrl);
2515
2516         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2517                 nvme_ns_remove(ns);
2518 }
2519 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2520
2521 static void nvme_async_event_work(struct work_struct *work)
2522 {
2523         struct nvme_ctrl *ctrl =
2524                 container_of(work, struct nvme_ctrl, async_event_work);
2525
2526         spin_lock_irq(&ctrl->lock);
2527         while (ctrl->event_limit > 0) {
2528                 int aer_idx = --ctrl->event_limit;
2529
2530                 spin_unlock_irq(&ctrl->lock);
2531                 ctrl->ops->submit_async_event(ctrl, aer_idx);
2532                 spin_lock_irq(&ctrl->lock);
2533         }
2534         spin_unlock_irq(&ctrl->lock);
2535 }
2536
2537 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2538                 union nvme_result *res)
2539 {
2540         u32 result = le32_to_cpu(res->u32);
2541         bool done = true;
2542
2543         switch (le16_to_cpu(status) >> 1) {
2544         case NVME_SC_SUCCESS:
2545                 done = false;
2546                 /*FALLTHRU*/
2547         case NVME_SC_ABORT_REQ:
2548                 ++ctrl->event_limit;
2549                 queue_work(nvme_wq, &ctrl->async_event_work);
2550                 break;
2551         default:
2552                 break;
2553         }
2554
2555         if (done)
2556                 return;
2557
2558         switch (result & 0xff07) {
2559         case NVME_AER_NOTICE_NS_CHANGED:
2560                 dev_info(ctrl->device, "rescanning\n");
2561                 nvme_queue_scan(ctrl);
2562                 break;
2563         default:
2564                 dev_warn(ctrl->device, "async event result %08x\n", result);
2565         }
2566 }
2567 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2568
2569 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2570 {
2571         ctrl->event_limit = NVME_NR_AERS;
2572         queue_work(nvme_wq, &ctrl->async_event_work);
2573 }
2574 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2575
2576 static DEFINE_IDA(nvme_instance_ida);
2577
2578 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2579 {
2580         int instance, error;
2581
2582         do {
2583                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2584                         return -ENODEV;
2585
2586                 spin_lock(&dev_list_lock);
2587                 error = ida_get_new(&nvme_instance_ida, &instance);
2588                 spin_unlock(&dev_list_lock);
2589         } while (error == -EAGAIN);
2590
2591         if (error)
2592                 return -ENODEV;
2593
2594         ctrl->instance = instance;
2595         return 0;
2596 }
2597
2598 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2599 {
2600         spin_lock(&dev_list_lock);
2601         ida_remove(&nvme_instance_ida, ctrl->instance);
2602         spin_unlock(&dev_list_lock);
2603 }
2604
2605 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2606 {
2607         nvme_stop_keep_alive(ctrl);
2608         flush_work(&ctrl->async_event_work);
2609         flush_work(&ctrl->scan_work);
2610 }
2611 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2612
2613 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2614 {
2615         if (ctrl->kato)
2616                 nvme_start_keep_alive(ctrl);
2617
2618         if (ctrl->queue_count > 1) {
2619                 nvme_queue_scan(ctrl);
2620                 nvme_queue_async_events(ctrl);
2621                 nvme_start_queues(ctrl);
2622         }
2623 }
2624 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2625
2626 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2627 {
2628         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2629
2630         spin_lock(&dev_list_lock);
2631         list_del(&ctrl->node);
2632         spin_unlock(&dev_list_lock);
2633 }
2634 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2635
2636 static void nvme_free_ctrl(struct kref *kref)
2637 {
2638         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2639
2640         put_device(ctrl->device);
2641         nvme_release_instance(ctrl);
2642         ida_destroy(&ctrl->ns_ida);
2643
2644         ctrl->ops->free_ctrl(ctrl);
2645 }
2646
2647 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2648 {
2649         kref_put(&ctrl->kref, nvme_free_ctrl);
2650 }
2651 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2652
2653 /*
2654  * Initialize a NVMe controller structures.  This needs to be called during
2655  * earliest initialization so that we have the initialized structured around
2656  * during probing.
2657  */
2658 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2659                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2660 {
2661         int ret;
2662
2663         ctrl->state = NVME_CTRL_NEW;
2664         spin_lock_init(&ctrl->lock);
2665         INIT_LIST_HEAD(&ctrl->namespaces);
2666         mutex_init(&ctrl->namespaces_mutex);
2667         kref_init(&ctrl->kref);
2668         ctrl->dev = dev;
2669         ctrl->ops = ops;
2670         ctrl->quirks = quirks;
2671         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2672         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2673
2674         ret = nvme_set_instance(ctrl);
2675         if (ret)
2676                 goto out;
2677
2678         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2679                                 MKDEV(nvme_char_major, ctrl->instance),
2680                                 ctrl, nvme_dev_attr_groups,
2681                                 "nvme%d", ctrl->instance);
2682         if (IS_ERR(ctrl->device)) {
2683                 ret = PTR_ERR(ctrl->device);
2684                 goto out_release_instance;
2685         }
2686         get_device(ctrl->device);
2687         ida_init(&ctrl->ns_ida);
2688
2689         spin_lock(&dev_list_lock);
2690         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2691         spin_unlock(&dev_list_lock);
2692
2693         /*
2694          * Initialize latency tolerance controls.  The sysfs files won't
2695          * be visible to userspace unless the device actually supports APST.
2696          */
2697         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2698         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2699                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2700
2701         return 0;
2702 out_release_instance:
2703         nvme_release_instance(ctrl);
2704 out:
2705         return ret;
2706 }
2707 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2708
2709 /**
2710  * nvme_kill_queues(): Ends all namespace queues
2711  * @ctrl: the dead controller that needs to end
2712  *
2713  * Call this function when the driver determines it is unable to get the
2714  * controller in a state capable of servicing IO.
2715  */
2716 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2717 {
2718         struct nvme_ns *ns;
2719
2720         mutex_lock(&ctrl->namespaces_mutex);
2721
2722         /* Forcibly unquiesce queues to avoid blocking dispatch */
2723         if (ctrl->admin_q)
2724                 blk_mq_unquiesce_queue(ctrl->admin_q);
2725
2726         list_for_each_entry(ns, &ctrl->namespaces, list) {
2727                 /*
2728                  * Revalidating a dead namespace sets capacity to 0. This will
2729                  * end buffered writers dirtying pages that can't be synced.
2730                  */
2731                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2732                         continue;
2733                 revalidate_disk(ns->disk);
2734                 blk_set_queue_dying(ns->queue);
2735
2736                 /* Forcibly unquiesce queues to avoid blocking dispatch */
2737                 blk_mq_unquiesce_queue(ns->queue);
2738         }
2739         mutex_unlock(&ctrl->namespaces_mutex);
2740 }
2741 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2742
2743 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2744 {
2745         struct nvme_ns *ns;
2746
2747         mutex_lock(&ctrl->namespaces_mutex);
2748         list_for_each_entry(ns, &ctrl->namespaces, list)
2749                 blk_mq_unfreeze_queue(ns->queue);
2750         mutex_unlock(&ctrl->namespaces_mutex);
2751 }
2752 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2753
2754 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2755 {
2756         struct nvme_ns *ns;
2757
2758         mutex_lock(&ctrl->namespaces_mutex);
2759         list_for_each_entry(ns, &ctrl->namespaces, list) {
2760                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2761                 if (timeout <= 0)
2762                         break;
2763         }
2764         mutex_unlock(&ctrl->namespaces_mutex);
2765 }
2766 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2767
2768 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2769 {
2770         struct nvme_ns *ns;
2771
2772         mutex_lock(&ctrl->namespaces_mutex);
2773         list_for_each_entry(ns, &ctrl->namespaces, list)
2774                 blk_mq_freeze_queue_wait(ns->queue);
2775         mutex_unlock(&ctrl->namespaces_mutex);
2776 }
2777 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2778
2779 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2780 {
2781         struct nvme_ns *ns;
2782
2783         mutex_lock(&ctrl->namespaces_mutex);
2784         list_for_each_entry(ns, &ctrl->namespaces, list)
2785                 blk_freeze_queue_start(ns->queue);
2786         mutex_unlock(&ctrl->namespaces_mutex);
2787 }
2788 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2789
2790 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2791 {
2792         struct nvme_ns *ns;
2793
2794         mutex_lock(&ctrl->namespaces_mutex);
2795         list_for_each_entry(ns, &ctrl->namespaces, list)
2796                 blk_mq_quiesce_queue(ns->queue);
2797         mutex_unlock(&ctrl->namespaces_mutex);
2798 }
2799 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2800
2801 void nvme_start_queues(struct nvme_ctrl *ctrl)
2802 {
2803         struct nvme_ns *ns;
2804
2805         mutex_lock(&ctrl->namespaces_mutex);
2806         list_for_each_entry(ns, &ctrl->namespaces, list)
2807                 blk_mq_unquiesce_queue(ns->queue);
2808         mutex_unlock(&ctrl->namespaces_mutex);
2809 }
2810 EXPORT_SYMBOL_GPL(nvme_start_queues);
2811
2812 int __init nvme_core_init(void)
2813 {
2814         int result;
2815
2816         nvme_wq = alloc_workqueue("nvme-wq",
2817                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2818         if (!nvme_wq)
2819                 return -ENOMEM;
2820
2821         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2822                                                         &nvme_dev_fops);
2823         if (result < 0)
2824                 goto destroy_wq;
2825         else if (result > 0)
2826                 nvme_char_major = result;
2827
2828         nvme_class = class_create(THIS_MODULE, "nvme");
2829         if (IS_ERR(nvme_class)) {
2830                 result = PTR_ERR(nvme_class);
2831                 goto unregister_chrdev;
2832         }
2833
2834         return 0;
2835
2836 unregister_chrdev:
2837         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2838 destroy_wq:
2839         destroy_workqueue(nvme_wq);
2840         return result;
2841 }
2842
2843 void nvme_core_exit(void)
2844 {
2845         class_destroy(nvme_class);
2846         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2847         destroy_workqueue(nvme_wq);
2848 }
2849
2850 MODULE_LICENSE("GPL");
2851 MODULE_VERSION("1.0");
2852 module_init(nvme_core_init);
2853 module_exit(nvme_core_exit);