zonefs: convert zonefs to use the new mount api
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #define NVME_MINORS             (1U << MINORBITS)
34
35 struct nvme_ns_info {
36         struct nvme_ns_ids ids;
37         u32 nsid;
38         __le32 anagrpid;
39         bool is_shared;
40         bool is_readonly;
41         bool is_ready;
42         bool is_removed;
43 };
44
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66                  "max power saving latency for new devices; use PM QOS to change per device");
67
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75         "primary APST timeout in ms");
76
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80         "secondary APST timeout in ms");
81
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85         "primary APST latency tolerance in us");
86
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90         "secondary APST latency tolerance in us");
91
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111
112 static LIST_HEAD(nvme_subsystems);
113 static DEFINE_MUTEX(nvme_subsystems_lock);
114
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static struct class *nvme_class;
118 static struct class *nvme_subsys_class;
119
120 static DEFINE_IDA(nvme_ns_chr_minor_ida);
121 static dev_t nvme_ns_chr_devt;
122 static struct class *nvme_ns_chr_class;
123
124 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
125 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
126                                            unsigned nsid);
127 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
128                                    struct nvme_command *cmd);
129
130 void nvme_queue_scan(struct nvme_ctrl *ctrl)
131 {
132         /*
133          * Only new queue scan work when admin and IO queues are both alive
134          */
135         if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
136                 queue_work(nvme_wq, &ctrl->scan_work);
137 }
138
139 /*
140  * Use this function to proceed with scheduling reset_work for a controller
141  * that had previously been set to the resetting state. This is intended for
142  * code paths that can't be interrupted by other reset attempts. A hot removal
143  * may prevent this from succeeding.
144  */
145 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
146 {
147         if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
148                 return -EBUSY;
149         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
150                 return -EBUSY;
151         return 0;
152 }
153 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
154
155 static void nvme_failfast_work(struct work_struct *work)
156 {
157         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
158                         struct nvme_ctrl, failfast_work);
159
160         if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
161                 return;
162
163         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
164         dev_info(ctrl->device, "failfast expired\n");
165         nvme_kick_requeue_lists(ctrl);
166 }
167
168 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
169 {
170         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
171                 return;
172
173         schedule_delayed_work(&ctrl->failfast_work,
174                               ctrl->opts->fast_io_fail_tmo * HZ);
175 }
176
177 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
178 {
179         if (!ctrl->opts)
180                 return;
181
182         cancel_delayed_work_sync(&ctrl->failfast_work);
183         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
184 }
185
186
187 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
188 {
189         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
190                 return -EBUSY;
191         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
192                 return -EBUSY;
193         return 0;
194 }
195 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
196
197 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
198 {
199         int ret;
200
201         ret = nvme_reset_ctrl(ctrl);
202         if (!ret) {
203                 flush_work(&ctrl->reset_work);
204                 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
205                         ret = -ENETRESET;
206         }
207
208         return ret;
209 }
210
211 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
212 {
213         dev_info(ctrl->device,
214                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
215
216         flush_work(&ctrl->reset_work);
217         nvme_stop_ctrl(ctrl);
218         nvme_remove_namespaces(ctrl);
219         ctrl->ops->delete_ctrl(ctrl);
220         nvme_uninit_ctrl(ctrl);
221 }
222
223 static void nvme_delete_ctrl_work(struct work_struct *work)
224 {
225         struct nvme_ctrl *ctrl =
226                 container_of(work, struct nvme_ctrl, delete_work);
227
228         nvme_do_delete_ctrl(ctrl);
229 }
230
231 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
232 {
233         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234                 return -EBUSY;
235         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
236                 return -EBUSY;
237         return 0;
238 }
239 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
240
241 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
242 {
243         /*
244          * Keep a reference until nvme_do_delete_ctrl() complete,
245          * since ->delete_ctrl can free the controller.
246          */
247         nvme_get_ctrl(ctrl);
248         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
249                 nvme_do_delete_ctrl(ctrl);
250         nvme_put_ctrl(ctrl);
251 }
252
253 static blk_status_t nvme_error_status(u16 status)
254 {
255         switch (status & 0x7ff) {
256         case NVME_SC_SUCCESS:
257                 return BLK_STS_OK;
258         case NVME_SC_CAP_EXCEEDED:
259                 return BLK_STS_NOSPC;
260         case NVME_SC_LBA_RANGE:
261         case NVME_SC_CMD_INTERRUPTED:
262         case NVME_SC_NS_NOT_READY:
263                 return BLK_STS_TARGET;
264         case NVME_SC_BAD_ATTRIBUTES:
265         case NVME_SC_ONCS_NOT_SUPPORTED:
266         case NVME_SC_INVALID_OPCODE:
267         case NVME_SC_INVALID_FIELD:
268         case NVME_SC_INVALID_NS:
269                 return BLK_STS_NOTSUPP;
270         case NVME_SC_WRITE_FAULT:
271         case NVME_SC_READ_ERROR:
272         case NVME_SC_UNWRITTEN_BLOCK:
273         case NVME_SC_ACCESS_DENIED:
274         case NVME_SC_READ_ONLY:
275         case NVME_SC_COMPARE_FAILED:
276                 return BLK_STS_MEDIUM;
277         case NVME_SC_GUARD_CHECK:
278         case NVME_SC_APPTAG_CHECK:
279         case NVME_SC_REFTAG_CHECK:
280         case NVME_SC_INVALID_PI:
281                 return BLK_STS_PROTECTION;
282         case NVME_SC_RESERVATION_CONFLICT:
283                 return BLK_STS_RESV_CONFLICT;
284         case NVME_SC_HOST_PATH_ERROR:
285                 return BLK_STS_TRANSPORT;
286         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
287                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
288         case NVME_SC_ZONE_TOO_MANY_OPEN:
289                 return BLK_STS_ZONE_OPEN_RESOURCE;
290         default:
291                 return BLK_STS_IOERR;
292         }
293 }
294
295 static void nvme_retry_req(struct request *req)
296 {
297         unsigned long delay = 0;
298         u16 crd;
299
300         /* The mask and shift result must be <= 3 */
301         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
302         if (crd)
303                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
304
305         nvme_req(req)->retries++;
306         blk_mq_requeue_request(req, false);
307         blk_mq_delay_kick_requeue_list(req->q, delay);
308 }
309
310 static void nvme_log_error(struct request *req)
311 {
312         struct nvme_ns *ns = req->q->queuedata;
313         struct nvme_request *nr = nvme_req(req);
314
315         if (ns) {
316                 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
317                        ns->disk ? ns->disk->disk_name : "?",
318                        nvme_get_opcode_str(nr->cmd->common.opcode),
319                        nr->cmd->common.opcode,
320                        nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
321                        blk_rq_bytes(req) >> ns->head->lba_shift,
322                        nvme_get_error_status_str(nr->status),
323                        nr->status >> 8 & 7,     /* Status Code Type */
324                        nr->status & 0xff,       /* Status Code */
325                        nr->status & NVME_SC_MORE ? "MORE " : "",
326                        nr->status & NVME_SC_DNR  ? "DNR "  : "");
327                 return;
328         }
329
330         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
331                            dev_name(nr->ctrl->device),
332                            nvme_get_admin_opcode_str(nr->cmd->common.opcode),
333                            nr->cmd->common.opcode,
334                            nvme_get_error_status_str(nr->status),
335                            nr->status >> 8 & 7, /* Status Code Type */
336                            nr->status & 0xff,   /* Status Code */
337                            nr->status & NVME_SC_MORE ? "MORE " : "",
338                            nr->status & NVME_SC_DNR  ? "DNR "  : "");
339 }
340
341 static void nvme_log_err_passthru(struct request *req)
342 {
343         struct nvme_ns *ns = req->q->queuedata;
344         struct nvme_request *nr = nvme_req(req);
345
346         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
347                 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
348                 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
349                 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
350                      nvme_get_admin_opcode_str(nr->cmd->common.opcode),
351                 nr->cmd->common.opcode,
352                 nvme_get_error_status_str(nr->status),
353                 nr->status >> 8 & 7,    /* Status Code Type */
354                 nr->status & 0xff,      /* Status Code */
355                 nr->status & NVME_SC_MORE ? "MORE " : "",
356                 nr->status & NVME_SC_DNR  ? "DNR "  : "",
357                 nr->cmd->common.cdw10,
358                 nr->cmd->common.cdw11,
359                 nr->cmd->common.cdw12,
360                 nr->cmd->common.cdw13,
361                 nr->cmd->common.cdw14,
362                 nr->cmd->common.cdw14);
363 }
364
365 enum nvme_disposition {
366         COMPLETE,
367         RETRY,
368         FAILOVER,
369         AUTHENTICATE,
370 };
371
372 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
373 {
374         if (likely(nvme_req(req)->status == 0))
375                 return COMPLETE;
376
377         if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
378                 return AUTHENTICATE;
379
380         if (blk_noretry_request(req) ||
381             (nvme_req(req)->status & NVME_SC_DNR) ||
382             nvme_req(req)->retries >= nvme_max_retries)
383                 return COMPLETE;
384
385         if (req->cmd_flags & REQ_NVME_MPATH) {
386                 if (nvme_is_path_error(nvme_req(req)->status) ||
387                     blk_queue_dying(req->q))
388                         return FAILOVER;
389         } else {
390                 if (blk_queue_dying(req->q))
391                         return COMPLETE;
392         }
393
394         return RETRY;
395 }
396
397 static inline void nvme_end_req_zoned(struct request *req)
398 {
399         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
400             req_op(req) == REQ_OP_ZONE_APPEND) {
401                 struct nvme_ns *ns = req->q->queuedata;
402
403                 req->__sector = nvme_lba_to_sect(ns->head,
404                         le64_to_cpu(nvme_req(req)->result.u64));
405         }
406 }
407
408 static inline void nvme_end_req(struct request *req)
409 {
410         blk_status_t status = nvme_error_status(nvme_req(req)->status);
411
412         if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
413                 if (blk_rq_is_passthrough(req))
414                         nvme_log_err_passthru(req);
415                 else
416                         nvme_log_error(req);
417         }
418         nvme_end_req_zoned(req);
419         nvme_trace_bio_complete(req);
420         if (req->cmd_flags & REQ_NVME_MPATH)
421                 nvme_mpath_end_request(req);
422         blk_mq_end_request(req, status);
423 }
424
425 void nvme_complete_rq(struct request *req)
426 {
427         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
428
429         trace_nvme_complete_rq(req);
430         nvme_cleanup_cmd(req);
431
432         /*
433          * Completions of long-running commands should not be able to
434          * defer sending of periodic keep alives, since the controller
435          * may have completed processing such commands a long time ago
436          * (arbitrarily close to command submission time).
437          * req->deadline - req->timeout is the command submission time
438          * in jiffies.
439          */
440         if (ctrl->kas &&
441             req->deadline - req->timeout >= ctrl->ka_last_check_time)
442                 ctrl->comp_seen = true;
443
444         switch (nvme_decide_disposition(req)) {
445         case COMPLETE:
446                 nvme_end_req(req);
447                 return;
448         case RETRY:
449                 nvme_retry_req(req);
450                 return;
451         case FAILOVER:
452                 nvme_failover_req(req);
453                 return;
454         case AUTHENTICATE:
455 #ifdef CONFIG_NVME_HOST_AUTH
456                 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
457                 nvme_retry_req(req);
458 #else
459                 nvme_end_req(req);
460 #endif
461                 return;
462         }
463 }
464 EXPORT_SYMBOL_GPL(nvme_complete_rq);
465
466 void nvme_complete_batch_req(struct request *req)
467 {
468         trace_nvme_complete_rq(req);
469         nvme_cleanup_cmd(req);
470         nvme_end_req_zoned(req);
471 }
472 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
473
474 /*
475  * Called to unwind from ->queue_rq on a failed command submission so that the
476  * multipathing code gets called to potentially failover to another path.
477  * The caller needs to unwind all transport specific resource allocations and
478  * must return propagate the return value.
479  */
480 blk_status_t nvme_host_path_error(struct request *req)
481 {
482         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
483         blk_mq_set_request_complete(req);
484         nvme_complete_rq(req);
485         return BLK_STS_OK;
486 }
487 EXPORT_SYMBOL_GPL(nvme_host_path_error);
488
489 bool nvme_cancel_request(struct request *req, void *data)
490 {
491         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
492                                 "Cancelling I/O %d", req->tag);
493
494         /* don't abort one completed or idle request */
495         if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
496                 return true;
497
498         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
499         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
500         blk_mq_complete_request(req);
501         return true;
502 }
503 EXPORT_SYMBOL_GPL(nvme_cancel_request);
504
505 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
506 {
507         if (ctrl->tagset) {
508                 blk_mq_tagset_busy_iter(ctrl->tagset,
509                                 nvme_cancel_request, ctrl);
510                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
511         }
512 }
513 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
514
515 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
516 {
517         if (ctrl->admin_tagset) {
518                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
519                                 nvme_cancel_request, ctrl);
520                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
521         }
522 }
523 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
524
525 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
526                 enum nvme_ctrl_state new_state)
527 {
528         enum nvme_ctrl_state old_state;
529         unsigned long flags;
530         bool changed = false;
531
532         spin_lock_irqsave(&ctrl->lock, flags);
533
534         old_state = nvme_ctrl_state(ctrl);
535         switch (new_state) {
536         case NVME_CTRL_LIVE:
537                 switch (old_state) {
538                 case NVME_CTRL_NEW:
539                 case NVME_CTRL_RESETTING:
540                 case NVME_CTRL_CONNECTING:
541                         changed = true;
542                         fallthrough;
543                 default:
544                         break;
545                 }
546                 break;
547         case NVME_CTRL_RESETTING:
548                 switch (old_state) {
549                 case NVME_CTRL_NEW:
550                 case NVME_CTRL_LIVE:
551                         changed = true;
552                         fallthrough;
553                 default:
554                         break;
555                 }
556                 break;
557         case NVME_CTRL_CONNECTING:
558                 switch (old_state) {
559                 case NVME_CTRL_NEW:
560                 case NVME_CTRL_RESETTING:
561                         changed = true;
562                         fallthrough;
563                 default:
564                         break;
565                 }
566                 break;
567         case NVME_CTRL_DELETING:
568                 switch (old_state) {
569                 case NVME_CTRL_LIVE:
570                 case NVME_CTRL_RESETTING:
571                 case NVME_CTRL_CONNECTING:
572                         changed = true;
573                         fallthrough;
574                 default:
575                         break;
576                 }
577                 break;
578         case NVME_CTRL_DELETING_NOIO:
579                 switch (old_state) {
580                 case NVME_CTRL_DELETING:
581                 case NVME_CTRL_DEAD:
582                         changed = true;
583                         fallthrough;
584                 default:
585                         break;
586                 }
587                 break;
588         case NVME_CTRL_DEAD:
589                 switch (old_state) {
590                 case NVME_CTRL_DELETING:
591                         changed = true;
592                         fallthrough;
593                 default:
594                         break;
595                 }
596                 break;
597         default:
598                 break;
599         }
600
601         if (changed) {
602                 WRITE_ONCE(ctrl->state, new_state);
603                 wake_up_all(&ctrl->state_wq);
604         }
605
606         spin_unlock_irqrestore(&ctrl->lock, flags);
607         if (!changed)
608                 return false;
609
610         if (new_state == NVME_CTRL_LIVE) {
611                 if (old_state == NVME_CTRL_CONNECTING)
612                         nvme_stop_failfast_work(ctrl);
613                 nvme_kick_requeue_lists(ctrl);
614         } else if (new_state == NVME_CTRL_CONNECTING &&
615                 old_state == NVME_CTRL_RESETTING) {
616                 nvme_start_failfast_work(ctrl);
617         }
618         return changed;
619 }
620 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
621
622 /*
623  * Returns true for sink states that can't ever transition back to live.
624  */
625 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
626 {
627         switch (nvme_ctrl_state(ctrl)) {
628         case NVME_CTRL_NEW:
629         case NVME_CTRL_LIVE:
630         case NVME_CTRL_RESETTING:
631         case NVME_CTRL_CONNECTING:
632                 return false;
633         case NVME_CTRL_DELETING:
634         case NVME_CTRL_DELETING_NOIO:
635         case NVME_CTRL_DEAD:
636                 return true;
637         default:
638                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
639                 return true;
640         }
641 }
642
643 /*
644  * Waits for the controller state to be resetting, or returns false if it is
645  * not possible to ever transition to that state.
646  */
647 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
648 {
649         wait_event(ctrl->state_wq,
650                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
651                    nvme_state_terminal(ctrl));
652         return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
653 }
654 EXPORT_SYMBOL_GPL(nvme_wait_reset);
655
656 static void nvme_free_ns_head(struct kref *ref)
657 {
658         struct nvme_ns_head *head =
659                 container_of(ref, struct nvme_ns_head, ref);
660
661         nvme_mpath_remove_disk(head);
662         ida_free(&head->subsys->ns_ida, head->instance);
663         cleanup_srcu_struct(&head->srcu);
664         nvme_put_subsystem(head->subsys);
665         kfree(head);
666 }
667
668 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
669 {
670         return kref_get_unless_zero(&head->ref);
671 }
672
673 void nvme_put_ns_head(struct nvme_ns_head *head)
674 {
675         kref_put(&head->ref, nvme_free_ns_head);
676 }
677
678 static void nvme_free_ns(struct kref *kref)
679 {
680         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
681
682         put_disk(ns->disk);
683         nvme_put_ns_head(ns->head);
684         nvme_put_ctrl(ns->ctrl);
685         kfree(ns);
686 }
687
688 static inline bool nvme_get_ns(struct nvme_ns *ns)
689 {
690         return kref_get_unless_zero(&ns->kref);
691 }
692
693 void nvme_put_ns(struct nvme_ns *ns)
694 {
695         kref_put(&ns->kref, nvme_free_ns);
696 }
697 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
698
699 static inline void nvme_clear_nvme_request(struct request *req)
700 {
701         nvme_req(req)->status = 0;
702         nvme_req(req)->retries = 0;
703         nvme_req(req)->flags = 0;
704         req->rq_flags |= RQF_DONTPREP;
705 }
706
707 /* initialize a passthrough request */
708 void nvme_init_request(struct request *req, struct nvme_command *cmd)
709 {
710         struct nvme_request *nr = nvme_req(req);
711         bool logging_enabled;
712
713         if (req->q->queuedata) {
714                 struct nvme_ns *ns = req->q->disk->private_data;
715
716                 logging_enabled = ns->head->passthru_err_log_enabled;
717                 req->timeout = NVME_IO_TIMEOUT;
718         } else { /* no queuedata implies admin queue */
719                 logging_enabled = nr->ctrl->passthru_err_log_enabled;
720                 req->timeout = NVME_ADMIN_TIMEOUT;
721         }
722
723         if (!logging_enabled)
724                 req->rq_flags |= RQF_QUIET;
725
726         /* passthru commands should let the driver set the SGL flags */
727         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
728
729         req->cmd_flags |= REQ_FAILFAST_DRIVER;
730         if (req->mq_hctx->type == HCTX_TYPE_POLL)
731                 req->cmd_flags |= REQ_POLLED;
732         nvme_clear_nvme_request(req);
733         memcpy(nr->cmd, cmd, sizeof(*cmd));
734 }
735 EXPORT_SYMBOL_GPL(nvme_init_request);
736
737 /*
738  * For something we're not in a state to send to the device the default action
739  * is to busy it and retry it after the controller state is recovered.  However,
740  * if the controller is deleting or if anything is marked for failfast or
741  * nvme multipath it is immediately failed.
742  *
743  * Note: commands used to initialize the controller will be marked for failfast.
744  * Note: nvme cli/ioctl commands are marked for failfast.
745  */
746 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
747                 struct request *rq)
748 {
749         enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
750
751         if (state != NVME_CTRL_DELETING_NOIO &&
752             state != NVME_CTRL_DELETING &&
753             state != NVME_CTRL_DEAD &&
754             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
755             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
756                 return BLK_STS_RESOURCE;
757         return nvme_host_path_error(rq);
758 }
759 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
760
761 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
762                 bool queue_live, enum nvme_ctrl_state state)
763 {
764         struct nvme_request *req = nvme_req(rq);
765
766         /*
767          * currently we have a problem sending passthru commands
768          * on the admin_q if the controller is not LIVE because we can't
769          * make sure that they are going out after the admin connect,
770          * controller enable and/or other commands in the initialization
771          * sequence. until the controller will be LIVE, fail with
772          * BLK_STS_RESOURCE so that they will be rescheduled.
773          */
774         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
775                 return false;
776
777         if (ctrl->ops->flags & NVME_F_FABRICS) {
778                 /*
779                  * Only allow commands on a live queue, except for the connect
780                  * command, which is require to set the queue live in the
781                  * appropinquate states.
782                  */
783                 switch (state) {
784                 case NVME_CTRL_CONNECTING:
785                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
786                             (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
787                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
788                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
789                                 return true;
790                         break;
791                 default:
792                         break;
793                 case NVME_CTRL_DEAD:
794                         return false;
795                 }
796         }
797
798         return queue_live;
799 }
800 EXPORT_SYMBOL_GPL(__nvme_check_ready);
801
802 static inline void nvme_setup_flush(struct nvme_ns *ns,
803                 struct nvme_command *cmnd)
804 {
805         memset(cmnd, 0, sizeof(*cmnd));
806         cmnd->common.opcode = nvme_cmd_flush;
807         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
808 }
809
810 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
811                 struct nvme_command *cmnd)
812 {
813         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
814         struct nvme_dsm_range *range;
815         struct bio *bio;
816
817         /*
818          * Some devices do not consider the DSM 'Number of Ranges' field when
819          * determining how much data to DMA. Always allocate memory for maximum
820          * number of segments to prevent device reading beyond end of buffer.
821          */
822         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
823
824         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
825         if (!range) {
826                 /*
827                  * If we fail allocation our range, fallback to the controller
828                  * discard page. If that's also busy, it's safe to return
829                  * busy, as we know we can make progress once that's freed.
830                  */
831                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
832                         return BLK_STS_RESOURCE;
833
834                 range = page_address(ns->ctrl->discard_page);
835         }
836
837         if (queue_max_discard_segments(req->q) == 1) {
838                 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
839                 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
840
841                 range[0].cattr = cpu_to_le32(0);
842                 range[0].nlb = cpu_to_le32(nlb);
843                 range[0].slba = cpu_to_le64(slba);
844                 n = 1;
845         } else {
846                 __rq_for_each_bio(bio, req) {
847                         u64 slba = nvme_sect_to_lba(ns->head,
848                                                     bio->bi_iter.bi_sector);
849                         u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
850
851                         if (n < segments) {
852                                 range[n].cattr = cpu_to_le32(0);
853                                 range[n].nlb = cpu_to_le32(nlb);
854                                 range[n].slba = cpu_to_le64(slba);
855                         }
856                         n++;
857                 }
858         }
859
860         if (WARN_ON_ONCE(n != segments)) {
861                 if (virt_to_page(range) == ns->ctrl->discard_page)
862                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
863                 else
864                         kfree(range);
865                 return BLK_STS_IOERR;
866         }
867
868         memset(cmnd, 0, sizeof(*cmnd));
869         cmnd->dsm.opcode = nvme_cmd_dsm;
870         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
871         cmnd->dsm.nr = cpu_to_le32(segments - 1);
872         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
873
874         bvec_set_virt(&req->special_vec, range, alloc_size);
875         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
876
877         return BLK_STS_OK;
878 }
879
880 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
881                               struct request *req)
882 {
883         u32 upper, lower;
884         u64 ref48;
885
886         /* both rw and write zeroes share the same reftag format */
887         switch (ns->head->guard_type) {
888         case NVME_NVM_NS_16B_GUARD:
889                 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
890                 break;
891         case NVME_NVM_NS_64B_GUARD:
892                 ref48 = ext_pi_ref_tag(req);
893                 lower = lower_32_bits(ref48);
894                 upper = upper_32_bits(ref48);
895
896                 cmnd->rw.reftag = cpu_to_le32(lower);
897                 cmnd->rw.cdw3 = cpu_to_le32(upper);
898                 break;
899         default:
900                 break;
901         }
902 }
903
904 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
905                 struct request *req, struct nvme_command *cmnd)
906 {
907         memset(cmnd, 0, sizeof(*cmnd));
908
909         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
910                 return nvme_setup_discard(ns, req, cmnd);
911
912         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
913         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
914         cmnd->write_zeroes.slba =
915                 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
916         cmnd->write_zeroes.length =
917                 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
918
919         if (!(req->cmd_flags & REQ_NOUNMAP) &&
920             (ns->head->features & NVME_NS_DEAC))
921                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
922
923         if (nvme_ns_has_pi(ns->head)) {
924                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
925
926                 switch (ns->head->pi_type) {
927                 case NVME_NS_DPS_PI_TYPE1:
928                 case NVME_NS_DPS_PI_TYPE2:
929                         nvme_set_ref_tag(ns, cmnd, req);
930                         break;
931                 }
932         }
933
934         return BLK_STS_OK;
935 }
936
937 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
938                 struct request *req, struct nvme_command *cmnd,
939                 enum nvme_opcode op)
940 {
941         u16 control = 0;
942         u32 dsmgmt = 0;
943
944         if (req->cmd_flags & REQ_FUA)
945                 control |= NVME_RW_FUA;
946         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
947                 control |= NVME_RW_LR;
948
949         if (req->cmd_flags & REQ_RAHEAD)
950                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
951
952         cmnd->rw.opcode = op;
953         cmnd->rw.flags = 0;
954         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
955         cmnd->rw.cdw2 = 0;
956         cmnd->rw.cdw3 = 0;
957         cmnd->rw.metadata = 0;
958         cmnd->rw.slba =
959                 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
960         cmnd->rw.length =
961                 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
962         cmnd->rw.reftag = 0;
963         cmnd->rw.apptag = 0;
964         cmnd->rw.appmask = 0;
965
966         if (ns->head->ms) {
967                 /*
968                  * If formated with metadata, the block layer always provides a
969                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
970                  * we enable the PRACT bit for protection information or set the
971                  * namespace capacity to zero to prevent any I/O.
972                  */
973                 if (!blk_integrity_rq(req)) {
974                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
975                                 return BLK_STS_NOTSUPP;
976                         control |= NVME_RW_PRINFO_PRACT;
977                 }
978
979                 switch (ns->head->pi_type) {
980                 case NVME_NS_DPS_PI_TYPE3:
981                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
982                         break;
983                 case NVME_NS_DPS_PI_TYPE1:
984                 case NVME_NS_DPS_PI_TYPE2:
985                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
986                                         NVME_RW_PRINFO_PRCHK_REF;
987                         if (op == nvme_cmd_zone_append)
988                                 control |= NVME_RW_APPEND_PIREMAP;
989                         nvme_set_ref_tag(ns, cmnd, req);
990                         break;
991                 }
992         }
993
994         cmnd->rw.control = cpu_to_le16(control);
995         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
996         return 0;
997 }
998
999 void nvme_cleanup_cmd(struct request *req)
1000 {
1001         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1002                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1003
1004                 if (req->special_vec.bv_page == ctrl->discard_page)
1005                         clear_bit_unlock(0, &ctrl->discard_page_busy);
1006                 else
1007                         kfree(bvec_virt(&req->special_vec));
1008         }
1009 }
1010 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1011
1012 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1013 {
1014         struct nvme_command *cmd = nvme_req(req)->cmd;
1015         blk_status_t ret = BLK_STS_OK;
1016
1017         if (!(req->rq_flags & RQF_DONTPREP))
1018                 nvme_clear_nvme_request(req);
1019
1020         switch (req_op(req)) {
1021         case REQ_OP_DRV_IN:
1022         case REQ_OP_DRV_OUT:
1023                 /* these are setup prior to execution in nvme_init_request() */
1024                 break;
1025         case REQ_OP_FLUSH:
1026                 nvme_setup_flush(ns, cmd);
1027                 break;
1028         case REQ_OP_ZONE_RESET_ALL:
1029         case REQ_OP_ZONE_RESET:
1030                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1031                 break;
1032         case REQ_OP_ZONE_OPEN:
1033                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1034                 break;
1035         case REQ_OP_ZONE_CLOSE:
1036                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1037                 break;
1038         case REQ_OP_ZONE_FINISH:
1039                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1040                 break;
1041         case REQ_OP_WRITE_ZEROES:
1042                 ret = nvme_setup_write_zeroes(ns, req, cmd);
1043                 break;
1044         case REQ_OP_DISCARD:
1045                 ret = nvme_setup_discard(ns, req, cmd);
1046                 break;
1047         case REQ_OP_READ:
1048                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1049                 break;
1050         case REQ_OP_WRITE:
1051                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1052                 break;
1053         case REQ_OP_ZONE_APPEND:
1054                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1055                 break;
1056         default:
1057                 WARN_ON_ONCE(1);
1058                 return BLK_STS_IOERR;
1059         }
1060
1061         cmd->common.command_id = nvme_cid(req);
1062         trace_nvme_setup_cmd(req, cmd);
1063         return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1066
1067 /*
1068  * Return values:
1069  * 0:  success
1070  * >0: nvme controller's cqe status response
1071  * <0: kernel error in lieu of controller response
1072  */
1073 int nvme_execute_rq(struct request *rq, bool at_head)
1074 {
1075         blk_status_t status;
1076
1077         status = blk_execute_rq(rq, at_head);
1078         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1079                 return -EINTR;
1080         if (nvme_req(rq)->status)
1081                 return nvme_req(rq)->status;
1082         return blk_status_to_errno(status);
1083 }
1084 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1085
1086 /*
1087  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1088  * if the result is positive, it's an NVM Express status code
1089  */
1090 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1091                 union nvme_result *result, void *buffer, unsigned bufflen,
1092                 int qid, nvme_submit_flags_t flags)
1093 {
1094         struct request *req;
1095         int ret;
1096         blk_mq_req_flags_t blk_flags = 0;
1097
1098         if (flags & NVME_SUBMIT_NOWAIT)
1099                 blk_flags |= BLK_MQ_REQ_NOWAIT;
1100         if (flags & NVME_SUBMIT_RESERVED)
1101                 blk_flags |= BLK_MQ_REQ_RESERVED;
1102         if (qid == NVME_QID_ANY)
1103                 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1104         else
1105                 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1106                                                 qid - 1);
1107
1108         if (IS_ERR(req))
1109                 return PTR_ERR(req);
1110         nvme_init_request(req, cmd);
1111         if (flags & NVME_SUBMIT_RETRY)
1112                 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1113
1114         if (buffer && bufflen) {
1115                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1116                 if (ret)
1117                         goto out;
1118         }
1119
1120         ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1121         if (result && ret >= 0)
1122                 *result = nvme_req(req)->result;
1123  out:
1124         blk_mq_free_request(req);
1125         return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1128
1129 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1130                 void *buffer, unsigned bufflen)
1131 {
1132         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1133                         NVME_QID_ANY, 0);
1134 }
1135 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1136
1137 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1138 {
1139         u32 effects = 0;
1140
1141         if (ns) {
1142                 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1143                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1144                         dev_warn_once(ctrl->device,
1145                                 "IO command:%02x has unusual effects:%08x\n",
1146                                 opcode, effects);
1147
1148                 /*
1149                  * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1150                  * which would deadlock when done on an I/O command.  Note that
1151                  * We already warn about an unusual effect above.
1152                  */
1153                 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1154         } else {
1155                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1156         }
1157
1158         return effects;
1159 }
1160 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1161
1162 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1163 {
1164         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1165
1166         /*
1167          * For simplicity, IO to all namespaces is quiesced even if the command
1168          * effects say only one namespace is affected.
1169          */
1170         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1171                 mutex_lock(&ctrl->scan_lock);
1172                 mutex_lock(&ctrl->subsys->lock);
1173                 nvme_mpath_start_freeze(ctrl->subsys);
1174                 nvme_mpath_wait_freeze(ctrl->subsys);
1175                 nvme_start_freeze(ctrl);
1176                 nvme_wait_freeze(ctrl);
1177         }
1178         return effects;
1179 }
1180 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1181
1182 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1183                        struct nvme_command *cmd, int status)
1184 {
1185         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1186                 nvme_unfreeze(ctrl);
1187                 nvme_mpath_unfreeze(ctrl->subsys);
1188                 mutex_unlock(&ctrl->subsys->lock);
1189                 mutex_unlock(&ctrl->scan_lock);
1190         }
1191         if (effects & NVME_CMD_EFFECTS_CCC) {
1192                 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1193                                       &ctrl->flags)) {
1194                         dev_info(ctrl->device,
1195 "controller capabilities changed, reset may be required to take effect.\n");
1196                 }
1197         }
1198         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1199                 nvme_queue_scan(ctrl);
1200                 flush_work(&ctrl->scan_work);
1201         }
1202         if (ns)
1203                 return;
1204
1205         switch (cmd->common.opcode) {
1206         case nvme_admin_set_features:
1207                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1208                 case NVME_FEAT_KATO:
1209                         /*
1210                          * Keep alive commands interval on the host should be
1211                          * updated when KATO is modified by Set Features
1212                          * commands.
1213                          */
1214                         if (!status)
1215                                 nvme_update_keep_alive(ctrl, cmd);
1216                         break;
1217                 default:
1218                         break;
1219                 }
1220                 break;
1221         default:
1222                 break;
1223         }
1224 }
1225 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1226
1227 /*
1228  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1229  * 
1230  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1231  *   accounting for transport roundtrip times [..].
1232  */
1233 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1234 {
1235         unsigned long delay = ctrl->kato * HZ / 2;
1236
1237         /*
1238          * When using Traffic Based Keep Alive, we need to run
1239          * nvme_keep_alive_work at twice the normal frequency, as one
1240          * command completion can postpone sending a keep alive command
1241          * by up to twice the delay between runs.
1242          */
1243         if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1244                 delay /= 2;
1245         return delay;
1246 }
1247
1248 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1249 {
1250         unsigned long now = jiffies;
1251         unsigned long delay = nvme_keep_alive_work_period(ctrl);
1252         unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1253
1254         if (time_after(now, ka_next_check_tm))
1255                 delay = 0;
1256         else
1257                 delay = ka_next_check_tm - now;
1258
1259         queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1260 }
1261
1262 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1263                                                  blk_status_t status)
1264 {
1265         struct nvme_ctrl *ctrl = rq->end_io_data;
1266         unsigned long flags;
1267         bool startka = false;
1268         unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1269         unsigned long delay = nvme_keep_alive_work_period(ctrl);
1270
1271         /*
1272          * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1273          * at the desired frequency.
1274          */
1275         if (rtt <= delay) {
1276                 delay -= rtt;
1277         } else {
1278                 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1279                          jiffies_to_msecs(rtt));
1280                 delay = 0;
1281         }
1282
1283         blk_mq_free_request(rq);
1284
1285         if (status) {
1286                 dev_err(ctrl->device,
1287                         "failed nvme_keep_alive_end_io error=%d\n",
1288                                 status);
1289                 return RQ_END_IO_NONE;
1290         }
1291
1292         ctrl->ka_last_check_time = jiffies;
1293         ctrl->comp_seen = false;
1294         spin_lock_irqsave(&ctrl->lock, flags);
1295         if (ctrl->state == NVME_CTRL_LIVE ||
1296             ctrl->state == NVME_CTRL_CONNECTING)
1297                 startka = true;
1298         spin_unlock_irqrestore(&ctrl->lock, flags);
1299         if (startka)
1300                 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1301         return RQ_END_IO_NONE;
1302 }
1303
1304 static void nvme_keep_alive_work(struct work_struct *work)
1305 {
1306         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1307                         struct nvme_ctrl, ka_work);
1308         bool comp_seen = ctrl->comp_seen;
1309         struct request *rq;
1310
1311         ctrl->ka_last_check_time = jiffies;
1312
1313         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1314                 dev_dbg(ctrl->device,
1315                         "reschedule traffic based keep-alive timer\n");
1316                 ctrl->comp_seen = false;
1317                 nvme_queue_keep_alive_work(ctrl);
1318                 return;
1319         }
1320
1321         rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1322                                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1323         if (IS_ERR(rq)) {
1324                 /* allocation failure, reset the controller */
1325                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1326                 nvme_reset_ctrl(ctrl);
1327                 return;
1328         }
1329         nvme_init_request(rq, &ctrl->ka_cmd);
1330
1331         rq->timeout = ctrl->kato * HZ;
1332         rq->end_io = nvme_keep_alive_end_io;
1333         rq->end_io_data = ctrl;
1334         blk_execute_rq_nowait(rq, false);
1335 }
1336
1337 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1338 {
1339         if (unlikely(ctrl->kato == 0))
1340                 return;
1341
1342         nvme_queue_keep_alive_work(ctrl);
1343 }
1344
1345 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1346 {
1347         if (unlikely(ctrl->kato == 0))
1348                 return;
1349
1350         cancel_delayed_work_sync(&ctrl->ka_work);
1351 }
1352 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1353
1354 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1355                                    struct nvme_command *cmd)
1356 {
1357         unsigned int new_kato =
1358                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1359
1360         dev_info(ctrl->device,
1361                  "keep alive interval updated from %u ms to %u ms\n",
1362                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1363
1364         nvme_stop_keep_alive(ctrl);
1365         ctrl->kato = new_kato;
1366         nvme_start_keep_alive(ctrl);
1367 }
1368
1369 /*
1370  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1371  * flag, thus sending any new CNS opcodes has a big chance of not working.
1372  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1373  * (but not for any later version).
1374  */
1375 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1376 {
1377         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1378                 return ctrl->vs < NVME_VS(1, 2, 0);
1379         return ctrl->vs < NVME_VS(1, 1, 0);
1380 }
1381
1382 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1383 {
1384         struct nvme_command c = { };
1385         int error;
1386
1387         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1388         c.identify.opcode = nvme_admin_identify;
1389         c.identify.cns = NVME_ID_CNS_CTRL;
1390
1391         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1392         if (!*id)
1393                 return -ENOMEM;
1394
1395         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1396                         sizeof(struct nvme_id_ctrl));
1397         if (error)
1398                 kfree(*id);
1399         return error;
1400 }
1401
1402 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1403                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1404 {
1405         const char *warn_str = "ctrl returned bogus length:";
1406         void *data = cur;
1407
1408         switch (cur->nidt) {
1409         case NVME_NIDT_EUI64:
1410                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1411                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1412                                  warn_str, cur->nidl);
1413                         return -1;
1414                 }
1415                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1416                         return NVME_NIDT_EUI64_LEN;
1417                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1418                 return NVME_NIDT_EUI64_LEN;
1419         case NVME_NIDT_NGUID:
1420                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1421                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1422                                  warn_str, cur->nidl);
1423                         return -1;
1424                 }
1425                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1426                         return NVME_NIDT_NGUID_LEN;
1427                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1428                 return NVME_NIDT_NGUID_LEN;
1429         case NVME_NIDT_UUID:
1430                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1431                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1432                                  warn_str, cur->nidl);
1433                         return -1;
1434                 }
1435                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1436                         return NVME_NIDT_UUID_LEN;
1437                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1438                 return NVME_NIDT_UUID_LEN;
1439         case NVME_NIDT_CSI:
1440                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1441                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1442                                  warn_str, cur->nidl);
1443                         return -1;
1444                 }
1445                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1446                 *csi_seen = true;
1447                 return NVME_NIDT_CSI_LEN;
1448         default:
1449                 /* Skip unknown types */
1450                 return cur->nidl;
1451         }
1452 }
1453
1454 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1455                 struct nvme_ns_info *info)
1456 {
1457         struct nvme_command c = { };
1458         bool csi_seen = false;
1459         int status, pos, len;
1460         void *data;
1461
1462         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1463                 return 0;
1464         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1465                 return 0;
1466
1467         c.identify.opcode = nvme_admin_identify;
1468         c.identify.nsid = cpu_to_le32(info->nsid);
1469         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1470
1471         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1472         if (!data)
1473                 return -ENOMEM;
1474
1475         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1476                                       NVME_IDENTIFY_DATA_SIZE);
1477         if (status) {
1478                 dev_warn(ctrl->device,
1479                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1480                         info->nsid, status);
1481                 goto free_data;
1482         }
1483
1484         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1485                 struct nvme_ns_id_desc *cur = data + pos;
1486
1487                 if (cur->nidl == 0)
1488                         break;
1489
1490                 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1491                 if (len < 0)
1492                         break;
1493
1494                 len += sizeof(*cur);
1495         }
1496
1497         if (nvme_multi_css(ctrl) && !csi_seen) {
1498                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1499                          info->nsid);
1500                 status = -EINVAL;
1501         }
1502
1503 free_data:
1504         kfree(data);
1505         return status;
1506 }
1507
1508 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1509                         struct nvme_id_ns **id)
1510 {
1511         struct nvme_command c = { };
1512         int error;
1513
1514         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1515         c.identify.opcode = nvme_admin_identify;
1516         c.identify.nsid = cpu_to_le32(nsid);
1517         c.identify.cns = NVME_ID_CNS_NS;
1518
1519         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1520         if (!*id)
1521                 return -ENOMEM;
1522
1523         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1524         if (error) {
1525                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1526                 kfree(*id);
1527         }
1528         return error;
1529 }
1530
1531 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1532                 struct nvme_ns_info *info)
1533 {
1534         struct nvme_ns_ids *ids = &info->ids;
1535         struct nvme_id_ns *id;
1536         int ret;
1537
1538         ret = nvme_identify_ns(ctrl, info->nsid, &id);
1539         if (ret)
1540                 return ret;
1541
1542         if (id->ncap == 0) {
1543                 /* namespace not allocated or attached */
1544                 info->is_removed = true;
1545                 ret = -ENODEV;
1546                 goto error;
1547         }
1548
1549         info->anagrpid = id->anagrpid;
1550         info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1551         info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1552         info->is_ready = true;
1553         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1554                 dev_info(ctrl->device,
1555                          "Ignoring bogus Namespace Identifiers\n");
1556         } else {
1557                 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1558                     !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1559                         memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1560                 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1561                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1562                         memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1563         }
1564
1565 error:
1566         kfree(id);
1567         return ret;
1568 }
1569
1570 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1571                 struct nvme_ns_info *info)
1572 {
1573         struct nvme_id_ns_cs_indep *id;
1574         struct nvme_command c = {
1575                 .identify.opcode        = nvme_admin_identify,
1576                 .identify.nsid          = cpu_to_le32(info->nsid),
1577                 .identify.cns           = NVME_ID_CNS_NS_CS_INDEP,
1578         };
1579         int ret;
1580
1581         id = kmalloc(sizeof(*id), GFP_KERNEL);
1582         if (!id)
1583                 return -ENOMEM;
1584
1585         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1586         if (!ret) {
1587                 info->anagrpid = id->anagrpid;
1588                 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1589                 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1590                 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1591         }
1592         kfree(id);
1593         return ret;
1594 }
1595
1596 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1597                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1598 {
1599         union nvme_result res = { 0 };
1600         struct nvme_command c = { };
1601         int ret;
1602
1603         c.features.opcode = op;
1604         c.features.fid = cpu_to_le32(fid);
1605         c.features.dword11 = cpu_to_le32(dword11);
1606
1607         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1608                         buffer, buflen, NVME_QID_ANY, 0);
1609         if (ret >= 0 && result)
1610                 *result = le32_to_cpu(res.u32);
1611         return ret;
1612 }
1613
1614 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1615                       unsigned int dword11, void *buffer, size_t buflen,
1616                       u32 *result)
1617 {
1618         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1619                              buflen, result);
1620 }
1621 EXPORT_SYMBOL_GPL(nvme_set_features);
1622
1623 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1624                       unsigned int dword11, void *buffer, size_t buflen,
1625                       u32 *result)
1626 {
1627         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1628                              buflen, result);
1629 }
1630 EXPORT_SYMBOL_GPL(nvme_get_features);
1631
1632 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1633 {
1634         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1635         u32 result;
1636         int status, nr_io_queues;
1637
1638         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1639                         &result);
1640         if (status < 0)
1641                 return status;
1642
1643         /*
1644          * Degraded controllers might return an error when setting the queue
1645          * count.  We still want to be able to bring them online and offer
1646          * access to the admin queue, as that might be only way to fix them up.
1647          */
1648         if (status > 0) {
1649                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1650                 *count = 0;
1651         } else {
1652                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1653                 *count = min(*count, nr_io_queues);
1654         }
1655
1656         return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1659
1660 #define NVME_AEN_SUPPORTED \
1661         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1662          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1663
1664 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1665 {
1666         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1667         int status;
1668
1669         if (!supported_aens)
1670                 return;
1671
1672         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1673                         NULL, 0, &result);
1674         if (status)
1675                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1676                          supported_aens);
1677
1678         queue_work(nvme_wq, &ctrl->async_event_work);
1679 }
1680
1681 static int nvme_ns_open(struct nvme_ns *ns)
1682 {
1683
1684         /* should never be called due to GENHD_FL_HIDDEN */
1685         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1686                 goto fail;
1687         if (!nvme_get_ns(ns))
1688                 goto fail;
1689         if (!try_module_get(ns->ctrl->ops->module))
1690                 goto fail_put_ns;
1691
1692         return 0;
1693
1694 fail_put_ns:
1695         nvme_put_ns(ns);
1696 fail:
1697         return -ENXIO;
1698 }
1699
1700 static void nvme_ns_release(struct nvme_ns *ns)
1701 {
1702
1703         module_put(ns->ctrl->ops->module);
1704         nvme_put_ns(ns);
1705 }
1706
1707 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1708 {
1709         return nvme_ns_open(disk->private_data);
1710 }
1711
1712 static void nvme_release(struct gendisk *disk)
1713 {
1714         nvme_ns_release(disk->private_data);
1715 }
1716
1717 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1718 {
1719         /* some standard values */
1720         geo->heads = 1 << 6;
1721         geo->sectors = 1 << 5;
1722         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1723         return 0;
1724 }
1725
1726 #ifdef CONFIG_BLK_DEV_INTEGRITY
1727 static void nvme_init_integrity(struct gendisk *disk,
1728                 struct nvme_ns_head *head, u32 max_integrity_segments)
1729 {
1730         struct blk_integrity integrity = { };
1731
1732         switch (head->pi_type) {
1733         case NVME_NS_DPS_PI_TYPE3:
1734                 switch (head->guard_type) {
1735                 case NVME_NVM_NS_16B_GUARD:
1736                         integrity.profile = &t10_pi_type3_crc;
1737                         integrity.tag_size = sizeof(u16) + sizeof(u32);
1738                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1739                         break;
1740                 case NVME_NVM_NS_64B_GUARD:
1741                         integrity.profile = &ext_pi_type3_crc64;
1742                         integrity.tag_size = sizeof(u16) + 6;
1743                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1744                         break;
1745                 default:
1746                         integrity.profile = NULL;
1747                         break;
1748                 }
1749                 break;
1750         case NVME_NS_DPS_PI_TYPE1:
1751         case NVME_NS_DPS_PI_TYPE2:
1752                 switch (head->guard_type) {
1753                 case NVME_NVM_NS_16B_GUARD:
1754                         integrity.profile = &t10_pi_type1_crc;
1755                         integrity.tag_size = sizeof(u16);
1756                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1757                         break;
1758                 case NVME_NVM_NS_64B_GUARD:
1759                         integrity.profile = &ext_pi_type1_crc64;
1760                         integrity.tag_size = sizeof(u16);
1761                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1762                         break;
1763                 default:
1764                         integrity.profile = NULL;
1765                         break;
1766                 }
1767                 break;
1768         default:
1769                 integrity.profile = NULL;
1770                 break;
1771         }
1772
1773         integrity.tuple_size = head->ms;
1774         blk_integrity_register(disk, &integrity);
1775         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1776 }
1777 #else
1778 static void nvme_init_integrity(struct gendisk *disk,
1779                 struct nvme_ns_head *head, u32 max_integrity_segments)
1780 {
1781 }
1782 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1783
1784 static void nvme_config_discard(struct nvme_ctrl *ctrl, struct gendisk *disk,
1785                 struct nvme_ns_head *head)
1786 {
1787         struct request_queue *queue = disk->queue;
1788         u32 max_discard_sectors;
1789
1790         if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(head, UINT_MAX)) {
1791                 max_discard_sectors = nvme_lba_to_sect(head, ctrl->dmrsl);
1792         } else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
1793                 max_discard_sectors = UINT_MAX;
1794         } else {
1795                 blk_queue_max_discard_sectors(queue, 0);
1796                 return;
1797         }
1798
1799         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1800                         NVME_DSM_MAX_RANGES);
1801
1802         /*
1803          * If discard is already enabled, don't reset queue limits.
1804          *
1805          * This works around the fact that the block layer can't cope well with
1806          * updating the hardware limits when overridden through sysfs.  This is
1807          * harmless because discard limits in NVMe are purely advisory.
1808          */
1809         if (queue->limits.max_discard_sectors)
1810                 return;
1811
1812         blk_queue_max_discard_sectors(queue, max_discard_sectors);
1813         if (ctrl->dmrl)
1814                 blk_queue_max_discard_segments(queue, ctrl->dmrl);
1815         else
1816                 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1817         queue->limits.discard_granularity = queue_logical_block_size(queue);
1818
1819         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1820                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1821 }
1822
1823 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1824 {
1825         return uuid_equal(&a->uuid, &b->uuid) &&
1826                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1827                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1828                 a->csi == b->csi;
1829 }
1830
1831 static int nvme_init_ms(struct nvme_ctrl *ctrl, struct nvme_ns_head *head,
1832                 struct nvme_id_ns *id)
1833 {
1834         bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1835         unsigned lbaf = nvme_lbaf_index(id->flbas);
1836         struct nvme_command c = { };
1837         struct nvme_id_ns_nvm *nvm;
1838         int ret = 0;
1839         u32 elbaf;
1840
1841         head->pi_size = 0;
1842         head->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1843         if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1844                 head->pi_size = sizeof(struct t10_pi_tuple);
1845                 head->guard_type = NVME_NVM_NS_16B_GUARD;
1846                 goto set_pi;
1847         }
1848
1849         nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1850         if (!nvm)
1851                 return -ENOMEM;
1852
1853         c.identify.opcode = nvme_admin_identify;
1854         c.identify.nsid = cpu_to_le32(head->ns_id);
1855         c.identify.cns = NVME_ID_CNS_CS_NS;
1856         c.identify.csi = NVME_CSI_NVM;
1857
1858         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1859         if (ret)
1860                 goto free_data;
1861
1862         elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1863
1864         /* no support for storage tag formats right now */
1865         if (nvme_elbaf_sts(elbaf))
1866                 goto free_data;
1867
1868         head->guard_type = nvme_elbaf_guard_type(elbaf);
1869         switch (head->guard_type) {
1870         case NVME_NVM_NS_64B_GUARD:
1871                 head->pi_size = sizeof(struct crc64_pi_tuple);
1872                 break;
1873         case NVME_NVM_NS_16B_GUARD:
1874                 head->pi_size = sizeof(struct t10_pi_tuple);
1875                 break;
1876         default:
1877                 break;
1878         }
1879
1880 free_data:
1881         kfree(nvm);
1882 set_pi:
1883         if (head->pi_size && (first || head->ms == head->pi_size))
1884                 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1885         else
1886                 head->pi_type = 0;
1887
1888         return ret;
1889 }
1890
1891 static int nvme_configure_metadata(struct nvme_ctrl *ctrl,
1892                 struct nvme_ns_head *head, struct nvme_id_ns *id)
1893 {
1894         int ret;
1895
1896         ret = nvme_init_ms(ctrl, head, id);
1897         if (ret)
1898                 return ret;
1899
1900         head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1901         if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1902                 return 0;
1903
1904         if (ctrl->ops->flags & NVME_F_FABRICS) {
1905                 /*
1906                  * The NVMe over Fabrics specification only supports metadata as
1907                  * part of the extended data LBA.  We rely on HCA/HBA support to
1908                  * remap the separate metadata buffer from the block layer.
1909                  */
1910                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1911                         return 0;
1912
1913                 head->features |= NVME_NS_EXT_LBAS;
1914
1915                 /*
1916                  * The current fabrics transport drivers support namespace
1917                  * metadata formats only if nvme_ns_has_pi() returns true.
1918                  * Suppress support for all other formats so the namespace will
1919                  * have a 0 capacity and not be usable through the block stack.
1920                  *
1921                  * Note, this check will need to be modified if any drivers
1922                  * gain the ability to use other metadata formats.
1923                  */
1924                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1925                         head->features |= NVME_NS_METADATA_SUPPORTED;
1926         } else {
1927                 /*
1928                  * For PCIe controllers, we can't easily remap the separate
1929                  * metadata buffer from the block layer and thus require a
1930                  * separate metadata buffer for block layer metadata/PI support.
1931                  * We allow extended LBAs for the passthrough interface, though.
1932                  */
1933                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1934                         head->features |= NVME_NS_EXT_LBAS;
1935                 else
1936                         head->features |= NVME_NS_METADATA_SUPPORTED;
1937         }
1938         return 0;
1939 }
1940
1941 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1942                 struct request_queue *q)
1943 {
1944         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1945
1946         if (ctrl->max_hw_sectors) {
1947                 u32 max_segments =
1948                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1949
1950                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1951                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1952                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1953         }
1954         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1955         blk_queue_dma_alignment(q, 3);
1956         blk_queue_write_cache(q, vwc, vwc);
1957 }
1958
1959 static void nvme_update_disk_info(struct nvme_ctrl *ctrl, struct gendisk *disk,
1960                 struct nvme_ns_head *head, struct nvme_id_ns *id)
1961 {
1962         sector_t capacity = nvme_lba_to_sect(head, le64_to_cpu(id->nsze));
1963         u32 bs = 1U << head->lba_shift;
1964         u32 atomic_bs, phys_bs, io_opt = 0;
1965
1966         /*
1967          * The block layer can't support LBA sizes larger than the page size
1968          * or smaller than a sector size yet, so catch this early and don't
1969          * allow block I/O.
1970          */
1971         if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
1972                 capacity = 0;
1973                 bs = (1 << 9);
1974         }
1975
1976         blk_integrity_unregister(disk);
1977
1978         atomic_bs = phys_bs = bs;
1979         if (id->nabo == 0) {
1980                 /*
1981                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1982                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1983                  * 0 then AWUPF must be used instead.
1984                  */
1985                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1986                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1987                 else
1988                         atomic_bs = (1 + ctrl->subsys->awupf) * bs;
1989         }
1990
1991         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1992                 /* NPWG = Namespace Preferred Write Granularity */
1993                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1994                 /* NOWS = Namespace Optimal Write Size */
1995                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1996         }
1997
1998         blk_queue_logical_block_size(disk->queue, bs);
1999         /*
2000          * Linux filesystems assume writing a single physical block is
2001          * an atomic operation. Hence limit the physical block size to the
2002          * value of the Atomic Write Unit Power Fail parameter.
2003          */
2004         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2005         blk_queue_io_min(disk->queue, phys_bs);
2006         blk_queue_io_opt(disk->queue, io_opt);
2007
2008         /*
2009          * Register a metadata profile for PI, or the plain non-integrity NVMe
2010          * metadata masquerading as Type 0 if supported, otherwise reject block
2011          * I/O to namespaces with metadata except when the namespace supports
2012          * PI, as it can strip/insert in that case.
2013          */
2014         if (head->ms) {
2015                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2016                     (head->features & NVME_NS_METADATA_SUPPORTED))
2017                         nvme_init_integrity(disk, head,
2018                                             ctrl->max_integrity_segments);
2019                 else if (!nvme_ns_has_pi(head))
2020                         capacity = 0;
2021         }
2022
2023         set_capacity_and_notify(disk, capacity);
2024
2025         nvme_config_discard(ctrl, disk, head);
2026         blk_queue_max_write_zeroes_sectors(disk->queue,
2027                                            ctrl->max_zeroes_sectors);
2028 }
2029
2030 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2031 {
2032         return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2033 }
2034
2035 static inline bool nvme_first_scan(struct gendisk *disk)
2036 {
2037         /* nvme_alloc_ns() scans the disk prior to adding it */
2038         return !disk_live(disk);
2039 }
2040
2041 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2042 {
2043         struct nvme_ctrl *ctrl = ns->ctrl;
2044         u32 iob;
2045
2046         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2047             is_power_of_2(ctrl->max_hw_sectors))
2048                 iob = ctrl->max_hw_sectors;
2049         else
2050                 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2051
2052         if (!iob)
2053                 return;
2054
2055         if (!is_power_of_2(iob)) {
2056                 if (nvme_first_scan(ns->disk))
2057                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2058                                 ns->disk->disk_name, iob);
2059                 return;
2060         }
2061
2062         if (blk_queue_is_zoned(ns->disk->queue)) {
2063                 if (nvme_first_scan(ns->disk))
2064                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2065                                 ns->disk->disk_name);
2066                 return;
2067         }
2068
2069         blk_queue_chunk_sectors(ns->queue, iob);
2070 }
2071
2072 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2073                 struct nvme_ns_info *info)
2074 {
2075         blk_mq_freeze_queue(ns->disk->queue);
2076         nvme_set_queue_limits(ns->ctrl, ns->queue);
2077         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2078         blk_mq_unfreeze_queue(ns->disk->queue);
2079
2080         if (nvme_ns_head_multipath(ns->head)) {
2081                 blk_mq_freeze_queue(ns->head->disk->queue);
2082                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2083                 nvme_mpath_revalidate_paths(ns);
2084                 blk_stack_limits(&ns->head->disk->queue->limits,
2085                                  &ns->queue->limits, 0);
2086                 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2087                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2088         }
2089
2090         /* Hide the block-interface for these devices */
2091         ns->disk->flags |= GENHD_FL_HIDDEN;
2092         set_bit(NVME_NS_READY, &ns->flags);
2093
2094         return 0;
2095 }
2096
2097 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2098                 struct nvme_ns_info *info)
2099 {
2100         struct nvme_id_ns *id;
2101         unsigned lbaf;
2102         int ret;
2103
2104         ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2105         if (ret)
2106                 return ret;
2107
2108         if (id->ncap == 0) {
2109                 /* namespace not allocated or attached */
2110                 info->is_removed = true;
2111                 ret = -ENODEV;
2112                 goto error;
2113         }
2114
2115         blk_mq_freeze_queue(ns->disk->queue);
2116         lbaf = nvme_lbaf_index(id->flbas);
2117         ns->head->lba_shift = id->lbaf[lbaf].ds;
2118         ns->head->nuse = le64_to_cpu(id->nuse);
2119         nvme_set_queue_limits(ns->ctrl, ns->queue);
2120
2121         ret = nvme_configure_metadata(ns->ctrl, ns->head, id);
2122         if (ret < 0) {
2123                 blk_mq_unfreeze_queue(ns->disk->queue);
2124                 goto out;
2125         }
2126         nvme_set_chunk_sectors(ns, id);
2127         nvme_update_disk_info(ns->ctrl, ns->disk, ns->head, id);
2128
2129         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2130                 ret = nvme_update_zone_info(ns, lbaf);
2131                 if (ret) {
2132                         blk_mq_unfreeze_queue(ns->disk->queue);
2133                         goto out;
2134                 }
2135         }
2136
2137         /*
2138          * Only set the DEAC bit if the device guarantees that reads from
2139          * deallocated data return zeroes.  While the DEAC bit does not
2140          * require that, it must be a no-op if reads from deallocated data
2141          * do not return zeroes.
2142          */
2143         if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2144                 ns->head->features |= NVME_NS_DEAC;
2145         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2146         set_bit(NVME_NS_READY, &ns->flags);
2147         blk_mq_unfreeze_queue(ns->disk->queue);
2148
2149         if (blk_queue_is_zoned(ns->queue)) {
2150                 ret = nvme_revalidate_zones(ns);
2151                 if (ret && !nvme_first_scan(ns->disk))
2152                         goto out;
2153         }
2154
2155         if (nvme_ns_head_multipath(ns->head)) {
2156                 blk_mq_freeze_queue(ns->head->disk->queue);
2157                 nvme_update_disk_info(ns->ctrl, ns->head->disk, ns->head, id);
2158                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2159                 nvme_mpath_revalidate_paths(ns);
2160                 blk_stack_limits(&ns->head->disk->queue->limits,
2161                                  &ns->queue->limits, 0);
2162                 disk_update_readahead(ns->head->disk);
2163                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2164         }
2165
2166         ret = 0;
2167 out:
2168         /*
2169          * If probing fails due an unsupported feature, hide the block device,
2170          * but still allow other access.
2171          */
2172         if (ret == -ENODEV) {
2173                 ns->disk->flags |= GENHD_FL_HIDDEN;
2174                 set_bit(NVME_NS_READY, &ns->flags);
2175                 ret = 0;
2176         }
2177
2178 error:
2179         kfree(id);
2180         return ret;
2181 }
2182
2183 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2184 {
2185         switch (info->ids.csi) {
2186         case NVME_CSI_ZNS:
2187                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2188                         dev_info(ns->ctrl->device,
2189         "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2190                                 info->nsid);
2191                         return nvme_update_ns_info_generic(ns, info);
2192                 }
2193                 return nvme_update_ns_info_block(ns, info);
2194         case NVME_CSI_NVM:
2195                 return nvme_update_ns_info_block(ns, info);
2196         default:
2197                 dev_info(ns->ctrl->device,
2198                         "block device for nsid %u not supported (csi %u)\n",
2199                         info->nsid, info->ids.csi);
2200                 return nvme_update_ns_info_generic(ns, info);
2201         }
2202 }
2203
2204 #ifdef CONFIG_BLK_SED_OPAL
2205 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2206                 bool send)
2207 {
2208         struct nvme_ctrl *ctrl = data;
2209         struct nvme_command cmd = { };
2210
2211         if (send)
2212                 cmd.common.opcode = nvme_admin_security_send;
2213         else
2214                 cmd.common.opcode = nvme_admin_security_recv;
2215         cmd.common.nsid = 0;
2216         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2217         cmd.common.cdw11 = cpu_to_le32(len);
2218
2219         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2220                         NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2221 }
2222
2223 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2224 {
2225         if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2226                 if (!ctrl->opal_dev)
2227                         ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2228                 else if (was_suspended)
2229                         opal_unlock_from_suspend(ctrl->opal_dev);
2230         } else {
2231                 free_opal_dev(ctrl->opal_dev);
2232                 ctrl->opal_dev = NULL;
2233         }
2234 }
2235 #else
2236 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2237 {
2238 }
2239 #endif /* CONFIG_BLK_SED_OPAL */
2240
2241 #ifdef CONFIG_BLK_DEV_ZONED
2242 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2243                 unsigned int nr_zones, report_zones_cb cb, void *data)
2244 {
2245         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2246                         data);
2247 }
2248 #else
2249 #define nvme_report_zones       NULL
2250 #endif /* CONFIG_BLK_DEV_ZONED */
2251
2252 const struct block_device_operations nvme_bdev_ops = {
2253         .owner          = THIS_MODULE,
2254         .ioctl          = nvme_ioctl,
2255         .compat_ioctl   = blkdev_compat_ptr_ioctl,
2256         .open           = nvme_open,
2257         .release        = nvme_release,
2258         .getgeo         = nvme_getgeo,
2259         .report_zones   = nvme_report_zones,
2260         .pr_ops         = &nvme_pr_ops,
2261 };
2262
2263 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2264                 u32 timeout, const char *op)
2265 {
2266         unsigned long timeout_jiffies = jiffies + timeout * HZ;
2267         u32 csts;
2268         int ret;
2269
2270         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2271                 if (csts == ~0)
2272                         return -ENODEV;
2273                 if ((csts & mask) == val)
2274                         break;
2275
2276                 usleep_range(1000, 2000);
2277                 if (fatal_signal_pending(current))
2278                         return -EINTR;
2279                 if (time_after(jiffies, timeout_jiffies)) {
2280                         dev_err(ctrl->device,
2281                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2282                                 op, csts);
2283                         return -ENODEV;
2284                 }
2285         }
2286
2287         return ret;
2288 }
2289
2290 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2291 {
2292         int ret;
2293
2294         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2295         if (shutdown)
2296                 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2297         else
2298                 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2299
2300         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2301         if (ret)
2302                 return ret;
2303
2304         if (shutdown) {
2305                 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2306                                        NVME_CSTS_SHST_CMPLT,
2307                                        ctrl->shutdown_timeout, "shutdown");
2308         }
2309         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2310                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2311         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2312                                (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2313 }
2314 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2315
2316 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2317 {
2318         unsigned dev_page_min;
2319         u32 timeout;
2320         int ret;
2321
2322         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2323         if (ret) {
2324                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2325                 return ret;
2326         }
2327         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2328
2329         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2330                 dev_err(ctrl->device,
2331                         "Minimum device page size %u too large for host (%u)\n",
2332                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2333                 return -ENODEV;
2334         }
2335
2336         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2337                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2338         else
2339                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2340
2341         if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2342                 ctrl->ctrl_config |= NVME_CC_CRIME;
2343
2344         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2345         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2346         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2347         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2348         if (ret)
2349                 return ret;
2350
2351         /* Flush write to device (required if transport is PCI) */
2352         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2353         if (ret)
2354                 return ret;
2355
2356         /* CAP value may change after initial CC write */
2357         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2358         if (ret)
2359                 return ret;
2360
2361         timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2362         if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2363                 u32 crto, ready_timeout;
2364
2365                 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2366                 if (ret) {
2367                         dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2368                                 ret);
2369                         return ret;
2370                 }
2371
2372                 /*
2373                  * CRTO should always be greater or equal to CAP.TO, but some
2374                  * devices are known to get this wrong. Use the larger of the
2375                  * two values.
2376                  */
2377                 if (ctrl->ctrl_config & NVME_CC_CRIME)
2378                         ready_timeout = NVME_CRTO_CRIMT(crto);
2379                 else
2380                         ready_timeout = NVME_CRTO_CRWMT(crto);
2381
2382                 if (ready_timeout < timeout)
2383                         dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2384                                       crto, ctrl->cap);
2385                 else
2386                         timeout = ready_timeout;
2387         }
2388
2389         ctrl->ctrl_config |= NVME_CC_ENABLE;
2390         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2391         if (ret)
2392                 return ret;
2393         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2394                                (timeout + 1) / 2, "initialisation");
2395 }
2396 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2397
2398 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2399 {
2400         __le64 ts;
2401         int ret;
2402
2403         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2404                 return 0;
2405
2406         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2407         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2408                         NULL);
2409         if (ret)
2410                 dev_warn_once(ctrl->device,
2411                         "could not set timestamp (%d)\n", ret);
2412         return ret;
2413 }
2414
2415 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2416 {
2417         struct nvme_feat_host_behavior *host;
2418         u8 acre = 0, lbafee = 0;
2419         int ret;
2420
2421         /* Don't bother enabling the feature if retry delay is not reported */
2422         if (ctrl->crdt[0])
2423                 acre = NVME_ENABLE_ACRE;
2424         if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2425                 lbafee = NVME_ENABLE_LBAFEE;
2426
2427         if (!acre && !lbafee)
2428                 return 0;
2429
2430         host = kzalloc(sizeof(*host), GFP_KERNEL);
2431         if (!host)
2432                 return 0;
2433
2434         host->acre = acre;
2435         host->lbafee = lbafee;
2436         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2437                                 host, sizeof(*host), NULL);
2438         kfree(host);
2439         return ret;
2440 }
2441
2442 /*
2443  * The function checks whether the given total (exlat + enlat) latency of
2444  * a power state allows the latter to be used as an APST transition target.
2445  * It does so by comparing the latency to the primary and secondary latency
2446  * tolerances defined by module params. If there's a match, the corresponding
2447  * timeout value is returned and the matching tolerance index (1 or 2) is
2448  * reported.
2449  */
2450 static bool nvme_apst_get_transition_time(u64 total_latency,
2451                 u64 *transition_time, unsigned *last_index)
2452 {
2453         if (total_latency <= apst_primary_latency_tol_us) {
2454                 if (*last_index == 1)
2455                         return false;
2456                 *last_index = 1;
2457                 *transition_time = apst_primary_timeout_ms;
2458                 return true;
2459         }
2460         if (apst_secondary_timeout_ms &&
2461                 total_latency <= apst_secondary_latency_tol_us) {
2462                 if (*last_index <= 2)
2463                         return false;
2464                 *last_index = 2;
2465                 *transition_time = apst_secondary_timeout_ms;
2466                 return true;
2467         }
2468         return false;
2469 }
2470
2471 /*
2472  * APST (Autonomous Power State Transition) lets us program a table of power
2473  * state transitions that the controller will perform automatically.
2474  *
2475  * Depending on module params, one of the two supported techniques will be used:
2476  *
2477  * - If the parameters provide explicit timeouts and tolerances, they will be
2478  *   used to build a table with up to 2 non-operational states to transition to.
2479  *   The default parameter values were selected based on the values used by
2480  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2481  *   regeneration of the APST table in the event of switching between external
2482  *   and battery power, the timeouts and tolerances reflect a compromise
2483  *   between values used by Microsoft for AC and battery scenarios.
2484  * - If not, we'll configure the table with a simple heuristic: we are willing
2485  *   to spend at most 2% of the time transitioning between power states.
2486  *   Therefore, when running in any given state, we will enter the next
2487  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2488  *   microseconds, as long as that state's exit latency is under the requested
2489  *   maximum latency.
2490  *
2491  * We will not autonomously enter any non-operational state for which the total
2492  * latency exceeds ps_max_latency_us.
2493  *
2494  * Users can set ps_max_latency_us to zero to turn off APST.
2495  */
2496 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2497 {
2498         struct nvme_feat_auto_pst *table;
2499         unsigned apste = 0;
2500         u64 max_lat_us = 0;
2501         __le64 target = 0;
2502         int max_ps = -1;
2503         int state;
2504         int ret;
2505         unsigned last_lt_index = UINT_MAX;
2506
2507         /*
2508          * If APST isn't supported or if we haven't been initialized yet,
2509          * then don't do anything.
2510          */
2511         if (!ctrl->apsta)
2512                 return 0;
2513
2514         if (ctrl->npss > 31) {
2515                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2516                 return 0;
2517         }
2518
2519         table = kzalloc(sizeof(*table), GFP_KERNEL);
2520         if (!table)
2521                 return 0;
2522
2523         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2524                 /* Turn off APST. */
2525                 dev_dbg(ctrl->device, "APST disabled\n");
2526                 goto done;
2527         }
2528
2529         /*
2530          * Walk through all states from lowest- to highest-power.
2531          * According to the spec, lower-numbered states use more power.  NPSS,
2532          * despite the name, is the index of the lowest-power state, not the
2533          * number of states.
2534          */
2535         for (state = (int)ctrl->npss; state >= 0; state--) {
2536                 u64 total_latency_us, exit_latency_us, transition_ms;
2537
2538                 if (target)
2539                         table->entries[state] = target;
2540
2541                 /*
2542                  * Don't allow transitions to the deepest state if it's quirked
2543                  * off.
2544                  */
2545                 if (state == ctrl->npss &&
2546                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2547                         continue;
2548
2549                 /*
2550                  * Is this state a useful non-operational state for higher-power
2551                  * states to autonomously transition to?
2552                  */
2553                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2554                         continue;
2555
2556                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2557                 if (exit_latency_us > ctrl->ps_max_latency_us)
2558                         continue;
2559
2560                 total_latency_us = exit_latency_us +
2561                         le32_to_cpu(ctrl->psd[state].entry_lat);
2562
2563                 /*
2564                  * This state is good. It can be used as the APST idle target
2565                  * for higher power states.
2566                  */
2567                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2568                         if (!nvme_apst_get_transition_time(total_latency_us,
2569                                         &transition_ms, &last_lt_index))
2570                                 continue;
2571                 } else {
2572                         transition_ms = total_latency_us + 19;
2573                         do_div(transition_ms, 20);
2574                         if (transition_ms > (1 << 24) - 1)
2575                                 transition_ms = (1 << 24) - 1;
2576                 }
2577
2578                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2579                 if (max_ps == -1)
2580                         max_ps = state;
2581                 if (total_latency_us > max_lat_us)
2582                         max_lat_us = total_latency_us;
2583         }
2584
2585         if (max_ps == -1)
2586                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2587         else
2588                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2589                         max_ps, max_lat_us, (int)sizeof(*table), table);
2590         apste = 1;
2591
2592 done:
2593         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2594                                 table, sizeof(*table), NULL);
2595         if (ret)
2596                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2597         kfree(table);
2598         return ret;
2599 }
2600
2601 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2602 {
2603         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2604         u64 latency;
2605
2606         switch (val) {
2607         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2608         case PM_QOS_LATENCY_ANY:
2609                 latency = U64_MAX;
2610                 break;
2611
2612         default:
2613                 latency = val;
2614         }
2615
2616         if (ctrl->ps_max_latency_us != latency) {
2617                 ctrl->ps_max_latency_us = latency;
2618                 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2619                         nvme_configure_apst(ctrl);
2620         }
2621 }
2622
2623 struct nvme_core_quirk_entry {
2624         /*
2625          * NVMe model and firmware strings are padded with spaces.  For
2626          * simplicity, strings in the quirk table are padded with NULLs
2627          * instead.
2628          */
2629         u16 vid;
2630         const char *mn;
2631         const char *fr;
2632         unsigned long quirks;
2633 };
2634
2635 static const struct nvme_core_quirk_entry core_quirks[] = {
2636         {
2637                 /*
2638                  * This Toshiba device seems to die using any APST states.  See:
2639                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2640                  */
2641                 .vid = 0x1179,
2642                 .mn = "THNSF5256GPUK TOSHIBA",
2643                 .quirks = NVME_QUIRK_NO_APST,
2644         },
2645         {
2646                 /*
2647                  * This LiteON CL1-3D*-Q11 firmware version has a race
2648                  * condition associated with actions related to suspend to idle
2649                  * LiteON has resolved the problem in future firmware
2650                  */
2651                 .vid = 0x14a4,
2652                 .fr = "22301111",
2653                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2654         },
2655         {
2656                 /*
2657                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2658                  * aborts I/O during any load, but more easily reproducible
2659                  * with discards (fstrim).
2660                  *
2661                  * The device is left in a state where it is also not possible
2662                  * to use "nvme set-feature" to disable APST, but booting with
2663                  * nvme_core.default_ps_max_latency=0 works.
2664                  */
2665                 .vid = 0x1e0f,
2666                 .mn = "KCD6XVUL6T40",
2667                 .quirks = NVME_QUIRK_NO_APST,
2668         },
2669         {
2670                 /*
2671                  * The external Samsung X5 SSD fails initialization without a
2672                  * delay before checking if it is ready and has a whole set of
2673                  * other problems.  To make this even more interesting, it
2674                  * shares the PCI ID with internal Samsung 970 Evo Plus that
2675                  * does not need or want these quirks.
2676                  */
2677                 .vid = 0x144d,
2678                 .mn = "Samsung Portable SSD X5",
2679                 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2680                           NVME_QUIRK_NO_DEEPEST_PS |
2681                           NVME_QUIRK_IGNORE_DEV_SUBNQN,
2682         }
2683 };
2684
2685 /* match is null-terminated but idstr is space-padded. */
2686 static bool string_matches(const char *idstr, const char *match, size_t len)
2687 {
2688         size_t matchlen;
2689
2690         if (!match)
2691                 return true;
2692
2693         matchlen = strlen(match);
2694         WARN_ON_ONCE(matchlen > len);
2695
2696         if (memcmp(idstr, match, matchlen))
2697                 return false;
2698
2699         for (; matchlen < len; matchlen++)
2700                 if (idstr[matchlen] != ' ')
2701                         return false;
2702
2703         return true;
2704 }
2705
2706 static bool quirk_matches(const struct nvme_id_ctrl *id,
2707                           const struct nvme_core_quirk_entry *q)
2708 {
2709         return q->vid == le16_to_cpu(id->vid) &&
2710                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2711                 string_matches(id->fr, q->fr, sizeof(id->fr));
2712 }
2713
2714 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2715                 struct nvme_id_ctrl *id)
2716 {
2717         size_t nqnlen;
2718         int off;
2719
2720         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2721                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2722                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2723                         strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2724                         return;
2725                 }
2726
2727                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2728                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2729         }
2730
2731         /*
2732          * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2733          * Base Specification 2.0.  It is slightly different from the format
2734          * specified there due to historic reasons, and we can't change it now.
2735          */
2736         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2737                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2738                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2739         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2740         off += sizeof(id->sn);
2741         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2742         off += sizeof(id->mn);
2743         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2744 }
2745
2746 static void nvme_release_subsystem(struct device *dev)
2747 {
2748         struct nvme_subsystem *subsys =
2749                 container_of(dev, struct nvme_subsystem, dev);
2750
2751         if (subsys->instance >= 0)
2752                 ida_free(&nvme_instance_ida, subsys->instance);
2753         kfree(subsys);
2754 }
2755
2756 static void nvme_destroy_subsystem(struct kref *ref)
2757 {
2758         struct nvme_subsystem *subsys =
2759                         container_of(ref, struct nvme_subsystem, ref);
2760
2761         mutex_lock(&nvme_subsystems_lock);
2762         list_del(&subsys->entry);
2763         mutex_unlock(&nvme_subsystems_lock);
2764
2765         ida_destroy(&subsys->ns_ida);
2766         device_del(&subsys->dev);
2767         put_device(&subsys->dev);
2768 }
2769
2770 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2771 {
2772         kref_put(&subsys->ref, nvme_destroy_subsystem);
2773 }
2774
2775 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2776 {
2777         struct nvme_subsystem *subsys;
2778
2779         lockdep_assert_held(&nvme_subsystems_lock);
2780
2781         /*
2782          * Fail matches for discovery subsystems. This results
2783          * in each discovery controller bound to a unique subsystem.
2784          * This avoids issues with validating controller values
2785          * that can only be true when there is a single unique subsystem.
2786          * There may be multiple and completely independent entities
2787          * that provide discovery controllers.
2788          */
2789         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2790                 return NULL;
2791
2792         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2793                 if (strcmp(subsys->subnqn, subsysnqn))
2794                         continue;
2795                 if (!kref_get_unless_zero(&subsys->ref))
2796                         continue;
2797                 return subsys;
2798         }
2799
2800         return NULL;
2801 }
2802
2803 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2804 {
2805         return ctrl->opts && ctrl->opts->discovery_nqn;
2806 }
2807
2808 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2809                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2810 {
2811         struct nvme_ctrl *tmp;
2812
2813         lockdep_assert_held(&nvme_subsystems_lock);
2814
2815         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2816                 if (nvme_state_terminal(tmp))
2817                         continue;
2818
2819                 if (tmp->cntlid == ctrl->cntlid) {
2820                         dev_err(ctrl->device,
2821                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2822                                 ctrl->cntlid, dev_name(tmp->device),
2823                                 subsys->subnqn);
2824                         return false;
2825                 }
2826
2827                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2828                     nvme_discovery_ctrl(ctrl))
2829                         continue;
2830
2831                 dev_err(ctrl->device,
2832                         "Subsystem does not support multiple controllers\n");
2833                 return false;
2834         }
2835
2836         return true;
2837 }
2838
2839 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2840 {
2841         struct nvme_subsystem *subsys, *found;
2842         int ret;
2843
2844         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2845         if (!subsys)
2846                 return -ENOMEM;
2847
2848         subsys->instance = -1;
2849         mutex_init(&subsys->lock);
2850         kref_init(&subsys->ref);
2851         INIT_LIST_HEAD(&subsys->ctrls);
2852         INIT_LIST_HEAD(&subsys->nsheads);
2853         nvme_init_subnqn(subsys, ctrl, id);
2854         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2855         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2856         subsys->vendor_id = le16_to_cpu(id->vid);
2857         subsys->cmic = id->cmic;
2858
2859         /* Versions prior to 1.4 don't necessarily report a valid type */
2860         if (id->cntrltype == NVME_CTRL_DISC ||
2861             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2862                 subsys->subtype = NVME_NQN_DISC;
2863         else
2864                 subsys->subtype = NVME_NQN_NVME;
2865
2866         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2867                 dev_err(ctrl->device,
2868                         "Subsystem %s is not a discovery controller",
2869                         subsys->subnqn);
2870                 kfree(subsys);
2871                 return -EINVAL;
2872         }
2873         subsys->awupf = le16_to_cpu(id->awupf);
2874         nvme_mpath_default_iopolicy(subsys);
2875
2876         subsys->dev.class = nvme_subsys_class;
2877         subsys->dev.release = nvme_release_subsystem;
2878         subsys->dev.groups = nvme_subsys_attrs_groups;
2879         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2880         device_initialize(&subsys->dev);
2881
2882         mutex_lock(&nvme_subsystems_lock);
2883         found = __nvme_find_get_subsystem(subsys->subnqn);
2884         if (found) {
2885                 put_device(&subsys->dev);
2886                 subsys = found;
2887
2888                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2889                         ret = -EINVAL;
2890                         goto out_put_subsystem;
2891                 }
2892         } else {
2893                 ret = device_add(&subsys->dev);
2894                 if (ret) {
2895                         dev_err(ctrl->device,
2896                                 "failed to register subsystem device.\n");
2897                         put_device(&subsys->dev);
2898                         goto out_unlock;
2899                 }
2900                 ida_init(&subsys->ns_ida);
2901                 list_add_tail(&subsys->entry, &nvme_subsystems);
2902         }
2903
2904         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2905                                 dev_name(ctrl->device));
2906         if (ret) {
2907                 dev_err(ctrl->device,
2908                         "failed to create sysfs link from subsystem.\n");
2909                 goto out_put_subsystem;
2910         }
2911
2912         if (!found)
2913                 subsys->instance = ctrl->instance;
2914         ctrl->subsys = subsys;
2915         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2916         mutex_unlock(&nvme_subsystems_lock);
2917         return 0;
2918
2919 out_put_subsystem:
2920         nvme_put_subsystem(subsys);
2921 out_unlock:
2922         mutex_unlock(&nvme_subsystems_lock);
2923         return ret;
2924 }
2925
2926 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2927                 void *log, size_t size, u64 offset)
2928 {
2929         struct nvme_command c = { };
2930         u32 dwlen = nvme_bytes_to_numd(size);
2931
2932         c.get_log_page.opcode = nvme_admin_get_log_page;
2933         c.get_log_page.nsid = cpu_to_le32(nsid);
2934         c.get_log_page.lid = log_page;
2935         c.get_log_page.lsp = lsp;
2936         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2937         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2938         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2939         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2940         c.get_log_page.csi = csi;
2941
2942         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2943 }
2944
2945 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2946                                 struct nvme_effects_log **log)
2947 {
2948         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2949         int ret;
2950
2951         if (cel)
2952                 goto out;
2953
2954         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2955         if (!cel)
2956                 return -ENOMEM;
2957
2958         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2959                         cel, sizeof(*cel), 0);
2960         if (ret) {
2961                 kfree(cel);
2962                 return ret;
2963         }
2964
2965         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2966 out:
2967         *log = cel;
2968         return 0;
2969 }
2970
2971 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2972 {
2973         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2974
2975         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2976                 return UINT_MAX;
2977         return val;
2978 }
2979
2980 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2981 {
2982         struct nvme_command c = { };
2983         struct nvme_id_ctrl_nvm *id;
2984         int ret;
2985
2986         /*
2987          * Even though NVMe spec explicitly states that MDTS is not applicable
2988          * to the write-zeroes, we are cautious and limit the size to the
2989          * controllers max_hw_sectors value, which is based on the MDTS field
2990          * and possibly other limiting factors.
2991          */
2992         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2993             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2994                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2995         else
2996                 ctrl->max_zeroes_sectors = 0;
2997
2998         if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2999             nvme_ctrl_limited_cns(ctrl) ||
3000             test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3001                 return 0;
3002
3003         id = kzalloc(sizeof(*id), GFP_KERNEL);
3004         if (!id)
3005                 return -ENOMEM;
3006
3007         c.identify.opcode = nvme_admin_identify;
3008         c.identify.cns = NVME_ID_CNS_CS_CTRL;
3009         c.identify.csi = NVME_CSI_NVM;
3010
3011         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3012         if (ret)
3013                 goto free_data;
3014
3015         ctrl->dmrl = id->dmrl;
3016         ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3017         if (id->wzsl)
3018                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3019
3020 free_data:
3021         if (ret > 0)
3022                 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3023         kfree(id);
3024         return ret;
3025 }
3026
3027 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3028 {
3029         struct nvme_effects_log *log = ctrl->effects;
3030
3031         log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3032                                                 NVME_CMD_EFFECTS_NCC |
3033                                                 NVME_CMD_EFFECTS_CSE_MASK);
3034         log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3035                                                 NVME_CMD_EFFECTS_CSE_MASK);
3036
3037         /*
3038          * The spec says the result of a security receive command depends on
3039          * the previous security send command. As such, many vendors log this
3040          * command as one to submitted only when no other commands to the same
3041          * namespace are outstanding. The intention is to tell the host to
3042          * prevent mixing security send and receive.
3043          *
3044          * This driver can only enforce such exclusive access against IO
3045          * queues, though. We are not readily able to enforce such a rule for
3046          * two commands to the admin queue, which is the only queue that
3047          * matters for this command.
3048          *
3049          * Rather than blindly freezing the IO queues for this effect that
3050          * doesn't even apply to IO, mask it off.
3051          */
3052         log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3053
3054         log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3055         log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3056         log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3057 }
3058
3059 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3060 {
3061         int ret = 0;
3062
3063         if (ctrl->effects)
3064                 return 0;
3065
3066         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3067                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3068                 if (ret < 0)
3069                         return ret;
3070         }
3071
3072         if (!ctrl->effects) {
3073                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3074                 if (!ctrl->effects)
3075                         return -ENOMEM;
3076                 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3077         }
3078
3079         nvme_init_known_nvm_effects(ctrl);
3080         return 0;
3081 }
3082
3083 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3084 {
3085         /*
3086          * In fabrics we need to verify the cntlid matches the
3087          * admin connect
3088          */
3089         if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3090                 dev_err(ctrl->device,
3091                         "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3092                         ctrl->cntlid, le16_to_cpu(id->cntlid));
3093                 return -EINVAL;
3094         }
3095
3096         if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3097                 dev_err(ctrl->device,
3098                         "keep-alive support is mandatory for fabrics\n");
3099                 return -EINVAL;
3100         }
3101
3102         if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3103                 dev_err(ctrl->device,
3104                         "I/O queue command capsule supported size %d < 4\n",
3105                         ctrl->ioccsz);
3106                 return -EINVAL;
3107         }
3108
3109         if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3110                 dev_err(ctrl->device,
3111                         "I/O queue response capsule supported size %d < 1\n",
3112                         ctrl->iorcsz);
3113                 return -EINVAL;
3114         }
3115
3116         return 0;
3117 }
3118
3119 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3120 {
3121         struct nvme_id_ctrl *id;
3122         u32 max_hw_sectors;
3123         bool prev_apst_enabled;
3124         int ret;
3125
3126         ret = nvme_identify_ctrl(ctrl, &id);
3127         if (ret) {
3128                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3129                 return -EIO;
3130         }
3131
3132         if (!(ctrl->ops->flags & NVME_F_FABRICS))
3133                 ctrl->cntlid = le16_to_cpu(id->cntlid);
3134
3135         if (!ctrl->identified) {
3136                 unsigned int i;
3137
3138                 /*
3139                  * Check for quirks.  Quirk can depend on firmware version,
3140                  * so, in principle, the set of quirks present can change
3141                  * across a reset.  As a possible future enhancement, we
3142                  * could re-scan for quirks every time we reinitialize
3143                  * the device, but we'd have to make sure that the driver
3144                  * behaves intelligently if the quirks change.
3145                  */
3146                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3147                         if (quirk_matches(id, &core_quirks[i]))
3148                                 ctrl->quirks |= core_quirks[i].quirks;
3149                 }
3150
3151                 ret = nvme_init_subsystem(ctrl, id);
3152                 if (ret)
3153                         goto out_free;
3154
3155                 ret = nvme_init_effects(ctrl, id);
3156                 if (ret)
3157                         goto out_free;
3158         }
3159         memcpy(ctrl->subsys->firmware_rev, id->fr,
3160                sizeof(ctrl->subsys->firmware_rev));
3161
3162         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3163                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3164                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3165         }
3166
3167         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3168         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3169         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3170
3171         ctrl->oacs = le16_to_cpu(id->oacs);
3172         ctrl->oncs = le16_to_cpu(id->oncs);
3173         ctrl->mtfa = le16_to_cpu(id->mtfa);
3174         ctrl->oaes = le32_to_cpu(id->oaes);
3175         ctrl->wctemp = le16_to_cpu(id->wctemp);
3176         ctrl->cctemp = le16_to_cpu(id->cctemp);
3177
3178         atomic_set(&ctrl->abort_limit, id->acl + 1);
3179         ctrl->vwc = id->vwc;
3180         if (id->mdts)
3181                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3182         else
3183                 max_hw_sectors = UINT_MAX;
3184         ctrl->max_hw_sectors =
3185                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3186
3187         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3188         ctrl->sgls = le32_to_cpu(id->sgls);
3189         ctrl->kas = le16_to_cpu(id->kas);
3190         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3191         ctrl->ctratt = le32_to_cpu(id->ctratt);
3192
3193         ctrl->cntrltype = id->cntrltype;
3194         ctrl->dctype = id->dctype;
3195
3196         if (id->rtd3e) {
3197                 /* us -> s */
3198                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3199
3200                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3201                                                  shutdown_timeout, 60);
3202
3203                 if (ctrl->shutdown_timeout != shutdown_timeout)
3204                         dev_info(ctrl->device,
3205                                  "Shutdown timeout set to %u seconds\n",
3206                                  ctrl->shutdown_timeout);
3207         } else
3208                 ctrl->shutdown_timeout = shutdown_timeout;
3209
3210         ctrl->npss = id->npss;
3211         ctrl->apsta = id->apsta;
3212         prev_apst_enabled = ctrl->apst_enabled;
3213         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3214                 if (force_apst && id->apsta) {
3215                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3216                         ctrl->apst_enabled = true;
3217                 } else {
3218                         ctrl->apst_enabled = false;
3219                 }
3220         } else {
3221                 ctrl->apst_enabled = id->apsta;
3222         }
3223         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3224
3225         if (ctrl->ops->flags & NVME_F_FABRICS) {
3226                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3227                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3228                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3229                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3230
3231                 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3232                 if (ret)
3233                         goto out_free;
3234         } else {
3235                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3236                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3237                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3238                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3239         }
3240
3241         ret = nvme_mpath_init_identify(ctrl, id);
3242         if (ret < 0)
3243                 goto out_free;
3244
3245         if (ctrl->apst_enabled && !prev_apst_enabled)
3246                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3247         else if (!ctrl->apst_enabled && prev_apst_enabled)
3248                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3249
3250 out_free:
3251         kfree(id);
3252         return ret;
3253 }
3254
3255 /*
3256  * Initialize the cached copies of the Identify data and various controller
3257  * register in our nvme_ctrl structure.  This should be called as soon as
3258  * the admin queue is fully up and running.
3259  */
3260 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3261 {
3262         int ret;
3263
3264         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3265         if (ret) {
3266                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3267                 return ret;
3268         }
3269
3270         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3271
3272         if (ctrl->vs >= NVME_VS(1, 1, 0))
3273                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3274
3275         ret = nvme_init_identify(ctrl);
3276         if (ret)
3277                 return ret;
3278
3279         ret = nvme_configure_apst(ctrl);
3280         if (ret < 0)
3281                 return ret;
3282
3283         ret = nvme_configure_timestamp(ctrl);
3284         if (ret < 0)
3285                 return ret;
3286
3287         ret = nvme_configure_host_options(ctrl);
3288         if (ret < 0)
3289                 return ret;
3290
3291         nvme_configure_opal(ctrl, was_suspended);
3292
3293         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3294                 /*
3295                  * Do not return errors unless we are in a controller reset,
3296                  * the controller works perfectly fine without hwmon.
3297                  */
3298                 ret = nvme_hwmon_init(ctrl);
3299                 if (ret == -EINTR)
3300                         return ret;
3301         }
3302
3303         clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3304         ctrl->identified = true;
3305
3306         nvme_start_keep_alive(ctrl);
3307
3308         return 0;
3309 }
3310 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3311
3312 static int nvme_dev_open(struct inode *inode, struct file *file)
3313 {
3314         struct nvme_ctrl *ctrl =
3315                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3316
3317         switch (nvme_ctrl_state(ctrl)) {
3318         case NVME_CTRL_LIVE:
3319                 break;
3320         default:
3321                 return -EWOULDBLOCK;
3322         }
3323
3324         nvme_get_ctrl(ctrl);
3325         if (!try_module_get(ctrl->ops->module)) {
3326                 nvme_put_ctrl(ctrl);
3327                 return -EINVAL;
3328         }
3329
3330         file->private_data = ctrl;
3331         return 0;
3332 }
3333
3334 static int nvme_dev_release(struct inode *inode, struct file *file)
3335 {
3336         struct nvme_ctrl *ctrl =
3337                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3338
3339         module_put(ctrl->ops->module);
3340         nvme_put_ctrl(ctrl);
3341         return 0;
3342 }
3343
3344 static const struct file_operations nvme_dev_fops = {
3345         .owner          = THIS_MODULE,
3346         .open           = nvme_dev_open,
3347         .release        = nvme_dev_release,
3348         .unlocked_ioctl = nvme_dev_ioctl,
3349         .compat_ioctl   = compat_ptr_ioctl,
3350         .uring_cmd      = nvme_dev_uring_cmd,
3351 };
3352
3353 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3354                 unsigned nsid)
3355 {
3356         struct nvme_ns_head *h;
3357
3358         lockdep_assert_held(&ctrl->subsys->lock);
3359
3360         list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3361                 /*
3362                  * Private namespaces can share NSIDs under some conditions.
3363                  * In that case we can't use the same ns_head for namespaces
3364                  * with the same NSID.
3365                  */
3366                 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3367                         continue;
3368                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3369                         return h;
3370         }
3371
3372         return NULL;
3373 }
3374
3375 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3376                 struct nvme_ns_ids *ids)
3377 {
3378         bool has_uuid = !uuid_is_null(&ids->uuid);
3379         bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3380         bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3381         struct nvme_ns_head *h;
3382
3383         lockdep_assert_held(&subsys->lock);
3384
3385         list_for_each_entry(h, &subsys->nsheads, entry) {
3386                 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3387                         return -EINVAL;
3388                 if (has_nguid &&
3389                     memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3390                         return -EINVAL;
3391                 if (has_eui64 &&
3392                     memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3393                         return -EINVAL;
3394         }
3395
3396         return 0;
3397 }
3398
3399 static void nvme_cdev_rel(struct device *dev)
3400 {
3401         ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3402 }
3403
3404 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3405 {
3406         cdev_device_del(cdev, cdev_device);
3407         put_device(cdev_device);
3408 }
3409
3410 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3411                 const struct file_operations *fops, struct module *owner)
3412 {
3413         int minor, ret;
3414
3415         minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3416         if (minor < 0)
3417                 return minor;
3418         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3419         cdev_device->class = nvme_ns_chr_class;
3420         cdev_device->release = nvme_cdev_rel;
3421         device_initialize(cdev_device);
3422         cdev_init(cdev, fops);
3423         cdev->owner = owner;
3424         ret = cdev_device_add(cdev, cdev_device);
3425         if (ret)
3426                 put_device(cdev_device);
3427
3428         return ret;
3429 }
3430
3431 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3432 {
3433         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3434 }
3435
3436 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3437 {
3438         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3439         return 0;
3440 }
3441
3442 static const struct file_operations nvme_ns_chr_fops = {
3443         .owner          = THIS_MODULE,
3444         .open           = nvme_ns_chr_open,
3445         .release        = nvme_ns_chr_release,
3446         .unlocked_ioctl = nvme_ns_chr_ioctl,
3447         .compat_ioctl   = compat_ptr_ioctl,
3448         .uring_cmd      = nvme_ns_chr_uring_cmd,
3449         .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3450 };
3451
3452 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3453 {
3454         int ret;
3455
3456         ns->cdev_device.parent = ns->ctrl->device;
3457         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3458                            ns->ctrl->instance, ns->head->instance);
3459         if (ret)
3460                 return ret;
3461
3462         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3463                              ns->ctrl->ops->module);
3464 }
3465
3466 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3467                 struct nvme_ns_info *info)
3468 {
3469         struct nvme_ns_head *head;
3470         size_t size = sizeof(*head);
3471         int ret = -ENOMEM;
3472
3473 #ifdef CONFIG_NVME_MULTIPATH
3474         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3475 #endif
3476
3477         head = kzalloc(size, GFP_KERNEL);
3478         if (!head)
3479                 goto out;
3480         ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3481         if (ret < 0)
3482                 goto out_free_head;
3483         head->instance = ret;
3484         INIT_LIST_HEAD(&head->list);
3485         ret = init_srcu_struct(&head->srcu);
3486         if (ret)
3487                 goto out_ida_remove;
3488         head->subsys = ctrl->subsys;
3489         head->ns_id = info->nsid;
3490         head->ids = info->ids;
3491         head->shared = info->is_shared;
3492         ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3493         ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3494         kref_init(&head->ref);
3495
3496         if (head->ids.csi) {
3497                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3498                 if (ret)
3499                         goto out_cleanup_srcu;
3500         } else
3501                 head->effects = ctrl->effects;
3502
3503         ret = nvme_mpath_alloc_disk(ctrl, head);
3504         if (ret)
3505                 goto out_cleanup_srcu;
3506
3507         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3508
3509         kref_get(&ctrl->subsys->ref);
3510
3511         return head;
3512 out_cleanup_srcu:
3513         cleanup_srcu_struct(&head->srcu);
3514 out_ida_remove:
3515         ida_free(&ctrl->subsys->ns_ida, head->instance);
3516 out_free_head:
3517         kfree(head);
3518 out:
3519         if (ret > 0)
3520                 ret = blk_status_to_errno(nvme_error_status(ret));
3521         return ERR_PTR(ret);
3522 }
3523
3524 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3525                 struct nvme_ns_ids *ids)
3526 {
3527         struct nvme_subsystem *s;
3528         int ret = 0;
3529
3530         /*
3531          * Note that this check is racy as we try to avoid holding the global
3532          * lock over the whole ns_head creation.  But it is only intended as
3533          * a sanity check anyway.
3534          */
3535         mutex_lock(&nvme_subsystems_lock);
3536         list_for_each_entry(s, &nvme_subsystems, entry) {
3537                 if (s == this)
3538                         continue;
3539                 mutex_lock(&s->lock);
3540                 ret = nvme_subsys_check_duplicate_ids(s, ids);
3541                 mutex_unlock(&s->lock);
3542                 if (ret)
3543                         break;
3544         }
3545         mutex_unlock(&nvme_subsystems_lock);
3546
3547         return ret;
3548 }
3549
3550 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3551 {
3552         struct nvme_ctrl *ctrl = ns->ctrl;
3553         struct nvme_ns_head *head = NULL;
3554         int ret;
3555
3556         ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3557         if (ret) {
3558                 /*
3559                  * We've found two different namespaces on two different
3560                  * subsystems that report the same ID.  This is pretty nasty
3561                  * for anything that actually requires unique device
3562                  * identification.  In the kernel we need this for multipathing,
3563                  * and in user space the /dev/disk/by-id/ links rely on it.
3564                  *
3565                  * If the device also claims to be multi-path capable back off
3566                  * here now and refuse the probe the second device as this is a
3567                  * recipe for data corruption.  If not this is probably a
3568                  * cheap consumer device if on the PCIe bus, so let the user
3569                  * proceed and use the shiny toy, but warn that with changing
3570                  * probing order (which due to our async probing could just be
3571                  * device taking longer to startup) the other device could show
3572                  * up at any time.
3573                  */
3574                 nvme_print_device_info(ctrl);
3575                 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3576                     ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3577                      info->is_shared)) {
3578                         dev_err(ctrl->device,
3579                                 "ignoring nsid %d because of duplicate IDs\n",
3580                                 info->nsid);
3581                         return ret;
3582                 }
3583
3584                 dev_err(ctrl->device,
3585                         "clearing duplicate IDs for nsid %d\n", info->nsid);
3586                 dev_err(ctrl->device,
3587                         "use of /dev/disk/by-id/ may cause data corruption\n");
3588                 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3589                 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3590                 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3591                 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3592         }
3593
3594         mutex_lock(&ctrl->subsys->lock);
3595         head = nvme_find_ns_head(ctrl, info->nsid);
3596         if (!head) {
3597                 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3598                 if (ret) {
3599                         dev_err(ctrl->device,
3600                                 "duplicate IDs in subsystem for nsid %d\n",
3601                                 info->nsid);
3602                         goto out_unlock;
3603                 }
3604                 head = nvme_alloc_ns_head(ctrl, info);
3605                 if (IS_ERR(head)) {
3606                         ret = PTR_ERR(head);
3607                         goto out_unlock;
3608                 }
3609         } else {
3610                 ret = -EINVAL;
3611                 if (!info->is_shared || !head->shared) {
3612                         dev_err(ctrl->device,
3613                                 "Duplicate unshared namespace %d\n",
3614                                 info->nsid);
3615                         goto out_put_ns_head;
3616                 }
3617                 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3618                         dev_err(ctrl->device,
3619                                 "IDs don't match for shared namespace %d\n",
3620                                         info->nsid);
3621                         goto out_put_ns_head;
3622                 }
3623
3624                 if (!multipath) {
3625                         dev_warn(ctrl->device,
3626                                 "Found shared namespace %d, but multipathing not supported.\n",
3627                                 info->nsid);
3628                         dev_warn_once(ctrl->device,
3629                                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3630                 }
3631         }
3632
3633         list_add_tail_rcu(&ns->siblings, &head->list);
3634         ns->head = head;
3635         mutex_unlock(&ctrl->subsys->lock);
3636         return 0;
3637
3638 out_put_ns_head:
3639         nvme_put_ns_head(head);
3640 out_unlock:
3641         mutex_unlock(&ctrl->subsys->lock);
3642         return ret;
3643 }
3644
3645 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3646 {
3647         struct nvme_ns *ns, *ret = NULL;
3648
3649         down_read(&ctrl->namespaces_rwsem);
3650         list_for_each_entry(ns, &ctrl->namespaces, list) {
3651                 if (ns->head->ns_id == nsid) {
3652                         if (!nvme_get_ns(ns))
3653                                 continue;
3654                         ret = ns;
3655                         break;
3656                 }
3657                 if (ns->head->ns_id > nsid)
3658                         break;
3659         }
3660         up_read(&ctrl->namespaces_rwsem);
3661         return ret;
3662 }
3663 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3664
3665 /*
3666  * Add the namespace to the controller list while keeping the list ordered.
3667  */
3668 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3669 {
3670         struct nvme_ns *tmp;
3671
3672         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3673                 if (tmp->head->ns_id < ns->head->ns_id) {
3674                         list_add(&ns->list, &tmp->list);
3675                         return;
3676                 }
3677         }
3678         list_add(&ns->list, &ns->ctrl->namespaces);
3679 }
3680
3681 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3682 {
3683         struct nvme_ns *ns;
3684         struct gendisk *disk;
3685         int node = ctrl->numa_node;
3686
3687         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3688         if (!ns)
3689                 return;
3690
3691         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3692         if (IS_ERR(disk))
3693                 goto out_free_ns;
3694         disk->fops = &nvme_bdev_ops;
3695         disk->private_data = ns;
3696
3697         ns->disk = disk;
3698         ns->queue = disk->queue;
3699
3700         if (ctrl->opts && ctrl->opts->data_digest)
3701                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3702
3703         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3704         if (ctrl->ops->supports_pci_p2pdma &&
3705             ctrl->ops->supports_pci_p2pdma(ctrl))
3706                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3707
3708         ns->ctrl = ctrl;
3709         kref_init(&ns->kref);
3710
3711         if (nvme_init_ns_head(ns, info))
3712                 goto out_cleanup_disk;
3713
3714         /*
3715          * If multipathing is enabled, the device name for all disks and not
3716          * just those that represent shared namespaces needs to be based on the
3717          * subsystem instance.  Using the controller instance for private
3718          * namespaces could lead to naming collisions between shared and private
3719          * namespaces if they don't use a common numbering scheme.
3720          *
3721          * If multipathing is not enabled, disk names must use the controller
3722          * instance as shared namespaces will show up as multiple block
3723          * devices.
3724          */
3725         if (nvme_ns_head_multipath(ns->head)) {
3726                 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3727                         ctrl->instance, ns->head->instance);
3728                 disk->flags |= GENHD_FL_HIDDEN;
3729         } else if (multipath) {
3730                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3731                         ns->head->instance);
3732         } else {
3733                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3734                         ns->head->instance);
3735         }
3736
3737         if (nvme_update_ns_info(ns, info))
3738                 goto out_unlink_ns;
3739
3740         down_write(&ctrl->namespaces_rwsem);
3741         /*
3742          * Ensure that no namespaces are added to the ctrl list after the queues
3743          * are frozen, thereby avoiding a deadlock between scan and reset.
3744          */
3745         if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3746                 up_write(&ctrl->namespaces_rwsem);
3747                 goto out_unlink_ns;
3748         }
3749         nvme_ns_add_to_ctrl_list(ns);
3750         up_write(&ctrl->namespaces_rwsem);
3751         nvme_get_ctrl(ctrl);
3752
3753         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3754                 goto out_cleanup_ns_from_list;
3755
3756         if (!nvme_ns_head_multipath(ns->head))
3757                 nvme_add_ns_cdev(ns);
3758
3759         nvme_mpath_add_disk(ns, info->anagrpid);
3760         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3761
3762         /*
3763          * Set ns->disk->device->driver_data to ns so we can access
3764          * ns->head->passthru_err_log_enabled in
3765          * nvme_io_passthru_err_log_enabled_[store | show]().
3766          */
3767         dev_set_drvdata(disk_to_dev(ns->disk), ns);
3768
3769         return;
3770
3771  out_cleanup_ns_from_list:
3772         nvme_put_ctrl(ctrl);
3773         down_write(&ctrl->namespaces_rwsem);
3774         list_del_init(&ns->list);
3775         up_write(&ctrl->namespaces_rwsem);
3776  out_unlink_ns:
3777         mutex_lock(&ctrl->subsys->lock);
3778         list_del_rcu(&ns->siblings);
3779         if (list_empty(&ns->head->list))
3780                 list_del_init(&ns->head->entry);
3781         mutex_unlock(&ctrl->subsys->lock);
3782         nvme_put_ns_head(ns->head);
3783  out_cleanup_disk:
3784         put_disk(disk);
3785  out_free_ns:
3786         kfree(ns);
3787 }
3788
3789 static void nvme_ns_remove(struct nvme_ns *ns)
3790 {
3791         bool last_path = false;
3792
3793         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3794                 return;
3795
3796         clear_bit(NVME_NS_READY, &ns->flags);
3797         set_capacity(ns->disk, 0);
3798         nvme_fault_inject_fini(&ns->fault_inject);
3799
3800         /*
3801          * Ensure that !NVME_NS_READY is seen by other threads to prevent
3802          * this ns going back into current_path.
3803          */
3804         synchronize_srcu(&ns->head->srcu);
3805
3806         /* wait for concurrent submissions */
3807         if (nvme_mpath_clear_current_path(ns))
3808                 synchronize_srcu(&ns->head->srcu);
3809
3810         mutex_lock(&ns->ctrl->subsys->lock);
3811         list_del_rcu(&ns->siblings);
3812         if (list_empty(&ns->head->list)) {
3813                 list_del_init(&ns->head->entry);
3814                 last_path = true;
3815         }
3816         mutex_unlock(&ns->ctrl->subsys->lock);
3817
3818         /* guarantee not available in head->list */
3819         synchronize_srcu(&ns->head->srcu);
3820
3821         if (!nvme_ns_head_multipath(ns->head))
3822                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3823         del_gendisk(ns->disk);
3824
3825         down_write(&ns->ctrl->namespaces_rwsem);
3826         list_del_init(&ns->list);
3827         up_write(&ns->ctrl->namespaces_rwsem);
3828
3829         if (last_path)
3830                 nvme_mpath_shutdown_disk(ns->head);
3831         nvme_put_ns(ns);
3832 }
3833
3834 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3835 {
3836         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3837
3838         if (ns) {
3839                 nvme_ns_remove(ns);
3840                 nvme_put_ns(ns);
3841         }
3842 }
3843
3844 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3845 {
3846         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3847
3848         if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3849                 dev_err(ns->ctrl->device,
3850                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3851                 goto out;
3852         }
3853
3854         ret = nvme_update_ns_info(ns, info);
3855 out:
3856         /*
3857          * Only remove the namespace if we got a fatal error back from the
3858          * device, otherwise ignore the error and just move on.
3859          *
3860          * TODO: we should probably schedule a delayed retry here.
3861          */
3862         if (ret > 0 && (ret & NVME_SC_DNR))
3863                 nvme_ns_remove(ns);
3864 }
3865
3866 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3867 {
3868         struct nvme_ns_info info = { .nsid = nsid };
3869         struct nvme_ns *ns;
3870         int ret;
3871
3872         if (nvme_identify_ns_descs(ctrl, &info))
3873                 return;
3874
3875         if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3876                 dev_warn(ctrl->device,
3877                         "command set not reported for nsid: %d\n", nsid);
3878                 return;
3879         }
3880
3881         /*
3882          * If available try to use the Command Set Idependent Identify Namespace
3883          * data structure to find all the generic information that is needed to
3884          * set up a namespace.  If not fall back to the legacy version.
3885          */
3886         if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3887             (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3888                 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3889         else
3890                 ret = nvme_ns_info_from_identify(ctrl, &info);
3891
3892         if (info.is_removed)
3893                 nvme_ns_remove_by_nsid(ctrl, nsid);
3894
3895         /*
3896          * Ignore the namespace if it is not ready. We will get an AEN once it
3897          * becomes ready and restart the scan.
3898          */
3899         if (ret || !info.is_ready)
3900                 return;
3901
3902         ns = nvme_find_get_ns(ctrl, nsid);
3903         if (ns) {
3904                 nvme_validate_ns(ns, &info);
3905                 nvme_put_ns(ns);
3906         } else {
3907                 nvme_alloc_ns(ctrl, &info);
3908         }
3909 }
3910
3911 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3912                                         unsigned nsid)
3913 {
3914         struct nvme_ns *ns, *next;
3915         LIST_HEAD(rm_list);
3916
3917         down_write(&ctrl->namespaces_rwsem);
3918         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3919                 if (ns->head->ns_id > nsid)
3920                         list_move_tail(&ns->list, &rm_list);
3921         }
3922         up_write(&ctrl->namespaces_rwsem);
3923
3924         list_for_each_entry_safe(ns, next, &rm_list, list)
3925                 nvme_ns_remove(ns);
3926
3927 }
3928
3929 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3930 {
3931         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3932         __le32 *ns_list;
3933         u32 prev = 0;
3934         int ret = 0, i;
3935
3936         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3937         if (!ns_list)
3938                 return -ENOMEM;
3939
3940         for (;;) {
3941                 struct nvme_command cmd = {
3942                         .identify.opcode        = nvme_admin_identify,
3943                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
3944                         .identify.nsid          = cpu_to_le32(prev),
3945                 };
3946
3947                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3948                                             NVME_IDENTIFY_DATA_SIZE);
3949                 if (ret) {
3950                         dev_warn(ctrl->device,
3951                                 "Identify NS List failed (status=0x%x)\n", ret);
3952                         goto free;
3953                 }
3954
3955                 for (i = 0; i < nr_entries; i++) {
3956                         u32 nsid = le32_to_cpu(ns_list[i]);
3957
3958                         if (!nsid)      /* end of the list? */
3959                                 goto out;
3960                         nvme_scan_ns(ctrl, nsid);
3961                         while (++prev < nsid)
3962                                 nvme_ns_remove_by_nsid(ctrl, prev);
3963                 }
3964         }
3965  out:
3966         nvme_remove_invalid_namespaces(ctrl, prev);
3967  free:
3968         kfree(ns_list);
3969         return ret;
3970 }
3971
3972 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3973 {
3974         struct nvme_id_ctrl *id;
3975         u32 nn, i;
3976
3977         if (nvme_identify_ctrl(ctrl, &id))
3978                 return;
3979         nn = le32_to_cpu(id->nn);
3980         kfree(id);
3981
3982         for (i = 1; i <= nn; i++)
3983                 nvme_scan_ns(ctrl, i);
3984
3985         nvme_remove_invalid_namespaces(ctrl, nn);
3986 }
3987
3988 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3989 {
3990         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3991         __le32 *log;
3992         int error;
3993
3994         log = kzalloc(log_size, GFP_KERNEL);
3995         if (!log)
3996                 return;
3997
3998         /*
3999          * We need to read the log to clear the AEN, but we don't want to rely
4000          * on it for the changed namespace information as userspace could have
4001          * raced with us in reading the log page, which could cause us to miss
4002          * updates.
4003          */
4004         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4005                         NVME_CSI_NVM, log, log_size, 0);
4006         if (error)
4007                 dev_warn(ctrl->device,
4008                         "reading changed ns log failed: %d\n", error);
4009
4010         kfree(log);
4011 }
4012
4013 static void nvme_scan_work(struct work_struct *work)
4014 {
4015         struct nvme_ctrl *ctrl =
4016                 container_of(work, struct nvme_ctrl, scan_work);
4017         int ret;
4018
4019         /* No tagset on a live ctrl means IO queues could not created */
4020         if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4021                 return;
4022
4023         /*
4024          * Identify controller limits can change at controller reset due to
4025          * new firmware download, even though it is not common we cannot ignore
4026          * such scenario. Controller's non-mdts limits are reported in the unit
4027          * of logical blocks that is dependent on the format of attached
4028          * namespace. Hence re-read the limits at the time of ns allocation.
4029          */
4030         ret = nvme_init_non_mdts_limits(ctrl);
4031         if (ret < 0) {
4032                 dev_warn(ctrl->device,
4033                         "reading non-mdts-limits failed: %d\n", ret);
4034                 return;
4035         }
4036
4037         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4038                 dev_info(ctrl->device, "rescanning namespaces.\n");
4039                 nvme_clear_changed_ns_log(ctrl);
4040         }
4041
4042         mutex_lock(&ctrl->scan_lock);
4043         if (nvme_ctrl_limited_cns(ctrl)) {
4044                 nvme_scan_ns_sequential(ctrl);
4045         } else {
4046                 /*
4047                  * Fall back to sequential scan if DNR is set to handle broken
4048                  * devices which should support Identify NS List (as per the VS
4049                  * they report) but don't actually support it.
4050                  */
4051                 ret = nvme_scan_ns_list(ctrl);
4052                 if (ret > 0 && ret & NVME_SC_DNR)
4053                         nvme_scan_ns_sequential(ctrl);
4054         }
4055         mutex_unlock(&ctrl->scan_lock);
4056 }
4057
4058 /*
4059  * This function iterates the namespace list unlocked to allow recovery from
4060  * controller failure. It is up to the caller to ensure the namespace list is
4061  * not modified by scan work while this function is executing.
4062  */
4063 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4064 {
4065         struct nvme_ns *ns, *next;
4066         LIST_HEAD(ns_list);
4067
4068         /*
4069          * make sure to requeue I/O to all namespaces as these
4070          * might result from the scan itself and must complete
4071          * for the scan_work to make progress
4072          */
4073         nvme_mpath_clear_ctrl_paths(ctrl);
4074
4075         /*
4076          * Unquiesce io queues so any pending IO won't hang, especially
4077          * those submitted from scan work
4078          */
4079         nvme_unquiesce_io_queues(ctrl);
4080
4081         /* prevent racing with ns scanning */
4082         flush_work(&ctrl->scan_work);
4083
4084         /*
4085          * The dead states indicates the controller was not gracefully
4086          * disconnected. In that case, we won't be able to flush any data while
4087          * removing the namespaces' disks; fail all the queues now to avoid
4088          * potentially having to clean up the failed sync later.
4089          */
4090         if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4091                 nvme_mark_namespaces_dead(ctrl);
4092
4093         /* this is a no-op when called from the controller reset handler */
4094         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4095
4096         down_write(&ctrl->namespaces_rwsem);
4097         list_splice_init(&ctrl->namespaces, &ns_list);
4098         up_write(&ctrl->namespaces_rwsem);
4099
4100         list_for_each_entry_safe(ns, next, &ns_list, list)
4101                 nvme_ns_remove(ns);
4102 }
4103 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4104
4105 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4106 {
4107         const struct nvme_ctrl *ctrl =
4108                 container_of(dev, struct nvme_ctrl, ctrl_device);
4109         struct nvmf_ctrl_options *opts = ctrl->opts;
4110         int ret;
4111
4112         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4113         if (ret)
4114                 return ret;
4115
4116         if (opts) {
4117                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4118                 if (ret)
4119                         return ret;
4120
4121                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4122                                 opts->trsvcid ?: "none");
4123                 if (ret)
4124                         return ret;
4125
4126                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4127                                 opts->host_traddr ?: "none");
4128                 if (ret)
4129                         return ret;
4130
4131                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4132                                 opts->host_iface ?: "none");
4133         }
4134         return ret;
4135 }
4136
4137 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4138 {
4139         char *envp[2] = { envdata, NULL };
4140
4141         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4142 }
4143
4144 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4145 {
4146         char *envp[2] = { NULL, NULL };
4147         u32 aen_result = ctrl->aen_result;
4148
4149         ctrl->aen_result = 0;
4150         if (!aen_result)
4151                 return;
4152
4153         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4154         if (!envp[0])
4155                 return;
4156         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4157         kfree(envp[0]);
4158 }
4159
4160 static void nvme_async_event_work(struct work_struct *work)
4161 {
4162         struct nvme_ctrl *ctrl =
4163                 container_of(work, struct nvme_ctrl, async_event_work);
4164
4165         nvme_aen_uevent(ctrl);
4166
4167         /*
4168          * The transport drivers must guarantee AER submission here is safe by
4169          * flushing ctrl async_event_work after changing the controller state
4170          * from LIVE and before freeing the admin queue.
4171         */
4172         if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4173                 ctrl->ops->submit_async_event(ctrl);
4174 }
4175
4176 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4177 {
4178
4179         u32 csts;
4180
4181         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4182                 return false;
4183
4184         if (csts == ~0)
4185                 return false;
4186
4187         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4188 }
4189
4190 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4191 {
4192         struct nvme_fw_slot_info_log *log;
4193         u8 next_fw_slot, cur_fw_slot;
4194
4195         log = kmalloc(sizeof(*log), GFP_KERNEL);
4196         if (!log)
4197                 return;
4198
4199         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4200                          log, sizeof(*log), 0)) {
4201                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4202                 goto out_free_log;
4203         }
4204
4205         cur_fw_slot = log->afi & 0x7;
4206         next_fw_slot = (log->afi & 0x70) >> 4;
4207         if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4208                 dev_info(ctrl->device,
4209                          "Firmware is activated after next Controller Level Reset\n");
4210                 goto out_free_log;
4211         }
4212
4213         memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4214                 sizeof(ctrl->subsys->firmware_rev));
4215
4216 out_free_log:
4217         kfree(log);
4218 }
4219
4220 static void nvme_fw_act_work(struct work_struct *work)
4221 {
4222         struct nvme_ctrl *ctrl = container_of(work,
4223                                 struct nvme_ctrl, fw_act_work);
4224         unsigned long fw_act_timeout;
4225
4226         nvme_auth_stop(ctrl);
4227
4228         if (ctrl->mtfa)
4229                 fw_act_timeout = jiffies +
4230                                 msecs_to_jiffies(ctrl->mtfa * 100);
4231         else
4232                 fw_act_timeout = jiffies +
4233                                 msecs_to_jiffies(admin_timeout * 1000);
4234
4235         nvme_quiesce_io_queues(ctrl);
4236         while (nvme_ctrl_pp_status(ctrl)) {
4237                 if (time_after(jiffies, fw_act_timeout)) {
4238                         dev_warn(ctrl->device,
4239                                 "Fw activation timeout, reset controller\n");
4240                         nvme_try_sched_reset(ctrl);
4241                         return;
4242                 }
4243                 msleep(100);
4244         }
4245
4246         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4247                 return;
4248
4249         nvme_unquiesce_io_queues(ctrl);
4250         /* read FW slot information to clear the AER */
4251         nvme_get_fw_slot_info(ctrl);
4252
4253         queue_work(nvme_wq, &ctrl->async_event_work);
4254 }
4255
4256 static u32 nvme_aer_type(u32 result)
4257 {
4258         return result & 0x7;
4259 }
4260
4261 static u32 nvme_aer_subtype(u32 result)
4262 {
4263         return (result & 0xff00) >> 8;
4264 }
4265
4266 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4267 {
4268         u32 aer_notice_type = nvme_aer_subtype(result);
4269         bool requeue = true;
4270
4271         switch (aer_notice_type) {
4272         case NVME_AER_NOTICE_NS_CHANGED:
4273                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4274                 nvme_queue_scan(ctrl);
4275                 break;
4276         case NVME_AER_NOTICE_FW_ACT_STARTING:
4277                 /*
4278                  * We are (ab)using the RESETTING state to prevent subsequent
4279                  * recovery actions from interfering with the controller's
4280                  * firmware activation.
4281                  */
4282                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4283                         requeue = false;
4284                         queue_work(nvme_wq, &ctrl->fw_act_work);
4285                 }
4286                 break;
4287 #ifdef CONFIG_NVME_MULTIPATH
4288         case NVME_AER_NOTICE_ANA:
4289                 if (!ctrl->ana_log_buf)
4290                         break;
4291                 queue_work(nvme_wq, &ctrl->ana_work);
4292                 break;
4293 #endif
4294         case NVME_AER_NOTICE_DISC_CHANGED:
4295                 ctrl->aen_result = result;
4296                 break;
4297         default:
4298                 dev_warn(ctrl->device, "async event result %08x\n", result);
4299         }
4300         return requeue;
4301 }
4302
4303 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4304 {
4305         dev_warn(ctrl->device, "resetting controller due to AER\n");
4306         nvme_reset_ctrl(ctrl);
4307 }
4308
4309 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4310                 volatile union nvme_result *res)
4311 {
4312         u32 result = le32_to_cpu(res->u32);
4313         u32 aer_type = nvme_aer_type(result);
4314         u32 aer_subtype = nvme_aer_subtype(result);
4315         bool requeue = true;
4316
4317         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4318                 return;
4319
4320         trace_nvme_async_event(ctrl, result);
4321         switch (aer_type) {
4322         case NVME_AER_NOTICE:
4323                 requeue = nvme_handle_aen_notice(ctrl, result);
4324                 break;
4325         case NVME_AER_ERROR:
4326                 /*
4327                  * For a persistent internal error, don't run async_event_work
4328                  * to submit a new AER. The controller reset will do it.
4329                  */
4330                 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4331                         nvme_handle_aer_persistent_error(ctrl);
4332                         return;
4333                 }
4334                 fallthrough;
4335         case NVME_AER_SMART:
4336         case NVME_AER_CSS:
4337         case NVME_AER_VS:
4338                 ctrl->aen_result = result;
4339                 break;
4340         default:
4341                 break;
4342         }
4343
4344         if (requeue)
4345                 queue_work(nvme_wq, &ctrl->async_event_work);
4346 }
4347 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4348
4349 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4350                 const struct blk_mq_ops *ops, unsigned int cmd_size)
4351 {
4352         int ret;
4353
4354         memset(set, 0, sizeof(*set));
4355         set->ops = ops;
4356         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4357         if (ctrl->ops->flags & NVME_F_FABRICS)
4358                 set->reserved_tags = NVMF_RESERVED_TAGS;
4359         set->numa_node = ctrl->numa_node;
4360         set->flags = BLK_MQ_F_NO_SCHED;
4361         if (ctrl->ops->flags & NVME_F_BLOCKING)
4362                 set->flags |= BLK_MQ_F_BLOCKING;
4363         set->cmd_size = cmd_size;
4364         set->driver_data = ctrl;
4365         set->nr_hw_queues = 1;
4366         set->timeout = NVME_ADMIN_TIMEOUT;
4367         ret = blk_mq_alloc_tag_set(set);
4368         if (ret)
4369                 return ret;
4370
4371         ctrl->admin_q = blk_mq_init_queue(set);
4372         if (IS_ERR(ctrl->admin_q)) {
4373                 ret = PTR_ERR(ctrl->admin_q);
4374                 goto out_free_tagset;
4375         }
4376
4377         if (ctrl->ops->flags & NVME_F_FABRICS) {
4378                 ctrl->fabrics_q = blk_mq_init_queue(set);
4379                 if (IS_ERR(ctrl->fabrics_q)) {
4380                         ret = PTR_ERR(ctrl->fabrics_q);
4381                         goto out_cleanup_admin_q;
4382                 }
4383         }
4384
4385         ctrl->admin_tagset = set;
4386         return 0;
4387
4388 out_cleanup_admin_q:
4389         blk_mq_destroy_queue(ctrl->admin_q);
4390         blk_put_queue(ctrl->admin_q);
4391 out_free_tagset:
4392         blk_mq_free_tag_set(set);
4393         ctrl->admin_q = NULL;
4394         ctrl->fabrics_q = NULL;
4395         return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4398
4399 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4400 {
4401         blk_mq_destroy_queue(ctrl->admin_q);
4402         blk_put_queue(ctrl->admin_q);
4403         if (ctrl->ops->flags & NVME_F_FABRICS) {
4404                 blk_mq_destroy_queue(ctrl->fabrics_q);
4405                 blk_put_queue(ctrl->fabrics_q);
4406         }
4407         blk_mq_free_tag_set(ctrl->admin_tagset);
4408 }
4409 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4410
4411 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4412                 const struct blk_mq_ops *ops, unsigned int nr_maps,
4413                 unsigned int cmd_size)
4414 {
4415         int ret;
4416
4417         memset(set, 0, sizeof(*set));
4418         set->ops = ops;
4419         set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4420         /*
4421          * Some Apple controllers requires tags to be unique across admin and
4422          * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4423          */
4424         if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4425                 set->reserved_tags = NVME_AQ_DEPTH;
4426         else if (ctrl->ops->flags & NVME_F_FABRICS)
4427                 set->reserved_tags = NVMF_RESERVED_TAGS;
4428         set->numa_node = ctrl->numa_node;
4429         set->flags = BLK_MQ_F_SHOULD_MERGE;
4430         if (ctrl->ops->flags & NVME_F_BLOCKING)
4431                 set->flags |= BLK_MQ_F_BLOCKING;
4432         set->cmd_size = cmd_size,
4433         set->driver_data = ctrl;
4434         set->nr_hw_queues = ctrl->queue_count - 1;
4435         set->timeout = NVME_IO_TIMEOUT;
4436         set->nr_maps = nr_maps;
4437         ret = blk_mq_alloc_tag_set(set);
4438         if (ret)
4439                 return ret;
4440
4441         if (ctrl->ops->flags & NVME_F_FABRICS) {
4442                 ctrl->connect_q = blk_mq_init_queue(set);
4443                 if (IS_ERR(ctrl->connect_q)) {
4444                         ret = PTR_ERR(ctrl->connect_q);
4445                         goto out_free_tag_set;
4446                 }
4447                 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4448                                    ctrl->connect_q);
4449         }
4450
4451         ctrl->tagset = set;
4452         return 0;
4453
4454 out_free_tag_set:
4455         blk_mq_free_tag_set(set);
4456         ctrl->connect_q = NULL;
4457         return ret;
4458 }
4459 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4460
4461 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4462 {
4463         if (ctrl->ops->flags & NVME_F_FABRICS) {
4464                 blk_mq_destroy_queue(ctrl->connect_q);
4465                 blk_put_queue(ctrl->connect_q);
4466         }
4467         blk_mq_free_tag_set(ctrl->tagset);
4468 }
4469 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4470
4471 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4472 {
4473         nvme_mpath_stop(ctrl);
4474         nvme_auth_stop(ctrl);
4475         nvme_stop_keep_alive(ctrl);
4476         nvme_stop_failfast_work(ctrl);
4477         flush_work(&ctrl->async_event_work);
4478         cancel_work_sync(&ctrl->fw_act_work);
4479         if (ctrl->ops->stop_ctrl)
4480                 ctrl->ops->stop_ctrl(ctrl);
4481 }
4482 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4483
4484 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4485 {
4486         nvme_enable_aen(ctrl);
4487
4488         /*
4489          * persistent discovery controllers need to send indication to userspace
4490          * to re-read the discovery log page to learn about possible changes
4491          * that were missed. We identify persistent discovery controllers by
4492          * checking that they started once before, hence are reconnecting back.
4493          */
4494         if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4495             nvme_discovery_ctrl(ctrl))
4496                 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4497
4498         if (ctrl->queue_count > 1) {
4499                 nvme_queue_scan(ctrl);
4500                 nvme_unquiesce_io_queues(ctrl);
4501                 nvme_mpath_update(ctrl);
4502         }
4503
4504         nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4505         set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4506 }
4507 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4508
4509 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4510 {
4511         nvme_hwmon_exit(ctrl);
4512         nvme_fault_inject_fini(&ctrl->fault_inject);
4513         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4514         cdev_device_del(&ctrl->cdev, ctrl->device);
4515         nvme_put_ctrl(ctrl);
4516 }
4517 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4518
4519 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4520 {
4521         struct nvme_effects_log *cel;
4522         unsigned long i;
4523
4524         xa_for_each(&ctrl->cels, i, cel) {
4525                 xa_erase(&ctrl->cels, i);
4526                 kfree(cel);
4527         }
4528
4529         xa_destroy(&ctrl->cels);
4530 }
4531
4532 static void nvme_free_ctrl(struct device *dev)
4533 {
4534         struct nvme_ctrl *ctrl =
4535                 container_of(dev, struct nvme_ctrl, ctrl_device);
4536         struct nvme_subsystem *subsys = ctrl->subsys;
4537
4538         if (!subsys || ctrl->instance != subsys->instance)
4539                 ida_free(&nvme_instance_ida, ctrl->instance);
4540         key_put(ctrl->tls_key);
4541         nvme_free_cels(ctrl);
4542         nvme_mpath_uninit(ctrl);
4543         nvme_auth_stop(ctrl);
4544         nvme_auth_free(ctrl);
4545         __free_page(ctrl->discard_page);
4546         free_opal_dev(ctrl->opal_dev);
4547
4548         if (subsys) {
4549                 mutex_lock(&nvme_subsystems_lock);
4550                 list_del(&ctrl->subsys_entry);
4551                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4552                 mutex_unlock(&nvme_subsystems_lock);
4553         }
4554
4555         ctrl->ops->free_ctrl(ctrl);
4556
4557         if (subsys)
4558                 nvme_put_subsystem(subsys);
4559 }
4560
4561 /*
4562  * Initialize a NVMe controller structures.  This needs to be called during
4563  * earliest initialization so that we have the initialized structured around
4564  * during probing.
4565  */
4566 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4567                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4568 {
4569         int ret;
4570
4571         WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4572         ctrl->passthru_err_log_enabled = false;
4573         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4574         spin_lock_init(&ctrl->lock);
4575         mutex_init(&ctrl->scan_lock);
4576         INIT_LIST_HEAD(&ctrl->namespaces);
4577         xa_init(&ctrl->cels);
4578         init_rwsem(&ctrl->namespaces_rwsem);
4579         ctrl->dev = dev;
4580         ctrl->ops = ops;
4581         ctrl->quirks = quirks;
4582         ctrl->numa_node = NUMA_NO_NODE;
4583         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4584         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4585         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4586         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4587         init_waitqueue_head(&ctrl->state_wq);
4588
4589         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4590         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4591         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4592         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4593         ctrl->ka_last_check_time = jiffies;
4594
4595         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4596                         PAGE_SIZE);
4597         ctrl->discard_page = alloc_page(GFP_KERNEL);
4598         if (!ctrl->discard_page) {
4599                 ret = -ENOMEM;
4600                 goto out;
4601         }
4602
4603         ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4604         if (ret < 0)
4605                 goto out;
4606         ctrl->instance = ret;
4607
4608         device_initialize(&ctrl->ctrl_device);
4609         ctrl->device = &ctrl->ctrl_device;
4610         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4611                         ctrl->instance);
4612         ctrl->device->class = nvme_class;
4613         ctrl->device->parent = ctrl->dev;
4614         if (ops->dev_attr_groups)
4615                 ctrl->device->groups = ops->dev_attr_groups;
4616         else
4617                 ctrl->device->groups = nvme_dev_attr_groups;
4618         ctrl->device->release = nvme_free_ctrl;
4619         dev_set_drvdata(ctrl->device, ctrl);
4620         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4621         if (ret)
4622                 goto out_release_instance;
4623
4624         nvme_get_ctrl(ctrl);
4625         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4626         ctrl->cdev.owner = ops->module;
4627         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4628         if (ret)
4629                 goto out_free_name;
4630
4631         /*
4632          * Initialize latency tolerance controls.  The sysfs files won't
4633          * be visible to userspace unless the device actually supports APST.
4634          */
4635         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4636         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4637                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4638
4639         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4640         nvme_mpath_init_ctrl(ctrl);
4641         ret = nvme_auth_init_ctrl(ctrl);
4642         if (ret)
4643                 goto out_free_cdev;
4644
4645         return 0;
4646 out_free_cdev:
4647         nvme_fault_inject_fini(&ctrl->fault_inject);
4648         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4649         cdev_device_del(&ctrl->cdev, ctrl->device);
4650 out_free_name:
4651         nvme_put_ctrl(ctrl);
4652         kfree_const(ctrl->device->kobj.name);
4653 out_release_instance:
4654         ida_free(&nvme_instance_ida, ctrl->instance);
4655 out:
4656         if (ctrl->discard_page)
4657                 __free_page(ctrl->discard_page);
4658         return ret;
4659 }
4660 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4661
4662 /* let I/O to all namespaces fail in preparation for surprise removal */
4663 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4664 {
4665         struct nvme_ns *ns;
4666
4667         down_read(&ctrl->namespaces_rwsem);
4668         list_for_each_entry(ns, &ctrl->namespaces, list)
4669                 blk_mark_disk_dead(ns->disk);
4670         up_read(&ctrl->namespaces_rwsem);
4671 }
4672 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4673
4674 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4675 {
4676         struct nvme_ns *ns;
4677
4678         down_read(&ctrl->namespaces_rwsem);
4679         list_for_each_entry(ns, &ctrl->namespaces, list)
4680                 blk_mq_unfreeze_queue(ns->queue);
4681         up_read(&ctrl->namespaces_rwsem);
4682         clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4683 }
4684 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4685
4686 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4687 {
4688         struct nvme_ns *ns;
4689
4690         down_read(&ctrl->namespaces_rwsem);
4691         list_for_each_entry(ns, &ctrl->namespaces, list) {
4692                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4693                 if (timeout <= 0)
4694                         break;
4695         }
4696         up_read(&ctrl->namespaces_rwsem);
4697         return timeout;
4698 }
4699 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4700
4701 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4702 {
4703         struct nvme_ns *ns;
4704
4705         down_read(&ctrl->namespaces_rwsem);
4706         list_for_each_entry(ns, &ctrl->namespaces, list)
4707                 blk_mq_freeze_queue_wait(ns->queue);
4708         up_read(&ctrl->namespaces_rwsem);
4709 }
4710 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4711
4712 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4713 {
4714         struct nvme_ns *ns;
4715
4716         set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4717         down_read(&ctrl->namespaces_rwsem);
4718         list_for_each_entry(ns, &ctrl->namespaces, list)
4719                 blk_freeze_queue_start(ns->queue);
4720         up_read(&ctrl->namespaces_rwsem);
4721 }
4722 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4723
4724 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4725 {
4726         if (!ctrl->tagset)
4727                 return;
4728         if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4729                 blk_mq_quiesce_tagset(ctrl->tagset);
4730         else
4731                 blk_mq_wait_quiesce_done(ctrl->tagset);
4732 }
4733 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4734
4735 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4736 {
4737         if (!ctrl->tagset)
4738                 return;
4739         if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4740                 blk_mq_unquiesce_tagset(ctrl->tagset);
4741 }
4742 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4743
4744 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4745 {
4746         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4747                 blk_mq_quiesce_queue(ctrl->admin_q);
4748         else
4749                 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4750 }
4751 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4752
4753 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4754 {
4755         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4756                 blk_mq_unquiesce_queue(ctrl->admin_q);
4757 }
4758 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4759
4760 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4761 {
4762         struct nvme_ns *ns;
4763
4764         down_read(&ctrl->namespaces_rwsem);
4765         list_for_each_entry(ns, &ctrl->namespaces, list)
4766                 blk_sync_queue(ns->queue);
4767         up_read(&ctrl->namespaces_rwsem);
4768 }
4769 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4770
4771 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4772 {
4773         nvme_sync_io_queues(ctrl);
4774         if (ctrl->admin_q)
4775                 blk_sync_queue(ctrl->admin_q);
4776 }
4777 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4778
4779 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4780 {
4781         if (file->f_op != &nvme_dev_fops)
4782                 return NULL;
4783         return file->private_data;
4784 }
4785 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4786
4787 /*
4788  * Check we didn't inadvertently grow the command structure sizes:
4789  */
4790 static inline void _nvme_check_size(void)
4791 {
4792         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4793         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4794         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4795         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4796         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4797         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4798         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4799         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4800         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4801         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4802         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4803         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4804         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4805         BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4806                         NVME_IDENTIFY_DATA_SIZE);
4807         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4808         BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4809         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4810         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4811         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4812         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4813         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4814         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4815         BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4816 }
4817
4818
4819 static int __init nvme_core_init(void)
4820 {
4821         int result = -ENOMEM;
4822
4823         _nvme_check_size();
4824
4825         nvme_wq = alloc_workqueue("nvme-wq",
4826                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4827         if (!nvme_wq)
4828                 goto out;
4829
4830         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4831                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4832         if (!nvme_reset_wq)
4833                 goto destroy_wq;
4834
4835         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4836                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4837         if (!nvme_delete_wq)
4838                 goto destroy_reset_wq;
4839
4840         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4841                         NVME_MINORS, "nvme");
4842         if (result < 0)
4843                 goto destroy_delete_wq;
4844
4845         nvme_class = class_create("nvme");
4846         if (IS_ERR(nvme_class)) {
4847                 result = PTR_ERR(nvme_class);
4848                 goto unregister_chrdev;
4849         }
4850         nvme_class->dev_uevent = nvme_class_uevent;
4851
4852         nvme_subsys_class = class_create("nvme-subsystem");
4853         if (IS_ERR(nvme_subsys_class)) {
4854                 result = PTR_ERR(nvme_subsys_class);
4855                 goto destroy_class;
4856         }
4857
4858         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4859                                      "nvme-generic");
4860         if (result < 0)
4861                 goto destroy_subsys_class;
4862
4863         nvme_ns_chr_class = class_create("nvme-generic");
4864         if (IS_ERR(nvme_ns_chr_class)) {
4865                 result = PTR_ERR(nvme_ns_chr_class);
4866                 goto unregister_generic_ns;
4867         }
4868         result = nvme_init_auth();
4869         if (result)
4870                 goto destroy_ns_chr;
4871         return 0;
4872
4873 destroy_ns_chr:
4874         class_destroy(nvme_ns_chr_class);
4875 unregister_generic_ns:
4876         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4877 destroy_subsys_class:
4878         class_destroy(nvme_subsys_class);
4879 destroy_class:
4880         class_destroy(nvme_class);
4881 unregister_chrdev:
4882         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4883 destroy_delete_wq:
4884         destroy_workqueue(nvme_delete_wq);
4885 destroy_reset_wq:
4886         destroy_workqueue(nvme_reset_wq);
4887 destroy_wq:
4888         destroy_workqueue(nvme_wq);
4889 out:
4890         return result;
4891 }
4892
4893 static void __exit nvme_core_exit(void)
4894 {
4895         nvme_exit_auth();
4896         class_destroy(nvme_ns_chr_class);
4897         class_destroy(nvme_subsys_class);
4898         class_destroy(nvme_class);
4899         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4900         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4901         destroy_workqueue(nvme_delete_wq);
4902         destroy_workqueue(nvme_reset_wq);
4903         destroy_workqueue(nvme_wq);
4904         ida_destroy(&nvme_ns_chr_minor_ida);
4905         ida_destroy(&nvme_instance_ida);
4906 }
4907
4908 MODULE_LICENSE("GPL");
4909 MODULE_VERSION("1.0");
4910 MODULE_DESCRIPTION("NVMe host core framework");
4911 module_init(nvme_core_init);
4912 module_exit(nvme_core_exit);