Merge tag 'reset-for-v5.3' of git://git.pengutronix.de/git/pza/linux into arm/drivers
[sfrench/cifs-2.6.git] / drivers / nvdimm / region_devs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4  */
5 #include <linux/scatterlist.h>
6 #include <linux/highmem.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/hash.h>
10 #include <linux/sort.h>
11 #include <linux/io.h>
12 #include <linux/nd.h>
13 #include "nd-core.h"
14 #include "nd.h"
15
16 /*
17  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
18  * irrelevant.
19  */
20 #include <linux/io-64-nonatomic-hi-lo.h>
21
22 static DEFINE_IDA(region_ida);
23 static DEFINE_PER_CPU(int, flush_idx);
24
25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26                 struct nd_region_data *ndrd)
27 {
28         int i, j;
29
30         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33                 struct resource *res = &nvdimm->flush_wpq[i];
34                 unsigned long pfn = PHYS_PFN(res->start);
35                 void __iomem *flush_page;
36
37                 /* check if flush hints share a page */
38                 for (j = 0; j < i; j++) {
39                         struct resource *res_j = &nvdimm->flush_wpq[j];
40                         unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42                         if (pfn == pfn_j)
43                                 break;
44                 }
45
46                 if (j < i)
47                         flush_page = (void __iomem *) ((unsigned long)
48                                         ndrd_get_flush_wpq(ndrd, dimm, j)
49                                         & PAGE_MASK);
50                 else
51                         flush_page = devm_nvdimm_ioremap(dev,
52                                         PFN_PHYS(pfn), PAGE_SIZE);
53                 if (!flush_page)
54                         return -ENXIO;
55                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56                                 + (res->start & ~PAGE_MASK));
57         }
58
59         return 0;
60 }
61
62 int nd_region_activate(struct nd_region *nd_region)
63 {
64         int i, j, num_flush = 0;
65         struct nd_region_data *ndrd;
66         struct device *dev = &nd_region->dev;
67         size_t flush_data_size = sizeof(void *);
68
69         nvdimm_bus_lock(&nd_region->dev);
70         for (i = 0; i < nd_region->ndr_mappings; i++) {
71                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74                 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75                         nvdimm_bus_unlock(&nd_region->dev);
76                         return -EBUSY;
77                 }
78
79                 /* at least one null hint slot per-dimm for the "no-hint" case */
80                 flush_data_size += sizeof(void *);
81                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82                 if (!nvdimm->num_flush)
83                         continue;
84                 flush_data_size += nvdimm->num_flush * sizeof(void *);
85         }
86         nvdimm_bus_unlock(&nd_region->dev);
87
88         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89         if (!ndrd)
90                 return -ENOMEM;
91         dev_set_drvdata(dev, ndrd);
92
93         if (!num_flush)
94                 return 0;
95
96         ndrd->hints_shift = ilog2(num_flush);
97         for (i = 0; i < nd_region->ndr_mappings; i++) {
98                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102                 if (rc)
103                         return rc;
104         }
105
106         /*
107          * Clear out entries that are duplicates. This should prevent the
108          * extra flushings.
109          */
110         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111                 /* ignore if NULL already */
112                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113                         continue;
114
115                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117                             ndrd_get_flush_wpq(ndrd, j, 0))
118                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119         }
120
121         return 0;
122 }
123
124 static void nd_region_release(struct device *dev)
125 {
126         struct nd_region *nd_region = to_nd_region(dev);
127         u16 i;
128
129         for (i = 0; i < nd_region->ndr_mappings; i++) {
130                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133                 put_device(&nvdimm->dev);
134         }
135         free_percpu(nd_region->lane);
136         ida_simple_remove(&region_ida, nd_region->id);
137         if (is_nd_blk(dev))
138                 kfree(to_nd_blk_region(dev));
139         else
140                 kfree(nd_region);
141 }
142
143 static struct device_type nd_blk_device_type = {
144         .name = "nd_blk",
145         .release = nd_region_release,
146 };
147
148 static struct device_type nd_pmem_device_type = {
149         .name = "nd_pmem",
150         .release = nd_region_release,
151 };
152
153 static struct device_type nd_volatile_device_type = {
154         .name = "nd_volatile",
155         .release = nd_region_release,
156 };
157
158 bool is_nd_pmem(struct device *dev)
159 {
160         return dev ? dev->type == &nd_pmem_device_type : false;
161 }
162
163 bool is_nd_blk(struct device *dev)
164 {
165         return dev ? dev->type == &nd_blk_device_type : false;
166 }
167
168 bool is_nd_volatile(struct device *dev)
169 {
170         return dev ? dev->type == &nd_volatile_device_type : false;
171 }
172
173 struct nd_region *to_nd_region(struct device *dev)
174 {
175         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
176
177         WARN_ON(dev->type->release != nd_region_release);
178         return nd_region;
179 }
180 EXPORT_SYMBOL_GPL(to_nd_region);
181
182 struct device *nd_region_dev(struct nd_region *nd_region)
183 {
184         if (!nd_region)
185                 return NULL;
186         return &nd_region->dev;
187 }
188 EXPORT_SYMBOL_GPL(nd_region_dev);
189
190 struct nd_blk_region *to_nd_blk_region(struct device *dev)
191 {
192         struct nd_region *nd_region = to_nd_region(dev);
193
194         WARN_ON(!is_nd_blk(dev));
195         return container_of(nd_region, struct nd_blk_region, nd_region);
196 }
197 EXPORT_SYMBOL_GPL(to_nd_blk_region);
198
199 void *nd_region_provider_data(struct nd_region *nd_region)
200 {
201         return nd_region->provider_data;
202 }
203 EXPORT_SYMBOL_GPL(nd_region_provider_data);
204
205 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
206 {
207         return ndbr->blk_provider_data;
208 }
209 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
210
211 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
212 {
213         ndbr->blk_provider_data = data;
214 }
215 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
216
217 /**
218  * nd_region_to_nstype() - region to an integer namespace type
219  * @nd_region: region-device to interrogate
220  *
221  * This is the 'nstype' attribute of a region as well, an input to the
222  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
223  * namespace devices with namespace drivers.
224  */
225 int nd_region_to_nstype(struct nd_region *nd_region)
226 {
227         if (is_memory(&nd_region->dev)) {
228                 u16 i, alias;
229
230                 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
231                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
232                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
233
234                         if (test_bit(NDD_ALIASING, &nvdimm->flags))
235                                 alias++;
236                 }
237                 if (alias)
238                         return ND_DEVICE_NAMESPACE_PMEM;
239                 else
240                         return ND_DEVICE_NAMESPACE_IO;
241         } else if (is_nd_blk(&nd_region->dev)) {
242                 return ND_DEVICE_NAMESPACE_BLK;
243         }
244
245         return 0;
246 }
247 EXPORT_SYMBOL(nd_region_to_nstype);
248
249 static ssize_t size_show(struct device *dev,
250                 struct device_attribute *attr, char *buf)
251 {
252         struct nd_region *nd_region = to_nd_region(dev);
253         unsigned long long size = 0;
254
255         if (is_memory(dev)) {
256                 size = nd_region->ndr_size;
257         } else if (nd_region->ndr_mappings == 1) {
258                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
259
260                 size = nd_mapping->size;
261         }
262
263         return sprintf(buf, "%llu\n", size);
264 }
265 static DEVICE_ATTR_RO(size);
266
267 static ssize_t deep_flush_show(struct device *dev,
268                 struct device_attribute *attr, char *buf)
269 {
270         struct nd_region *nd_region = to_nd_region(dev);
271
272         /*
273          * NOTE: in the nvdimm_has_flush() error case this attribute is
274          * not visible.
275          */
276         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
277 }
278
279 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
280                 const char *buf, size_t len)
281 {
282         bool flush;
283         int rc = strtobool(buf, &flush);
284         struct nd_region *nd_region = to_nd_region(dev);
285
286         if (rc)
287                 return rc;
288         if (!flush)
289                 return -EINVAL;
290         nvdimm_flush(nd_region);
291
292         return len;
293 }
294 static DEVICE_ATTR_RW(deep_flush);
295
296 static ssize_t mappings_show(struct device *dev,
297                 struct device_attribute *attr, char *buf)
298 {
299         struct nd_region *nd_region = to_nd_region(dev);
300
301         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
302 }
303 static DEVICE_ATTR_RO(mappings);
304
305 static ssize_t nstype_show(struct device *dev,
306                 struct device_attribute *attr, char *buf)
307 {
308         struct nd_region *nd_region = to_nd_region(dev);
309
310         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
311 }
312 static DEVICE_ATTR_RO(nstype);
313
314 static ssize_t set_cookie_show(struct device *dev,
315                 struct device_attribute *attr, char *buf)
316 {
317         struct nd_region *nd_region = to_nd_region(dev);
318         struct nd_interleave_set *nd_set = nd_region->nd_set;
319         ssize_t rc = 0;
320
321         if (is_memory(dev) && nd_set)
322                 /* pass, should be precluded by region_visible */;
323         else
324                 return -ENXIO;
325
326         /*
327          * The cookie to show depends on which specification of the
328          * labels we are using. If there are not labels then default to
329          * the v1.1 namespace label cookie definition. To read all this
330          * data we need to wait for probing to settle.
331          */
332         device_lock(dev);
333         nvdimm_bus_lock(dev);
334         wait_nvdimm_bus_probe_idle(dev);
335         if (nd_region->ndr_mappings) {
336                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
337                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
338
339                 if (ndd) {
340                         struct nd_namespace_index *nsindex;
341
342                         nsindex = to_namespace_index(ndd, ndd->ns_current);
343                         rc = sprintf(buf, "%#llx\n",
344                                         nd_region_interleave_set_cookie(nd_region,
345                                                 nsindex));
346                 }
347         }
348         nvdimm_bus_unlock(dev);
349         device_unlock(dev);
350
351         if (rc)
352                 return rc;
353         return sprintf(buf, "%#llx\n", nd_set->cookie1);
354 }
355 static DEVICE_ATTR_RO(set_cookie);
356
357 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
358 {
359         resource_size_t blk_max_overlap = 0, available, overlap;
360         int i;
361
362         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
363
364  retry:
365         available = 0;
366         overlap = blk_max_overlap;
367         for (i = 0; i < nd_region->ndr_mappings; i++) {
368                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
369                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
370
371                 /* if a dimm is disabled the available capacity is zero */
372                 if (!ndd)
373                         return 0;
374
375                 if (is_memory(&nd_region->dev)) {
376                         available += nd_pmem_available_dpa(nd_region,
377                                         nd_mapping, &overlap);
378                         if (overlap > blk_max_overlap) {
379                                 blk_max_overlap = overlap;
380                                 goto retry;
381                         }
382                 } else if (is_nd_blk(&nd_region->dev))
383                         available += nd_blk_available_dpa(nd_region);
384         }
385
386         return available;
387 }
388
389 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
390 {
391         resource_size_t available = 0;
392         int i;
393
394         if (is_memory(&nd_region->dev))
395                 available = PHYS_ADDR_MAX;
396
397         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
398         for (i = 0; i < nd_region->ndr_mappings; i++) {
399                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
400
401                 if (is_memory(&nd_region->dev))
402                         available = min(available,
403                                         nd_pmem_max_contiguous_dpa(nd_region,
404                                                                    nd_mapping));
405                 else if (is_nd_blk(&nd_region->dev))
406                         available += nd_blk_available_dpa(nd_region);
407         }
408         if (is_memory(&nd_region->dev))
409                 return available * nd_region->ndr_mappings;
410         return available;
411 }
412
413 static ssize_t available_size_show(struct device *dev,
414                 struct device_attribute *attr, char *buf)
415 {
416         struct nd_region *nd_region = to_nd_region(dev);
417         unsigned long long available = 0;
418
419         /*
420          * Flush in-flight updates and grab a snapshot of the available
421          * size.  Of course, this value is potentially invalidated the
422          * memory nvdimm_bus_lock() is dropped, but that's userspace's
423          * problem to not race itself.
424          */
425         nvdimm_bus_lock(dev);
426         wait_nvdimm_bus_probe_idle(dev);
427         available = nd_region_available_dpa(nd_region);
428         nvdimm_bus_unlock(dev);
429
430         return sprintf(buf, "%llu\n", available);
431 }
432 static DEVICE_ATTR_RO(available_size);
433
434 static ssize_t max_available_extent_show(struct device *dev,
435                 struct device_attribute *attr, char *buf)
436 {
437         struct nd_region *nd_region = to_nd_region(dev);
438         unsigned long long available = 0;
439
440         nvdimm_bus_lock(dev);
441         wait_nvdimm_bus_probe_idle(dev);
442         available = nd_region_allocatable_dpa(nd_region);
443         nvdimm_bus_unlock(dev);
444
445         return sprintf(buf, "%llu\n", available);
446 }
447 static DEVICE_ATTR_RO(max_available_extent);
448
449 static ssize_t init_namespaces_show(struct device *dev,
450                 struct device_attribute *attr, char *buf)
451 {
452         struct nd_region_data *ndrd = dev_get_drvdata(dev);
453         ssize_t rc;
454
455         nvdimm_bus_lock(dev);
456         if (ndrd)
457                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
458         else
459                 rc = -ENXIO;
460         nvdimm_bus_unlock(dev);
461
462         return rc;
463 }
464 static DEVICE_ATTR_RO(init_namespaces);
465
466 static ssize_t namespace_seed_show(struct device *dev,
467                 struct device_attribute *attr, char *buf)
468 {
469         struct nd_region *nd_region = to_nd_region(dev);
470         ssize_t rc;
471
472         nvdimm_bus_lock(dev);
473         if (nd_region->ns_seed)
474                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
475         else
476                 rc = sprintf(buf, "\n");
477         nvdimm_bus_unlock(dev);
478         return rc;
479 }
480 static DEVICE_ATTR_RO(namespace_seed);
481
482 static ssize_t btt_seed_show(struct device *dev,
483                 struct device_attribute *attr, char *buf)
484 {
485         struct nd_region *nd_region = to_nd_region(dev);
486         ssize_t rc;
487
488         nvdimm_bus_lock(dev);
489         if (nd_region->btt_seed)
490                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
491         else
492                 rc = sprintf(buf, "\n");
493         nvdimm_bus_unlock(dev);
494
495         return rc;
496 }
497 static DEVICE_ATTR_RO(btt_seed);
498
499 static ssize_t pfn_seed_show(struct device *dev,
500                 struct device_attribute *attr, char *buf)
501 {
502         struct nd_region *nd_region = to_nd_region(dev);
503         ssize_t rc;
504
505         nvdimm_bus_lock(dev);
506         if (nd_region->pfn_seed)
507                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
508         else
509                 rc = sprintf(buf, "\n");
510         nvdimm_bus_unlock(dev);
511
512         return rc;
513 }
514 static DEVICE_ATTR_RO(pfn_seed);
515
516 static ssize_t dax_seed_show(struct device *dev,
517                 struct device_attribute *attr, char *buf)
518 {
519         struct nd_region *nd_region = to_nd_region(dev);
520         ssize_t rc;
521
522         nvdimm_bus_lock(dev);
523         if (nd_region->dax_seed)
524                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
525         else
526                 rc = sprintf(buf, "\n");
527         nvdimm_bus_unlock(dev);
528
529         return rc;
530 }
531 static DEVICE_ATTR_RO(dax_seed);
532
533 static ssize_t read_only_show(struct device *dev,
534                 struct device_attribute *attr, char *buf)
535 {
536         struct nd_region *nd_region = to_nd_region(dev);
537
538         return sprintf(buf, "%d\n", nd_region->ro);
539 }
540
541 static ssize_t read_only_store(struct device *dev,
542                 struct device_attribute *attr, const char *buf, size_t len)
543 {
544         bool ro;
545         int rc = strtobool(buf, &ro);
546         struct nd_region *nd_region = to_nd_region(dev);
547
548         if (rc)
549                 return rc;
550
551         nd_region->ro = ro;
552         return len;
553 }
554 static DEVICE_ATTR_RW(read_only);
555
556 static ssize_t region_badblocks_show(struct device *dev,
557                 struct device_attribute *attr, char *buf)
558 {
559         struct nd_region *nd_region = to_nd_region(dev);
560         ssize_t rc;
561
562         device_lock(dev);
563         if (dev->driver)
564                 rc = badblocks_show(&nd_region->bb, buf, 0);
565         else
566                 rc = -ENXIO;
567         device_unlock(dev);
568
569         return rc;
570 }
571 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
572
573 static ssize_t resource_show(struct device *dev,
574                 struct device_attribute *attr, char *buf)
575 {
576         struct nd_region *nd_region = to_nd_region(dev);
577
578         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
579 }
580 static DEVICE_ATTR_RO(resource);
581
582 static ssize_t persistence_domain_show(struct device *dev,
583                 struct device_attribute *attr, char *buf)
584 {
585         struct nd_region *nd_region = to_nd_region(dev);
586
587         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
588                 return sprintf(buf, "cpu_cache\n");
589         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
590                 return sprintf(buf, "memory_controller\n");
591         else
592                 return sprintf(buf, "\n");
593 }
594 static DEVICE_ATTR_RO(persistence_domain);
595
596 static struct attribute *nd_region_attributes[] = {
597         &dev_attr_size.attr,
598         &dev_attr_nstype.attr,
599         &dev_attr_mappings.attr,
600         &dev_attr_btt_seed.attr,
601         &dev_attr_pfn_seed.attr,
602         &dev_attr_dax_seed.attr,
603         &dev_attr_deep_flush.attr,
604         &dev_attr_read_only.attr,
605         &dev_attr_set_cookie.attr,
606         &dev_attr_available_size.attr,
607         &dev_attr_max_available_extent.attr,
608         &dev_attr_namespace_seed.attr,
609         &dev_attr_init_namespaces.attr,
610         &dev_attr_badblocks.attr,
611         &dev_attr_resource.attr,
612         &dev_attr_persistence_domain.attr,
613         NULL,
614 };
615
616 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
617 {
618         struct device *dev = container_of(kobj, typeof(*dev), kobj);
619         struct nd_region *nd_region = to_nd_region(dev);
620         struct nd_interleave_set *nd_set = nd_region->nd_set;
621         int type = nd_region_to_nstype(nd_region);
622
623         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
624                 return 0;
625
626         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
627                 return 0;
628
629         if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
630                 return 0;
631
632         if (a == &dev_attr_resource.attr) {
633                 if (is_nd_pmem(dev))
634                         return 0400;
635                 else
636                         return 0;
637         }
638
639         if (a == &dev_attr_deep_flush.attr) {
640                 int has_flush = nvdimm_has_flush(nd_region);
641
642                 if (has_flush == 1)
643                         return a->mode;
644                 else if (has_flush == 0)
645                         return 0444;
646                 else
647                         return 0;
648         }
649
650         if (a == &dev_attr_persistence_domain.attr) {
651                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
652                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
653                         return 0;
654                 return a->mode;
655         }
656
657         if (a != &dev_attr_set_cookie.attr
658                         && a != &dev_attr_available_size.attr)
659                 return a->mode;
660
661         if ((type == ND_DEVICE_NAMESPACE_PMEM
662                                 || type == ND_DEVICE_NAMESPACE_BLK)
663                         && a == &dev_attr_available_size.attr)
664                 return a->mode;
665         else if (is_memory(dev) && nd_set)
666                 return a->mode;
667
668         return 0;
669 }
670
671 struct attribute_group nd_region_attribute_group = {
672         .attrs = nd_region_attributes,
673         .is_visible = region_visible,
674 };
675 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
676
677 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
678                 struct nd_namespace_index *nsindex)
679 {
680         struct nd_interleave_set *nd_set = nd_region->nd_set;
681
682         if (!nd_set)
683                 return 0;
684
685         if (nsindex && __le16_to_cpu(nsindex->major) == 1
686                         && __le16_to_cpu(nsindex->minor) == 1)
687                 return nd_set->cookie1;
688         return nd_set->cookie2;
689 }
690
691 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
692 {
693         struct nd_interleave_set *nd_set = nd_region->nd_set;
694
695         if (nd_set)
696                 return nd_set->altcookie;
697         return 0;
698 }
699
700 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
701 {
702         struct nd_label_ent *label_ent, *e;
703
704         lockdep_assert_held(&nd_mapping->lock);
705         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
706                 list_del(&label_ent->list);
707                 kfree(label_ent);
708         }
709 }
710
711 /*
712  * Upon successful probe/remove, take/release a reference on the
713  * associated interleave set (if present), and plant new btt + namespace
714  * seeds.  Also, on the removal of a BLK region, notify the provider to
715  * disable the region.
716  */
717 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
718                 struct device *dev, bool probe)
719 {
720         struct nd_region *nd_region;
721
722         if (!probe && is_nd_region(dev)) {
723                 int i;
724
725                 nd_region = to_nd_region(dev);
726                 for (i = 0; i < nd_region->ndr_mappings; i++) {
727                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
728                         struct nvdimm_drvdata *ndd = nd_mapping->ndd;
729                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
730
731                         mutex_lock(&nd_mapping->lock);
732                         nd_mapping_free_labels(nd_mapping);
733                         mutex_unlock(&nd_mapping->lock);
734
735                         put_ndd(ndd);
736                         nd_mapping->ndd = NULL;
737                         if (ndd)
738                                 atomic_dec(&nvdimm->busy);
739                 }
740         }
741         if (dev->parent && is_nd_region(dev->parent) && probe) {
742                 nd_region = to_nd_region(dev->parent);
743                 nvdimm_bus_lock(dev);
744                 if (nd_region->ns_seed == dev)
745                         nd_region_create_ns_seed(nd_region);
746                 nvdimm_bus_unlock(dev);
747         }
748         if (is_nd_btt(dev) && probe) {
749                 struct nd_btt *nd_btt = to_nd_btt(dev);
750
751                 nd_region = to_nd_region(dev->parent);
752                 nvdimm_bus_lock(dev);
753                 if (nd_region->btt_seed == dev)
754                         nd_region_create_btt_seed(nd_region);
755                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
756                         nd_region_create_ns_seed(nd_region);
757                 nvdimm_bus_unlock(dev);
758         }
759         if (is_nd_pfn(dev) && probe) {
760                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
761
762                 nd_region = to_nd_region(dev->parent);
763                 nvdimm_bus_lock(dev);
764                 if (nd_region->pfn_seed == dev)
765                         nd_region_create_pfn_seed(nd_region);
766                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
767                         nd_region_create_ns_seed(nd_region);
768                 nvdimm_bus_unlock(dev);
769         }
770         if (is_nd_dax(dev) && probe) {
771                 struct nd_dax *nd_dax = to_nd_dax(dev);
772
773                 nd_region = to_nd_region(dev->parent);
774                 nvdimm_bus_lock(dev);
775                 if (nd_region->dax_seed == dev)
776                         nd_region_create_dax_seed(nd_region);
777                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
778                         nd_region_create_ns_seed(nd_region);
779                 nvdimm_bus_unlock(dev);
780         }
781 }
782
783 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
784 {
785         nd_region_notify_driver_action(nvdimm_bus, dev, true);
786 }
787
788 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
789 {
790         nd_region_notify_driver_action(nvdimm_bus, dev, false);
791 }
792
793 static ssize_t mappingN(struct device *dev, char *buf, int n)
794 {
795         struct nd_region *nd_region = to_nd_region(dev);
796         struct nd_mapping *nd_mapping;
797         struct nvdimm *nvdimm;
798
799         if (n >= nd_region->ndr_mappings)
800                 return -ENXIO;
801         nd_mapping = &nd_region->mapping[n];
802         nvdimm = nd_mapping->nvdimm;
803
804         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
805                         nd_mapping->start, nd_mapping->size,
806                         nd_mapping->position);
807 }
808
809 #define REGION_MAPPING(idx) \
810 static ssize_t mapping##idx##_show(struct device *dev,          \
811                 struct device_attribute *attr, char *buf)       \
812 {                                                               \
813         return mappingN(dev, buf, idx);                         \
814 }                                                               \
815 static DEVICE_ATTR_RO(mapping##idx)
816
817 /*
818  * 32 should be enough for a while, even in the presence of socket
819  * interleave a 32-way interleave set is a degenerate case.
820  */
821 REGION_MAPPING(0);
822 REGION_MAPPING(1);
823 REGION_MAPPING(2);
824 REGION_MAPPING(3);
825 REGION_MAPPING(4);
826 REGION_MAPPING(5);
827 REGION_MAPPING(6);
828 REGION_MAPPING(7);
829 REGION_MAPPING(8);
830 REGION_MAPPING(9);
831 REGION_MAPPING(10);
832 REGION_MAPPING(11);
833 REGION_MAPPING(12);
834 REGION_MAPPING(13);
835 REGION_MAPPING(14);
836 REGION_MAPPING(15);
837 REGION_MAPPING(16);
838 REGION_MAPPING(17);
839 REGION_MAPPING(18);
840 REGION_MAPPING(19);
841 REGION_MAPPING(20);
842 REGION_MAPPING(21);
843 REGION_MAPPING(22);
844 REGION_MAPPING(23);
845 REGION_MAPPING(24);
846 REGION_MAPPING(25);
847 REGION_MAPPING(26);
848 REGION_MAPPING(27);
849 REGION_MAPPING(28);
850 REGION_MAPPING(29);
851 REGION_MAPPING(30);
852 REGION_MAPPING(31);
853
854 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
855 {
856         struct device *dev = container_of(kobj, struct device, kobj);
857         struct nd_region *nd_region = to_nd_region(dev);
858
859         if (n < nd_region->ndr_mappings)
860                 return a->mode;
861         return 0;
862 }
863
864 static struct attribute *mapping_attributes[] = {
865         &dev_attr_mapping0.attr,
866         &dev_attr_mapping1.attr,
867         &dev_attr_mapping2.attr,
868         &dev_attr_mapping3.attr,
869         &dev_attr_mapping4.attr,
870         &dev_attr_mapping5.attr,
871         &dev_attr_mapping6.attr,
872         &dev_attr_mapping7.attr,
873         &dev_attr_mapping8.attr,
874         &dev_attr_mapping9.attr,
875         &dev_attr_mapping10.attr,
876         &dev_attr_mapping11.attr,
877         &dev_attr_mapping12.attr,
878         &dev_attr_mapping13.attr,
879         &dev_attr_mapping14.attr,
880         &dev_attr_mapping15.attr,
881         &dev_attr_mapping16.attr,
882         &dev_attr_mapping17.attr,
883         &dev_attr_mapping18.attr,
884         &dev_attr_mapping19.attr,
885         &dev_attr_mapping20.attr,
886         &dev_attr_mapping21.attr,
887         &dev_attr_mapping22.attr,
888         &dev_attr_mapping23.attr,
889         &dev_attr_mapping24.attr,
890         &dev_attr_mapping25.attr,
891         &dev_attr_mapping26.attr,
892         &dev_attr_mapping27.attr,
893         &dev_attr_mapping28.attr,
894         &dev_attr_mapping29.attr,
895         &dev_attr_mapping30.attr,
896         &dev_attr_mapping31.attr,
897         NULL,
898 };
899
900 struct attribute_group nd_mapping_attribute_group = {
901         .is_visible = mapping_visible,
902         .attrs = mapping_attributes,
903 };
904 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
905
906 int nd_blk_region_init(struct nd_region *nd_region)
907 {
908         struct device *dev = &nd_region->dev;
909         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
910
911         if (!is_nd_blk(dev))
912                 return 0;
913
914         if (nd_region->ndr_mappings < 1) {
915                 dev_dbg(dev, "invalid BLK region\n");
916                 return -ENXIO;
917         }
918
919         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
920 }
921
922 /**
923  * nd_region_acquire_lane - allocate and lock a lane
924  * @nd_region: region id and number of lanes possible
925  *
926  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
927  * We optimize for the common case where there are 256 lanes, one
928  * per-cpu.  For larger systems we need to lock to share lanes.  For now
929  * this implementation assumes the cost of maintaining an allocator for
930  * free lanes is on the order of the lock hold time, so it implements a
931  * static lane = cpu % num_lanes mapping.
932  *
933  * In the case of a BTT instance on top of a BLK namespace a lane may be
934  * acquired recursively.  We lock on the first instance.
935  *
936  * In the case of a BTT instance on top of PMEM, we only acquire a lane
937  * for the BTT metadata updates.
938  */
939 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
940 {
941         unsigned int cpu, lane;
942
943         cpu = get_cpu();
944         if (nd_region->num_lanes < nr_cpu_ids) {
945                 struct nd_percpu_lane *ndl_lock, *ndl_count;
946
947                 lane = cpu % nd_region->num_lanes;
948                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
949                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
950                 if (ndl_count->count++ == 0)
951                         spin_lock(&ndl_lock->lock);
952         } else
953                 lane = cpu;
954
955         return lane;
956 }
957 EXPORT_SYMBOL(nd_region_acquire_lane);
958
959 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
960 {
961         if (nd_region->num_lanes < nr_cpu_ids) {
962                 unsigned int cpu = get_cpu();
963                 struct nd_percpu_lane *ndl_lock, *ndl_count;
964
965                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
966                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
967                 if (--ndl_count->count == 0)
968                         spin_unlock(&ndl_lock->lock);
969                 put_cpu();
970         }
971         put_cpu();
972 }
973 EXPORT_SYMBOL(nd_region_release_lane);
974
975 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
976                 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
977                 const char *caller)
978 {
979         struct nd_region *nd_region;
980         struct device *dev;
981         void *region_buf;
982         unsigned int i;
983         int ro = 0;
984
985         for (i = 0; i < ndr_desc->num_mappings; i++) {
986                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
987                 struct nvdimm *nvdimm = mapping->nvdimm;
988
989                 if ((mapping->start | mapping->size) % SZ_4K) {
990                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
991                                         caller, dev_name(&nvdimm->dev), i);
992
993                         return NULL;
994                 }
995
996                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
997                         ro = 1;
998
999                 if (test_bit(NDD_NOBLK, &nvdimm->flags)
1000                                 && dev_type == &nd_blk_device_type) {
1001                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1002                                         caller, dev_name(&nvdimm->dev), i);
1003                         return NULL;
1004                 }
1005         }
1006
1007         if (dev_type == &nd_blk_device_type) {
1008                 struct nd_blk_region_desc *ndbr_desc;
1009                 struct nd_blk_region *ndbr;
1010
1011                 ndbr_desc = to_blk_region_desc(ndr_desc);
1012                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1013                                 * ndr_desc->num_mappings,
1014                                 GFP_KERNEL);
1015                 if (ndbr) {
1016                         nd_region = &ndbr->nd_region;
1017                         ndbr->enable = ndbr_desc->enable;
1018                         ndbr->do_io = ndbr_desc->do_io;
1019                 }
1020                 region_buf = ndbr;
1021         } else {
1022                 nd_region = kzalloc(sizeof(struct nd_region)
1023                                 + sizeof(struct nd_mapping)
1024                                 * ndr_desc->num_mappings,
1025                                 GFP_KERNEL);
1026                 region_buf = nd_region;
1027         }
1028
1029         if (!region_buf)
1030                 return NULL;
1031         nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1032         if (nd_region->id < 0)
1033                 goto err_id;
1034
1035         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1036         if (!nd_region->lane)
1037                 goto err_percpu;
1038
1039         for (i = 0; i < nr_cpu_ids; i++) {
1040                 struct nd_percpu_lane *ndl;
1041
1042                 ndl = per_cpu_ptr(nd_region->lane, i);
1043                 spin_lock_init(&ndl->lock);
1044                 ndl->count = 0;
1045         }
1046
1047         for (i = 0; i < ndr_desc->num_mappings; i++) {
1048                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1049                 struct nvdimm *nvdimm = mapping->nvdimm;
1050
1051                 nd_region->mapping[i].nvdimm = nvdimm;
1052                 nd_region->mapping[i].start = mapping->start;
1053                 nd_region->mapping[i].size = mapping->size;
1054                 nd_region->mapping[i].position = mapping->position;
1055                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1056                 mutex_init(&nd_region->mapping[i].lock);
1057
1058                 get_device(&nvdimm->dev);
1059         }
1060         nd_region->ndr_mappings = ndr_desc->num_mappings;
1061         nd_region->provider_data = ndr_desc->provider_data;
1062         nd_region->nd_set = ndr_desc->nd_set;
1063         nd_region->num_lanes = ndr_desc->num_lanes;
1064         nd_region->flags = ndr_desc->flags;
1065         nd_region->ro = ro;
1066         nd_region->numa_node = ndr_desc->numa_node;
1067         nd_region->target_node = ndr_desc->target_node;
1068         ida_init(&nd_region->ns_ida);
1069         ida_init(&nd_region->btt_ida);
1070         ida_init(&nd_region->pfn_ida);
1071         ida_init(&nd_region->dax_ida);
1072         dev = &nd_region->dev;
1073         dev_set_name(dev, "region%d", nd_region->id);
1074         dev->parent = &nvdimm_bus->dev;
1075         dev->type = dev_type;
1076         dev->groups = ndr_desc->attr_groups;
1077         dev->of_node = ndr_desc->of_node;
1078         nd_region->ndr_size = resource_size(ndr_desc->res);
1079         nd_region->ndr_start = ndr_desc->res->start;
1080         nd_device_register(dev);
1081
1082         return nd_region;
1083
1084  err_percpu:
1085         ida_simple_remove(&region_ida, nd_region->id);
1086  err_id:
1087         kfree(region_buf);
1088         return NULL;
1089 }
1090
1091 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1092                 struct nd_region_desc *ndr_desc)
1093 {
1094         ndr_desc->num_lanes = ND_MAX_LANES;
1095         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1096                         __func__);
1097 }
1098 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1099
1100 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1101                 struct nd_region_desc *ndr_desc)
1102 {
1103         if (ndr_desc->num_mappings > 1)
1104                 return NULL;
1105         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1106         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1107                         __func__);
1108 }
1109 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1110
1111 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1112                 struct nd_region_desc *ndr_desc)
1113 {
1114         ndr_desc->num_lanes = ND_MAX_LANES;
1115         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1116                         __func__);
1117 }
1118 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1119
1120 /**
1121  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1122  * @nd_region: blk or interleaved pmem region
1123  */
1124 void nvdimm_flush(struct nd_region *nd_region)
1125 {
1126         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1127         int i, idx;
1128
1129         /*
1130          * Try to encourage some diversity in flush hint addresses
1131          * across cpus assuming a limited number of flush hints.
1132          */
1133         idx = this_cpu_read(flush_idx);
1134         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1135
1136         /*
1137          * The first wmb() is needed to 'sfence' all previous writes
1138          * such that they are architecturally visible for the platform
1139          * buffer flush.  Note that we've already arranged for pmem
1140          * writes to avoid the cache via memcpy_flushcache().  The final
1141          * wmb() ensures ordering for the NVDIMM flush write.
1142          */
1143         wmb();
1144         for (i = 0; i < nd_region->ndr_mappings; i++)
1145                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1146                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1147         wmb();
1148 }
1149 EXPORT_SYMBOL_GPL(nvdimm_flush);
1150
1151 /**
1152  * nvdimm_has_flush - determine write flushing requirements
1153  * @nd_region: blk or interleaved pmem region
1154  *
1155  * Returns 1 if writes require flushing
1156  * Returns 0 if writes do not require flushing
1157  * Returns -ENXIO if flushing capability can not be determined
1158  */
1159 int nvdimm_has_flush(struct nd_region *nd_region)
1160 {
1161         int i;
1162
1163         /* no nvdimm or pmem api == flushing capability unknown */
1164         if (nd_region->ndr_mappings == 0
1165                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1166                 return -ENXIO;
1167
1168         for (i = 0; i < nd_region->ndr_mappings; i++) {
1169                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1170                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1171
1172                 /* flush hints present / available */
1173                 if (nvdimm->num_flush)
1174                         return 1;
1175         }
1176
1177         /*
1178          * The platform defines dimm devices without hints, assume
1179          * platform persistence mechanism like ADR
1180          */
1181         return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1184
1185 int nvdimm_has_cache(struct nd_region *nd_region)
1186 {
1187         return is_nd_pmem(&nd_region->dev) &&
1188                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1189 }
1190 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1191
1192 struct conflict_context {
1193         struct nd_region *nd_region;
1194         resource_size_t start, size;
1195 };
1196
1197 static int region_conflict(struct device *dev, void *data)
1198 {
1199         struct nd_region *nd_region;
1200         struct conflict_context *ctx = data;
1201         resource_size_t res_end, region_end, region_start;
1202
1203         if (!is_memory(dev))
1204                 return 0;
1205
1206         nd_region = to_nd_region(dev);
1207         if (nd_region == ctx->nd_region)
1208                 return 0;
1209
1210         res_end = ctx->start + ctx->size;
1211         region_start = nd_region->ndr_start;
1212         region_end = region_start + nd_region->ndr_size;
1213         if (ctx->start >= region_start && ctx->start < region_end)
1214                 return -EBUSY;
1215         if (res_end > region_start && res_end <= region_end)
1216                 return -EBUSY;
1217         return 0;
1218 }
1219
1220 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1221                 resource_size_t size)
1222 {
1223         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1224         struct conflict_context ctx = {
1225                 .nd_region = nd_region,
1226                 .start = start,
1227                 .size = size,
1228         };
1229
1230         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1231 }
1232
1233 void __exit nd_region_devs_exit(void)
1234 {
1235         ida_destroy(&region_ida);
1236 }