rust: upgrade to Rust 1.76.0
[sfrench/cifs-2.6.git] / drivers / net / wireless / microchip / wilc1000 / spi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4  * All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/spi/spi.h>
9 #include <linux/crc7.h>
10 #include <linux/crc-itu-t.h>
11 #include <linux/gpio/consumer.h>
12
13 #include "netdev.h"
14 #include "cfg80211.h"
15
16 #define SPI_MODALIAS            "wilc1000_spi"
17
18 static bool enable_crc7;        /* protect SPI commands with CRC7 */
19 module_param(enable_crc7, bool, 0644);
20 MODULE_PARM_DESC(enable_crc7,
21                  "Enable CRC7 checksum to protect command transfers\n"
22                  "\t\t\tagainst corruption during the SPI transfer.\n"
23                  "\t\t\tCommand transfers are short and the CPU-cycle cost\n"
24                  "\t\t\tof enabling this is small.");
25
26 static bool enable_crc16;       /* protect SPI data with CRC16 */
27 module_param(enable_crc16, bool, 0644);
28 MODULE_PARM_DESC(enable_crc16,
29                  "Enable CRC16 checksum to protect data transfers\n"
30                  "\t\t\tagainst corruption during the SPI transfer.\n"
31                  "\t\t\tData transfers can be large and the CPU-cycle cost\n"
32                  "\t\t\tof enabling this may be substantial.");
33
34 /*
35  * For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or
36  * more zero bytes between the command response and the DATA Start tag
37  * (0xf3).  This behavior appears to be undocumented in "ATWILC1000
38  * USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4
39  * zero bytes when the SPI bus operates at 48MHz and none when it
40  * operates at 1MHz.
41  */
42 #define WILC_SPI_RSP_HDR_EXTRA_DATA     8
43
44 struct wilc_spi {
45         bool isinit;            /* true if SPI protocol has been configured */
46         bool probing_crc;       /* true if we're probing chip's CRC config */
47         bool crc7_enabled;      /* true if crc7 is currently enabled */
48         bool crc16_enabled;     /* true if crc16 is currently enabled */
49         struct wilc_gpios {
50                 struct gpio_desc *enable;       /* ENABLE GPIO or NULL */
51                 struct gpio_desc *reset;        /* RESET GPIO or NULL */
52         } gpios;
53 };
54
55 static const struct wilc_hif_func wilc_hif_spi;
56
57 static int wilc_spi_reset(struct wilc *wilc);
58
59 /********************************************
60  *
61  *      Spi protocol Function
62  *
63  ********************************************/
64
65 #define CMD_DMA_WRITE                           0xc1
66 #define CMD_DMA_READ                            0xc2
67 #define CMD_INTERNAL_WRITE                      0xc3
68 #define CMD_INTERNAL_READ                       0xc4
69 #define CMD_TERMINATE                           0xc5
70 #define CMD_REPEAT                              0xc6
71 #define CMD_DMA_EXT_WRITE                       0xc7
72 #define CMD_DMA_EXT_READ                        0xc8
73 #define CMD_SINGLE_WRITE                        0xc9
74 #define CMD_SINGLE_READ                         0xca
75 #define CMD_RESET                               0xcf
76
77 #define SPI_RETRY_MAX_LIMIT                     10
78 #define SPI_ENABLE_VMM_RETRY_LIMIT              2
79
80 /* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */
81 #define RSP_START_FIELD                         GENMASK(7, 4)
82 #define RSP_TYPE_FIELD                          GENMASK(3, 0)
83
84 /* SPI response values for the response fields: */
85 #define RSP_START_TAG                           0xc
86 #define RSP_TYPE_FIRST_PACKET                   0x1
87 #define RSP_TYPE_INNER_PACKET                   0x2
88 #define RSP_TYPE_LAST_PACKET                    0x3
89 #define RSP_STATE_NO_ERROR                      0x00
90
91 #define PROTOCOL_REG_PKT_SZ_MASK                GENMASK(6, 4)
92 #define PROTOCOL_REG_CRC16_MASK                 GENMASK(3, 3)
93 #define PROTOCOL_REG_CRC7_MASK                  GENMASK(2, 2)
94
95 /*
96  * The SPI data packet size may be any integer power of two in the
97  * range from 256 to 8192 bytes.
98  */
99 #define DATA_PKT_LOG_SZ_MIN                     8       /* 256 B */
100 #define DATA_PKT_LOG_SZ_MAX                     13      /* 8 KiB */
101
102 /*
103  * Select the data packet size (log2 of number of bytes): Use the
104  * maximum data packet size.  We only retransmit complete packets, so
105  * there is no benefit from using smaller data packets.
106  */
107 #define DATA_PKT_LOG_SZ                         DATA_PKT_LOG_SZ_MAX
108 #define DATA_PKT_SZ                             (1 << DATA_PKT_LOG_SZ)
109
110 #define WILC_SPI_COMMAND_STAT_SUCCESS           0
111 #define WILC_GET_RESP_HDR_START(h)              (((h) >> 4) & 0xf)
112
113 struct wilc_spi_cmd {
114         u8 cmd_type;
115         union {
116                 struct {
117                         u8 addr[3];
118                         u8 crc[];
119                 } __packed simple_cmd;
120                 struct {
121                         u8 addr[3];
122                         u8 size[2];
123                         u8 crc[];
124                 } __packed dma_cmd;
125                 struct {
126                         u8 addr[3];
127                         u8 size[3];
128                         u8 crc[];
129                 } __packed dma_cmd_ext;
130                 struct {
131                         u8 addr[2];
132                         __be32 data;
133                         u8 crc[];
134                 } __packed internal_w_cmd;
135                 struct {
136                         u8 addr[3];
137                         __be32 data;
138                         u8 crc[];
139                 } __packed w_cmd;
140         } u;
141 } __packed;
142
143 struct wilc_spi_read_rsp_data {
144         u8 header;
145         u8 data[4];
146         u8 crc[];
147 } __packed;
148
149 struct wilc_spi_rsp_data {
150         u8 rsp_cmd_type;
151         u8 status;
152         u8 data[];
153 } __packed;
154
155 struct wilc_spi_special_cmd_rsp {
156         u8 skip_byte;
157         u8 rsp_cmd_type;
158         u8 status;
159 } __packed;
160
161 static int wilc_parse_gpios(struct wilc *wilc)
162 {
163         struct spi_device *spi = to_spi_device(wilc->dev);
164         struct wilc_spi *spi_priv = wilc->bus_data;
165         struct wilc_gpios *gpios = &spi_priv->gpios;
166
167         /* get ENABLE pin and deassert it (if it is defined): */
168         gpios->enable = devm_gpiod_get_optional(&spi->dev,
169                                                 "enable", GPIOD_OUT_LOW);
170         /* get RESET pin and assert it (if it is defined): */
171         if (gpios->enable) {
172                 /* if enable pin exists, reset must exist as well */
173                 gpios->reset = devm_gpiod_get(&spi->dev,
174                                               "reset", GPIOD_OUT_HIGH);
175                 if (IS_ERR(gpios->reset)) {
176                         dev_err(&spi->dev, "missing reset gpio.\n");
177                         return PTR_ERR(gpios->reset);
178                 }
179         } else {
180                 gpios->reset = devm_gpiod_get_optional(&spi->dev,
181                                                        "reset", GPIOD_OUT_HIGH);
182         }
183         return 0;
184 }
185
186 static void wilc_wlan_power(struct wilc *wilc, bool on)
187 {
188         struct wilc_spi *spi_priv = wilc->bus_data;
189         struct wilc_gpios *gpios = &spi_priv->gpios;
190
191         if (on) {
192                 /* assert ENABLE: */
193                 gpiod_set_value(gpios->enable, 1);
194                 mdelay(5);
195                 /* assert RESET: */
196                 gpiod_set_value(gpios->reset, 1);
197         } else {
198                 /* deassert RESET: */
199                 gpiod_set_value(gpios->reset, 0);
200                 /* deassert ENABLE: */
201                 gpiod_set_value(gpios->enable, 0);
202         }
203 }
204
205 static int wilc_bus_probe(struct spi_device *spi)
206 {
207         int ret;
208         struct wilc *wilc;
209         struct wilc_spi *spi_priv;
210
211         spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
212         if (!spi_priv)
213                 return -ENOMEM;
214
215         ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
216         if (ret)
217                 goto free;
218
219         spi_set_drvdata(spi, wilc);
220         wilc->dev = &spi->dev;
221         wilc->bus_data = spi_priv;
222         wilc->dev_irq_num = spi->irq;
223
224         ret = wilc_parse_gpios(wilc);
225         if (ret < 0)
226                 goto netdev_cleanup;
227
228         wilc->rtc_clk = devm_clk_get_optional(&spi->dev, "rtc");
229         if (IS_ERR(wilc->rtc_clk)) {
230                 ret = PTR_ERR(wilc->rtc_clk);
231                 goto netdev_cleanup;
232         }
233         clk_prepare_enable(wilc->rtc_clk);
234
235         return 0;
236
237 netdev_cleanup:
238         wilc_netdev_cleanup(wilc);
239 free:
240         kfree(spi_priv);
241         return ret;
242 }
243
244 static void wilc_bus_remove(struct spi_device *spi)
245 {
246         struct wilc *wilc = spi_get_drvdata(spi);
247         struct wilc_spi *spi_priv = wilc->bus_data;
248
249         clk_disable_unprepare(wilc->rtc_clk);
250         wilc_netdev_cleanup(wilc);
251         kfree(spi_priv);
252 }
253
254 static const struct of_device_id wilc_of_match[] = {
255         { .compatible = "microchip,wilc1000", },
256         { /* sentinel */ }
257 };
258 MODULE_DEVICE_TABLE(of, wilc_of_match);
259
260 static const struct spi_device_id wilc_spi_id[] = {
261         { "wilc1000", 0 },
262         { /* sentinel */ }
263 };
264 MODULE_DEVICE_TABLE(spi, wilc_spi_id);
265
266 static struct spi_driver wilc_spi_driver = {
267         .driver = {
268                 .name = SPI_MODALIAS,
269                 .of_match_table = wilc_of_match,
270         },
271         .id_table = wilc_spi_id,
272         .probe =  wilc_bus_probe,
273         .remove = wilc_bus_remove,
274 };
275 module_spi_driver(wilc_spi_driver);
276 MODULE_LICENSE("GPL");
277
278 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
279 {
280         struct spi_device *spi = to_spi_device(wilc->dev);
281         int ret;
282         struct spi_message msg;
283
284         if (len > 0 && b) {
285                 struct spi_transfer tr = {
286                         .tx_buf = b,
287                         .len = len,
288                         .delay = {
289                                 .value = 0,
290                                 .unit = SPI_DELAY_UNIT_USECS
291                         },
292                 };
293                 char *r_buffer = kzalloc(len, GFP_KERNEL);
294
295                 if (!r_buffer)
296                         return -ENOMEM;
297
298                 tr.rx_buf = r_buffer;
299                 dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
300
301                 memset(&msg, 0, sizeof(msg));
302                 spi_message_init(&msg);
303                 msg.spi = spi;
304                 spi_message_add_tail(&tr, &msg);
305
306                 ret = spi_sync(spi, &msg);
307                 if (ret < 0)
308                         dev_err(&spi->dev, "SPI transaction failed\n");
309
310                 kfree(r_buffer);
311         } else {
312                 dev_err(&spi->dev,
313                         "can't write data with the following length: %d\n",
314                         len);
315                 ret = -EINVAL;
316         }
317
318         return ret;
319 }
320
321 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
322 {
323         struct spi_device *spi = to_spi_device(wilc->dev);
324         int ret;
325
326         if (rlen > 0) {
327                 struct spi_message msg;
328                 struct spi_transfer tr = {
329                         .rx_buf = rb,
330                         .len = rlen,
331                         .delay = {
332                                 .value = 0,
333                                 .unit = SPI_DELAY_UNIT_USECS
334                         },
335
336                 };
337                 char *t_buffer = kzalloc(rlen, GFP_KERNEL);
338
339                 if (!t_buffer)
340                         return -ENOMEM;
341
342                 tr.tx_buf = t_buffer;
343
344                 memset(&msg, 0, sizeof(msg));
345                 spi_message_init(&msg);
346                 msg.spi = spi;
347                 spi_message_add_tail(&tr, &msg);
348
349                 ret = spi_sync(spi, &msg);
350                 if (ret < 0)
351                         dev_err(&spi->dev, "SPI transaction failed\n");
352                 kfree(t_buffer);
353         } else {
354                 dev_err(&spi->dev,
355                         "can't read data with the following length: %u\n",
356                         rlen);
357                 ret = -EINVAL;
358         }
359
360         return ret;
361 }
362
363 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
364 {
365         struct spi_device *spi = to_spi_device(wilc->dev);
366         int ret;
367
368         if (rlen > 0) {
369                 struct spi_message msg;
370                 struct spi_transfer tr = {
371                         .rx_buf = rb,
372                         .tx_buf = wb,
373                         .len = rlen,
374                         .bits_per_word = 8,
375                         .delay = {
376                                 .value = 0,
377                                 .unit = SPI_DELAY_UNIT_USECS
378                         },
379
380                 };
381
382                 memset(&msg, 0, sizeof(msg));
383                 spi_message_init(&msg);
384                 msg.spi = spi;
385
386                 spi_message_add_tail(&tr, &msg);
387                 ret = spi_sync(spi, &msg);
388                 if (ret < 0)
389                         dev_err(&spi->dev, "SPI transaction failed\n");
390         } else {
391                 dev_err(&spi->dev,
392                         "can't read data with the following length: %u\n",
393                         rlen);
394                 ret = -EINVAL;
395         }
396
397         return ret;
398 }
399
400 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
401 {
402         struct spi_device *spi = to_spi_device(wilc->dev);
403         struct wilc_spi *spi_priv = wilc->bus_data;
404         int ix, nbytes;
405         int result = 0;
406         u8 cmd, order, crc[2];
407         u16 crc_calc;
408
409         /*
410          * Data
411          */
412         ix = 0;
413         do {
414                 if (sz <= DATA_PKT_SZ) {
415                         nbytes = sz;
416                         order = 0x3;
417                 } else {
418                         nbytes = DATA_PKT_SZ;
419                         if (ix == 0)
420                                 order = 0x1;
421                         else
422                                 order = 0x02;
423                 }
424
425                 /*
426                  * Write command
427                  */
428                 cmd = 0xf0;
429                 cmd |= order;
430
431                 if (wilc_spi_tx(wilc, &cmd, 1)) {
432                         dev_err(&spi->dev,
433                                 "Failed data block cmd write, bus error...\n");
434                         result = -EINVAL;
435                         break;
436                 }
437
438                 /*
439                  * Write data
440                  */
441                 if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
442                         dev_err(&spi->dev,
443                                 "Failed data block write, bus error...\n");
444                         result = -EINVAL;
445                         break;
446                 }
447
448                 /*
449                  * Write CRC
450                  */
451                 if (spi_priv->crc16_enabled) {
452                         crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
453                         crc[0] = crc_calc >> 8;
454                         crc[1] = crc_calc;
455                         if (wilc_spi_tx(wilc, crc, 2)) {
456                                 dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
457                                 result = -EINVAL;
458                                 break;
459                         }
460                 }
461
462                 /*
463                  * No need to wait for response
464                  */
465                 ix += nbytes;
466                 sz -= nbytes;
467         } while (sz);
468
469         return result;
470 }
471
472 /********************************************
473  *
474  *      Spi Internal Read/Write Function
475  *
476  ********************************************/
477 static u8 wilc_get_crc7(u8 *buffer, u32 len)
478 {
479         return crc7_be(0xfe, buffer, len);
480 }
481
482 static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b,
483                                 u8 clockless)
484 {
485         struct spi_device *spi = to_spi_device(wilc->dev);
486         struct wilc_spi *spi_priv = wilc->bus_data;
487         u8 wb[32], rb[32];
488         int cmd_len, resp_len, i;
489         u16 crc_calc, crc_recv;
490         struct wilc_spi_cmd *c;
491         struct wilc_spi_rsp_data *r;
492         struct wilc_spi_read_rsp_data *r_data;
493
494         memset(wb, 0x0, sizeof(wb));
495         memset(rb, 0x0, sizeof(rb));
496         c = (struct wilc_spi_cmd *)wb;
497         c->cmd_type = cmd;
498         if (cmd == CMD_SINGLE_READ) {
499                 c->u.simple_cmd.addr[0] = adr >> 16;
500                 c->u.simple_cmd.addr[1] = adr >> 8;
501                 c->u.simple_cmd.addr[2] = adr;
502         } else if (cmd == CMD_INTERNAL_READ) {
503                 c->u.simple_cmd.addr[0] = adr >> 8;
504                 if (clockless == 1)
505                         c->u.simple_cmd.addr[0] |= BIT(7);
506                 c->u.simple_cmd.addr[1] = adr;
507                 c->u.simple_cmd.addr[2] = 0x0;
508         } else {
509                 dev_err(&spi->dev, "cmd [%x] not supported\n", cmd);
510                 return -EINVAL;
511         }
512
513         cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
514         resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA;
515
516         if (spi_priv->crc7_enabled) {
517                 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
518                 cmd_len += 1;
519                 resp_len += 2;
520         }
521
522         if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
523                 dev_err(&spi->dev,
524                         "spi buffer size too small (%d) (%d) (%zu)\n",
525                         cmd_len, resp_len, ARRAY_SIZE(wb));
526                 return -EINVAL;
527         }
528
529         if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
530                 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
531                 return -EINVAL;
532         }
533
534         r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
535         if (r->rsp_cmd_type != cmd && !clockless) {
536                 if (!spi_priv->probing_crc)
537                         dev_err(&spi->dev,
538                                 "Failed cmd, cmd (%02x), resp (%02x)\n",
539                                 cmd, r->rsp_cmd_type);
540                 return -EINVAL;
541         }
542
543         if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
544                 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
545                         r->status);
546                 return -EINVAL;
547         }
548
549         for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i)
550                 if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf)
551                         break;
552
553         if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) {
554                 dev_err(&spi->dev, "Error, data start missing\n");
555                 return -EINVAL;
556         }
557
558         r_data = (struct wilc_spi_read_rsp_data *)&r->data[i];
559
560         if (b)
561                 memcpy(b, r_data->data, 4);
562
563         if (!clockless && spi_priv->crc16_enabled) {
564                 crc_recv = (r_data->crc[0] << 8) | r_data->crc[1];
565                 crc_calc = crc_itu_t(0xffff, r_data->data, 4);
566                 if (crc_recv != crc_calc) {
567                         dev_err(&spi->dev, "%s: bad CRC 0x%04x "
568                                 "(calculated 0x%04x)\n", __func__,
569                                 crc_recv, crc_calc);
570                         return -EINVAL;
571                 }
572         }
573
574         return 0;
575 }
576
577 static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data,
578                               u8 clockless)
579 {
580         struct spi_device *spi = to_spi_device(wilc->dev);
581         struct wilc_spi *spi_priv = wilc->bus_data;
582         u8 wb[32], rb[32];
583         int cmd_len, resp_len;
584         struct wilc_spi_cmd *c;
585         struct wilc_spi_rsp_data *r;
586
587         memset(wb, 0x0, sizeof(wb));
588         memset(rb, 0x0, sizeof(rb));
589         c = (struct wilc_spi_cmd *)wb;
590         c->cmd_type = cmd;
591         if (cmd == CMD_INTERNAL_WRITE) {
592                 c->u.internal_w_cmd.addr[0] = adr >> 8;
593                 if (clockless == 1)
594                         c->u.internal_w_cmd.addr[0] |= BIT(7);
595
596                 c->u.internal_w_cmd.addr[1] = adr;
597                 c->u.internal_w_cmd.data = cpu_to_be32(data);
598                 cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc);
599                 if (spi_priv->crc7_enabled)
600                         c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
601         } else if (cmd == CMD_SINGLE_WRITE) {
602                 c->u.w_cmd.addr[0] = adr >> 16;
603                 c->u.w_cmd.addr[1] = adr >> 8;
604                 c->u.w_cmd.addr[2] = adr;
605                 c->u.w_cmd.data = cpu_to_be32(data);
606                 cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc);
607                 if (spi_priv->crc7_enabled)
608                         c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
609         } else {
610                 dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd);
611                 return -EINVAL;
612         }
613
614         if (spi_priv->crc7_enabled)
615                 cmd_len += 1;
616
617         resp_len = sizeof(*r);
618
619         if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
620                 dev_err(&spi->dev,
621                         "spi buffer size too small (%d) (%d) (%zu)\n",
622                         cmd_len, resp_len, ARRAY_SIZE(wb));
623                 return -EINVAL;
624         }
625
626         if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
627                 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
628                 return -EINVAL;
629         }
630
631         r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
632         /*
633          * Clockless registers operations might return unexptected responses,
634          * even if successful.
635          */
636         if (r->rsp_cmd_type != cmd && !clockless) {
637                 dev_err(&spi->dev,
638                         "Failed cmd response, cmd (%02x), resp (%02x)\n",
639                         cmd, r->rsp_cmd_type);
640                 return -EINVAL;
641         }
642
643         if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
644                 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
645                         r->status);
646                 return -EINVAL;
647         }
648
649         return 0;
650 }
651
652 static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz)
653 {
654         struct spi_device *spi = to_spi_device(wilc->dev);
655         struct wilc_spi *spi_priv = wilc->bus_data;
656         u16 crc_recv, crc_calc;
657         u8 wb[32], rb[32];
658         int cmd_len, resp_len;
659         int retry, ix = 0;
660         u8 crc[2];
661         struct wilc_spi_cmd *c;
662         struct wilc_spi_rsp_data *r;
663
664         memset(wb, 0x0, sizeof(wb));
665         memset(rb, 0x0, sizeof(rb));
666         c = (struct wilc_spi_cmd *)wb;
667         c->cmd_type = cmd;
668         if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) {
669                 c->u.dma_cmd.addr[0] = adr >> 16;
670                 c->u.dma_cmd.addr[1] = adr >> 8;
671                 c->u.dma_cmd.addr[2] = adr;
672                 c->u.dma_cmd.size[0] = sz >> 8;
673                 c->u.dma_cmd.size[1] = sz;
674                 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc);
675                 if (spi_priv->crc7_enabled)
676                         c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
677         } else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) {
678                 c->u.dma_cmd_ext.addr[0] = adr >> 16;
679                 c->u.dma_cmd_ext.addr[1] = adr >> 8;
680                 c->u.dma_cmd_ext.addr[2] = adr;
681                 c->u.dma_cmd_ext.size[0] = sz >> 16;
682                 c->u.dma_cmd_ext.size[1] = sz >> 8;
683                 c->u.dma_cmd_ext.size[2] = sz;
684                 cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc);
685                 if (spi_priv->crc7_enabled)
686                         c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len);
687         } else {
688                 dev_err(&spi->dev, "dma read write cmd [%x] not supported\n",
689                         cmd);
690                 return -EINVAL;
691         }
692         if (spi_priv->crc7_enabled)
693                 cmd_len += 1;
694
695         resp_len = sizeof(*r);
696
697         if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
698                 dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n",
699                         cmd_len, resp_len, ARRAY_SIZE(wb));
700                 return -EINVAL;
701         }
702
703         if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
704                 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
705                 return -EINVAL;
706         }
707
708         r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
709         if (r->rsp_cmd_type != cmd) {
710                 dev_err(&spi->dev,
711                         "Failed cmd response, cmd (%02x), resp (%02x)\n",
712                         cmd, r->rsp_cmd_type);
713                 return -EINVAL;
714         }
715
716         if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
717                 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
718                         r->status);
719                 return -EINVAL;
720         }
721
722         if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE)
723                 return 0;
724
725         while (sz > 0) {
726                 int nbytes;
727                 u8 rsp;
728
729                 nbytes = min_t(u32, sz, DATA_PKT_SZ);
730
731                 /*
732                  * Data Response header
733                  */
734                 retry = 100;
735                 do {
736                         if (wilc_spi_rx(wilc, &rsp, 1)) {
737                                 dev_err(&spi->dev,
738                                         "Failed resp read, bus err\n");
739                                 return -EINVAL;
740                         }
741                         if (WILC_GET_RESP_HDR_START(rsp) == 0xf)
742                                 break;
743                 } while (retry--);
744
745                 /*
746                  * Read bytes
747                  */
748                 if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
749                         dev_err(&spi->dev,
750                                 "Failed block read, bus err\n");
751                         return -EINVAL;
752                 }
753
754                 /*
755                  * Read CRC
756                  */
757                 if (spi_priv->crc16_enabled) {
758                         if (wilc_spi_rx(wilc, crc, 2)) {
759                                 dev_err(&spi->dev,
760                                         "Failed block CRC read, bus err\n");
761                                 return -EINVAL;
762                         }
763                         crc_recv = (crc[0] << 8) | crc[1];
764                         crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
765                         if (crc_recv != crc_calc) {
766                                 dev_err(&spi->dev, "%s: bad CRC 0x%04x "
767                                         "(calculated 0x%04x)\n", __func__,
768                                         crc_recv, crc_calc);
769                                 return -EINVAL;
770                         }
771                 }
772
773                 ix += nbytes;
774                 sz -= nbytes;
775         }
776         return 0;
777 }
778
779 static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd)
780 {
781         struct spi_device *spi = to_spi_device(wilc->dev);
782         struct wilc_spi *spi_priv = wilc->bus_data;
783         u8 wb[32], rb[32];
784         int cmd_len, resp_len = 0;
785         struct wilc_spi_cmd *c;
786         struct wilc_spi_special_cmd_rsp *r;
787
788         if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET)
789                 return -EINVAL;
790
791         memset(wb, 0x0, sizeof(wb));
792         memset(rb, 0x0, sizeof(rb));
793         c = (struct wilc_spi_cmd *)wb;
794         c->cmd_type = cmd;
795
796         if (cmd == CMD_RESET)
797                 memset(c->u.simple_cmd.addr, 0xFF, 3);
798
799         cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
800         resp_len = sizeof(*r);
801
802         if (spi_priv->crc7_enabled) {
803                 c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
804                 cmd_len += 1;
805         }
806         if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
807                 dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n",
808                         cmd_len, resp_len, ARRAY_SIZE(wb));
809                 return -EINVAL;
810         }
811
812         if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
813                 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
814                 return -EINVAL;
815         }
816
817         r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len];
818         if (r->rsp_cmd_type != cmd) {
819                 if (!spi_priv->probing_crc)
820                         dev_err(&spi->dev,
821                                 "Failed cmd response, cmd (%02x), resp (%02x)\n",
822                                 cmd, r->rsp_cmd_type);
823                 return -EINVAL;
824         }
825
826         if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
827                 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
828                         r->status);
829                 return -EINVAL;
830         }
831         return 0;
832 }
833
834 static void wilc_spi_reset_cmd_sequence(struct wilc *wl, u8 attempt, u32 addr)
835 {
836         struct spi_device *spi = to_spi_device(wl->dev);
837         struct wilc_spi *spi_priv = wl->bus_data;
838
839         if (!spi_priv->probing_crc)
840                 dev_err(&spi->dev, "Reset and retry %d %x\n", attempt, addr);
841
842         usleep_range(1000, 1100);
843         wilc_spi_reset(wl);
844         usleep_range(1000, 1100);
845 }
846
847 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
848 {
849         struct spi_device *spi = to_spi_device(wilc->dev);
850         int result;
851         u8 cmd = CMD_SINGLE_READ;
852         u8 clockless = 0;
853         u8 i;
854
855         if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
856                 /* Clockless register */
857                 cmd = CMD_INTERNAL_READ;
858                 clockless = 1;
859         }
860
861         for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
862                 result = wilc_spi_single_read(wilc, cmd, addr, data, clockless);
863                 if (!result) {
864                         le32_to_cpus(data);
865                         return 0;
866                 }
867
868                 /* retry is not applicable for clockless registers */
869                 if (clockless)
870                         break;
871
872                 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
873                 wilc_spi_reset_cmd_sequence(wilc, i, addr);
874         }
875
876         return result;
877 }
878
879 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
880 {
881         struct spi_device *spi = to_spi_device(wilc->dev);
882         int result;
883         u8 i;
884
885         if (size <= 4)
886                 return -EINVAL;
887
888         for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
889                 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr,
890                                          buf, size);
891                 if (!result)
892                         return 0;
893
894                 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
895
896                 wilc_spi_reset_cmd_sequence(wilc, i, addr);
897         }
898
899         return result;
900 }
901
902 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
903 {
904         struct spi_device *spi = to_spi_device(wilc->dev);
905         int result;
906         u8 i;
907
908         for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
909                 result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr,
910                                             dat, 0);
911                 if (!result)
912                         return 0;
913                 dev_err(&spi->dev, "Failed internal write cmd...\n");
914
915                 wilc_spi_reset_cmd_sequence(wilc, i, adr);
916         }
917
918         return result;
919 }
920
921 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
922 {
923         struct spi_device *spi = to_spi_device(wilc->dev);
924         struct wilc_spi *spi_priv = wilc->bus_data;
925         int result;
926         u8 i;
927
928         for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
929                 result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr,
930                                               data, 0);
931                 if (!result) {
932                         le32_to_cpus(data);
933                         return 0;
934                 }
935                 if (!spi_priv->probing_crc)
936                         dev_err(&spi->dev, "Failed internal read cmd...\n");
937
938                 wilc_spi_reset_cmd_sequence(wilc, i, adr);
939         }
940
941         return result;
942 }
943
944 /********************************************
945  *
946  *      Spi interfaces
947  *
948  ********************************************/
949
950 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
951 {
952         struct spi_device *spi = to_spi_device(wilc->dev);
953         int result;
954         u8 cmd = CMD_SINGLE_WRITE;
955         u8 clockless = 0;
956         u8 i;
957
958         if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
959                 /* Clockless register */
960                 cmd = CMD_INTERNAL_WRITE;
961                 clockless = 1;
962         }
963
964         for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
965                 result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless);
966                 if (!result)
967                         return 0;
968
969                 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
970
971                 if (clockless)
972                         break;
973
974                 wilc_spi_reset_cmd_sequence(wilc, i, addr);
975         }
976         return result;
977 }
978
979 static int spi_data_rsp(struct wilc *wilc, u8 cmd)
980 {
981         struct spi_device *spi = to_spi_device(wilc->dev);
982         int result, i;
983         u8 rsp[4];
984
985         /*
986          * The response to data packets is two bytes long.  For
987          * efficiency's sake, wilc_spi_write() wisely ignores the
988          * responses for all packets but the final one.  The downside
989          * of that optimization is that when the final data packet is
990          * short, we may receive (part of) the response to the
991          * second-to-last packet before the one for the final packet.
992          * To handle this, we always read 4 bytes and then search for
993          * the last byte that contains the "Response Start" code (0xc
994          * in the top 4 bits).  We then know that this byte is the
995          * first response byte of the final data packet.
996          */
997         result = wilc_spi_rx(wilc, rsp, sizeof(rsp));
998         if (result) {
999                 dev_err(&spi->dev, "Failed bus error...\n");
1000                 return result;
1001         }
1002
1003         for (i = sizeof(rsp) - 2; i >= 0; --i)
1004                 if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG)
1005                         break;
1006
1007         if (i < 0) {
1008                 dev_err(&spi->dev,
1009                         "Data packet response missing (%02x %02x %02x %02x)\n",
1010                         rsp[0], rsp[1], rsp[2], rsp[3]);
1011                 return -1;
1012         }
1013
1014         /* rsp[i] is the last response start byte */
1015
1016         if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET
1017             || rsp[i + 1] != RSP_STATE_NO_ERROR) {
1018                 dev_err(&spi->dev, "Data response error (%02x %02x)\n",
1019                         rsp[i], rsp[i + 1]);
1020                 return -1;
1021         }
1022         return 0;
1023 }
1024
1025 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
1026 {
1027         struct spi_device *spi = to_spi_device(wilc->dev);
1028         int result;
1029         u8 i;
1030
1031         /*
1032          * has to be greated than 4
1033          */
1034         if (size <= 4)
1035                 return -EINVAL;
1036
1037         for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
1038                 result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr,
1039                                          NULL, size);
1040                 if (result) {
1041                         dev_err(&spi->dev,
1042                                 "Failed cmd, write block (%08x)...\n", addr);
1043                         wilc_spi_reset_cmd_sequence(wilc, i, addr);
1044                         continue;
1045                 }
1046
1047                 /*
1048                  * Data
1049                  */
1050                 result = spi_data_write(wilc, buf, size);
1051                 if (result) {
1052                         dev_err(&spi->dev, "Failed block data write...\n");
1053                         wilc_spi_reset_cmd_sequence(wilc, i, addr);
1054                         continue;
1055                 }
1056
1057                 /*
1058                  * Data response
1059                  */
1060                 result = spi_data_rsp(wilc, CMD_DMA_EXT_WRITE);
1061                 if (result) {
1062                         dev_err(&spi->dev, "Failed block data rsp...\n");
1063                         wilc_spi_reset_cmd_sequence(wilc, i, addr);
1064                         continue;
1065                 }
1066                 break;
1067         }
1068         return result;
1069 }
1070
1071 /********************************************
1072  *
1073  *      Bus interfaces
1074  *
1075  ********************************************/
1076
1077 static int wilc_spi_reset(struct wilc *wilc)
1078 {
1079         struct spi_device *spi = to_spi_device(wilc->dev);
1080         struct wilc_spi *spi_priv = wilc->bus_data;
1081         int result;
1082
1083         result = wilc_spi_special_cmd(wilc, CMD_RESET);
1084         if (result && !spi_priv->probing_crc)
1085                 dev_err(&spi->dev, "Failed cmd reset\n");
1086
1087         return result;
1088 }
1089
1090 static bool wilc_spi_is_init(struct wilc *wilc)
1091 {
1092         struct wilc_spi *spi_priv = wilc->bus_data;
1093
1094         return spi_priv->isinit;
1095 }
1096
1097 static int wilc_spi_deinit(struct wilc *wilc)
1098 {
1099         struct wilc_spi *spi_priv = wilc->bus_data;
1100
1101         spi_priv->isinit = false;
1102         wilc_wlan_power(wilc, false);
1103         return 0;
1104 }
1105
1106 static int wilc_spi_init(struct wilc *wilc, bool resume)
1107 {
1108         struct spi_device *spi = to_spi_device(wilc->dev);
1109         struct wilc_spi *spi_priv = wilc->bus_data;
1110         u32 reg;
1111         u32 chipid;
1112         int ret, i;
1113
1114         if (spi_priv->isinit) {
1115                 /* Confirm we can read chipid register without error: */
1116                 ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1117                 if (ret == 0)
1118                         return 0;
1119
1120                 dev_err(&spi->dev, "Fail cmd read chip id...\n");
1121         }
1122
1123         wilc_wlan_power(wilc, true);
1124
1125         /*
1126          * configure protocol
1127          */
1128
1129         /*
1130          * Infer the CRC settings that are currently in effect.  This
1131          * is necessary because we can't be sure that the chip has
1132          * been RESET (e.g, after module unload and reload).
1133          */
1134         spi_priv->probing_crc = true;
1135         spi_priv->crc7_enabled = enable_crc7;
1136         spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */
1137         for (i = 0; i < 2; ++i) {
1138                 ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
1139                 if (ret == 0)
1140                         break;
1141                 spi_priv->crc7_enabled = !enable_crc7;
1142         }
1143         if (ret) {
1144                 dev_err(&spi->dev, "Failed with CRC7 on and off.\n");
1145                 return ret;
1146         }
1147
1148         /* set up the desired CRC configuration: */
1149         reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK);
1150         if (enable_crc7)
1151                 reg |= PROTOCOL_REG_CRC7_MASK;
1152         if (enable_crc16)
1153                 reg |= PROTOCOL_REG_CRC16_MASK;
1154
1155         /* set up the data packet size: */
1156         BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN
1157                      || DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX);
1158         reg &= ~PROTOCOL_REG_PKT_SZ_MASK;
1159         reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK,
1160                           DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN);
1161
1162         /* establish the new setup: */
1163         ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg);
1164         if (ret) {
1165                 dev_err(&spi->dev,
1166                         "[wilc spi %d]: Failed internal write reg\n",
1167                         __LINE__);
1168                 return ret;
1169         }
1170         /* update our state to match new protocol settings: */
1171         spi_priv->crc7_enabled = enable_crc7;
1172         spi_priv->crc16_enabled = enable_crc16;
1173
1174         /* re-read to make sure new settings are in effect: */
1175         spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
1176
1177         spi_priv->probing_crc = false;
1178
1179         /*
1180          * make sure can read chip id without protocol error
1181          */
1182         ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
1183         if (ret) {
1184                 dev_err(&spi->dev, "Fail cmd read chip id...\n");
1185                 return ret;
1186         }
1187
1188         spi_priv->isinit = true;
1189
1190         return 0;
1191 }
1192
1193 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
1194 {
1195         int ret;
1196
1197         ret = spi_internal_read(wilc,
1198                                 WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size);
1199         *size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size);
1200
1201         return ret;
1202 }
1203
1204 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
1205 {
1206         return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE,
1207                                  int_status);
1208 }
1209
1210 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
1211 {
1212         int ret;
1213         int retry = SPI_ENABLE_VMM_RETRY_LIMIT;
1214         u32 check;
1215
1216         while (retry) {
1217                 ret = spi_internal_write(wilc,
1218                                          WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1219                                          val);
1220                 if (ret)
1221                         break;
1222
1223                 ret = spi_internal_read(wilc,
1224                                         WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
1225                                         &check);
1226                 if (ret || ((check & EN_VMM) == (val & EN_VMM)))
1227                         break;
1228
1229                 retry--;
1230         }
1231         return ret;
1232 }
1233
1234 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1235 {
1236         struct spi_device *spi = to_spi_device(wilc->dev);
1237         u32 reg;
1238         int ret, i;
1239
1240         if (nint > MAX_NUM_INT) {
1241                 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1242                 return -EINVAL;
1243         }
1244
1245         /*
1246          * interrupt pin mux select
1247          */
1248         ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
1249         if (ret) {
1250                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1251                         WILC_PIN_MUX_0);
1252                 return ret;
1253         }
1254         reg |= BIT(8);
1255         ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1256         if (ret) {
1257                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1258                         WILC_PIN_MUX_0);
1259                 return ret;
1260         }
1261
1262         /*
1263          * interrupt enable
1264          */
1265         ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
1266         if (ret) {
1267                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1268                         WILC_INTR_ENABLE);
1269                 return ret;
1270         }
1271
1272         for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1273                 reg |= (BIT((27 + i)));
1274
1275         ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1276         if (ret) {
1277                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1278                         WILC_INTR_ENABLE);
1279                 return ret;
1280         }
1281         if (nint) {
1282                 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1283                 if (ret) {
1284                         dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1285                                 WILC_INTR2_ENABLE);
1286                         return ret;
1287                 }
1288
1289                 for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1290                         reg |= BIT(i);
1291
1292                 ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg);
1293                 if (ret) {
1294                         dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1295                                 WILC_INTR2_ENABLE);
1296                         return ret;
1297                 }
1298         }
1299
1300         return 0;
1301 }
1302
1303 /* Global spi HIF function table */
1304 static const struct wilc_hif_func wilc_hif_spi = {
1305         .hif_init = wilc_spi_init,
1306         .hif_deinit = wilc_spi_deinit,
1307         .hif_read_reg = wilc_spi_read_reg,
1308         .hif_write_reg = wilc_spi_write_reg,
1309         .hif_block_rx = wilc_spi_read,
1310         .hif_block_tx = wilc_spi_write,
1311         .hif_read_int = wilc_spi_read_int,
1312         .hif_clear_int_ext = wilc_spi_clear_int_ext,
1313         .hif_read_size = wilc_spi_read_size,
1314         .hif_block_tx_ext = wilc_spi_write,
1315         .hif_block_rx_ext = wilc_spi_read,
1316         .hif_sync_ext = wilc_spi_sync_ext,
1317         .hif_reset = wilc_spi_reset,
1318         .hif_is_init = wilc_spi_is_init,
1319 };