Merge tag 'net-next-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev...
[sfrench/cifs-2.6.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN   64
41
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44
45 static unsigned int ring_size __ro_after_init = 128;
46 module_param(ring_size, uint, 0444);
47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48 unsigned int netvsc_ring_bytes __ro_after_init;
49
50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53                                 NETIF_MSG_TX_ERR;
54
55 static int debug = -1;
56 module_param(debug, int, 0444);
57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59 static LIST_HEAD(netvsc_dev_list);
60
61 static void netvsc_change_rx_flags(struct net_device *net, int change)
62 {
63         struct net_device_context *ndev_ctx = netdev_priv(net);
64         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
65         int inc;
66
67         if (!vf_netdev)
68                 return;
69
70         if (change & IFF_PROMISC) {
71                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72                 dev_set_promiscuity(vf_netdev, inc);
73         }
74
75         if (change & IFF_ALLMULTI) {
76                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77                 dev_set_allmulti(vf_netdev, inc);
78         }
79 }
80
81 static void netvsc_set_rx_mode(struct net_device *net)
82 {
83         struct net_device_context *ndev_ctx = netdev_priv(net);
84         struct net_device *vf_netdev;
85         struct netvsc_device *nvdev;
86
87         rcu_read_lock();
88         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
89         if (vf_netdev) {
90                 dev_uc_sync(vf_netdev, net);
91                 dev_mc_sync(vf_netdev, net);
92         }
93
94         nvdev = rcu_dereference(ndev_ctx->nvdev);
95         if (nvdev)
96                 rndis_filter_update(nvdev);
97         rcu_read_unlock();
98 }
99
100 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101                              struct net_device *ndev)
102 {
103         nvscdev->tx_disable = false;
104         virt_wmb(); /* ensure queue wake up mechanism is on */
105
106         netif_tx_wake_all_queues(ndev);
107 }
108
109 static int netvsc_open(struct net_device *net)
110 {
111         struct net_device_context *ndev_ctx = netdev_priv(net);
112         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114         struct rndis_device *rdev;
115         int ret = 0;
116
117         netif_carrier_off(net);
118
119         /* Open up the device */
120         ret = rndis_filter_open(nvdev);
121         if (ret != 0) {
122                 netdev_err(net, "unable to open device (ret %d).\n", ret);
123                 return ret;
124         }
125
126         rdev = nvdev->extension;
127         if (!rdev->link_state) {
128                 netif_carrier_on(net);
129                 netvsc_tx_enable(nvdev, net);
130         }
131
132         if (vf_netdev) {
133                 /* Setting synthetic device up transparently sets
134                  * slave as up. If open fails, then slave will be
135                  * still be offline (and not used).
136                  */
137                 ret = dev_open(vf_netdev, NULL);
138                 if (ret)
139                         netdev_warn(net,
140                                     "unable to open slave: %s: %d\n",
141                                     vf_netdev->name, ret);
142         }
143         return 0;
144 }
145
146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147 {
148         unsigned int retry = 0;
149         int i;
150
151         /* Ensure pending bytes in ring are read */
152         for (;;) {
153                 u32 aread = 0;
154
155                 for (i = 0; i < nvdev->num_chn; i++) {
156                         struct vmbus_channel *chn
157                                 = nvdev->chan_table[i].channel;
158
159                         if (!chn)
160                                 continue;
161
162                         /* make sure receive not running now */
163                         napi_synchronize(&nvdev->chan_table[i].napi);
164
165                         aread = hv_get_bytes_to_read(&chn->inbound);
166                         if (aread)
167                                 break;
168
169                         aread = hv_get_bytes_to_read(&chn->outbound);
170                         if (aread)
171                                 break;
172                 }
173
174                 if (aread == 0)
175                         return 0;
176
177                 if (++retry > RETRY_MAX)
178                         return -ETIMEDOUT;
179
180                 usleep_range(RETRY_US_LO, RETRY_US_HI);
181         }
182 }
183
184 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185                               struct net_device *ndev)
186 {
187         if (nvscdev) {
188                 nvscdev->tx_disable = true;
189                 virt_wmb(); /* ensure txq will not wake up after stop */
190         }
191
192         netif_tx_disable(ndev);
193 }
194
195 static int netvsc_close(struct net_device *net)
196 {
197         struct net_device_context *net_device_ctx = netdev_priv(net);
198         struct net_device *vf_netdev
199                 = rtnl_dereference(net_device_ctx->vf_netdev);
200         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
201         int ret;
202
203         netvsc_tx_disable(nvdev, net);
204
205         /* No need to close rndis filter if it is removed already */
206         if (!nvdev)
207                 return 0;
208
209         ret = rndis_filter_close(nvdev);
210         if (ret != 0) {
211                 netdev_err(net, "unable to close device (ret %d).\n", ret);
212                 return ret;
213         }
214
215         ret = netvsc_wait_until_empty(nvdev);
216         if (ret)
217                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
218
219         if (vf_netdev)
220                 dev_close(vf_netdev);
221
222         return ret;
223 }
224
225 static inline void *init_ppi_data(struct rndis_message *msg,
226                                   u32 ppi_size, u32 pkt_type)
227 {
228         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229         struct rndis_per_packet_info *ppi;
230
231         rndis_pkt->data_offset += ppi_size;
232         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233                 + rndis_pkt->per_pkt_info_len;
234
235         ppi->size = ppi_size;
236         ppi->type = pkt_type;
237         ppi->internal = 0;
238         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
239
240         rndis_pkt->per_pkt_info_len += ppi_size;
241
242         return ppi + 1;
243 }
244
245 static inline int netvsc_get_tx_queue(struct net_device *ndev,
246                                       struct sk_buff *skb, int old_idx)
247 {
248         const struct net_device_context *ndc = netdev_priv(ndev);
249         struct sock *sk = skb->sk;
250         int q_idx;
251
252         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
253                               (VRSS_SEND_TAB_SIZE - 1)];
254
255         /* If queue index changed record the new value */
256         if (q_idx != old_idx &&
257             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
258                 sk_tx_queue_set(sk, q_idx);
259
260         return q_idx;
261 }
262
263 /*
264  * Select queue for transmit.
265  *
266  * If a valid queue has already been assigned, then use that.
267  * Otherwise compute tx queue based on hash and the send table.
268  *
269  * This is basically similar to default (netdev_pick_tx) with the added step
270  * of using the host send_table when no other queue has been assigned.
271  *
272  * TODO support XPS - but get_xps_queue not exported
273  */
274 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
275 {
276         int q_idx = sk_tx_queue_get(skb->sk);
277
278         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
279                 /* If forwarding a packet, we use the recorded queue when
280                  * available for better cache locality.
281                  */
282                 if (skb_rx_queue_recorded(skb))
283                         q_idx = skb_get_rx_queue(skb);
284                 else
285                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
286         }
287
288         return q_idx;
289 }
290
291 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
292                                struct net_device *sb_dev)
293 {
294         struct net_device_context *ndc = netdev_priv(ndev);
295         struct net_device *vf_netdev;
296         u16 txq;
297
298         rcu_read_lock();
299         vf_netdev = rcu_dereference(ndc->vf_netdev);
300         if (vf_netdev) {
301                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
302
303                 if (vf_ops->ndo_select_queue)
304                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
305                 else
306                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
307
308                 /* Record the queue selected by VF so that it can be
309                  * used for common case where VF has more queues than
310                  * the synthetic device.
311                  */
312                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
313         } else {
314                 txq = netvsc_pick_tx(ndev, skb);
315         }
316         rcu_read_unlock();
317
318         while (txq >= ndev->real_num_tx_queues)
319                 txq -= ndev->real_num_tx_queues;
320
321         return txq;
322 }
323
324 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
325                        struct hv_page_buffer *pb)
326 {
327         int j = 0;
328
329         hvpfn += offset >> HV_HYP_PAGE_SHIFT;
330         offset = offset & ~HV_HYP_PAGE_MASK;
331
332         while (len > 0) {
333                 unsigned long bytes;
334
335                 bytes = HV_HYP_PAGE_SIZE - offset;
336                 if (bytes > len)
337                         bytes = len;
338                 pb[j].pfn = hvpfn;
339                 pb[j].offset = offset;
340                 pb[j].len = bytes;
341
342                 offset += bytes;
343                 len -= bytes;
344
345                 if (offset == HV_HYP_PAGE_SIZE && len) {
346                         hvpfn++;
347                         offset = 0;
348                         j++;
349                 }
350         }
351
352         return j + 1;
353 }
354
355 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
356                            struct hv_netvsc_packet *packet,
357                            struct hv_page_buffer *pb)
358 {
359         u32 slots_used = 0;
360         char *data = skb->data;
361         int frags = skb_shinfo(skb)->nr_frags;
362         int i;
363
364         /* The packet is laid out thus:
365          * 1. hdr: RNDIS header and PPI
366          * 2. skb linear data
367          * 3. skb fragment data
368          */
369         slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
370                                   offset_in_hvpage(hdr),
371                                   len,
372                                   &pb[slots_used]);
373
374         packet->rmsg_size = len;
375         packet->rmsg_pgcnt = slots_used;
376
377         slots_used += fill_pg_buf(virt_to_hvpfn(data),
378                                   offset_in_hvpage(data),
379                                   skb_headlen(skb),
380                                   &pb[slots_used]);
381
382         for (i = 0; i < frags; i++) {
383                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
384
385                 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
386                                           skb_frag_off(frag),
387                                           skb_frag_size(frag),
388                                           &pb[slots_used]);
389         }
390         return slots_used;
391 }
392
393 static int count_skb_frag_slots(struct sk_buff *skb)
394 {
395         int i, frags = skb_shinfo(skb)->nr_frags;
396         int pages = 0;
397
398         for (i = 0; i < frags; i++) {
399                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
400                 unsigned long size = skb_frag_size(frag);
401                 unsigned long offset = skb_frag_off(frag);
402
403                 /* Skip unused frames from start of page */
404                 offset &= ~HV_HYP_PAGE_MASK;
405                 pages += HVPFN_UP(offset + size);
406         }
407         return pages;
408 }
409
410 static int netvsc_get_slots(struct sk_buff *skb)
411 {
412         char *data = skb->data;
413         unsigned int offset = offset_in_hvpage(data);
414         unsigned int len = skb_headlen(skb);
415         int slots;
416         int frag_slots;
417
418         slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
419         frag_slots = count_skb_frag_slots(skb);
420         return slots + frag_slots;
421 }
422
423 static u32 net_checksum_info(struct sk_buff *skb)
424 {
425         if (skb->protocol == htons(ETH_P_IP)) {
426                 struct iphdr *ip = ip_hdr(skb);
427
428                 if (ip->protocol == IPPROTO_TCP)
429                         return TRANSPORT_INFO_IPV4_TCP;
430                 else if (ip->protocol == IPPROTO_UDP)
431                         return TRANSPORT_INFO_IPV4_UDP;
432         } else {
433                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
434
435                 if (ip6->nexthdr == IPPROTO_TCP)
436                         return TRANSPORT_INFO_IPV6_TCP;
437                 else if (ip6->nexthdr == IPPROTO_UDP)
438                         return TRANSPORT_INFO_IPV6_UDP;
439         }
440
441         return TRANSPORT_INFO_NOT_IP;
442 }
443
444 /* Send skb on the slave VF device. */
445 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
446                           struct sk_buff *skb)
447 {
448         struct net_device_context *ndev_ctx = netdev_priv(net);
449         unsigned int len = skb->len;
450         int rc;
451
452         skb->dev = vf_netdev;
453         skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
454
455         rc = dev_queue_xmit(skb);
456         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
457                 struct netvsc_vf_pcpu_stats *pcpu_stats
458                         = this_cpu_ptr(ndev_ctx->vf_stats);
459
460                 u64_stats_update_begin(&pcpu_stats->syncp);
461                 pcpu_stats->tx_packets++;
462                 pcpu_stats->tx_bytes += len;
463                 u64_stats_update_end(&pcpu_stats->syncp);
464         } else {
465                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
466         }
467
468         return rc;
469 }
470
471 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
472 {
473         struct net_device_context *net_device_ctx = netdev_priv(net);
474         struct hv_netvsc_packet *packet = NULL;
475         int ret;
476         unsigned int num_data_pgs;
477         struct rndis_message *rndis_msg;
478         struct net_device *vf_netdev;
479         u32 rndis_msg_size;
480         u32 hash;
481         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
482
483         /* If VF is present and up then redirect packets to it.
484          * Skip the VF if it is marked down or has no carrier.
485          * If netpoll is in uses, then VF can not be used either.
486          */
487         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
488         if (vf_netdev && netif_running(vf_netdev) &&
489             netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
490             net_device_ctx->data_path_is_vf)
491                 return netvsc_vf_xmit(net, vf_netdev, skb);
492
493         /* We will atmost need two pages to describe the rndis
494          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
495          * of pages in a single packet. If skb is scattered around
496          * more pages we try linearizing it.
497          */
498
499         num_data_pgs = netvsc_get_slots(skb) + 2;
500
501         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
502                 ++net_device_ctx->eth_stats.tx_scattered;
503
504                 if (skb_linearize(skb))
505                         goto no_memory;
506
507                 num_data_pgs = netvsc_get_slots(skb) + 2;
508                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
509                         ++net_device_ctx->eth_stats.tx_too_big;
510                         goto drop;
511                 }
512         }
513
514         /*
515          * Place the rndis header in the skb head room and
516          * the skb->cb will be used for hv_netvsc_packet
517          * structure.
518          */
519         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
520         if (ret)
521                 goto no_memory;
522
523         /* Use the skb control buffer for building up the packet */
524         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
525                         sizeof_field(struct sk_buff, cb));
526         packet = (struct hv_netvsc_packet *)skb->cb;
527
528         packet->q_idx = skb_get_queue_mapping(skb);
529
530         packet->total_data_buflen = skb->len;
531         packet->total_bytes = skb->len;
532         packet->total_packets = 1;
533
534         rndis_msg = (struct rndis_message *)skb->head;
535
536         /* Add the rndis header */
537         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
538         rndis_msg->msg_len = packet->total_data_buflen;
539
540         rndis_msg->msg.pkt = (struct rndis_packet) {
541                 .data_offset = sizeof(struct rndis_packet),
542                 .data_len = packet->total_data_buflen,
543                 .per_pkt_info_offset = sizeof(struct rndis_packet),
544         };
545
546         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
547
548         hash = skb_get_hash_raw(skb);
549         if (hash != 0 && net->real_num_tx_queues > 1) {
550                 u32 *hash_info;
551
552                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
553                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
554                                           NBL_HASH_VALUE);
555                 *hash_info = hash;
556         }
557
558         /* When using AF_PACKET we need to drop VLAN header from
559          * the frame and update the SKB to allow the HOST OS
560          * to transmit the 802.1Q packet
561          */
562         if (skb->protocol == htons(ETH_P_8021Q)) {
563                 u16 vlan_tci;
564
565                 skb_reset_mac_header(skb);
566                 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
567                         if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
568                                 ++net_device_ctx->eth_stats.vlan_error;
569                                 goto drop;
570                         }
571
572                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
573                         /* Update the NDIS header pkt lengths */
574                         packet->total_data_buflen -= VLAN_HLEN;
575                         packet->total_bytes -= VLAN_HLEN;
576                         rndis_msg->msg_len = packet->total_data_buflen;
577                         rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
578                 }
579         }
580
581         if (skb_vlan_tag_present(skb)) {
582                 struct ndis_pkt_8021q_info *vlan;
583
584                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
585                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
586                                      IEEE_8021Q_INFO);
587
588                 vlan->value = 0;
589                 vlan->vlanid = skb_vlan_tag_get_id(skb);
590                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
591                 vlan->pri = skb_vlan_tag_get_prio(skb);
592         }
593
594         if (skb_is_gso(skb)) {
595                 struct ndis_tcp_lso_info *lso_info;
596
597                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
598                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
599                                          TCP_LARGESEND_PKTINFO);
600
601                 lso_info->value = 0;
602                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
603                 if (skb->protocol == htons(ETH_P_IP)) {
604                         lso_info->lso_v2_transmit.ip_version =
605                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
606                         ip_hdr(skb)->tot_len = 0;
607                         ip_hdr(skb)->check = 0;
608                         tcp_hdr(skb)->check =
609                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
610                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
611                 } else {
612                         lso_info->lso_v2_transmit.ip_version =
613                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
614                         tcp_v6_gso_csum_prep(skb);
615                 }
616                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
617                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
618         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
619                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
620                         struct ndis_tcp_ip_checksum_info *csum_info;
621
622                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
623                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
624                                                   TCPIP_CHKSUM_PKTINFO);
625
626                         csum_info->value = 0;
627                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
628
629                         if (skb->protocol == htons(ETH_P_IP)) {
630                                 csum_info->transmit.is_ipv4 = 1;
631
632                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
633                                         csum_info->transmit.tcp_checksum = 1;
634                                 else
635                                         csum_info->transmit.udp_checksum = 1;
636                         } else {
637                                 csum_info->transmit.is_ipv6 = 1;
638
639                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
640                                         csum_info->transmit.tcp_checksum = 1;
641                                 else
642                                         csum_info->transmit.udp_checksum = 1;
643                         }
644                 } else {
645                         /* Can't do offload of this type of checksum */
646                         if (skb_checksum_help(skb))
647                                 goto drop;
648                 }
649         }
650
651         /* Start filling in the page buffers with the rndis hdr */
652         rndis_msg->msg_len += rndis_msg_size;
653         packet->total_data_buflen = rndis_msg->msg_len;
654         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
655                                                skb, packet, pb);
656
657         /* timestamp packet in software */
658         skb_tx_timestamp(skb);
659
660         ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
661         if (likely(ret == 0))
662                 return NETDEV_TX_OK;
663
664         if (ret == -EAGAIN) {
665                 ++net_device_ctx->eth_stats.tx_busy;
666                 return NETDEV_TX_BUSY;
667         }
668
669         if (ret == -ENOSPC)
670                 ++net_device_ctx->eth_stats.tx_no_space;
671
672 drop:
673         dev_kfree_skb_any(skb);
674         net->stats.tx_dropped++;
675
676         return NETDEV_TX_OK;
677
678 no_memory:
679         ++net_device_ctx->eth_stats.tx_no_memory;
680         goto drop;
681 }
682
683 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
684                                      struct net_device *ndev)
685 {
686         return netvsc_xmit(skb, ndev, false);
687 }
688
689 /*
690  * netvsc_linkstatus_callback - Link up/down notification
691  */
692 void netvsc_linkstatus_callback(struct net_device *net,
693                                 struct rndis_message *resp,
694                                 void *data, u32 data_buflen)
695 {
696         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
697         struct net_device_context *ndev_ctx = netdev_priv(net);
698         struct netvsc_reconfig *event;
699         unsigned long flags;
700
701         /* Ensure the packet is big enough to access its fields */
702         if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
703                 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
704                            resp->msg_len);
705                 return;
706         }
707
708         /* Copy the RNDIS indicate status into nvchan->recv_buf */
709         memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
710
711         /* Update the physical link speed when changing to another vSwitch */
712         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
713                 u32 speed;
714
715                 /* Validate status_buf_offset and status_buflen.
716                  *
717                  * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
718                  * for the status buffer field in resp->msg_len; perform the validation
719                  * using data_buflen (>= resp->msg_len).
720                  */
721                 if (indicate->status_buflen < sizeof(speed) ||
722                     indicate->status_buf_offset < sizeof(*indicate) ||
723                     data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
724                     data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
725                                 < indicate->status_buflen) {
726                         netdev_err(net, "invalid rndis_indicate_status packet\n");
727                         return;
728                 }
729
730                 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
731                 ndev_ctx->speed = speed;
732                 return;
733         }
734
735         /* Handle these link change statuses below */
736         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
737             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
738             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
739                 return;
740
741         if (net->reg_state != NETREG_REGISTERED)
742                 return;
743
744         event = kzalloc(sizeof(*event), GFP_ATOMIC);
745         if (!event)
746                 return;
747         event->event = indicate->status;
748
749         spin_lock_irqsave(&ndev_ctx->lock, flags);
750         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
751         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
752
753         schedule_delayed_work(&ndev_ctx->dwork, 0);
754 }
755
756 /* This function should only be called after skb_record_rx_queue() */
757 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
758 {
759         int rc;
760
761         skb->queue_mapping = skb_get_rx_queue(skb);
762         __skb_push(skb, ETH_HLEN);
763
764         rc = netvsc_xmit(skb, ndev, true);
765
766         if (dev_xmit_complete(rc))
767                 return;
768
769         dev_kfree_skb_any(skb);
770         ndev->stats.tx_dropped++;
771 }
772
773 static void netvsc_comp_ipcsum(struct sk_buff *skb)
774 {
775         struct iphdr *iph = (struct iphdr *)skb->data;
776
777         iph->check = 0;
778         iph->check = ip_fast_csum(iph, iph->ihl);
779 }
780
781 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
782                                              struct netvsc_channel *nvchan,
783                                              struct xdp_buff *xdp)
784 {
785         struct napi_struct *napi = &nvchan->napi;
786         const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
787         const struct ndis_tcp_ip_checksum_info *csum_info =
788                                                 &nvchan->rsc.csum_info;
789         const u32 *hash_info = &nvchan->rsc.hash_info;
790         u8 ppi_flags = nvchan->rsc.ppi_flags;
791         struct sk_buff *skb;
792         void *xbuf = xdp->data_hard_start;
793         int i;
794
795         if (xbuf) {
796                 unsigned int hdroom = xdp->data - xdp->data_hard_start;
797                 unsigned int xlen = xdp->data_end - xdp->data;
798                 unsigned int frag_size = xdp->frame_sz;
799
800                 skb = build_skb(xbuf, frag_size);
801
802                 if (!skb) {
803                         __free_page(virt_to_page(xbuf));
804                         return NULL;
805                 }
806
807                 skb_reserve(skb, hdroom);
808                 skb_put(skb, xlen);
809                 skb->dev = napi->dev;
810         } else {
811                 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
812
813                 if (!skb)
814                         return NULL;
815
816                 /* Copy to skb. This copy is needed here since the memory
817                  * pointed by hv_netvsc_packet cannot be deallocated.
818                  */
819                 for (i = 0; i < nvchan->rsc.cnt; i++)
820                         skb_put_data(skb, nvchan->rsc.data[i],
821                                      nvchan->rsc.len[i]);
822         }
823
824         skb->protocol = eth_type_trans(skb, net);
825
826         /* skb is already created with CHECKSUM_NONE */
827         skb_checksum_none_assert(skb);
828
829         /* Incoming packets may have IP header checksum verified by the host.
830          * They may not have IP header checksum computed after coalescing.
831          * We compute it here if the flags are set, because on Linux, the IP
832          * checksum is always checked.
833          */
834         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
835             csum_info->receive.ip_checksum_succeeded &&
836             skb->protocol == htons(ETH_P_IP)) {
837                 /* Check that there is enough space to hold the IP header. */
838                 if (skb_headlen(skb) < sizeof(struct iphdr)) {
839                         kfree_skb(skb);
840                         return NULL;
841                 }
842                 netvsc_comp_ipcsum(skb);
843         }
844
845         /* Do L4 checksum offload if enabled and present. */
846         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
847                 if (csum_info->receive.tcp_checksum_succeeded ||
848                     csum_info->receive.udp_checksum_succeeded)
849                         skb->ip_summed = CHECKSUM_UNNECESSARY;
850         }
851
852         if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
853                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
854
855         if (ppi_flags & NVSC_RSC_VLAN) {
856                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
857                         (vlan->cfi ? VLAN_CFI_MASK : 0);
858
859                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
860                                        vlan_tci);
861         }
862
863         return skb;
864 }
865
866 /*
867  * netvsc_recv_callback -  Callback when we receive a packet from the
868  * "wire" on the specified device.
869  */
870 int netvsc_recv_callback(struct net_device *net,
871                          struct netvsc_device *net_device,
872                          struct netvsc_channel *nvchan)
873 {
874         struct net_device_context *net_device_ctx = netdev_priv(net);
875         struct vmbus_channel *channel = nvchan->channel;
876         u16 q_idx = channel->offermsg.offer.sub_channel_index;
877         struct sk_buff *skb;
878         struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
879         struct xdp_buff xdp;
880         u32 act;
881
882         if (net->reg_state != NETREG_REGISTERED)
883                 return NVSP_STAT_FAIL;
884
885         act = netvsc_run_xdp(net, nvchan, &xdp);
886
887         if (act == XDP_REDIRECT)
888                 return NVSP_STAT_SUCCESS;
889
890         if (act != XDP_PASS && act != XDP_TX) {
891                 u64_stats_update_begin(&rx_stats->syncp);
892                 rx_stats->xdp_drop++;
893                 u64_stats_update_end(&rx_stats->syncp);
894
895                 return NVSP_STAT_SUCCESS; /* consumed by XDP */
896         }
897
898         /* Allocate a skb - TODO direct I/O to pages? */
899         skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
900
901         if (unlikely(!skb)) {
902                 ++net_device_ctx->eth_stats.rx_no_memory;
903                 return NVSP_STAT_FAIL;
904         }
905
906         skb_record_rx_queue(skb, q_idx);
907
908         /*
909          * Even if injecting the packet, record the statistics
910          * on the synthetic device because modifying the VF device
911          * statistics will not work correctly.
912          */
913         u64_stats_update_begin(&rx_stats->syncp);
914         if (act == XDP_TX)
915                 rx_stats->xdp_tx++;
916
917         rx_stats->packets++;
918         rx_stats->bytes += nvchan->rsc.pktlen;
919
920         if (skb->pkt_type == PACKET_BROADCAST)
921                 ++rx_stats->broadcast;
922         else if (skb->pkt_type == PACKET_MULTICAST)
923                 ++rx_stats->multicast;
924         u64_stats_update_end(&rx_stats->syncp);
925
926         if (act == XDP_TX) {
927                 netvsc_xdp_xmit(skb, net);
928                 return NVSP_STAT_SUCCESS;
929         }
930
931         napi_gro_receive(&nvchan->napi, skb);
932         return NVSP_STAT_SUCCESS;
933 }
934
935 static void netvsc_get_drvinfo(struct net_device *net,
936                                struct ethtool_drvinfo *info)
937 {
938         strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
939         strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
940 }
941
942 static void netvsc_get_channels(struct net_device *net,
943                                 struct ethtool_channels *channel)
944 {
945         struct net_device_context *net_device_ctx = netdev_priv(net);
946         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
947
948         if (nvdev) {
949                 channel->max_combined   = nvdev->max_chn;
950                 channel->combined_count = nvdev->num_chn;
951         }
952 }
953
954 /* Alloc struct netvsc_device_info, and initialize it from either existing
955  * struct netvsc_device, or from default values.
956  */
957 static
958 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
959 {
960         struct netvsc_device_info *dev_info;
961         struct bpf_prog *prog;
962
963         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
964
965         if (!dev_info)
966                 return NULL;
967
968         if (nvdev) {
969                 ASSERT_RTNL();
970
971                 dev_info->num_chn = nvdev->num_chn;
972                 dev_info->send_sections = nvdev->send_section_cnt;
973                 dev_info->send_section_size = nvdev->send_section_size;
974                 dev_info->recv_sections = nvdev->recv_section_cnt;
975                 dev_info->recv_section_size = nvdev->recv_section_size;
976
977                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
978                        NETVSC_HASH_KEYLEN);
979
980                 prog = netvsc_xdp_get(nvdev);
981                 if (prog) {
982                         bpf_prog_inc(prog);
983                         dev_info->bprog = prog;
984                 }
985         } else {
986                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
987                 dev_info->send_sections = NETVSC_DEFAULT_TX;
988                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
989                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
990                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
991         }
992
993         return dev_info;
994 }
995
996 /* Free struct netvsc_device_info */
997 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
998 {
999         if (dev_info->bprog) {
1000                 ASSERT_RTNL();
1001                 bpf_prog_put(dev_info->bprog);
1002         }
1003
1004         kfree(dev_info);
1005 }
1006
1007 static int netvsc_detach(struct net_device *ndev,
1008                          struct netvsc_device *nvdev)
1009 {
1010         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1011         struct hv_device *hdev = ndev_ctx->device_ctx;
1012         int ret;
1013
1014         /* Don't try continuing to try and setup sub channels */
1015         if (cancel_work_sync(&nvdev->subchan_work))
1016                 nvdev->num_chn = 1;
1017
1018         netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1019
1020         /* If device was up (receiving) then shutdown */
1021         if (netif_running(ndev)) {
1022                 netvsc_tx_disable(nvdev, ndev);
1023
1024                 ret = rndis_filter_close(nvdev);
1025                 if (ret) {
1026                         netdev_err(ndev,
1027                                    "unable to close device (ret %d).\n", ret);
1028                         return ret;
1029                 }
1030
1031                 ret = netvsc_wait_until_empty(nvdev);
1032                 if (ret) {
1033                         netdev_err(ndev,
1034                                    "Ring buffer not empty after closing rndis\n");
1035                         return ret;
1036                 }
1037         }
1038
1039         netif_device_detach(ndev);
1040
1041         rndis_filter_device_remove(hdev, nvdev);
1042
1043         return 0;
1044 }
1045
1046 static int netvsc_attach(struct net_device *ndev,
1047                          struct netvsc_device_info *dev_info)
1048 {
1049         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1050         struct hv_device *hdev = ndev_ctx->device_ctx;
1051         struct netvsc_device *nvdev;
1052         struct rndis_device *rdev;
1053         struct bpf_prog *prog;
1054         int ret = 0;
1055
1056         nvdev = rndis_filter_device_add(hdev, dev_info);
1057         if (IS_ERR(nvdev))
1058                 return PTR_ERR(nvdev);
1059
1060         if (nvdev->num_chn > 1) {
1061                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1062
1063                 /* if unavailable, just proceed with one queue */
1064                 if (ret) {
1065                         nvdev->max_chn = 1;
1066                         nvdev->num_chn = 1;
1067                 }
1068         }
1069
1070         prog = dev_info->bprog;
1071         if (prog) {
1072                 bpf_prog_inc(prog);
1073                 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1074                 if (ret) {
1075                         bpf_prog_put(prog);
1076                         goto err1;
1077                 }
1078         }
1079
1080         /* In any case device is now ready */
1081         nvdev->tx_disable = false;
1082         netif_device_attach(ndev);
1083
1084         /* Note: enable and attach happen when sub-channels setup */
1085         netif_carrier_off(ndev);
1086
1087         if (netif_running(ndev)) {
1088                 ret = rndis_filter_open(nvdev);
1089                 if (ret)
1090                         goto err2;
1091
1092                 rdev = nvdev->extension;
1093                 if (!rdev->link_state)
1094                         netif_carrier_on(ndev);
1095         }
1096
1097         return 0;
1098
1099 err2:
1100         netif_device_detach(ndev);
1101
1102 err1:
1103         rndis_filter_device_remove(hdev, nvdev);
1104
1105         return ret;
1106 }
1107
1108 static int netvsc_set_channels(struct net_device *net,
1109                                struct ethtool_channels *channels)
1110 {
1111         struct net_device_context *net_device_ctx = netdev_priv(net);
1112         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1113         unsigned int orig, count = channels->combined_count;
1114         struct netvsc_device_info *device_info;
1115         int ret;
1116
1117         /* We do not support separate count for rx, tx, or other */
1118         if (count == 0 ||
1119             channels->rx_count || channels->tx_count || channels->other_count)
1120                 return -EINVAL;
1121
1122         if (!nvdev || nvdev->destroy)
1123                 return -ENODEV;
1124
1125         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1126                 return -EINVAL;
1127
1128         if (count > nvdev->max_chn)
1129                 return -EINVAL;
1130
1131         orig = nvdev->num_chn;
1132
1133         device_info = netvsc_devinfo_get(nvdev);
1134
1135         if (!device_info)
1136                 return -ENOMEM;
1137
1138         device_info->num_chn = count;
1139
1140         ret = netvsc_detach(net, nvdev);
1141         if (ret)
1142                 goto out;
1143
1144         ret = netvsc_attach(net, device_info);
1145         if (ret) {
1146                 device_info->num_chn = orig;
1147                 if (netvsc_attach(net, device_info))
1148                         netdev_err(net, "restoring channel setting failed\n");
1149         }
1150
1151 out:
1152         netvsc_devinfo_put(device_info);
1153         return ret;
1154 }
1155
1156 static void netvsc_init_settings(struct net_device *dev)
1157 {
1158         struct net_device_context *ndc = netdev_priv(dev);
1159
1160         ndc->l4_hash = HV_DEFAULT_L4HASH;
1161
1162         ndc->speed = SPEED_UNKNOWN;
1163         ndc->duplex = DUPLEX_FULL;
1164
1165         dev->features = NETIF_F_LRO;
1166 }
1167
1168 static int netvsc_get_link_ksettings(struct net_device *dev,
1169                                      struct ethtool_link_ksettings *cmd)
1170 {
1171         struct net_device_context *ndc = netdev_priv(dev);
1172         struct net_device *vf_netdev;
1173
1174         vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175
1176         if (vf_netdev)
1177                 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1178
1179         cmd->base.speed = ndc->speed;
1180         cmd->base.duplex = ndc->duplex;
1181         cmd->base.port = PORT_OTHER;
1182
1183         return 0;
1184 }
1185
1186 static int netvsc_set_link_ksettings(struct net_device *dev,
1187                                      const struct ethtool_link_ksettings *cmd)
1188 {
1189         struct net_device_context *ndc = netdev_priv(dev);
1190         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1191
1192         if (vf_netdev) {
1193                 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1194                         return -EOPNOTSUPP;
1195
1196                 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1197                                                                   cmd);
1198         }
1199
1200         return ethtool_virtdev_set_link_ksettings(dev, cmd,
1201                                                   &ndc->speed, &ndc->duplex);
1202 }
1203
1204 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1205 {
1206         struct net_device_context *ndevctx = netdev_priv(ndev);
1207         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1208         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1209         int orig_mtu = ndev->mtu;
1210         struct netvsc_device_info *device_info;
1211         int ret = 0;
1212
1213         if (!nvdev || nvdev->destroy)
1214                 return -ENODEV;
1215
1216         device_info = netvsc_devinfo_get(nvdev);
1217
1218         if (!device_info)
1219                 return -ENOMEM;
1220
1221         /* Change MTU of underlying VF netdev first. */
1222         if (vf_netdev) {
1223                 ret = dev_set_mtu(vf_netdev, mtu);
1224                 if (ret)
1225                         goto out;
1226         }
1227
1228         ret = netvsc_detach(ndev, nvdev);
1229         if (ret)
1230                 goto rollback_vf;
1231
1232         ndev->mtu = mtu;
1233
1234         ret = netvsc_attach(ndev, device_info);
1235         if (!ret)
1236                 goto out;
1237
1238         /* Attempt rollback to original MTU */
1239         ndev->mtu = orig_mtu;
1240
1241         if (netvsc_attach(ndev, device_info))
1242                 netdev_err(ndev, "restoring mtu failed\n");
1243 rollback_vf:
1244         if (vf_netdev)
1245                 dev_set_mtu(vf_netdev, orig_mtu);
1246
1247 out:
1248         netvsc_devinfo_put(device_info);
1249         return ret;
1250 }
1251
1252 static void netvsc_get_vf_stats(struct net_device *net,
1253                                 struct netvsc_vf_pcpu_stats *tot)
1254 {
1255         struct net_device_context *ndev_ctx = netdev_priv(net);
1256         int i;
1257
1258         memset(tot, 0, sizeof(*tot));
1259
1260         for_each_possible_cpu(i) {
1261                 const struct netvsc_vf_pcpu_stats *stats
1262                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1263                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1264                 unsigned int start;
1265
1266                 do {
1267                         start = u64_stats_fetch_begin(&stats->syncp);
1268                         rx_packets = stats->rx_packets;
1269                         tx_packets = stats->tx_packets;
1270                         rx_bytes = stats->rx_bytes;
1271                         tx_bytes = stats->tx_bytes;
1272                 } while (u64_stats_fetch_retry(&stats->syncp, start));
1273
1274                 tot->rx_packets += rx_packets;
1275                 tot->tx_packets += tx_packets;
1276                 tot->rx_bytes   += rx_bytes;
1277                 tot->tx_bytes   += tx_bytes;
1278                 tot->tx_dropped += stats->tx_dropped;
1279         }
1280 }
1281
1282 static void netvsc_get_pcpu_stats(struct net_device *net,
1283                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1284 {
1285         struct net_device_context *ndev_ctx = netdev_priv(net);
1286         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1287         int i;
1288
1289         /* fetch percpu stats of vf */
1290         for_each_possible_cpu(i) {
1291                 const struct netvsc_vf_pcpu_stats *stats =
1292                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1293                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1294                 unsigned int start;
1295
1296                 do {
1297                         start = u64_stats_fetch_begin(&stats->syncp);
1298                         this_tot->vf_rx_packets = stats->rx_packets;
1299                         this_tot->vf_tx_packets = stats->tx_packets;
1300                         this_tot->vf_rx_bytes = stats->rx_bytes;
1301                         this_tot->vf_tx_bytes = stats->tx_bytes;
1302                 } while (u64_stats_fetch_retry(&stats->syncp, start));
1303                 this_tot->rx_packets = this_tot->vf_rx_packets;
1304                 this_tot->tx_packets = this_tot->vf_tx_packets;
1305                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1306                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1307         }
1308
1309         /* fetch percpu stats of netvsc */
1310         for (i = 0; i < nvdev->num_chn; i++) {
1311                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1312                 const struct netvsc_stats_tx *tx_stats;
1313                 const struct netvsc_stats_rx *rx_stats;
1314                 struct netvsc_ethtool_pcpu_stats *this_tot =
1315                         &pcpu_tot[nvchan->channel->target_cpu];
1316                 u64 packets, bytes;
1317                 unsigned int start;
1318
1319                 tx_stats = &nvchan->tx_stats;
1320                 do {
1321                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1322                         packets = tx_stats->packets;
1323                         bytes = tx_stats->bytes;
1324                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1325
1326                 this_tot->tx_bytes      += bytes;
1327                 this_tot->tx_packets    += packets;
1328
1329                 rx_stats = &nvchan->rx_stats;
1330                 do {
1331                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1332                         packets = rx_stats->packets;
1333                         bytes = rx_stats->bytes;
1334                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1335
1336                 this_tot->rx_bytes      += bytes;
1337                 this_tot->rx_packets    += packets;
1338         }
1339 }
1340
1341 static void netvsc_get_stats64(struct net_device *net,
1342                                struct rtnl_link_stats64 *t)
1343 {
1344         struct net_device_context *ndev_ctx = netdev_priv(net);
1345         struct netvsc_device *nvdev;
1346         struct netvsc_vf_pcpu_stats vf_tot;
1347         int i;
1348
1349         rcu_read_lock();
1350
1351         nvdev = rcu_dereference(ndev_ctx->nvdev);
1352         if (!nvdev)
1353                 goto out;
1354
1355         netdev_stats_to_stats64(t, &net->stats);
1356
1357         netvsc_get_vf_stats(net, &vf_tot);
1358         t->rx_packets += vf_tot.rx_packets;
1359         t->tx_packets += vf_tot.tx_packets;
1360         t->rx_bytes   += vf_tot.rx_bytes;
1361         t->tx_bytes   += vf_tot.tx_bytes;
1362         t->tx_dropped += vf_tot.tx_dropped;
1363
1364         for (i = 0; i < nvdev->num_chn; i++) {
1365                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366                 const struct netvsc_stats_tx *tx_stats;
1367                 const struct netvsc_stats_rx *rx_stats;
1368                 u64 packets, bytes, multicast;
1369                 unsigned int start;
1370
1371                 tx_stats = &nvchan->tx_stats;
1372                 do {
1373                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1374                         packets = tx_stats->packets;
1375                         bytes = tx_stats->bytes;
1376                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1377
1378                 t->tx_bytes     += bytes;
1379                 t->tx_packets   += packets;
1380
1381                 rx_stats = &nvchan->rx_stats;
1382                 do {
1383                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1384                         packets = rx_stats->packets;
1385                         bytes = rx_stats->bytes;
1386                         multicast = rx_stats->multicast + rx_stats->broadcast;
1387                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1388
1389                 t->rx_bytes     += bytes;
1390                 t->rx_packets   += packets;
1391                 t->multicast    += multicast;
1392         }
1393 out:
1394         rcu_read_unlock();
1395 }
1396
1397 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1398 {
1399         struct net_device_context *ndc = netdev_priv(ndev);
1400         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1401         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1402         struct sockaddr *addr = p;
1403         int err;
1404
1405         err = eth_prepare_mac_addr_change(ndev, p);
1406         if (err)
1407                 return err;
1408
1409         if (!nvdev)
1410                 return -ENODEV;
1411
1412         if (vf_netdev) {
1413                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1414                 if (err)
1415                         return err;
1416         }
1417
1418         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1419         if (!err) {
1420                 eth_commit_mac_addr_change(ndev, p);
1421         } else if (vf_netdev) {
1422                 /* rollback change on VF */
1423                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1424                 dev_set_mac_address(vf_netdev, addr, NULL);
1425         }
1426
1427         return err;
1428 }
1429
1430 static const struct {
1431         char name[ETH_GSTRING_LEN];
1432         u16 offset;
1433 } netvsc_stats[] = {
1434         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1435         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1436         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1437         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1438         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1439         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1440         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1441         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1442         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1443         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1444         { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1445 }, pcpu_stats[] = {
1446         { "cpu%u_rx_packets",
1447                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1448         { "cpu%u_rx_bytes",
1449                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1450         { "cpu%u_tx_packets",
1451                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1452         { "cpu%u_tx_bytes",
1453                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1454         { "cpu%u_vf_rx_packets",
1455                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1456         { "cpu%u_vf_rx_bytes",
1457                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1458         { "cpu%u_vf_tx_packets",
1459                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1460         { "cpu%u_vf_tx_bytes",
1461                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1462 }, vf_stats[] = {
1463         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1464         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1465         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1466         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1467         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1468 };
1469
1470 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1471 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1472
1473 /* statistics per queue (rx/tx packets/bytes) */
1474 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1475
1476 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1477 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1478
1479 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1480 {
1481         struct net_device_context *ndc = netdev_priv(dev);
1482         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1483
1484         if (!nvdev)
1485                 return -ENODEV;
1486
1487         switch (string_set) {
1488         case ETH_SS_STATS:
1489                 return NETVSC_GLOBAL_STATS_LEN
1490                         + NETVSC_VF_STATS_LEN
1491                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1492                         + NETVSC_PCPU_STATS_LEN;
1493         default:
1494                 return -EINVAL;
1495         }
1496 }
1497
1498 static void netvsc_get_ethtool_stats(struct net_device *dev,
1499                                      struct ethtool_stats *stats, u64 *data)
1500 {
1501         struct net_device_context *ndc = netdev_priv(dev);
1502         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1503         const void *nds = &ndc->eth_stats;
1504         const struct netvsc_stats_tx *tx_stats;
1505         const struct netvsc_stats_rx *rx_stats;
1506         struct netvsc_vf_pcpu_stats sum;
1507         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1508         unsigned int start;
1509         u64 packets, bytes;
1510         u64 xdp_drop;
1511         u64 xdp_redirect;
1512         u64 xdp_tx;
1513         u64 xdp_xmit;
1514         int i, j, cpu;
1515
1516         if (!nvdev)
1517                 return;
1518
1519         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1520                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1521
1522         netvsc_get_vf_stats(dev, &sum);
1523         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1524                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1525
1526         for (j = 0; j < nvdev->num_chn; j++) {
1527                 tx_stats = &nvdev->chan_table[j].tx_stats;
1528
1529                 do {
1530                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1531                         packets = tx_stats->packets;
1532                         bytes = tx_stats->bytes;
1533                         xdp_xmit = tx_stats->xdp_xmit;
1534                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1535                 data[i++] = packets;
1536                 data[i++] = bytes;
1537                 data[i++] = xdp_xmit;
1538
1539                 rx_stats = &nvdev->chan_table[j].rx_stats;
1540                 do {
1541                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1542                         packets = rx_stats->packets;
1543                         bytes = rx_stats->bytes;
1544                         xdp_drop = rx_stats->xdp_drop;
1545                         xdp_redirect = rx_stats->xdp_redirect;
1546                         xdp_tx = rx_stats->xdp_tx;
1547                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1548                 data[i++] = packets;
1549                 data[i++] = bytes;
1550                 data[i++] = xdp_drop;
1551                 data[i++] = xdp_redirect;
1552                 data[i++] = xdp_tx;
1553         }
1554
1555         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1556                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1557                                   GFP_KERNEL);
1558         if (!pcpu_sum)
1559                 return;
1560
1561         netvsc_get_pcpu_stats(dev, pcpu_sum);
1562         for_each_present_cpu(cpu) {
1563                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1564
1565                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1566                         data[i++] = *(u64 *)((void *)this_sum
1567                                              + pcpu_stats[j].offset);
1568         }
1569         kvfree(pcpu_sum);
1570 }
1571
1572 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1573 {
1574         struct net_device_context *ndc = netdev_priv(dev);
1575         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1576         u8 *p = data;
1577         int i, cpu;
1578
1579         if (!nvdev)
1580                 return;
1581
1582         switch (stringset) {
1583         case ETH_SS_STATS:
1584                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1585                         ethtool_sprintf(&p, netvsc_stats[i].name);
1586
1587                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1588                         ethtool_sprintf(&p, vf_stats[i].name);
1589
1590                 for (i = 0; i < nvdev->num_chn; i++) {
1591                         ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1592                         ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1593                         ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1594                         ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1595                         ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1596                         ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1597                         ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1598                         ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1599                 }
1600
1601                 for_each_present_cpu(cpu) {
1602                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1603                                 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1604                 }
1605
1606                 break;
1607         }
1608 }
1609
1610 static int
1611 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1612                          struct ethtool_rxnfc *info)
1613 {
1614         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1615
1616         info->data = RXH_IP_SRC | RXH_IP_DST;
1617
1618         switch (info->flow_type) {
1619         case TCP_V4_FLOW:
1620                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1621                         info->data |= l4_flag;
1622
1623                 break;
1624
1625         case TCP_V6_FLOW:
1626                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1627                         info->data |= l4_flag;
1628
1629                 break;
1630
1631         case UDP_V4_FLOW:
1632                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1633                         info->data |= l4_flag;
1634
1635                 break;
1636
1637         case UDP_V6_FLOW:
1638                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1639                         info->data |= l4_flag;
1640
1641                 break;
1642
1643         case IPV4_FLOW:
1644         case IPV6_FLOW:
1645                 break;
1646         default:
1647                 info->data = 0;
1648                 break;
1649         }
1650
1651         return 0;
1652 }
1653
1654 static int
1655 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1656                  u32 *rules)
1657 {
1658         struct net_device_context *ndc = netdev_priv(dev);
1659         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1660
1661         if (!nvdev)
1662                 return -ENODEV;
1663
1664         switch (info->cmd) {
1665         case ETHTOOL_GRXRINGS:
1666                 info->data = nvdev->num_chn;
1667                 return 0;
1668
1669         case ETHTOOL_GRXFH:
1670                 return netvsc_get_rss_hash_opts(ndc, info);
1671         }
1672         return -EOPNOTSUPP;
1673 }
1674
1675 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1676                                     struct ethtool_rxnfc *info)
1677 {
1678         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1679                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1680                 switch (info->flow_type) {
1681                 case TCP_V4_FLOW:
1682                         ndc->l4_hash |= HV_TCP4_L4HASH;
1683                         break;
1684
1685                 case TCP_V6_FLOW:
1686                         ndc->l4_hash |= HV_TCP6_L4HASH;
1687                         break;
1688
1689                 case UDP_V4_FLOW:
1690                         ndc->l4_hash |= HV_UDP4_L4HASH;
1691                         break;
1692
1693                 case UDP_V6_FLOW:
1694                         ndc->l4_hash |= HV_UDP6_L4HASH;
1695                         break;
1696
1697                 default:
1698                         return -EOPNOTSUPP;
1699                 }
1700
1701                 return 0;
1702         }
1703
1704         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1705                 switch (info->flow_type) {
1706                 case TCP_V4_FLOW:
1707                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1708                         break;
1709
1710                 case TCP_V6_FLOW:
1711                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1712                         break;
1713
1714                 case UDP_V4_FLOW:
1715                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1716                         break;
1717
1718                 case UDP_V6_FLOW:
1719                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1720                         break;
1721
1722                 default:
1723                         return -EOPNOTSUPP;
1724                 }
1725
1726                 return 0;
1727         }
1728
1729         return -EOPNOTSUPP;
1730 }
1731
1732 static int
1733 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1734 {
1735         struct net_device_context *ndc = netdev_priv(ndev);
1736
1737         if (info->cmd == ETHTOOL_SRXFH)
1738                 return netvsc_set_rss_hash_opts(ndc, info);
1739
1740         return -EOPNOTSUPP;
1741 }
1742
1743 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1744 {
1745         return NETVSC_HASH_KEYLEN;
1746 }
1747
1748 static u32 netvsc_rss_indir_size(struct net_device *dev)
1749 {
1750         return ITAB_NUM;
1751 }
1752
1753 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1754                            u8 *hfunc)
1755 {
1756         struct net_device_context *ndc = netdev_priv(dev);
1757         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758         struct rndis_device *rndis_dev;
1759         int i;
1760
1761         if (!ndev)
1762                 return -ENODEV;
1763
1764         if (hfunc)
1765                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1766
1767         rndis_dev = ndev->extension;
1768         if (indir) {
1769                 for (i = 0; i < ITAB_NUM; i++)
1770                         indir[i] = ndc->rx_table[i];
1771         }
1772
1773         if (key)
1774                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1775
1776         return 0;
1777 }
1778
1779 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1780                            const u8 *key, const u8 hfunc)
1781 {
1782         struct net_device_context *ndc = netdev_priv(dev);
1783         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784         struct rndis_device *rndis_dev;
1785         int i;
1786
1787         if (!ndev)
1788                 return -ENODEV;
1789
1790         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1791                 return -EOPNOTSUPP;
1792
1793         rndis_dev = ndev->extension;
1794         if (indir) {
1795                 for (i = 0; i < ITAB_NUM; i++)
1796                         if (indir[i] >= ndev->num_chn)
1797                                 return -EINVAL;
1798
1799                 for (i = 0; i < ITAB_NUM; i++)
1800                         ndc->rx_table[i] = indir[i];
1801         }
1802
1803         if (!key) {
1804                 if (!indir)
1805                         return 0;
1806
1807                 key = rndis_dev->rss_key;
1808         }
1809
1810         return rndis_filter_set_rss_param(rndis_dev, key);
1811 }
1812
1813 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1814  * It does have pre-allocated receive area which is divided into sections.
1815  */
1816 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1817                                    struct ethtool_ringparam *ring)
1818 {
1819         u32 max_buf_size;
1820
1821         ring->rx_pending = nvdev->recv_section_cnt;
1822         ring->tx_pending = nvdev->send_section_cnt;
1823
1824         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1825                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1826         else
1827                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1828
1829         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1830         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1831                 / nvdev->send_section_size;
1832 }
1833
1834 static void netvsc_get_ringparam(struct net_device *ndev,
1835                                  struct ethtool_ringparam *ring,
1836                                  struct kernel_ethtool_ringparam *kernel_ring,
1837                                  struct netlink_ext_ack *extack)
1838 {
1839         struct net_device_context *ndevctx = netdev_priv(ndev);
1840         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1841
1842         if (!nvdev)
1843                 return;
1844
1845         __netvsc_get_ringparam(nvdev, ring);
1846 }
1847
1848 static int netvsc_set_ringparam(struct net_device *ndev,
1849                                 struct ethtool_ringparam *ring,
1850                                 struct kernel_ethtool_ringparam *kernel_ring,
1851                                 struct netlink_ext_ack *extack)
1852 {
1853         struct net_device_context *ndevctx = netdev_priv(ndev);
1854         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1855         struct netvsc_device_info *device_info;
1856         struct ethtool_ringparam orig;
1857         u32 new_tx, new_rx;
1858         int ret = 0;
1859
1860         if (!nvdev || nvdev->destroy)
1861                 return -ENODEV;
1862
1863         memset(&orig, 0, sizeof(orig));
1864         __netvsc_get_ringparam(nvdev, &orig);
1865
1866         new_tx = clamp_t(u32, ring->tx_pending,
1867                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1868         new_rx = clamp_t(u32, ring->rx_pending,
1869                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1870
1871         if (new_tx == orig.tx_pending &&
1872             new_rx == orig.rx_pending)
1873                 return 0;        /* no change */
1874
1875         device_info = netvsc_devinfo_get(nvdev);
1876
1877         if (!device_info)
1878                 return -ENOMEM;
1879
1880         device_info->send_sections = new_tx;
1881         device_info->recv_sections = new_rx;
1882
1883         ret = netvsc_detach(ndev, nvdev);
1884         if (ret)
1885                 goto out;
1886
1887         ret = netvsc_attach(ndev, device_info);
1888         if (ret) {
1889                 device_info->send_sections = orig.tx_pending;
1890                 device_info->recv_sections = orig.rx_pending;
1891
1892                 if (netvsc_attach(ndev, device_info))
1893                         netdev_err(ndev, "restoring ringparam failed");
1894         }
1895
1896 out:
1897         netvsc_devinfo_put(device_info);
1898         return ret;
1899 }
1900
1901 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1902                                              netdev_features_t features)
1903 {
1904         struct net_device_context *ndevctx = netdev_priv(ndev);
1905         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1906
1907         if (!nvdev || nvdev->destroy)
1908                 return features;
1909
1910         if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1911                 features ^= NETIF_F_LRO;
1912                 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1913         }
1914
1915         return features;
1916 }
1917
1918 static int netvsc_set_features(struct net_device *ndev,
1919                                netdev_features_t features)
1920 {
1921         netdev_features_t change = features ^ ndev->features;
1922         struct net_device_context *ndevctx = netdev_priv(ndev);
1923         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1924         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1925         struct ndis_offload_params offloads;
1926         int ret = 0;
1927
1928         if (!nvdev || nvdev->destroy)
1929                 return -ENODEV;
1930
1931         if (!(change & NETIF_F_LRO))
1932                 goto syncvf;
1933
1934         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1935
1936         if (features & NETIF_F_LRO) {
1937                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1938                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1939         } else {
1940                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1941                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1942         }
1943
1944         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1945
1946         if (ret) {
1947                 features ^= NETIF_F_LRO;
1948                 ndev->features = features;
1949         }
1950
1951 syncvf:
1952         if (!vf_netdev)
1953                 return ret;
1954
1955         vf_netdev->wanted_features = features;
1956         netdev_update_features(vf_netdev);
1957
1958         return ret;
1959 }
1960
1961 static int netvsc_get_regs_len(struct net_device *netdev)
1962 {
1963         return VRSS_SEND_TAB_SIZE * sizeof(u32);
1964 }
1965
1966 static void netvsc_get_regs(struct net_device *netdev,
1967                             struct ethtool_regs *regs, void *p)
1968 {
1969         struct net_device_context *ndc = netdev_priv(netdev);
1970         u32 *regs_buff = p;
1971
1972         /* increase the version, if buffer format is changed. */
1973         regs->version = 1;
1974
1975         memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1976 }
1977
1978 static u32 netvsc_get_msglevel(struct net_device *ndev)
1979 {
1980         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1981
1982         return ndev_ctx->msg_enable;
1983 }
1984
1985 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1986 {
1987         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988
1989         ndev_ctx->msg_enable = val;
1990 }
1991
1992 static const struct ethtool_ops ethtool_ops = {
1993         .get_drvinfo    = netvsc_get_drvinfo,
1994         .get_regs_len   = netvsc_get_regs_len,
1995         .get_regs       = netvsc_get_regs,
1996         .get_msglevel   = netvsc_get_msglevel,
1997         .set_msglevel   = netvsc_set_msglevel,
1998         .get_link       = ethtool_op_get_link,
1999         .get_ethtool_stats = netvsc_get_ethtool_stats,
2000         .get_sset_count = netvsc_get_sset_count,
2001         .get_strings    = netvsc_get_strings,
2002         .get_channels   = netvsc_get_channels,
2003         .set_channels   = netvsc_set_channels,
2004         .get_ts_info    = ethtool_op_get_ts_info,
2005         .get_rxnfc      = netvsc_get_rxnfc,
2006         .set_rxnfc      = netvsc_set_rxnfc,
2007         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2008         .get_rxfh_indir_size = netvsc_rss_indir_size,
2009         .get_rxfh       = netvsc_get_rxfh,
2010         .set_rxfh       = netvsc_set_rxfh,
2011         .get_link_ksettings = netvsc_get_link_ksettings,
2012         .set_link_ksettings = netvsc_set_link_ksettings,
2013         .get_ringparam  = netvsc_get_ringparam,
2014         .set_ringparam  = netvsc_set_ringparam,
2015 };
2016
2017 static const struct net_device_ops device_ops = {
2018         .ndo_open =                     netvsc_open,
2019         .ndo_stop =                     netvsc_close,
2020         .ndo_start_xmit =               netvsc_start_xmit,
2021         .ndo_change_rx_flags =          netvsc_change_rx_flags,
2022         .ndo_set_rx_mode =              netvsc_set_rx_mode,
2023         .ndo_fix_features =             netvsc_fix_features,
2024         .ndo_set_features =             netvsc_set_features,
2025         .ndo_change_mtu =               netvsc_change_mtu,
2026         .ndo_validate_addr =            eth_validate_addr,
2027         .ndo_set_mac_address =          netvsc_set_mac_addr,
2028         .ndo_select_queue =             netvsc_select_queue,
2029         .ndo_get_stats64 =              netvsc_get_stats64,
2030         .ndo_bpf =                      netvsc_bpf,
2031         .ndo_xdp_xmit =                 netvsc_ndoxdp_xmit,
2032 };
2033
2034 /*
2035  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2036  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2037  * present send GARP packet to network peers with netif_notify_peers().
2038  */
2039 static void netvsc_link_change(struct work_struct *w)
2040 {
2041         struct net_device_context *ndev_ctx =
2042                 container_of(w, struct net_device_context, dwork.work);
2043         struct hv_device *device_obj = ndev_ctx->device_ctx;
2044         struct net_device *net = hv_get_drvdata(device_obj);
2045         unsigned long flags, next_reconfig, delay;
2046         struct netvsc_reconfig *event = NULL;
2047         struct netvsc_device *net_device;
2048         struct rndis_device *rdev;
2049         bool reschedule = false;
2050
2051         /* if changes are happening, comeback later */
2052         if (!rtnl_trylock()) {
2053                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2054                 return;
2055         }
2056
2057         net_device = rtnl_dereference(ndev_ctx->nvdev);
2058         if (!net_device)
2059                 goto out_unlock;
2060
2061         rdev = net_device->extension;
2062
2063         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2064         if (time_is_after_jiffies(next_reconfig)) {
2065                 /* link_watch only sends one notification with current state
2066                  * per second, avoid doing reconfig more frequently. Handle
2067                  * wrap around.
2068                  */
2069                 delay = next_reconfig - jiffies;
2070                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2071                 schedule_delayed_work(&ndev_ctx->dwork, delay);
2072                 goto out_unlock;
2073         }
2074         ndev_ctx->last_reconfig = jiffies;
2075
2076         spin_lock_irqsave(&ndev_ctx->lock, flags);
2077         if (!list_empty(&ndev_ctx->reconfig_events)) {
2078                 event = list_first_entry(&ndev_ctx->reconfig_events,
2079                                          struct netvsc_reconfig, list);
2080                 list_del(&event->list);
2081                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2082         }
2083         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2084
2085         if (!event)
2086                 goto out_unlock;
2087
2088         switch (event->event) {
2089                 /* Only the following events are possible due to the check in
2090                  * netvsc_linkstatus_callback()
2091                  */
2092         case RNDIS_STATUS_MEDIA_CONNECT:
2093                 if (rdev->link_state) {
2094                         rdev->link_state = false;
2095                         netif_carrier_on(net);
2096                         netvsc_tx_enable(net_device, net);
2097                 } else {
2098                         __netdev_notify_peers(net);
2099                 }
2100                 kfree(event);
2101                 break;
2102         case RNDIS_STATUS_MEDIA_DISCONNECT:
2103                 if (!rdev->link_state) {
2104                         rdev->link_state = true;
2105                         netif_carrier_off(net);
2106                         netvsc_tx_disable(net_device, net);
2107                 }
2108                 kfree(event);
2109                 break;
2110         case RNDIS_STATUS_NETWORK_CHANGE:
2111                 /* Only makes sense if carrier is present */
2112                 if (!rdev->link_state) {
2113                         rdev->link_state = true;
2114                         netif_carrier_off(net);
2115                         netvsc_tx_disable(net_device, net);
2116                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
2117                         spin_lock_irqsave(&ndev_ctx->lock, flags);
2118                         list_add(&event->list, &ndev_ctx->reconfig_events);
2119                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2120                         reschedule = true;
2121                 }
2122                 break;
2123         }
2124
2125         rtnl_unlock();
2126
2127         /* link_watch only sends one notification with current state per
2128          * second, handle next reconfig event in 2 seconds.
2129          */
2130         if (reschedule)
2131                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2132
2133         return;
2134
2135 out_unlock:
2136         rtnl_unlock();
2137 }
2138
2139 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2140 {
2141         struct net_device_context *net_device_ctx;
2142         struct net_device *dev;
2143
2144         dev = netdev_master_upper_dev_get(vf_netdev);
2145         if (!dev || dev->netdev_ops != &device_ops)
2146                 return NULL;    /* not a netvsc device */
2147
2148         net_device_ctx = netdev_priv(dev);
2149         if (!rtnl_dereference(net_device_ctx->nvdev))
2150                 return NULL;    /* device is removed */
2151
2152         return dev;
2153 }
2154
2155 /* Called when VF is injecting data into network stack.
2156  * Change the associated network device from VF to netvsc.
2157  * note: already called with rcu_read_lock
2158  */
2159 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2160 {
2161         struct sk_buff *skb = *pskb;
2162         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2163         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2164         struct netvsc_vf_pcpu_stats *pcpu_stats
2165                  = this_cpu_ptr(ndev_ctx->vf_stats);
2166
2167         skb = skb_share_check(skb, GFP_ATOMIC);
2168         if (unlikely(!skb))
2169                 return RX_HANDLER_CONSUMED;
2170
2171         *pskb = skb;
2172
2173         skb->dev = ndev;
2174
2175         u64_stats_update_begin(&pcpu_stats->syncp);
2176         pcpu_stats->rx_packets++;
2177         pcpu_stats->rx_bytes += skb->len;
2178         u64_stats_update_end(&pcpu_stats->syncp);
2179
2180         return RX_HANDLER_ANOTHER;
2181 }
2182
2183 static int netvsc_vf_join(struct net_device *vf_netdev,
2184                           struct net_device *ndev)
2185 {
2186         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187         int ret;
2188
2189         ret = netdev_rx_handler_register(vf_netdev,
2190                                          netvsc_vf_handle_frame, ndev);
2191         if (ret != 0) {
2192                 netdev_err(vf_netdev,
2193                            "can not register netvsc VF receive handler (err = %d)\n",
2194                            ret);
2195                 goto rx_handler_failed;
2196         }
2197
2198         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2199                                            NULL, NULL, NULL);
2200         if (ret != 0) {
2201                 netdev_err(vf_netdev,
2202                            "can not set master device %s (err = %d)\n",
2203                            ndev->name, ret);
2204                 goto upper_link_failed;
2205         }
2206
2207         /* set slave flag before open to prevent IPv6 addrconf */
2208         vf_netdev->flags |= IFF_SLAVE;
2209
2210         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2211
2212         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2213
2214         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2215         return 0;
2216
2217 upper_link_failed:
2218         netdev_rx_handler_unregister(vf_netdev);
2219 rx_handler_failed:
2220         return ret;
2221 }
2222
2223 static void __netvsc_vf_setup(struct net_device *ndev,
2224                               struct net_device *vf_netdev)
2225 {
2226         int ret;
2227
2228         /* Align MTU of VF with master */
2229         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2230         if (ret)
2231                 netdev_warn(vf_netdev,
2232                             "unable to change mtu to %u\n", ndev->mtu);
2233
2234         /* set multicast etc flags on VF */
2235         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2236
2237         /* sync address list from ndev to VF */
2238         netif_addr_lock_bh(ndev);
2239         dev_uc_sync(vf_netdev, ndev);
2240         dev_mc_sync(vf_netdev, ndev);
2241         netif_addr_unlock_bh(ndev);
2242
2243         if (netif_running(ndev)) {
2244                 ret = dev_open(vf_netdev, NULL);
2245                 if (ret)
2246                         netdev_warn(vf_netdev,
2247                                     "unable to open: %d\n", ret);
2248         }
2249 }
2250
2251 /* Setup VF as slave of the synthetic device.
2252  * Runs in workqueue to avoid recursion in netlink callbacks.
2253  */
2254 static void netvsc_vf_setup(struct work_struct *w)
2255 {
2256         struct net_device_context *ndev_ctx
2257                 = container_of(w, struct net_device_context, vf_takeover.work);
2258         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2259         struct net_device *vf_netdev;
2260
2261         if (!rtnl_trylock()) {
2262                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2263                 return;
2264         }
2265
2266         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2267         if (vf_netdev)
2268                 __netvsc_vf_setup(ndev, vf_netdev);
2269
2270         rtnl_unlock();
2271 }
2272
2273 /* Find netvsc by VF serial number.
2274  * The PCI hyperv controller records the serial number as the slot kobj name.
2275  */
2276 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2277 {
2278         struct device *parent = vf_netdev->dev.parent;
2279         struct net_device_context *ndev_ctx;
2280         struct net_device *ndev;
2281         struct pci_dev *pdev;
2282         u32 serial;
2283
2284         if (!parent || !dev_is_pci(parent))
2285                 return NULL; /* not a PCI device */
2286
2287         pdev = to_pci_dev(parent);
2288         if (!pdev->slot) {
2289                 netdev_notice(vf_netdev, "no PCI slot information\n");
2290                 return NULL;
2291         }
2292
2293         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2294                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2295                               pci_slot_name(pdev->slot));
2296                 return NULL;
2297         }
2298
2299         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2300                 if (!ndev_ctx->vf_alloc)
2301                         continue;
2302
2303                 if (ndev_ctx->vf_serial != serial)
2304                         continue;
2305
2306                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2307                 if (ndev->addr_len != vf_netdev->addr_len ||
2308                     memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2309                            ndev->addr_len) != 0)
2310                         continue;
2311
2312                 return ndev;
2313
2314         }
2315
2316         /* Fallback path to check synthetic vf with
2317          * help of mac addr
2318          */
2319         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2321                 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr)) {
2322                         netdev_notice(vf_netdev,
2323                                       "falling back to mac addr based matching\n");
2324                         return ndev;
2325                 }
2326         }
2327
2328         netdev_notice(vf_netdev,
2329                       "no netdev found for vf serial:%u\n", serial);
2330         return NULL;
2331 }
2332
2333 static int netvsc_register_vf(struct net_device *vf_netdev)
2334 {
2335         struct net_device_context *net_device_ctx;
2336         struct netvsc_device *netvsc_dev;
2337         struct bpf_prog *prog;
2338         struct net_device *ndev;
2339         int ret;
2340
2341         if (vf_netdev->addr_len != ETH_ALEN)
2342                 return NOTIFY_DONE;
2343
2344         ndev = get_netvsc_byslot(vf_netdev);
2345         if (!ndev)
2346                 return NOTIFY_DONE;
2347
2348         net_device_ctx = netdev_priv(ndev);
2349         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2350         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2351                 return NOTIFY_DONE;
2352
2353         /* if synthetic interface is a different namespace,
2354          * then move the VF to that namespace; join will be
2355          * done again in that context.
2356          */
2357         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2358                 ret = dev_change_net_namespace(vf_netdev,
2359                                                dev_net(ndev), "eth%d");
2360                 if (ret)
2361                         netdev_err(vf_netdev,
2362                                    "could not move to same namespace as %s: %d\n",
2363                                    ndev->name, ret);
2364                 else
2365                         netdev_info(vf_netdev,
2366                                     "VF moved to namespace with: %s\n",
2367                                     ndev->name);
2368                 return NOTIFY_DONE;
2369         }
2370
2371         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2372
2373         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2374                 return NOTIFY_DONE;
2375
2376         dev_hold(vf_netdev);
2377         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2378
2379         if (ndev->needed_headroom < vf_netdev->needed_headroom)
2380                 ndev->needed_headroom = vf_netdev->needed_headroom;
2381
2382         vf_netdev->wanted_features = ndev->features;
2383         netdev_update_features(vf_netdev);
2384
2385         prog = netvsc_xdp_get(netvsc_dev);
2386         netvsc_vf_setxdp(vf_netdev, prog);
2387
2388         return NOTIFY_OK;
2389 }
2390
2391 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2392  *
2393  * Typically a UP or DOWN event is followed by a CHANGE event, so
2394  * net_device_ctx->data_path_is_vf is used to cache the current data path
2395  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2396  * message.
2397  *
2398  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2399  * interface, there is only the CHANGE event and no UP or DOWN event.
2400  */
2401 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2402 {
2403         struct net_device_context *net_device_ctx;
2404         struct netvsc_device *netvsc_dev;
2405         struct net_device *ndev;
2406         bool vf_is_up = false;
2407         int ret;
2408
2409         if (event != NETDEV_GOING_DOWN)
2410                 vf_is_up = netif_running(vf_netdev);
2411
2412         ndev = get_netvsc_byref(vf_netdev);
2413         if (!ndev)
2414                 return NOTIFY_DONE;
2415
2416         net_device_ctx = netdev_priv(ndev);
2417         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2418         if (!netvsc_dev)
2419                 return NOTIFY_DONE;
2420
2421         if (net_device_ctx->data_path_is_vf == vf_is_up)
2422                 return NOTIFY_OK;
2423
2424         if (vf_is_up && !net_device_ctx->vf_alloc) {
2425                 netdev_info(ndev, "Waiting for the VF association from host\n");
2426                 wait_for_completion(&net_device_ctx->vf_add);
2427         }
2428
2429         ret = netvsc_switch_datapath(ndev, vf_is_up);
2430
2431         if (ret) {
2432                 netdev_err(ndev,
2433                            "Data path failed to switch %s VF: %s, err: %d\n",
2434                            vf_is_up ? "to" : "from", vf_netdev->name, ret);
2435                 return NOTIFY_DONE;
2436         } else {
2437                 netdev_info(ndev, "Data path switched %s VF: %s\n",
2438                             vf_is_up ? "to" : "from", vf_netdev->name);
2439         }
2440
2441         return NOTIFY_OK;
2442 }
2443
2444 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2445 {
2446         struct net_device *ndev;
2447         struct net_device_context *net_device_ctx;
2448
2449         ndev = get_netvsc_byref(vf_netdev);
2450         if (!ndev)
2451                 return NOTIFY_DONE;
2452
2453         net_device_ctx = netdev_priv(ndev);
2454         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2455
2456         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2457
2458         netvsc_vf_setxdp(vf_netdev, NULL);
2459
2460         reinit_completion(&net_device_ctx->vf_add);
2461         netdev_rx_handler_unregister(vf_netdev);
2462         netdev_upper_dev_unlink(vf_netdev, ndev);
2463         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2464         dev_put(vf_netdev);
2465
2466         ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2467
2468         return NOTIFY_OK;
2469 }
2470
2471 static int netvsc_probe(struct hv_device *dev,
2472                         const struct hv_vmbus_device_id *dev_id)
2473 {
2474         struct net_device *net = NULL;
2475         struct net_device_context *net_device_ctx;
2476         struct netvsc_device_info *device_info = NULL;
2477         struct netvsc_device *nvdev;
2478         int ret = -ENOMEM;
2479
2480         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2481                                 VRSS_CHANNEL_MAX);
2482         if (!net)
2483                 goto no_net;
2484
2485         netif_carrier_off(net);
2486
2487         netvsc_init_settings(net);
2488
2489         net_device_ctx = netdev_priv(net);
2490         net_device_ctx->device_ctx = dev;
2491         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2492         if (netif_msg_probe(net_device_ctx))
2493                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2494                            net_device_ctx->msg_enable);
2495
2496         hv_set_drvdata(dev, net);
2497
2498         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2499
2500         init_completion(&net_device_ctx->vf_add);
2501         spin_lock_init(&net_device_ctx->lock);
2502         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2503         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2504
2505         net_device_ctx->vf_stats
2506                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2507         if (!net_device_ctx->vf_stats)
2508                 goto no_stats;
2509
2510         net->netdev_ops = &device_ops;
2511         net->ethtool_ops = &ethtool_ops;
2512         SET_NETDEV_DEV(net, &dev->device);
2513         dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2514
2515         /* We always need headroom for rndis header */
2516         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518         /* Initialize the number of queues to be 1, we may change it if more
2519          * channels are offered later.
2520          */
2521         netif_set_real_num_tx_queues(net, 1);
2522         netif_set_real_num_rx_queues(net, 1);
2523
2524         /* Notify the netvsc driver of the new device */
2525         device_info = netvsc_devinfo_get(NULL);
2526
2527         if (!device_info) {
2528                 ret = -ENOMEM;
2529                 goto devinfo_failed;
2530         }
2531
2532         nvdev = rndis_filter_device_add(dev, device_info);
2533         if (IS_ERR(nvdev)) {
2534                 ret = PTR_ERR(nvdev);
2535                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536                 goto rndis_failed;
2537         }
2538
2539         eth_hw_addr_set(net, device_info->mac_adr);
2540
2541         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2542          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543          * all subchannels to show up, but that may not happen because
2544          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545          * -> ... -> device_add() -> ... -> __device_attach() can't get
2546          * the device lock, so all the subchannels can't be processed --
2547          * finally netvsc_subchan_work() hangs forever.
2548          */
2549         rtnl_lock();
2550
2551         if (nvdev->num_chn > 1)
2552                 schedule_work(&nvdev->subchan_work);
2553
2554         /* hw_features computed in rndis_netdev_set_hwcaps() */
2555         net->features = net->hw_features |
2556                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557                 NETIF_F_HW_VLAN_CTAG_RX;
2558         net->vlan_features = net->features;
2559
2560         netdev_lockdep_set_classes(net);
2561
2562         net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2563                             NETDEV_XDP_ACT_NDO_XMIT;
2564
2565         /* MTU range: 68 - 1500 or 65521 */
2566         net->min_mtu = NETVSC_MTU_MIN;
2567         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2568                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2569         else
2570                 net->max_mtu = ETH_DATA_LEN;
2571
2572         nvdev->tx_disable = false;
2573
2574         ret = register_netdevice(net);
2575         if (ret != 0) {
2576                 pr_err("Unable to register netdev.\n");
2577                 goto register_failed;
2578         }
2579
2580         list_add(&net_device_ctx->list, &netvsc_dev_list);
2581         rtnl_unlock();
2582
2583         netvsc_devinfo_put(device_info);
2584         return 0;
2585
2586 register_failed:
2587         rtnl_unlock();
2588         rndis_filter_device_remove(dev, nvdev);
2589 rndis_failed:
2590         netvsc_devinfo_put(device_info);
2591 devinfo_failed:
2592         free_percpu(net_device_ctx->vf_stats);
2593 no_stats:
2594         hv_set_drvdata(dev, NULL);
2595         free_netdev(net);
2596 no_net:
2597         return ret;
2598 }
2599
2600 static void netvsc_remove(struct hv_device *dev)
2601 {
2602         struct net_device_context *ndev_ctx;
2603         struct net_device *vf_netdev, *net;
2604         struct netvsc_device *nvdev;
2605
2606         net = hv_get_drvdata(dev);
2607         if (net == NULL) {
2608                 dev_err(&dev->device, "No net device to remove\n");
2609                 return;
2610         }
2611
2612         ndev_ctx = netdev_priv(net);
2613
2614         cancel_delayed_work_sync(&ndev_ctx->dwork);
2615
2616         rtnl_lock();
2617         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2618         if (nvdev) {
2619                 cancel_work_sync(&nvdev->subchan_work);
2620                 netvsc_xdp_set(net, NULL, NULL, nvdev);
2621         }
2622
2623         /*
2624          * Call to the vsc driver to let it know that the device is being
2625          * removed. Also blocks mtu and channel changes.
2626          */
2627         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2628         if (vf_netdev)
2629                 netvsc_unregister_vf(vf_netdev);
2630
2631         if (nvdev)
2632                 rndis_filter_device_remove(dev, nvdev);
2633
2634         unregister_netdevice(net);
2635         list_del(&ndev_ctx->list);
2636
2637         rtnl_unlock();
2638
2639         hv_set_drvdata(dev, NULL);
2640
2641         free_percpu(ndev_ctx->vf_stats);
2642         free_netdev(net);
2643 }
2644
2645 static int netvsc_suspend(struct hv_device *dev)
2646 {
2647         struct net_device_context *ndev_ctx;
2648         struct netvsc_device *nvdev;
2649         struct net_device *net;
2650         int ret;
2651
2652         net = hv_get_drvdata(dev);
2653
2654         ndev_ctx = netdev_priv(net);
2655         cancel_delayed_work_sync(&ndev_ctx->dwork);
2656
2657         rtnl_lock();
2658
2659         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2660         if (nvdev == NULL) {
2661                 ret = -ENODEV;
2662                 goto out;
2663         }
2664
2665         /* Save the current config info */
2666         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2667         if (!ndev_ctx->saved_netvsc_dev_info) {
2668                 ret = -ENOMEM;
2669                 goto out;
2670         }
2671         ret = netvsc_detach(net, nvdev);
2672 out:
2673         rtnl_unlock();
2674
2675         return ret;
2676 }
2677
2678 static int netvsc_resume(struct hv_device *dev)
2679 {
2680         struct net_device *net = hv_get_drvdata(dev);
2681         struct net_device_context *net_device_ctx;
2682         struct netvsc_device_info *device_info;
2683         int ret;
2684
2685         rtnl_lock();
2686
2687         net_device_ctx = netdev_priv(net);
2688
2689         /* Reset the data path to the netvsc NIC before re-opening the vmbus
2690          * channel. Later netvsc_netdev_event() will switch the data path to
2691          * the VF upon the UP or CHANGE event.
2692          */
2693         net_device_ctx->data_path_is_vf = false;
2694         device_info = net_device_ctx->saved_netvsc_dev_info;
2695
2696         ret = netvsc_attach(net, device_info);
2697
2698         netvsc_devinfo_put(device_info);
2699         net_device_ctx->saved_netvsc_dev_info = NULL;
2700
2701         rtnl_unlock();
2702
2703         return ret;
2704 }
2705 static const struct hv_vmbus_device_id id_table[] = {
2706         /* Network guid */
2707         { HV_NIC_GUID, },
2708         { },
2709 };
2710
2711 MODULE_DEVICE_TABLE(vmbus, id_table);
2712
2713 /* The one and only one */
2714 static struct  hv_driver netvsc_drv = {
2715         .name = KBUILD_MODNAME,
2716         .id_table = id_table,
2717         .probe = netvsc_probe,
2718         .remove = netvsc_remove,
2719         .suspend = netvsc_suspend,
2720         .resume = netvsc_resume,
2721         .driver = {
2722                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2723         },
2724 };
2725
2726 /*
2727  * On Hyper-V, every VF interface is matched with a corresponding
2728  * synthetic interface. The synthetic interface is presented first
2729  * to the guest. When the corresponding VF instance is registered,
2730  * we will take care of switching the data path.
2731  */
2732 static int netvsc_netdev_event(struct notifier_block *this,
2733                                unsigned long event, void *ptr)
2734 {
2735         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2736
2737         /* Skip our own events */
2738         if (event_dev->netdev_ops == &device_ops)
2739                 return NOTIFY_DONE;
2740
2741         /* Avoid non-Ethernet type devices */
2742         if (event_dev->type != ARPHRD_ETHER)
2743                 return NOTIFY_DONE;
2744
2745         /* Avoid Vlan dev with same MAC registering as VF */
2746         if (is_vlan_dev(event_dev))
2747                 return NOTIFY_DONE;
2748
2749         /* Avoid Bonding master dev with same MAC registering as VF */
2750         if (netif_is_bond_master(event_dev))
2751                 return NOTIFY_DONE;
2752
2753         switch (event) {
2754         case NETDEV_REGISTER:
2755                 return netvsc_register_vf(event_dev);
2756         case NETDEV_UNREGISTER:
2757                 return netvsc_unregister_vf(event_dev);
2758         case NETDEV_UP:
2759         case NETDEV_DOWN:
2760         case NETDEV_CHANGE:
2761         case NETDEV_GOING_DOWN:
2762                 return netvsc_vf_changed(event_dev, event);
2763         default:
2764                 return NOTIFY_DONE;
2765         }
2766 }
2767
2768 static struct notifier_block netvsc_netdev_notifier = {
2769         .notifier_call = netvsc_netdev_event,
2770 };
2771
2772 static void __exit netvsc_drv_exit(void)
2773 {
2774         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2775         vmbus_driver_unregister(&netvsc_drv);
2776 }
2777
2778 static int __init netvsc_drv_init(void)
2779 {
2780         int ret;
2781
2782         if (ring_size < RING_SIZE_MIN) {
2783                 ring_size = RING_SIZE_MIN;
2784                 pr_info("Increased ring_size to %u (min allowed)\n",
2785                         ring_size);
2786         }
2787         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2788
2789         ret = vmbus_driver_register(&netvsc_drv);
2790         if (ret)
2791                 return ret;
2792
2793         register_netdevice_notifier(&netvsc_netdev_notifier);
2794         return 0;
2795 }
2796
2797 MODULE_LICENSE("GPL");
2798 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2799
2800 module_init(netvsc_drv_init);
2801 module_exit(netvsc_drv_exit);