Merge branches 'for-4.10/asus', 'for-4.10/cp2112', 'for-4.10/i2c-hid-nopower', 'for...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / xscale / ixp4xx_eth.c
1 /*
2  * Intel IXP4xx Ethernet driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * Ethernet port config (0x00 is not present on IXP42X):
11  *
12  * logical port         0x00            0x10            0x20
13  * NPE                  0 (NPE-A)       1 (NPE-B)       2 (NPE-C)
14  * physical PortId      2               0               1
15  * TX queue             23              24              25
16  * RX-free queue        26              27              28
17  * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
18  *
19  *
20  * Queue entries:
21  * bits 0 -> 1  - NPE ID (RX and TX-done)
22  * bits 0 -> 2  - priority (TX, per 802.1D)
23  * bits 3 -> 4  - port ID (user-set?)
24  * bits 5 -> 31 - physical descriptor address
25  */
26
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <mach/ixp46x_ts.h>
40 #include <mach/npe.h>
41 #include <mach/qmgr.h>
42
43 #define DEBUG_DESC              0
44 #define DEBUG_RX                0
45 #define DEBUG_TX                0
46 #define DEBUG_PKT_BYTES         0
47 #define DEBUG_MDIO              0
48 #define DEBUG_CLOSE             0
49
50 #define DRV_NAME                "ixp4xx_eth"
51
52 #define MAX_NPES                3
53
54 #define RX_DESCS                64 /* also length of all RX queues */
55 #define TX_DESCS                16 /* also length of all TX queues */
56 #define TXDONE_QUEUE_LEN        64 /* dwords */
57
58 #define POOL_ALLOC_SIZE         (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
59 #define REGS_SIZE               0x1000
60 #define MAX_MRU                 1536 /* 0x600 */
61 #define RX_BUFF_SIZE            ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
62
63 #define NAPI_WEIGHT             16
64 #define MDIO_INTERVAL           (3 * HZ)
65 #define MAX_MDIO_RETRIES        100 /* microseconds, typically 30 cycles */
66 #define MAX_CLOSE_WAIT          1000 /* microseconds, typically 2-3 cycles */
67
68 #define NPE_ID(port_id)         ((port_id) >> 4)
69 #define PHYSICAL_ID(port_id)    ((NPE_ID(port_id) + 2) % 3)
70 #define TX_QUEUE(port_id)       (NPE_ID(port_id) + 23)
71 #define RXFREE_QUEUE(port_id)   (NPE_ID(port_id) + 26)
72 #define TXDONE_QUEUE            31
73
74 #define PTP_SLAVE_MODE          1
75 #define PTP_MASTER_MODE         2
76 #define PORT2CHANNEL(p)         NPE_ID(p->id)
77
78 /* TX Control Registers */
79 #define TX_CNTRL0_TX_EN         0x01
80 #define TX_CNTRL0_HALFDUPLEX    0x02
81 #define TX_CNTRL0_RETRY         0x04
82 #define TX_CNTRL0_PAD_EN        0x08
83 #define TX_CNTRL0_APPEND_FCS    0x10
84 #define TX_CNTRL0_2DEFER        0x20
85 #define TX_CNTRL0_RMII          0x40 /* reduced MII */
86 #define TX_CNTRL1_RETRIES       0x0F /* 4 bits */
87
88 /* RX Control Registers */
89 #define RX_CNTRL0_RX_EN         0x01
90 #define RX_CNTRL0_PADSTRIP_EN   0x02
91 #define RX_CNTRL0_SEND_FCS      0x04
92 #define RX_CNTRL0_PAUSE_EN      0x08
93 #define RX_CNTRL0_LOOP_EN       0x10
94 #define RX_CNTRL0_ADDR_FLTR_EN  0x20
95 #define RX_CNTRL0_RX_RUNT_EN    0x40
96 #define RX_CNTRL0_BCAST_DIS     0x80
97 #define RX_CNTRL1_DEFER_EN      0x01
98
99 /* Core Control Register */
100 #define CORE_RESET              0x01
101 #define CORE_RX_FIFO_FLUSH      0x02
102 #define CORE_TX_FIFO_FLUSH      0x04
103 #define CORE_SEND_JAM           0x08
104 #define CORE_MDC_EN             0x10 /* MDIO using NPE-B ETH-0 only */
105
106 #define DEFAULT_TX_CNTRL0       (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY |    \
107                                  TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
108                                  TX_CNTRL0_2DEFER)
109 #define DEFAULT_RX_CNTRL0       RX_CNTRL0_RX_EN
110 #define DEFAULT_CORE_CNTRL      CORE_MDC_EN
111
112
113 /* NPE message codes */
114 #define NPE_GETSTATUS                   0x00
115 #define NPE_EDB_SETPORTADDRESS          0x01
116 #define NPE_EDB_GETMACADDRESSDATABASE   0x02
117 #define NPE_EDB_SETMACADDRESSSDATABASE  0x03
118 #define NPE_GETSTATS                    0x04
119 #define NPE_RESETSTATS                  0x05
120 #define NPE_SETMAXFRAMELENGTHS          0x06
121 #define NPE_VLAN_SETRXTAGMODE           0x07
122 #define NPE_VLAN_SETDEFAULTRXVID        0x08
123 #define NPE_VLAN_SETPORTVLANTABLEENTRY  0x09
124 #define NPE_VLAN_SETPORTVLANTABLERANGE  0x0A
125 #define NPE_VLAN_SETRXQOSENTRY          0x0B
126 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
127 #define NPE_STP_SETBLOCKINGSTATE        0x0D
128 #define NPE_FW_SETFIREWALLMODE          0x0E
129 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
130 #define NPE_PC_SETAPMACTABLE            0x11
131 #define NPE_SETLOOPBACK_MODE            0x12
132 #define NPE_PC_SETBSSIDTABLE            0x13
133 #define NPE_ADDRESS_FILTER_CONFIG       0x14
134 #define NPE_APPENDFCSCONFIG             0x15
135 #define NPE_NOTIFY_MAC_RECOVERY_DONE    0x16
136 #define NPE_MAC_RECOVERY_START          0x17
137
138
139 #ifdef __ARMEB__
140 typedef struct sk_buff buffer_t;
141 #define free_buffer dev_kfree_skb
142 #define free_buffer_irq dev_kfree_skb_irq
143 #else
144 typedef void buffer_t;
145 #define free_buffer kfree
146 #define free_buffer_irq kfree
147 #endif
148
149 struct eth_regs {
150         u32 tx_control[2], __res1[2];           /* 000 */
151         u32 rx_control[2], __res2[2];           /* 010 */
152         u32 random_seed, __res3[3];             /* 020 */
153         u32 partial_empty_threshold, __res4;    /* 030 */
154         u32 partial_full_threshold, __res5;     /* 038 */
155         u32 tx_start_bytes, __res6[3];          /* 040 */
156         u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
157         u32 tx_2part_deferral[2], __res8[2];    /* 060 */
158         u32 slot_time, __res9[3];               /* 070 */
159         u32 mdio_command[4];                    /* 080 */
160         u32 mdio_status[4];                     /* 090 */
161         u32 mcast_mask[6], __res10[2];          /* 0A0 */
162         u32 mcast_addr[6], __res11[2];          /* 0C0 */
163         u32 int_clock_threshold, __res12[3];    /* 0E0 */
164         u32 hw_addr[6], __res13[61];            /* 0F0 */
165         u32 core_control;                       /* 1FC */
166 };
167
168 struct port {
169         struct resource *mem_res;
170         struct eth_regs __iomem *regs;
171         struct npe *npe;
172         struct net_device *netdev;
173         struct napi_struct napi;
174         struct eth_plat_info *plat;
175         buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
176         struct desc *desc_tab;  /* coherent */
177         u32 desc_tab_phys;
178         int id;                 /* logical port ID */
179         int speed, duplex;
180         u8 firmware[4];
181         int hwts_tx_en;
182         int hwts_rx_en;
183 };
184
185 /* NPE message structure */
186 struct msg {
187 #ifdef __ARMEB__
188         u8 cmd, eth_id, byte2, byte3;
189         u8 byte4, byte5, byte6, byte7;
190 #else
191         u8 byte3, byte2, eth_id, cmd;
192         u8 byte7, byte6, byte5, byte4;
193 #endif
194 };
195
196 /* Ethernet packet descriptor */
197 struct desc {
198         u32 next;               /* pointer to next buffer, unused */
199
200 #ifdef __ARMEB__
201         u16 buf_len;            /* buffer length */
202         u16 pkt_len;            /* packet length */
203         u32 data;               /* pointer to data buffer in RAM */
204         u8 dest_id;
205         u8 src_id;
206         u16 flags;
207         u8 qos;
208         u8 padlen;
209         u16 vlan_tci;
210 #else
211         u16 pkt_len;            /* packet length */
212         u16 buf_len;            /* buffer length */
213         u32 data;               /* pointer to data buffer in RAM */
214         u16 flags;
215         u8 src_id;
216         u8 dest_id;
217         u16 vlan_tci;
218         u8 padlen;
219         u8 qos;
220 #endif
221
222 #ifdef __ARMEB__
223         u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
224         u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
225         u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
226 #else
227         u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
228         u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
229         u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
230 #endif
231 };
232
233
234 #define rx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
235                                  (n) * sizeof(struct desc))
236 #define rx_desc_ptr(port, n)    (&(port)->desc_tab[n])
237
238 #define tx_desc_phys(port, n)   ((port)->desc_tab_phys +                \
239                                  ((n) + RX_DESCS) * sizeof(struct desc))
240 #define tx_desc_ptr(port, n)    (&(port)->desc_tab[(n) + RX_DESCS])
241
242 #ifndef __ARMEB__
243 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
244 {
245         int i;
246         for (i = 0; i < cnt; i++)
247                 dest[i] = swab32(src[i]);
248 }
249 #endif
250
251 static spinlock_t mdio_lock;
252 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
253 static struct mii_bus *mdio_bus;
254 static int ports_open;
255 static struct port *npe_port_tab[MAX_NPES];
256 static struct dma_pool *dma_pool;
257
258 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
259 {
260         u8 *data = skb->data;
261         unsigned int offset;
262         u16 *hi, *id;
263         u32 lo;
264
265         if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
266                 return 0;
267
268         offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
269
270         if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
271                 return 0;
272
273         hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
274         id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
275
276         memcpy(&lo, &hi[1], sizeof(lo));
277
278         return (uid_hi == ntohs(*hi) &&
279                 uid_lo == ntohl(lo) &&
280                 seqid  == ntohs(*id));
281 }
282
283 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
284 {
285         struct skb_shared_hwtstamps *shhwtstamps;
286         struct ixp46x_ts_regs *regs;
287         u64 ns;
288         u32 ch, hi, lo, val;
289         u16 uid, seq;
290
291         if (!port->hwts_rx_en)
292                 return;
293
294         ch = PORT2CHANNEL(port);
295
296         regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
297
298         val = __raw_readl(&regs->channel[ch].ch_event);
299
300         if (!(val & RX_SNAPSHOT_LOCKED))
301                 return;
302
303         lo = __raw_readl(&regs->channel[ch].src_uuid_lo);
304         hi = __raw_readl(&regs->channel[ch].src_uuid_hi);
305
306         uid = hi & 0xffff;
307         seq = (hi >> 16) & 0xffff;
308
309         if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
310                 goto out;
311
312         lo = __raw_readl(&regs->channel[ch].rx_snap_lo);
313         hi = __raw_readl(&regs->channel[ch].rx_snap_hi);
314         ns = ((u64) hi) << 32;
315         ns |= lo;
316         ns <<= TICKS_NS_SHIFT;
317
318         shhwtstamps = skb_hwtstamps(skb);
319         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
320         shhwtstamps->hwtstamp = ns_to_ktime(ns);
321 out:
322         __raw_writel(RX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
323 }
324
325 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
326 {
327         struct skb_shared_hwtstamps shhwtstamps;
328         struct ixp46x_ts_regs *regs;
329         struct skb_shared_info *shtx;
330         u64 ns;
331         u32 ch, cnt, hi, lo, val;
332
333         shtx = skb_shinfo(skb);
334         if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
335                 shtx->tx_flags |= SKBTX_IN_PROGRESS;
336         else
337                 return;
338
339         ch = PORT2CHANNEL(port);
340
341         regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
342
343         /*
344          * This really stinks, but we have to poll for the Tx time stamp.
345          * Usually, the time stamp is ready after 4 to 6 microseconds.
346          */
347         for (cnt = 0; cnt < 100; cnt++) {
348                 val = __raw_readl(&regs->channel[ch].ch_event);
349                 if (val & TX_SNAPSHOT_LOCKED)
350                         break;
351                 udelay(1);
352         }
353         if (!(val & TX_SNAPSHOT_LOCKED)) {
354                 shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
355                 return;
356         }
357
358         lo = __raw_readl(&regs->channel[ch].tx_snap_lo);
359         hi = __raw_readl(&regs->channel[ch].tx_snap_hi);
360         ns = ((u64) hi) << 32;
361         ns |= lo;
362         ns <<= TICKS_NS_SHIFT;
363
364         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
365         shhwtstamps.hwtstamp = ns_to_ktime(ns);
366         skb_tstamp_tx(skb, &shhwtstamps);
367
368         __raw_writel(TX_SNAPSHOT_LOCKED, &regs->channel[ch].ch_event);
369 }
370
371 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
372 {
373         struct hwtstamp_config cfg;
374         struct ixp46x_ts_regs *regs;
375         struct port *port = netdev_priv(netdev);
376         int ch;
377
378         if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
379                 return -EFAULT;
380
381         if (cfg.flags) /* reserved for future extensions */
382                 return -EINVAL;
383
384         ch = PORT2CHANNEL(port);
385         regs = (struct ixp46x_ts_regs __iomem *) IXP4XX_TIMESYNC_BASE_VIRT;
386
387         if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
388                 return -ERANGE;
389
390         switch (cfg.rx_filter) {
391         case HWTSTAMP_FILTER_NONE:
392                 port->hwts_rx_en = 0;
393                 break;
394         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
395                 port->hwts_rx_en = PTP_SLAVE_MODE;
396                 __raw_writel(0, &regs->channel[ch].ch_control);
397                 break;
398         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
399                 port->hwts_rx_en = PTP_MASTER_MODE;
400                 __raw_writel(MASTER_MODE, &regs->channel[ch].ch_control);
401                 break;
402         default:
403                 return -ERANGE;
404         }
405
406         port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
407
408         /* Clear out any old time stamps. */
409         __raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
410                      &regs->channel[ch].ch_event);
411
412         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
413 }
414
415 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
416 {
417         struct hwtstamp_config cfg;
418         struct port *port = netdev_priv(netdev);
419
420         cfg.flags = 0;
421         cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
422
423         switch (port->hwts_rx_en) {
424         case 0:
425                 cfg.rx_filter = HWTSTAMP_FILTER_NONE;
426                 break;
427         case PTP_SLAVE_MODE:
428                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
429                 break;
430         case PTP_MASTER_MODE:
431                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
432                 break;
433         default:
434                 WARN_ON_ONCE(1);
435                 return -ERANGE;
436         }
437
438         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
439 }
440
441 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
442                            int write, u16 cmd)
443 {
444         int cycles = 0;
445
446         if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
447                 printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
448                 return -1;
449         }
450
451         if (write) {
452                 __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
453                 __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
454         }
455         __raw_writel(((phy_id << 5) | location) & 0xFF,
456                      &mdio_regs->mdio_command[2]);
457         __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
458                      &mdio_regs->mdio_command[3]);
459
460         while ((cycles < MAX_MDIO_RETRIES) &&
461                (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
462                 udelay(1);
463                 cycles++;
464         }
465
466         if (cycles == MAX_MDIO_RETRIES) {
467                 printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
468                        phy_id);
469                 return -1;
470         }
471
472 #if DEBUG_MDIO
473         printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
474                phy_id, write ? "write" : "read", cycles);
475 #endif
476
477         if (write)
478                 return 0;
479
480         if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
481 #if DEBUG_MDIO
482                 printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
483                        phy_id);
484 #endif
485                 return 0xFFFF; /* don't return error */
486         }
487
488         return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
489                 ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
490 }
491
492 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
493 {
494         unsigned long flags;
495         int ret;
496
497         spin_lock_irqsave(&mdio_lock, flags);
498         ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
499         spin_unlock_irqrestore(&mdio_lock, flags);
500 #if DEBUG_MDIO
501         printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
502                phy_id, location, ret);
503 #endif
504         return ret;
505 }
506
507 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
508                              u16 val)
509 {
510         unsigned long flags;
511         int ret;
512
513         spin_lock_irqsave(&mdio_lock, flags);
514         ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
515         spin_unlock_irqrestore(&mdio_lock, flags);
516 #if DEBUG_MDIO
517         printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
518                bus->name, phy_id, location, val, ret);
519 #endif
520         return ret;
521 }
522
523 static int ixp4xx_mdio_register(void)
524 {
525         int err;
526
527         if (!(mdio_bus = mdiobus_alloc()))
528                 return -ENOMEM;
529
530         if (cpu_is_ixp43x()) {
531                 /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
532                 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
533                         return -ENODEV;
534                 mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
535         } else {
536                 /* All MII PHY accesses use NPE-B Ethernet registers */
537                 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
538                         return -ENODEV;
539                 mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
540         }
541
542         __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
543         spin_lock_init(&mdio_lock);
544         mdio_bus->name = "IXP4xx MII Bus";
545         mdio_bus->read = &ixp4xx_mdio_read;
546         mdio_bus->write = &ixp4xx_mdio_write;
547         snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
548
549         if ((err = mdiobus_register(mdio_bus)))
550                 mdiobus_free(mdio_bus);
551         return err;
552 }
553
554 static void ixp4xx_mdio_remove(void)
555 {
556         mdiobus_unregister(mdio_bus);
557         mdiobus_free(mdio_bus);
558 }
559
560
561 static void ixp4xx_adjust_link(struct net_device *dev)
562 {
563         struct port *port = netdev_priv(dev);
564         struct phy_device *phydev = dev->phydev;
565
566         if (!phydev->link) {
567                 if (port->speed) {
568                         port->speed = 0;
569                         printk(KERN_INFO "%s: link down\n", dev->name);
570                 }
571                 return;
572         }
573
574         if (port->speed == phydev->speed && port->duplex == phydev->duplex)
575                 return;
576
577         port->speed = phydev->speed;
578         port->duplex = phydev->duplex;
579
580         if (port->duplex)
581                 __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
582                              &port->regs->tx_control[0]);
583         else
584                 __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
585                              &port->regs->tx_control[0]);
586
587         printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
588                dev->name, port->speed, port->duplex ? "full" : "half");
589 }
590
591
592 static inline void debug_pkt(struct net_device *dev, const char *func,
593                              u8 *data, int len)
594 {
595 #if DEBUG_PKT_BYTES
596         int i;
597
598         printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
599         for (i = 0; i < len; i++) {
600                 if (i >= DEBUG_PKT_BYTES)
601                         break;
602                 printk("%s%02X",
603                        ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
604                        data[i]);
605         }
606         printk("\n");
607 #endif
608 }
609
610
611 static inline void debug_desc(u32 phys, struct desc *desc)
612 {
613 #if DEBUG_DESC
614         printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
615                " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
616                phys, desc->next, desc->buf_len, desc->pkt_len,
617                desc->data, desc->dest_id, desc->src_id, desc->flags,
618                desc->qos, desc->padlen, desc->vlan_tci,
619                desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
620                desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
621                desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
622                desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
623 #endif
624 }
625
626 static inline int queue_get_desc(unsigned int queue, struct port *port,
627                                  int is_tx)
628 {
629         u32 phys, tab_phys, n_desc;
630         struct desc *tab;
631
632         if (!(phys = qmgr_get_entry(queue)))
633                 return -1;
634
635         phys &= ~0x1F; /* mask out non-address bits */
636         tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
637         tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
638         n_desc = (phys - tab_phys) / sizeof(struct desc);
639         BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
640         debug_desc(phys, &tab[n_desc]);
641         BUG_ON(tab[n_desc].next);
642         return n_desc;
643 }
644
645 static inline void queue_put_desc(unsigned int queue, u32 phys,
646                                   struct desc *desc)
647 {
648         debug_desc(phys, desc);
649         BUG_ON(phys & 0x1F);
650         qmgr_put_entry(queue, phys);
651         /* Don't check for queue overflow here, we've allocated sufficient
652            length and queues >= 32 don't support this check anyway. */
653 }
654
655
656 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
657 {
658 #ifdef __ARMEB__
659         dma_unmap_single(&port->netdev->dev, desc->data,
660                          desc->buf_len, DMA_TO_DEVICE);
661 #else
662         dma_unmap_single(&port->netdev->dev, desc->data & ~3,
663                          ALIGN((desc->data & 3) + desc->buf_len, 4),
664                          DMA_TO_DEVICE);
665 #endif
666 }
667
668
669 static void eth_rx_irq(void *pdev)
670 {
671         struct net_device *dev = pdev;
672         struct port *port = netdev_priv(dev);
673
674 #if DEBUG_RX
675         printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
676 #endif
677         qmgr_disable_irq(port->plat->rxq);
678         napi_schedule(&port->napi);
679 }
680
681 static int eth_poll(struct napi_struct *napi, int budget)
682 {
683         struct port *port = container_of(napi, struct port, napi);
684         struct net_device *dev = port->netdev;
685         unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
686         int received = 0;
687
688 #if DEBUG_RX
689         printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
690 #endif
691
692         while (received < budget) {
693                 struct sk_buff *skb;
694                 struct desc *desc;
695                 int n;
696 #ifdef __ARMEB__
697                 struct sk_buff *temp;
698                 u32 phys;
699 #endif
700
701                 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
702 #if DEBUG_RX
703                         printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
704                                dev->name);
705 #endif
706                         napi_complete(napi);
707                         qmgr_enable_irq(rxq);
708                         if (!qmgr_stat_below_low_watermark(rxq) &&
709                             napi_reschedule(napi)) { /* not empty again */
710 #if DEBUG_RX
711                                 printk(KERN_DEBUG "%s: eth_poll napi_reschedule succeeded\n",
712                                        dev->name);
713 #endif
714                                 qmgr_disable_irq(rxq);
715                                 continue;
716                         }
717 #if DEBUG_RX
718                         printk(KERN_DEBUG "%s: eth_poll all done\n",
719                                dev->name);
720 #endif
721                         return received; /* all work done */
722                 }
723
724                 desc = rx_desc_ptr(port, n);
725
726 #ifdef __ARMEB__
727                 if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
728                         phys = dma_map_single(&dev->dev, skb->data,
729                                               RX_BUFF_SIZE, DMA_FROM_DEVICE);
730                         if (dma_mapping_error(&dev->dev, phys)) {
731                                 dev_kfree_skb(skb);
732                                 skb = NULL;
733                         }
734                 }
735 #else
736                 skb = netdev_alloc_skb(dev,
737                                        ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
738 #endif
739
740                 if (!skb) {
741                         dev->stats.rx_dropped++;
742                         /* put the desc back on RX-ready queue */
743                         desc->buf_len = MAX_MRU;
744                         desc->pkt_len = 0;
745                         queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
746                         continue;
747                 }
748
749                 /* process received frame */
750 #ifdef __ARMEB__
751                 temp = skb;
752                 skb = port->rx_buff_tab[n];
753                 dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
754                                  RX_BUFF_SIZE, DMA_FROM_DEVICE);
755 #else
756                 dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
757                                         RX_BUFF_SIZE, DMA_FROM_DEVICE);
758                 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
759                               ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
760 #endif
761                 skb_reserve(skb, NET_IP_ALIGN);
762                 skb_put(skb, desc->pkt_len);
763
764                 debug_pkt(dev, "eth_poll", skb->data, skb->len);
765
766                 ixp_rx_timestamp(port, skb);
767                 skb->protocol = eth_type_trans(skb, dev);
768                 dev->stats.rx_packets++;
769                 dev->stats.rx_bytes += skb->len;
770                 netif_receive_skb(skb);
771
772                 /* put the new buffer on RX-free queue */
773 #ifdef __ARMEB__
774                 port->rx_buff_tab[n] = temp;
775                 desc->data = phys + NET_IP_ALIGN;
776 #endif
777                 desc->buf_len = MAX_MRU;
778                 desc->pkt_len = 0;
779                 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
780                 received++;
781         }
782
783 #if DEBUG_RX
784         printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
785 #endif
786         return received;                /* not all work done */
787 }
788
789
790 static void eth_txdone_irq(void *unused)
791 {
792         u32 phys;
793
794 #if DEBUG_TX
795         printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
796 #endif
797         while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
798                 u32 npe_id, n_desc;
799                 struct port *port;
800                 struct desc *desc;
801                 int start;
802
803                 npe_id = phys & 3;
804                 BUG_ON(npe_id >= MAX_NPES);
805                 port = npe_port_tab[npe_id];
806                 BUG_ON(!port);
807                 phys &= ~0x1F; /* mask out non-address bits */
808                 n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
809                 BUG_ON(n_desc >= TX_DESCS);
810                 desc = tx_desc_ptr(port, n_desc);
811                 debug_desc(phys, desc);
812
813                 if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
814                         port->netdev->stats.tx_packets++;
815                         port->netdev->stats.tx_bytes += desc->pkt_len;
816
817                         dma_unmap_tx(port, desc);
818 #if DEBUG_TX
819                         printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
820                                port->netdev->name, port->tx_buff_tab[n_desc]);
821 #endif
822                         free_buffer_irq(port->tx_buff_tab[n_desc]);
823                         port->tx_buff_tab[n_desc] = NULL;
824                 }
825
826                 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
827                 queue_put_desc(port->plat->txreadyq, phys, desc);
828                 if (start) { /* TX-ready queue was empty */
829 #if DEBUG_TX
830                         printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
831                                port->netdev->name);
832 #endif
833                         netif_wake_queue(port->netdev);
834                 }
835         }
836 }
837
838 static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
839 {
840         struct port *port = netdev_priv(dev);
841         unsigned int txreadyq = port->plat->txreadyq;
842         int len, offset, bytes, n;
843         void *mem;
844         u32 phys;
845         struct desc *desc;
846
847 #if DEBUG_TX
848         printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
849 #endif
850
851         if (unlikely(skb->len > MAX_MRU)) {
852                 dev_kfree_skb(skb);
853                 dev->stats.tx_errors++;
854                 return NETDEV_TX_OK;
855         }
856
857         debug_pkt(dev, "eth_xmit", skb->data, skb->len);
858
859         len = skb->len;
860 #ifdef __ARMEB__
861         offset = 0; /* no need to keep alignment */
862         bytes = len;
863         mem = skb->data;
864 #else
865         offset = (int)skb->data & 3; /* keep 32-bit alignment */
866         bytes = ALIGN(offset + len, 4);
867         if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
868                 dev_kfree_skb(skb);
869                 dev->stats.tx_dropped++;
870                 return NETDEV_TX_OK;
871         }
872         memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
873 #endif
874
875         phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
876         if (dma_mapping_error(&dev->dev, phys)) {
877                 dev_kfree_skb(skb);
878 #ifndef __ARMEB__
879                 kfree(mem);
880 #endif
881                 dev->stats.tx_dropped++;
882                 return NETDEV_TX_OK;
883         }
884
885         n = queue_get_desc(txreadyq, port, 1);
886         BUG_ON(n < 0);
887         desc = tx_desc_ptr(port, n);
888
889 #ifdef __ARMEB__
890         port->tx_buff_tab[n] = skb;
891 #else
892         port->tx_buff_tab[n] = mem;
893 #endif
894         desc->data = phys + offset;
895         desc->buf_len = desc->pkt_len = len;
896
897         /* NPE firmware pads short frames with zeros internally */
898         wmb();
899         queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
900
901         if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
902 #if DEBUG_TX
903                 printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
904 #endif
905                 netif_stop_queue(dev);
906                 /* we could miss TX ready interrupt */
907                 /* really empty in fact */
908                 if (!qmgr_stat_below_low_watermark(txreadyq)) {
909 #if DEBUG_TX
910                         printk(KERN_DEBUG "%s: eth_xmit ready again\n",
911                                dev->name);
912 #endif
913                         netif_wake_queue(dev);
914                 }
915         }
916
917 #if DEBUG_TX
918         printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
919 #endif
920
921         ixp_tx_timestamp(port, skb);
922         skb_tx_timestamp(skb);
923
924 #ifndef __ARMEB__
925         dev_kfree_skb(skb);
926 #endif
927         return NETDEV_TX_OK;
928 }
929
930
931 static void eth_set_mcast_list(struct net_device *dev)
932 {
933         struct port *port = netdev_priv(dev);
934         struct netdev_hw_addr *ha;
935         u8 diffs[ETH_ALEN], *addr;
936         int i;
937         static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
938
939         if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
940                 for (i = 0; i < ETH_ALEN; i++) {
941                         __raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
942                         __raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
943                 }
944                 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
945                         &port->regs->rx_control[0]);
946                 return;
947         }
948
949         if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
950                 __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
951                              &port->regs->rx_control[0]);
952                 return;
953         }
954
955         eth_zero_addr(diffs);
956
957         addr = NULL;
958         netdev_for_each_mc_addr(ha, dev) {
959                 if (!addr)
960                         addr = ha->addr; /* first MAC address */
961                 for (i = 0; i < ETH_ALEN; i++)
962                         diffs[i] |= addr[i] ^ ha->addr[i];
963         }
964
965         for (i = 0; i < ETH_ALEN; i++) {
966                 __raw_writel(addr[i], &port->regs->mcast_addr[i]);
967                 __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
968         }
969
970         __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
971                      &port->regs->rx_control[0]);
972 }
973
974
975 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
976 {
977         if (!netif_running(dev))
978                 return -EINVAL;
979
980         if (cpu_is_ixp46x()) {
981                 if (cmd == SIOCSHWTSTAMP)
982                         return hwtstamp_set(dev, req);
983                 if (cmd == SIOCGHWTSTAMP)
984                         return hwtstamp_get(dev, req);
985         }
986
987         return phy_mii_ioctl(dev->phydev, req, cmd);
988 }
989
990 /* ethtool support */
991
992 static void ixp4xx_get_drvinfo(struct net_device *dev,
993                                struct ethtool_drvinfo *info)
994 {
995         struct port *port = netdev_priv(dev);
996
997         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
998         snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
999                  port->firmware[0], port->firmware[1],
1000                  port->firmware[2], port->firmware[3]);
1001         strlcpy(info->bus_info, "internal", sizeof(info->bus_info));
1002 }
1003
1004 static int ixp4xx_nway_reset(struct net_device *dev)
1005 {
1006         return phy_start_aneg(dev->phydev);
1007 }
1008
1009 int ixp46x_phc_index = -1;
1010 EXPORT_SYMBOL_GPL(ixp46x_phc_index);
1011
1012 static int ixp4xx_get_ts_info(struct net_device *dev,
1013                               struct ethtool_ts_info *info)
1014 {
1015         if (!cpu_is_ixp46x()) {
1016                 info->so_timestamping =
1017                         SOF_TIMESTAMPING_TX_SOFTWARE |
1018                         SOF_TIMESTAMPING_RX_SOFTWARE |
1019                         SOF_TIMESTAMPING_SOFTWARE;
1020                 info->phc_index = -1;
1021                 return 0;
1022         }
1023         info->so_timestamping =
1024                 SOF_TIMESTAMPING_TX_HARDWARE |
1025                 SOF_TIMESTAMPING_RX_HARDWARE |
1026                 SOF_TIMESTAMPING_RAW_HARDWARE;
1027         info->phc_index = ixp46x_phc_index;
1028         info->tx_types =
1029                 (1 << HWTSTAMP_TX_OFF) |
1030                 (1 << HWTSTAMP_TX_ON);
1031         info->rx_filters =
1032                 (1 << HWTSTAMP_FILTER_NONE) |
1033                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1034                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1035         return 0;
1036 }
1037
1038 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1039         .get_drvinfo = ixp4xx_get_drvinfo,
1040         .nway_reset = ixp4xx_nway_reset,
1041         .get_link = ethtool_op_get_link,
1042         .get_ts_info = ixp4xx_get_ts_info,
1043         .get_link_ksettings = phy_ethtool_get_link_ksettings,
1044         .set_link_ksettings = phy_ethtool_set_link_ksettings,
1045 };
1046
1047
1048 static int request_queues(struct port *port)
1049 {
1050         int err;
1051
1052         err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1053                                  "%s:RX-free", port->netdev->name);
1054         if (err)
1055                 return err;
1056
1057         err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1058                                  "%s:RX", port->netdev->name);
1059         if (err)
1060                 goto rel_rxfree;
1061
1062         err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1063                                  "%s:TX", port->netdev->name);
1064         if (err)
1065                 goto rel_rx;
1066
1067         err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1068                                  "%s:TX-ready", port->netdev->name);
1069         if (err)
1070                 goto rel_tx;
1071
1072         /* TX-done queue handles skbs sent out by the NPEs */
1073         if (!ports_open) {
1074                 err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1075                                          "%s:TX-done", DRV_NAME);
1076                 if (err)
1077                         goto rel_txready;
1078         }
1079         return 0;
1080
1081 rel_txready:
1082         qmgr_release_queue(port->plat->txreadyq);
1083 rel_tx:
1084         qmgr_release_queue(TX_QUEUE(port->id));
1085 rel_rx:
1086         qmgr_release_queue(port->plat->rxq);
1087 rel_rxfree:
1088         qmgr_release_queue(RXFREE_QUEUE(port->id));
1089         printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1090                port->netdev->name);
1091         return err;
1092 }
1093
1094 static void release_queues(struct port *port)
1095 {
1096         qmgr_release_queue(RXFREE_QUEUE(port->id));
1097         qmgr_release_queue(port->plat->rxq);
1098         qmgr_release_queue(TX_QUEUE(port->id));
1099         qmgr_release_queue(port->plat->txreadyq);
1100
1101         if (!ports_open)
1102                 qmgr_release_queue(TXDONE_QUEUE);
1103 }
1104
1105 static int init_queues(struct port *port)
1106 {
1107         int i;
1108
1109         if (!ports_open) {
1110                 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1111                                            POOL_ALLOC_SIZE, 32, 0);
1112                 if (!dma_pool)
1113                         return -ENOMEM;
1114         }
1115
1116         if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
1117                                               &port->desc_tab_phys)))
1118                 return -ENOMEM;
1119         memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
1120         memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1121         memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1122
1123         /* Setup RX buffers */
1124         for (i = 0; i < RX_DESCS; i++) {
1125                 struct desc *desc = rx_desc_ptr(port, i);
1126                 buffer_t *buff; /* skb or kmalloc()ated memory */
1127                 void *data;
1128 #ifdef __ARMEB__
1129                 if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1130                         return -ENOMEM;
1131                 data = buff->data;
1132 #else
1133                 if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1134                         return -ENOMEM;
1135                 data = buff;
1136 #endif
1137                 desc->buf_len = MAX_MRU;
1138                 desc->data = dma_map_single(&port->netdev->dev, data,
1139                                             RX_BUFF_SIZE, DMA_FROM_DEVICE);
1140                 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1141                         free_buffer(buff);
1142                         return -EIO;
1143                 }
1144                 desc->data += NET_IP_ALIGN;
1145                 port->rx_buff_tab[i] = buff;
1146         }
1147
1148         return 0;
1149 }
1150
1151 static void destroy_queues(struct port *port)
1152 {
1153         int i;
1154
1155         if (port->desc_tab) {
1156                 for (i = 0; i < RX_DESCS; i++) {
1157                         struct desc *desc = rx_desc_ptr(port, i);
1158                         buffer_t *buff = port->rx_buff_tab[i];
1159                         if (buff) {
1160                                 dma_unmap_single(&port->netdev->dev,
1161                                                  desc->data - NET_IP_ALIGN,
1162                                                  RX_BUFF_SIZE, DMA_FROM_DEVICE);
1163                                 free_buffer(buff);
1164                         }
1165                 }
1166                 for (i = 0; i < TX_DESCS; i++) {
1167                         struct desc *desc = tx_desc_ptr(port, i);
1168                         buffer_t *buff = port->tx_buff_tab[i];
1169                         if (buff) {
1170                                 dma_unmap_tx(port, desc);
1171                                 free_buffer(buff);
1172                         }
1173                 }
1174                 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1175                 port->desc_tab = NULL;
1176         }
1177
1178         if (!ports_open && dma_pool) {
1179                 dma_pool_destroy(dma_pool);
1180                 dma_pool = NULL;
1181         }
1182 }
1183
1184 static int eth_open(struct net_device *dev)
1185 {
1186         struct port *port = netdev_priv(dev);
1187         struct npe *npe = port->npe;
1188         struct msg msg;
1189         int i, err;
1190
1191         if (!npe_running(npe)) {
1192                 err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1193                 if (err)
1194                         return err;
1195
1196                 if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1197                         printk(KERN_ERR "%s: %s not responding\n", dev->name,
1198                                npe_name(npe));
1199                         return -EIO;
1200                 }
1201                 port->firmware[0] = msg.byte4;
1202                 port->firmware[1] = msg.byte5;
1203                 port->firmware[2] = msg.byte6;
1204                 port->firmware[3] = msg.byte7;
1205         }
1206
1207         memset(&msg, 0, sizeof(msg));
1208         msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1209         msg.eth_id = port->id;
1210         msg.byte5 = port->plat->rxq | 0x80;
1211         msg.byte7 = port->plat->rxq << 4;
1212         for (i = 0; i < 8; i++) {
1213                 msg.byte3 = i;
1214                 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1215                         return -EIO;
1216         }
1217
1218         msg.cmd = NPE_EDB_SETPORTADDRESS;
1219         msg.eth_id = PHYSICAL_ID(port->id);
1220         msg.byte2 = dev->dev_addr[0];
1221         msg.byte3 = dev->dev_addr[1];
1222         msg.byte4 = dev->dev_addr[2];
1223         msg.byte5 = dev->dev_addr[3];
1224         msg.byte6 = dev->dev_addr[4];
1225         msg.byte7 = dev->dev_addr[5];
1226         if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1227                 return -EIO;
1228
1229         memset(&msg, 0, sizeof(msg));
1230         msg.cmd = NPE_FW_SETFIREWALLMODE;
1231         msg.eth_id = port->id;
1232         if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1233                 return -EIO;
1234
1235         if ((err = request_queues(port)) != 0)
1236                 return err;
1237
1238         if ((err = init_queues(port)) != 0) {
1239                 destroy_queues(port);
1240                 release_queues(port);
1241                 return err;
1242         }
1243
1244         port->speed = 0;        /* force "link up" message */
1245         phy_start(dev->phydev);
1246
1247         for (i = 0; i < ETH_ALEN; i++)
1248                 __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1249         __raw_writel(0x08, &port->regs->random_seed);
1250         __raw_writel(0x12, &port->regs->partial_empty_threshold);
1251         __raw_writel(0x30, &port->regs->partial_full_threshold);
1252         __raw_writel(0x08, &port->regs->tx_start_bytes);
1253         __raw_writel(0x15, &port->regs->tx_deferral);
1254         __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1255         __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1256         __raw_writel(0x80, &port->regs->slot_time);
1257         __raw_writel(0x01, &port->regs->int_clock_threshold);
1258
1259         /* Populate queues with buffers, no failure after this point */
1260         for (i = 0; i < TX_DESCS; i++)
1261                 queue_put_desc(port->plat->txreadyq,
1262                                tx_desc_phys(port, i), tx_desc_ptr(port, i));
1263
1264         for (i = 0; i < RX_DESCS; i++)
1265                 queue_put_desc(RXFREE_QUEUE(port->id),
1266                                rx_desc_phys(port, i), rx_desc_ptr(port, i));
1267
1268         __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1269         __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1270         __raw_writel(0, &port->regs->rx_control[1]);
1271         __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1272
1273         napi_enable(&port->napi);
1274         eth_set_mcast_list(dev);
1275         netif_start_queue(dev);
1276
1277         qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1278                      eth_rx_irq, dev);
1279         if (!ports_open) {
1280                 qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1281                              eth_txdone_irq, NULL);
1282                 qmgr_enable_irq(TXDONE_QUEUE);
1283         }
1284         ports_open++;
1285         /* we may already have RX data, enables IRQ */
1286         napi_schedule(&port->napi);
1287         return 0;
1288 }
1289
1290 static int eth_close(struct net_device *dev)
1291 {
1292         struct port *port = netdev_priv(dev);
1293         struct msg msg;
1294         int buffs = RX_DESCS; /* allocated RX buffers */
1295         int i;
1296
1297         ports_open--;
1298         qmgr_disable_irq(port->plat->rxq);
1299         napi_disable(&port->napi);
1300         netif_stop_queue(dev);
1301
1302         while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1303                 buffs--;
1304
1305         memset(&msg, 0, sizeof(msg));
1306         msg.cmd = NPE_SETLOOPBACK_MODE;
1307         msg.eth_id = port->id;
1308         msg.byte3 = 1;
1309         if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1310                 printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
1311
1312         i = 0;
1313         do {                    /* drain RX buffers */
1314                 while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1315                         buffs--;
1316                 if (!buffs)
1317                         break;
1318                 if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1319                         /* we have to inject some packet */
1320                         struct desc *desc;
1321                         u32 phys;
1322                         int n = queue_get_desc(port->plat->txreadyq, port, 1);
1323                         BUG_ON(n < 0);
1324                         desc = tx_desc_ptr(port, n);
1325                         phys = tx_desc_phys(port, n);
1326                         desc->buf_len = desc->pkt_len = 1;
1327                         wmb();
1328                         queue_put_desc(TX_QUEUE(port->id), phys, desc);
1329                 }
1330                 udelay(1);
1331         } while (++i < MAX_CLOSE_WAIT);
1332
1333         if (buffs)
1334                 printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
1335                        " left in NPE\n", dev->name, buffs);
1336 #if DEBUG_CLOSE
1337         if (!buffs)
1338                 printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
1339 #endif
1340
1341         buffs = TX_DESCS;
1342         while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1343                 buffs--; /* cancel TX */
1344
1345         i = 0;
1346         do {
1347                 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1348                         buffs--;
1349                 if (!buffs)
1350                         break;
1351         } while (++i < MAX_CLOSE_WAIT);
1352
1353         if (buffs)
1354                 printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
1355                        "left in NPE\n", dev->name, buffs);
1356 #if DEBUG_CLOSE
1357         if (!buffs)
1358                 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1359 #endif
1360
1361         msg.byte3 = 0;
1362         if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1363                 printk(KERN_CRIT "%s: unable to disable loopback\n",
1364                        dev->name);
1365
1366         phy_stop(dev->phydev);
1367
1368         if (!ports_open)
1369                 qmgr_disable_irq(TXDONE_QUEUE);
1370         destroy_queues(port);
1371         release_queues(port);
1372         return 0;
1373 }
1374
1375 static const struct net_device_ops ixp4xx_netdev_ops = {
1376         .ndo_open = eth_open,
1377         .ndo_stop = eth_close,
1378         .ndo_start_xmit = eth_xmit,
1379         .ndo_set_rx_mode = eth_set_mcast_list,
1380         .ndo_do_ioctl = eth_ioctl,
1381         .ndo_change_mtu = eth_change_mtu,
1382         .ndo_set_mac_address = eth_mac_addr,
1383         .ndo_validate_addr = eth_validate_addr,
1384 };
1385
1386 static int eth_init_one(struct platform_device *pdev)
1387 {
1388         struct port *port;
1389         struct net_device *dev;
1390         struct eth_plat_info *plat = dev_get_platdata(&pdev->dev);
1391         struct phy_device *phydev = NULL;
1392         u32 regs_phys;
1393         char phy_id[MII_BUS_ID_SIZE + 3];
1394         int err;
1395
1396         if (!(dev = alloc_etherdev(sizeof(struct port))))
1397                 return -ENOMEM;
1398
1399         SET_NETDEV_DEV(dev, &pdev->dev);
1400         port = netdev_priv(dev);
1401         port->netdev = dev;
1402         port->id = pdev->id;
1403
1404         switch (port->id) {
1405         case IXP4XX_ETH_NPEA:
1406                 port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
1407                 regs_phys  = IXP4XX_EthA_BASE_PHYS;
1408                 break;
1409         case IXP4XX_ETH_NPEB:
1410                 port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
1411                 regs_phys  = IXP4XX_EthB_BASE_PHYS;
1412                 break;
1413         case IXP4XX_ETH_NPEC:
1414                 port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
1415                 regs_phys  = IXP4XX_EthC_BASE_PHYS;
1416                 break;
1417         default:
1418                 err = -ENODEV;
1419                 goto err_free;
1420         }
1421
1422         dev->netdev_ops = &ixp4xx_netdev_ops;
1423         dev->ethtool_ops = &ixp4xx_ethtool_ops;
1424         dev->tx_queue_len = 100;
1425
1426         netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
1427
1428         if (!(port->npe = npe_request(NPE_ID(port->id)))) {
1429                 err = -EIO;
1430                 goto err_free;
1431         }
1432
1433         port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
1434         if (!port->mem_res) {
1435                 err = -EBUSY;
1436                 goto err_npe_rel;
1437         }
1438
1439         port->plat = plat;
1440         npe_port_tab[NPE_ID(port->id)] = port;
1441         memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
1442
1443         platform_set_drvdata(pdev, dev);
1444
1445         __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1446                      &port->regs->core_control);
1447         udelay(50);
1448         __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1449         udelay(50);
1450
1451         snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
1452                 mdio_bus->id, plat->phy);
1453         phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link,
1454                              PHY_INTERFACE_MODE_MII);
1455         if (IS_ERR(phydev)) {
1456                 err = PTR_ERR(phydev);
1457                 goto err_free_mem;
1458         }
1459
1460         phydev->irq = PHY_POLL;
1461
1462         if ((err = register_netdev(dev)))
1463                 goto err_phy_dis;
1464
1465         printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
1466                npe_name(port->npe));
1467
1468         return 0;
1469
1470 err_phy_dis:
1471         phy_disconnect(phydev);
1472 err_free_mem:
1473         npe_port_tab[NPE_ID(port->id)] = NULL;
1474         release_resource(port->mem_res);
1475 err_npe_rel:
1476         npe_release(port->npe);
1477 err_free:
1478         free_netdev(dev);
1479         return err;
1480 }
1481
1482 static int eth_remove_one(struct platform_device *pdev)
1483 {
1484         struct net_device *dev = platform_get_drvdata(pdev);
1485         struct phy_device *phydev = dev->phydev;
1486         struct port *port = netdev_priv(dev);
1487
1488         unregister_netdev(dev);
1489         phy_disconnect(phydev);
1490         npe_port_tab[NPE_ID(port->id)] = NULL;
1491         npe_release(port->npe);
1492         release_resource(port->mem_res);
1493         free_netdev(dev);
1494         return 0;
1495 }
1496
1497 static struct platform_driver ixp4xx_eth_driver = {
1498         .driver.name    = DRV_NAME,
1499         .probe          = eth_init_one,
1500         .remove         = eth_remove_one,
1501 };
1502
1503 static int __init eth_init_module(void)
1504 {
1505         int err;
1506         if ((err = ixp4xx_mdio_register()))
1507                 return err;
1508         return platform_driver_register(&ixp4xx_eth_driver);
1509 }
1510
1511 static void __exit eth_cleanup_module(void)
1512 {
1513         platform_driver_unregister(&ixp4xx_eth_driver);
1514         ixp4xx_mdio_remove();
1515 }
1516
1517 MODULE_AUTHOR("Krzysztof Halasa");
1518 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1519 MODULE_LICENSE("GPL v2");
1520 MODULE_ALIAS("platform:ixp4xx_eth");
1521 module_init(eth_init_module);
1522 module_exit(eth_cleanup_module);