fix short copy handling in copy_mc_pipe_to_iter()
[sfrench/cifs-2.6.git] / drivers / net / ethernet / sun / sunhme.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3  *           auto carrier detecting ethernet driver.  Also known as the
4  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
5  *
6  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
7  *              2006, 2008 David S. Miller (davem@davemloft.net)
8  *
9  * Changes :
10  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11  *   - port to non-sparc architectures. Tested only on x86 and
12  *     only currently works with QFE PCI cards.
13  *   - ability to specify the MAC address at module load time by passing this
14  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/mm.h>
37 #include <linux/bitops.h>
38 #include <linux/dma-mapping.h>
39
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
43
44 #ifdef CONFIG_SPARC
45 #include <linux/of.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
50 #include <asm/prom.h>
51 #include <asm/auxio.h>
52 #endif
53 #include <linux/uaccess.h>
54
55 #include <asm/irq.h>
56
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60
61 #include "sunhme.h"
62
63 #define DRV_NAME        "sunhme"
64 #define DRV_VERSION     "3.10"
65 #define DRV_RELDATE     "August 26, 2008"
66 #define DRV_AUTHOR      "David S. Miller (davem@davemloft.net)"
67
68 static char version[] =
69         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
75
76 static int macaddr[6];
77
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
85
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
89
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
95
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98         unsigned int tstamp;
99         int tx_new, tx_old;
100         unsigned int action;
101 #define TXLOG_ACTION_IRQ        0x01
102 #define TXLOG_ACTION_TXMIT      0x02
103 #define TXLOG_ACTION_TBUSY      0x04
104 #define TXLOG_ACTION_NBUFS      0x08
105         unsigned int status;
106 };
107 #define TX_LOG_LEN      128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112         struct hme_tx_logent *tlp;
113         unsigned long flags;
114
115         local_irq_save(flags);
116         tlp = &tx_log[txlog_cur_entry];
117         tlp->tstamp = (unsigned int)jiffies;
118         tlp->tx_new = hp->tx_new;
119         tlp->tx_old = hp->tx_old;
120         tlp->action = a;
121         tlp->status = s;
122         txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123         local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127         int i, this;
128
129         this = txlog_cur_entry;
130         for (i = 0; i < TX_LOG_LEN; i++) {
131                 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132                        tx_log[this].tstamp,
133                        tx_log[this].tx_new, tx_log[this].tx_old,
134                        tx_log[this].action, tx_log[this].status);
135                 this = (this + 1) & (TX_LOG_LEN - 1);
136         }
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140         struct hmeal_init_block *hb = hp->happy_block;
141         struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142         int i;
143
144         for (i = 0; i < TX_RING_SIZE; i+=4) {
145                 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146                        i, i + 4,
147                        le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148                        le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149                        le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150                        le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151         }
152 }
153 #else
154 #define tx_add_log(hp, a, s)            do { } while(0)
155 #define tx_dump_log()                   do { } while(0)
156 #define tx_dump_ring(hp)                do { } while(0)
157 #endif
158
159 #ifdef HMEDEBUG
160 #define HMD(x)  printk x
161 #else
162 #define HMD(x)
163 #endif
164
165 /* #define AUTO_SWITCH_DEBUG */
166
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x)  printk x
169 #else
170 #define ASD(x)
171 #endif
172
173 #define DEFAULT_IPG0      16 /* For lance-mode only */
174 #define DEFAULT_IPG1       8 /* For all modes */
175 #define DEFAULT_IPG2       4 /* For all modes */
176 #define DEFAULT_JAMSIZE    4 /* Toe jam */
177
178 /* NOTE: In the descriptor writes one _must_ write the address
179  *       member _first_.  The card must not be allowed to see
180  *       the updated descriptor flags until the address is
181  *       correct.  I've added a write memory barrier between
182  *       the two stores so that I can sleep well at night... -DaveM
183  */
184
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188         sbus_writel(val, reg);
189 }
190
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193         return sbus_readl(reg);
194 }
195
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198         rxd->rx_addr = (__force hme32)addr;
199         dma_wmb();
200         rxd->rx_flags = (__force hme32)flags;
201 }
202
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205         txd->tx_addr = (__force hme32)addr;
206         dma_wmb();
207         txd->tx_flags = (__force hme32)flags;
208 }
209
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212         return (__force u32)*p;
213 }
214
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217         writel(val, reg);
218 }
219
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222         return readl(reg);
223 }
224
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227         rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228         dma_wmb();
229         rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234         txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235         dma_wmb();
236         txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241         return le32_to_cpup((__le32 *)p);
242 }
243
244 #define hme_write32(__hp, __reg, __val) \
245         ((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247         ((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249         ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251         ((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253         ((__hp)->read_desc32(__p))
254 #else
255 #ifdef CONFIG_SBUS
256 /* SBUS only compilation */
257 #define hme_write32(__hp, __reg, __val) \
258         sbus_writel((__val), (__reg))
259 #define hme_read32(__hp, __reg) \
260         sbus_readl(__reg)
261 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
262 do {    (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
263         dma_wmb(); \
264         (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
265 } while(0)
266 #define hme_write_txd(__hp, __txd, __flags, __addr) \
267 do {    (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
268         dma_wmb(); \
269         (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
270 } while(0)
271 #define hme_read_desc32(__hp, __p)      ((__force u32)(hme32)*(__p))
272 #else
273 /* PCI only compilation */
274 #define hme_write32(__hp, __reg, __val) \
275         writel((__val), (__reg))
276 #define hme_read32(__hp, __reg) \
277         readl(__reg)
278 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
279 do {    (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
280         dma_wmb(); \
281         (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
282 } while(0)
283 #define hme_write_txd(__hp, __txd, __flags, __addr) \
284 do {    (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
285         dma_wmb(); \
286         (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
287 } while(0)
288 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
289 {
290         return le32_to_cpup((__le32 *)p);
291 }
292 #endif
293 #endif
294
295
296 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
297 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
298 {
299         hme_write32(hp, tregs + TCVR_BBDATA, bit);
300         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
301         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
302 }
303
304 #if 0
305 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
306 {
307         u32 ret;
308
309         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
310         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
311         ret = hme_read32(hp, tregs + TCVR_CFG);
312         if (internal)
313                 ret &= TCV_CFG_MDIO0;
314         else
315                 ret &= TCV_CFG_MDIO1;
316
317         return ret;
318 }
319 #endif
320
321 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
322 {
323         u32 retval;
324
325         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
326         udelay(1);
327         retval = hme_read32(hp, tregs + TCVR_CFG);
328         if (internal)
329                 retval &= TCV_CFG_MDIO0;
330         else
331                 retval &= TCV_CFG_MDIO1;
332         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
333
334         return retval;
335 }
336
337 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
338
339 static int happy_meal_bb_read(struct happy_meal *hp,
340                               void __iomem *tregs, int reg)
341 {
342         u32 tmp;
343         int retval = 0;
344         int i;
345
346         ASD(("happy_meal_bb_read: reg=%d ", reg));
347
348         /* Enable the MIF BitBang outputs. */
349         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
350
351         /* Force BitBang into the idle state. */
352         for (i = 0; i < 32; i++)
353                 BB_PUT_BIT(hp, tregs, 1);
354
355         /* Give it the read sequence. */
356         BB_PUT_BIT(hp, tregs, 0);
357         BB_PUT_BIT(hp, tregs, 1);
358         BB_PUT_BIT(hp, tregs, 1);
359         BB_PUT_BIT(hp, tregs, 0);
360
361         /* Give it the PHY address. */
362         tmp = hp->paddr & 0xff;
363         for (i = 4; i >= 0; i--)
364                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
365
366         /* Tell it what register we want to read. */
367         tmp = (reg & 0xff);
368         for (i = 4; i >= 0; i--)
369                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
370
371         /* Close down the MIF BitBang outputs. */
372         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
373
374         /* Now read in the value. */
375         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
376         for (i = 15; i >= 0; i--)
377                 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
378         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
379         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
380         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
381         ASD(("value=%x\n", retval));
382         return retval;
383 }
384
385 static void happy_meal_bb_write(struct happy_meal *hp,
386                                 void __iomem *tregs, int reg,
387                                 unsigned short value)
388 {
389         u32 tmp;
390         int i;
391
392         ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
393
394         /* Enable the MIF BitBang outputs. */
395         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
396
397         /* Force BitBang into the idle state. */
398         for (i = 0; i < 32; i++)
399                 BB_PUT_BIT(hp, tregs, 1);
400
401         /* Give it write sequence. */
402         BB_PUT_BIT(hp, tregs, 0);
403         BB_PUT_BIT(hp, tregs, 1);
404         BB_PUT_BIT(hp, tregs, 0);
405         BB_PUT_BIT(hp, tregs, 1);
406
407         /* Give it the PHY address. */
408         tmp = (hp->paddr & 0xff);
409         for (i = 4; i >= 0; i--)
410                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
411
412         /* Tell it what register we will be writing. */
413         tmp = (reg & 0xff);
414         for (i = 4; i >= 0; i--)
415                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
416
417         /* Tell it to become ready for the bits. */
418         BB_PUT_BIT(hp, tregs, 1);
419         BB_PUT_BIT(hp, tregs, 0);
420
421         for (i = 15; i >= 0; i--)
422                 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
423
424         /* Close down the MIF BitBang outputs. */
425         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
426 }
427
428 #define TCVR_READ_TRIES   16
429
430 static int happy_meal_tcvr_read(struct happy_meal *hp,
431                                 void __iomem *tregs, int reg)
432 {
433         int tries = TCVR_READ_TRIES;
434         int retval;
435
436         ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
437         if (hp->tcvr_type == none) {
438                 ASD(("no transceiver, value=TCVR_FAILURE\n"));
439                 return TCVR_FAILURE;
440         }
441
442         if (!(hp->happy_flags & HFLAG_FENABLE)) {
443                 ASD(("doing bit bang\n"));
444                 return happy_meal_bb_read(hp, tregs, reg);
445         }
446
447         hme_write32(hp, tregs + TCVR_FRAME,
448                     (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
449         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
450                 udelay(20);
451         if (!tries) {
452                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
453                 return TCVR_FAILURE;
454         }
455         retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
456         ASD(("value=%04x\n", retval));
457         return retval;
458 }
459
460 #define TCVR_WRITE_TRIES  16
461
462 static void happy_meal_tcvr_write(struct happy_meal *hp,
463                                   void __iomem *tregs, int reg,
464                                   unsigned short value)
465 {
466         int tries = TCVR_WRITE_TRIES;
467
468         ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
469
470         /* Welcome to Sun Microsystems, can I take your order please? */
471         if (!(hp->happy_flags & HFLAG_FENABLE)) {
472                 happy_meal_bb_write(hp, tregs, reg, value);
473                 return;
474         }
475
476         /* Would you like fries with that? */
477         hme_write32(hp, tregs + TCVR_FRAME,
478                     (FRAME_WRITE | (hp->paddr << 23) |
479                      ((reg & 0xff) << 18) | (value & 0xffff)));
480         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
481                 udelay(20);
482
483         /* Anything else? */
484         if (!tries)
485                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
486
487         /* Fifty-two cents is your change, have a nice day. */
488 }
489
490 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
491  * that keeps watching the auto negotiation process as it progresses.
492  * The DP83840 is first told to start doing it's thing, we set up the time
493  * and place the timer state machine in it's initial state.
494  *
495  * Here the timer peeks at the DP83840 status registers at each click to see
496  * if the auto negotiation has completed, we assume here that the DP83840 PHY
497  * will time out at some point and just tell us what (didn't) happen.  For
498  * complete coverage we only allow so many of the ticks at this level to run,
499  * when this has expired we print a warning message and try another strategy.
500  * This "other" strategy is to force the interface into various speed/duplex
501  * configurations and we stop when we see a link-up condition before the
502  * maximum number of "peek" ticks have occurred.
503  *
504  * Once a valid link status has been detected we configure the BigMAC and
505  * the rest of the Happy Meal to speak the most efficient protocol we could
506  * get a clean link for.  The priority for link configurations, highest first
507  * is:
508  *                 100 Base-T Full Duplex
509  *                 100 Base-T Half Duplex
510  *                 10 Base-T Full Duplex
511  *                 10 Base-T Half Duplex
512  *
513  * We start a new timer now, after a successful auto negotiation status has
514  * been detected.  This timer just waits for the link-up bit to get set in
515  * the BMCR of the DP83840.  When this occurs we print a kernel log message
516  * describing the link type in use and the fact that it is up.
517  *
518  * If a fatal error of some sort is signalled and detected in the interrupt
519  * service routine, and the chip is reset, or the link is ifconfig'd down
520  * and then back up, this entire process repeats itself all over again.
521  */
522 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
523 {
524         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
525
526         /* Downgrade from full to half duplex.  Only possible
527          * via ethtool.
528          */
529         if (hp->sw_bmcr & BMCR_FULLDPLX) {
530                 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
531                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
532                 return 0;
533         }
534
535         /* Downgrade from 100 to 10. */
536         if (hp->sw_bmcr & BMCR_SPEED100) {
537                 hp->sw_bmcr &= ~(BMCR_SPEED100);
538                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
539                 return 0;
540         }
541
542         /* We've tried everything. */
543         return -1;
544 }
545
546 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
547 {
548         printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
549         if (hp->tcvr_type == external)
550                 printk("external ");
551         else
552                 printk("internal ");
553         printk("transceiver at ");
554         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
555         if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
556                 if (hp->sw_lpa & LPA_100FULL)
557                         printk("100Mb/s, Full Duplex.\n");
558                 else
559                         printk("100Mb/s, Half Duplex.\n");
560         } else {
561                 if (hp->sw_lpa & LPA_10FULL)
562                         printk("10Mb/s, Full Duplex.\n");
563                 else
564                         printk("10Mb/s, Half Duplex.\n");
565         }
566 }
567
568 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
569 {
570         printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
571         if (hp->tcvr_type == external)
572                 printk("external ");
573         else
574                 printk("internal ");
575         printk("transceiver at ");
576         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
577         if (hp->sw_bmcr & BMCR_SPEED100)
578                 printk("100Mb/s, ");
579         else
580                 printk("10Mb/s, ");
581         if (hp->sw_bmcr & BMCR_FULLDPLX)
582                 printk("Full Duplex.\n");
583         else
584                 printk("Half Duplex.\n");
585 }
586
587 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
588 {
589         int full;
590
591         /* All we care about is making sure the bigmac tx_cfg has a
592          * proper duplex setting.
593          */
594         if (hp->timer_state == arbwait) {
595                 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
596                 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
597                         goto no_response;
598                 if (hp->sw_lpa & LPA_100FULL)
599                         full = 1;
600                 else if (hp->sw_lpa & LPA_100HALF)
601                         full = 0;
602                 else if (hp->sw_lpa & LPA_10FULL)
603                         full = 1;
604                 else
605                         full = 0;
606         } else {
607                 /* Forcing a link mode. */
608                 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
609                 if (hp->sw_bmcr & BMCR_FULLDPLX)
610                         full = 1;
611                 else
612                         full = 0;
613         }
614
615         /* Before changing other bits in the tx_cfg register, and in
616          * general any of other the TX config registers too, you
617          * must:
618          * 1) Clear Enable
619          * 2) Poll with reads until that bit reads back as zero
620          * 3) Make TX configuration changes
621          * 4) Set Enable once more
622          */
623         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
624                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
625                     ~(BIGMAC_TXCFG_ENABLE));
626         while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
627                 barrier();
628         if (full) {
629                 hp->happy_flags |= HFLAG_FULL;
630                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
631                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
632                             BIGMAC_TXCFG_FULLDPLX);
633         } else {
634                 hp->happy_flags &= ~(HFLAG_FULL);
635                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
636                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
637                             ~(BIGMAC_TXCFG_FULLDPLX));
638         }
639         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
640                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
641                     BIGMAC_TXCFG_ENABLE);
642         return 0;
643 no_response:
644         return 1;
645 }
646
647 static int happy_meal_init(struct happy_meal *hp);
648
649 static int is_lucent_phy(struct happy_meal *hp)
650 {
651         void __iomem *tregs = hp->tcvregs;
652         unsigned short mr2, mr3;
653         int ret = 0;
654
655         mr2 = happy_meal_tcvr_read(hp, tregs, 2);
656         mr3 = happy_meal_tcvr_read(hp, tregs, 3);
657         if ((mr2 & 0xffff) == 0x0180 &&
658             ((mr3 & 0xffff) >> 10) == 0x1d)
659                 ret = 1;
660
661         return ret;
662 }
663
664 static void happy_meal_timer(struct timer_list *t)
665 {
666         struct happy_meal *hp = from_timer(hp, t, happy_timer);
667         void __iomem *tregs = hp->tcvregs;
668         int restart_timer = 0;
669
670         spin_lock_irq(&hp->happy_lock);
671
672         hp->timer_ticks++;
673         switch(hp->timer_state) {
674         case arbwait:
675                 /* Only allow for 5 ticks, thats 10 seconds and much too
676                  * long to wait for arbitration to complete.
677                  */
678                 if (hp->timer_ticks >= 10) {
679                         /* Enter force mode. */
680         do_force_mode:
681                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
682                         printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
683                                hp->dev->name);
684                         hp->sw_bmcr = BMCR_SPEED100;
685                         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
686
687                         if (!is_lucent_phy(hp)) {
688                                 /* OK, seems we need do disable the transceiver for the first
689                                  * tick to make sure we get an accurate link state at the
690                                  * second tick.
691                                  */
692                                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
693                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
694                                 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
695                         }
696                         hp->timer_state = ltrywait;
697                         hp->timer_ticks = 0;
698                         restart_timer = 1;
699                 } else {
700                         /* Anything interesting happen? */
701                         hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
702                         if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
703                                 int ret;
704
705                                 /* Just what we've been waiting for... */
706                                 ret = set_happy_link_modes(hp, tregs);
707                                 if (ret) {
708                                         /* Ooops, something bad happened, go to force
709                                          * mode.
710                                          *
711                                          * XXX Broken hubs which don't support 802.3u
712                                          * XXX auto-negotiation make this happen as well.
713                                          */
714                                         goto do_force_mode;
715                                 }
716
717                                 /* Success, at least so far, advance our state engine. */
718                                 hp->timer_state = lupwait;
719                                 restart_timer = 1;
720                         } else {
721                                 restart_timer = 1;
722                         }
723                 }
724                 break;
725
726         case lupwait:
727                 /* Auto negotiation was successful and we are awaiting a
728                  * link up status.  I have decided to let this timer run
729                  * forever until some sort of error is signalled, reporting
730                  * a message to the user at 10 second intervals.
731                  */
732                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
733                 if (hp->sw_bmsr & BMSR_LSTATUS) {
734                         /* Wheee, it's up, display the link mode in use and put
735                          * the timer to sleep.
736                          */
737                         display_link_mode(hp, tregs);
738                         hp->timer_state = asleep;
739                         restart_timer = 0;
740                 } else {
741                         if (hp->timer_ticks >= 10) {
742                                 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
743                                        "not completely up.\n", hp->dev->name);
744                                 hp->timer_ticks = 0;
745                                 restart_timer = 1;
746                         } else {
747                                 restart_timer = 1;
748                         }
749                 }
750                 break;
751
752         case ltrywait:
753                 /* Making the timeout here too long can make it take
754                  * annoyingly long to attempt all of the link mode
755                  * permutations, but then again this is essentially
756                  * error recovery code for the most part.
757                  */
758                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
759                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
760                 if (hp->timer_ticks == 1) {
761                         if (!is_lucent_phy(hp)) {
762                                 /* Re-enable transceiver, we'll re-enable the transceiver next
763                                  * tick, then check link state on the following tick.
764                                  */
765                                 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
766                                 happy_meal_tcvr_write(hp, tregs,
767                                                       DP83840_CSCONFIG, hp->sw_csconfig);
768                         }
769                         restart_timer = 1;
770                         break;
771                 }
772                 if (hp->timer_ticks == 2) {
773                         if (!is_lucent_phy(hp)) {
774                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
775                                 happy_meal_tcvr_write(hp, tregs,
776                                                       DP83840_CSCONFIG, hp->sw_csconfig);
777                         }
778                         restart_timer = 1;
779                         break;
780                 }
781                 if (hp->sw_bmsr & BMSR_LSTATUS) {
782                         /* Force mode selection success. */
783                         display_forced_link_mode(hp, tregs);
784                         set_happy_link_modes(hp, tregs); /* XXX error? then what? */
785                         hp->timer_state = asleep;
786                         restart_timer = 0;
787                 } else {
788                         if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
789                                 int ret;
790
791                                 ret = try_next_permutation(hp, tregs);
792                                 if (ret == -1) {
793                                         /* Aieee, tried them all, reset the
794                                          * chip and try all over again.
795                                          */
796
797                                         /* Let the user know... */
798                                         printk(KERN_NOTICE "%s: Link down, cable problem?\n",
799                                                hp->dev->name);
800
801                                         ret = happy_meal_init(hp);
802                                         if (ret) {
803                                                 /* ho hum... */
804                                                 printk(KERN_ERR "%s: Error, cannot re-init the "
805                                                        "Happy Meal.\n", hp->dev->name);
806                                         }
807                                         goto out;
808                                 }
809                                 if (!is_lucent_phy(hp)) {
810                                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
811                                                                                DP83840_CSCONFIG);
812                                         hp->sw_csconfig |= CSCONFIG_TCVDISAB;
813                                         happy_meal_tcvr_write(hp, tregs,
814                                                               DP83840_CSCONFIG, hp->sw_csconfig);
815                                 }
816                                 hp->timer_ticks = 0;
817                                 restart_timer = 1;
818                         } else {
819                                 restart_timer = 1;
820                         }
821                 }
822                 break;
823
824         case asleep:
825         default:
826                 /* Can't happens.... */
827                 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
828                        hp->dev->name);
829                 restart_timer = 0;
830                 hp->timer_ticks = 0;
831                 hp->timer_state = asleep; /* foo on you */
832                 break;
833         }
834
835         if (restart_timer) {
836                 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
837                 add_timer(&hp->happy_timer);
838         }
839
840 out:
841         spin_unlock_irq(&hp->happy_lock);
842 }
843
844 #define TX_RESET_TRIES     32
845 #define RX_RESET_TRIES     32
846
847 /* hp->happy_lock must be held */
848 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
849 {
850         int tries = TX_RESET_TRIES;
851
852         HMD(("happy_meal_tx_reset: reset, "));
853
854         /* Would you like to try our SMCC Delux? */
855         hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
856         while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
857                 udelay(20);
858
859         /* Lettuce, tomato, buggy hardware (no extra charge)? */
860         if (!tries)
861                 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
862
863         /* Take care. */
864         HMD(("done\n"));
865 }
866
867 /* hp->happy_lock must be held */
868 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
869 {
870         int tries = RX_RESET_TRIES;
871
872         HMD(("happy_meal_rx_reset: reset, "));
873
874         /* We have a special on GNU/Viking hardware bugs today. */
875         hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
876         while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
877                 udelay(20);
878
879         /* Will that be all? */
880         if (!tries)
881                 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
882
883         /* Don't forget your vik_1137125_wa.  Have a nice day. */
884         HMD(("done\n"));
885 }
886
887 #define STOP_TRIES         16
888
889 /* hp->happy_lock must be held */
890 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
891 {
892         int tries = STOP_TRIES;
893
894         HMD(("happy_meal_stop: reset, "));
895
896         /* We're consolidating our STB products, it's your lucky day. */
897         hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
898         while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
899                 udelay(20);
900
901         /* Come back next week when we are "Sun Microelectronics". */
902         if (!tries)
903                 printk(KERN_ERR "happy meal: Fry guys.");
904
905         /* Remember: "Different name, same old buggy as shit hardware." */
906         HMD(("done\n"));
907 }
908
909 /* hp->happy_lock must be held */
910 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
911 {
912         struct net_device_stats *stats = &hp->dev->stats;
913
914         stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
915         hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
916
917         stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
918         hme_write32(hp, bregs + BMAC_UNALECTR, 0);
919
920         stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
921         hme_write32(hp, bregs + BMAC_GLECTR, 0);
922
923         stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
924
925         stats->collisions +=
926                 (hme_read32(hp, bregs + BMAC_EXCTR) +
927                  hme_read32(hp, bregs + BMAC_LTCTR));
928         hme_write32(hp, bregs + BMAC_EXCTR, 0);
929         hme_write32(hp, bregs + BMAC_LTCTR, 0);
930 }
931
932 /* hp->happy_lock must be held */
933 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
934 {
935         ASD(("happy_meal_poll_stop: "));
936
937         /* If polling disabled or not polling already, nothing to do. */
938         if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
939            (HFLAG_POLLENABLE | HFLAG_POLL)) {
940                 HMD(("not polling, return\n"));
941                 return;
942         }
943
944         /* Shut up the MIF. */
945         ASD(("were polling, mif ints off, "));
946         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
947
948         /* Turn off polling. */
949         ASD(("polling off, "));
950         hme_write32(hp, tregs + TCVR_CFG,
951                     hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
952
953         /* We are no longer polling. */
954         hp->happy_flags &= ~(HFLAG_POLL);
955
956         /* Let the bits set. */
957         udelay(200);
958         ASD(("done\n"));
959 }
960
961 /* Only Sun can take such nice parts and fuck up the programming interface
962  * like this.  Good job guys...
963  */
964 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
965 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
966
967 /* hp->happy_lock must be held */
968 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
969 {
970         u32 tconfig;
971         int result, tries = TCVR_RESET_TRIES;
972
973         tconfig = hme_read32(hp, tregs + TCVR_CFG);
974         ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
975         if (hp->tcvr_type == external) {
976                 ASD(("external<"));
977                 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
978                 hp->tcvr_type = internal;
979                 hp->paddr = TCV_PADDR_ITX;
980                 ASD(("ISOLATE,"));
981                 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
982                                       (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
983                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
984                 if (result == TCVR_FAILURE) {
985                         ASD(("phyread_fail>\n"));
986                         return -1;
987                 }
988                 ASD(("phyread_ok,PSELECT>"));
989                 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
990                 hp->tcvr_type = external;
991                 hp->paddr = TCV_PADDR_ETX;
992         } else {
993                 if (tconfig & TCV_CFG_MDIO1) {
994                         ASD(("internal<PSELECT,"));
995                         hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
996                         ASD(("ISOLATE,"));
997                         happy_meal_tcvr_write(hp, tregs, MII_BMCR,
998                                               (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
999                         result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1000                         if (result == TCVR_FAILURE) {
1001                                 ASD(("phyread_fail>\n"));
1002                                 return -1;
1003                         }
1004                         ASD(("phyread_ok,~PSELECT>"));
1005                         hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1006                         hp->tcvr_type = internal;
1007                         hp->paddr = TCV_PADDR_ITX;
1008                 }
1009         }
1010
1011         ASD(("BMCR_RESET "));
1012         happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1013
1014         while (--tries) {
1015                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1016                 if (result == TCVR_FAILURE)
1017                         return -1;
1018                 hp->sw_bmcr = result;
1019                 if (!(result & BMCR_RESET))
1020                         break;
1021                 udelay(20);
1022         }
1023         if (!tries) {
1024                 ASD(("BMCR RESET FAILED!\n"));
1025                 return -1;
1026         }
1027         ASD(("RESET_OK\n"));
1028
1029         /* Get fresh copies of the PHY registers. */
1030         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1031         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1032         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1033         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1034
1035         ASD(("UNISOLATE"));
1036         hp->sw_bmcr &= ~(BMCR_ISOLATE);
1037         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1038
1039         tries = TCVR_UNISOLATE_TRIES;
1040         while (--tries) {
1041                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1042                 if (result == TCVR_FAILURE)
1043                         return -1;
1044                 if (!(result & BMCR_ISOLATE))
1045                         break;
1046                 udelay(20);
1047         }
1048         if (!tries) {
1049                 ASD((" FAILED!\n"));
1050                 return -1;
1051         }
1052         ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1053         if (!is_lucent_phy(hp)) {
1054                 result = happy_meal_tcvr_read(hp, tregs,
1055                                               DP83840_CSCONFIG);
1056                 happy_meal_tcvr_write(hp, tregs,
1057                                       DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1058         }
1059         return 0;
1060 }
1061
1062 /* Figure out whether we have an internal or external transceiver.
1063  *
1064  * hp->happy_lock must be held
1065  */
1066 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1067 {
1068         unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1069
1070         ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1071         if (hp->happy_flags & HFLAG_POLL) {
1072                 /* If we are polling, we must stop to get the transceiver type. */
1073                 ASD(("<polling> "));
1074                 if (hp->tcvr_type == internal) {
1075                         if (tconfig & TCV_CFG_MDIO1) {
1076                                 ASD(("<internal> <poll stop> "));
1077                                 happy_meal_poll_stop(hp, tregs);
1078                                 hp->paddr = TCV_PADDR_ETX;
1079                                 hp->tcvr_type = external;
1080                                 ASD(("<external>\n"));
1081                                 tconfig &= ~(TCV_CFG_PENABLE);
1082                                 tconfig |= TCV_CFG_PSELECT;
1083                                 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1084                         }
1085                 } else {
1086                         if (hp->tcvr_type == external) {
1087                                 ASD(("<external> "));
1088                                 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1089                                         ASD(("<poll stop> "));
1090                                         happy_meal_poll_stop(hp, tregs);
1091                                         hp->paddr = TCV_PADDR_ITX;
1092                                         hp->tcvr_type = internal;
1093                                         ASD(("<internal>\n"));
1094                                         hme_write32(hp, tregs + TCVR_CFG,
1095                                                     hme_read32(hp, tregs + TCVR_CFG) &
1096                                                     ~(TCV_CFG_PSELECT));
1097                                 }
1098                                 ASD(("\n"));
1099                         } else {
1100                                 ASD(("<none>\n"));
1101                         }
1102                 }
1103         } else {
1104                 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1105
1106                 /* Else we can just work off of the MDIO bits. */
1107                 ASD(("<not polling> "));
1108                 if (reread & TCV_CFG_MDIO1) {
1109                         hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1110                         hp->paddr = TCV_PADDR_ETX;
1111                         hp->tcvr_type = external;
1112                         ASD(("<external>\n"));
1113                 } else {
1114                         if (reread & TCV_CFG_MDIO0) {
1115                                 hme_write32(hp, tregs + TCVR_CFG,
1116                                             tconfig & ~(TCV_CFG_PSELECT));
1117                                 hp->paddr = TCV_PADDR_ITX;
1118                                 hp->tcvr_type = internal;
1119                                 ASD(("<internal>\n"));
1120                         } else {
1121                                 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1122                                 hp->tcvr_type = none; /* Grrr... */
1123                                 ASD(("<none>\n"));
1124                         }
1125                 }
1126         }
1127 }
1128
1129 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1130  *
1131  * The buffers we dma into must be 64 byte aligned.  So we use a special
1132  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1133  * we really need.
1134  *
1135  * We use skb_reserve() to align the data block we get in the skb.  We
1136  * also program the etxregs->cfg register to use an offset of 2.  This
1137  * imperical constant plus the ethernet header size will always leave
1138  * us with a nicely aligned ip header once we pass things up to the
1139  * protocol layers.
1140  *
1141  * The numbers work out to:
1142  *
1143  *         Max ethernet frame size         1518
1144  *         Ethernet header size              14
1145  *         Happy Meal base offset             2
1146  *
1147  * Say a skb data area is at 0xf001b010, and its size alloced is
1148  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1149  *
1150  * First our alloc_skb() routine aligns the data base to a 64 byte
1151  * boundary.  We now have 0xf001b040 as our skb data address.  We
1152  * plug this into the receive descriptor address.
1153  *
1154  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1155  * So now the data we will end up looking at starts at 0xf001b042.  When
1156  * the packet arrives, we will check out the size received and subtract
1157  * this from the skb->length.  Then we just pass the packet up to the
1158  * protocols as is, and allocate a new skb to replace this slot we have
1159  * just received from.
1160  *
1161  * The ethernet layer will strip the ether header from the front of the
1162  * skb we just sent to it, this leaves us with the ip header sitting
1163  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1164  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1165  * bit checksum is obtained from the low bits of the receive descriptor
1166  * flags, thus:
1167  *
1168  *      skb->csum = rxd->rx_flags & 0xffff;
1169  *      skb->ip_summed = CHECKSUM_COMPLETE;
1170  *
1171  * before sending off the skb to the protocols, and we are good as gold.
1172  */
1173 static void happy_meal_clean_rings(struct happy_meal *hp)
1174 {
1175         int i;
1176
1177         for (i = 0; i < RX_RING_SIZE; i++) {
1178                 if (hp->rx_skbs[i] != NULL) {
1179                         struct sk_buff *skb = hp->rx_skbs[i];
1180                         struct happy_meal_rxd *rxd;
1181                         u32 dma_addr;
1182
1183                         rxd = &hp->happy_block->happy_meal_rxd[i];
1184                         dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1185                         dma_unmap_single(hp->dma_dev, dma_addr,
1186                                          RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1187                         dev_kfree_skb_any(skb);
1188                         hp->rx_skbs[i] = NULL;
1189                 }
1190         }
1191
1192         for (i = 0; i < TX_RING_SIZE; i++) {
1193                 if (hp->tx_skbs[i] != NULL) {
1194                         struct sk_buff *skb = hp->tx_skbs[i];
1195                         struct happy_meal_txd *txd;
1196                         u32 dma_addr;
1197                         int frag;
1198
1199                         hp->tx_skbs[i] = NULL;
1200
1201                         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1202                                 txd = &hp->happy_block->happy_meal_txd[i];
1203                                 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1204                                 if (!frag)
1205                                         dma_unmap_single(hp->dma_dev, dma_addr,
1206                                                          (hme_read_desc32(hp, &txd->tx_flags)
1207                                                           & TXFLAG_SIZE),
1208                                                          DMA_TO_DEVICE);
1209                                 else
1210                                         dma_unmap_page(hp->dma_dev, dma_addr,
1211                                                          (hme_read_desc32(hp, &txd->tx_flags)
1212                                                           & TXFLAG_SIZE),
1213                                                          DMA_TO_DEVICE);
1214
1215                                 if (frag != skb_shinfo(skb)->nr_frags)
1216                                         i++;
1217                         }
1218
1219                         dev_kfree_skb_any(skb);
1220                 }
1221         }
1222 }
1223
1224 /* hp->happy_lock must be held */
1225 static void happy_meal_init_rings(struct happy_meal *hp)
1226 {
1227         struct hmeal_init_block *hb = hp->happy_block;
1228         int i;
1229
1230         HMD(("happy_meal_init_rings: counters to zero, "));
1231         hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1232
1233         /* Free any skippy bufs left around in the rings. */
1234         HMD(("clean, "));
1235         happy_meal_clean_rings(hp);
1236
1237         /* Now get new skippy bufs for the receive ring. */
1238         HMD(("init rxring, "));
1239         for (i = 0; i < RX_RING_SIZE; i++) {
1240                 struct sk_buff *skb;
1241                 u32 mapping;
1242
1243                 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1244                 if (!skb) {
1245                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1246                         continue;
1247                 }
1248                 hp->rx_skbs[i] = skb;
1249
1250                 /* Because we reserve afterwards. */
1251                 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1252                 mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1253                                          DMA_FROM_DEVICE);
1254                 if (dma_mapping_error(hp->dma_dev, mapping)) {
1255                         dev_kfree_skb_any(skb);
1256                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1257                         continue;
1258                 }
1259                 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1260                               (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1261                               mapping);
1262                 skb_reserve(skb, RX_OFFSET);
1263         }
1264
1265         HMD(("init txring, "));
1266         for (i = 0; i < TX_RING_SIZE; i++)
1267                 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1268
1269         HMD(("done\n"));
1270 }
1271
1272 /* hp->happy_lock must be held */
1273 static void
1274 happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1275                                   void __iomem *tregs,
1276                                   const struct ethtool_link_ksettings *ep)
1277 {
1278         int timeout;
1279
1280         /* Read all of the registers we are interested in now. */
1281         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1282         hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1283         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1284         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1285
1286         /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1287
1288         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1289         if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1290                 /* Advertise everything we can support. */
1291                 if (hp->sw_bmsr & BMSR_10HALF)
1292                         hp->sw_advertise |= (ADVERTISE_10HALF);
1293                 else
1294                         hp->sw_advertise &= ~(ADVERTISE_10HALF);
1295
1296                 if (hp->sw_bmsr & BMSR_10FULL)
1297                         hp->sw_advertise |= (ADVERTISE_10FULL);
1298                 else
1299                         hp->sw_advertise &= ~(ADVERTISE_10FULL);
1300                 if (hp->sw_bmsr & BMSR_100HALF)
1301                         hp->sw_advertise |= (ADVERTISE_100HALF);
1302                 else
1303                         hp->sw_advertise &= ~(ADVERTISE_100HALF);
1304                 if (hp->sw_bmsr & BMSR_100FULL)
1305                         hp->sw_advertise |= (ADVERTISE_100FULL);
1306                 else
1307                         hp->sw_advertise &= ~(ADVERTISE_100FULL);
1308                 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1309
1310                 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1311                  * XXX and this is because the DP83840 does not support it, changes
1312                  * XXX would need to be made to the tx/rx logic in the driver as well
1313                  * XXX so I completely skip checking for it in the BMSR for now.
1314                  */
1315
1316 #ifdef AUTO_SWITCH_DEBUG
1317                 ASD(("%s: Advertising [ ", hp->dev->name));
1318                 if (hp->sw_advertise & ADVERTISE_10HALF)
1319                         ASD(("10H "));
1320                 if (hp->sw_advertise & ADVERTISE_10FULL)
1321                         ASD(("10F "));
1322                 if (hp->sw_advertise & ADVERTISE_100HALF)
1323                         ASD(("100H "));
1324                 if (hp->sw_advertise & ADVERTISE_100FULL)
1325                         ASD(("100F "));
1326 #endif
1327
1328                 /* Enable Auto-Negotiation, this is usually on already... */
1329                 hp->sw_bmcr |= BMCR_ANENABLE;
1330                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1331
1332                 /* Restart it to make sure it is going. */
1333                 hp->sw_bmcr |= BMCR_ANRESTART;
1334                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1335
1336                 /* BMCR_ANRESTART self clears when the process has begun. */
1337
1338                 timeout = 64;  /* More than enough. */
1339                 while (--timeout) {
1340                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1341                         if (!(hp->sw_bmcr & BMCR_ANRESTART))
1342                                 break; /* got it. */
1343                         udelay(10);
1344                 }
1345                 if (!timeout) {
1346                         printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1347                                "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1348                         printk(KERN_NOTICE "%s: Performing force link detection.\n",
1349                                hp->dev->name);
1350                         goto force_link;
1351                 } else {
1352                         hp->timer_state = arbwait;
1353                 }
1354         } else {
1355 force_link:
1356                 /* Force the link up, trying first a particular mode.
1357                  * Either we are here at the request of ethtool or
1358                  * because the Happy Meal would not start to autoneg.
1359                  */
1360
1361                 /* Disable auto-negotiation in BMCR, enable the duplex and
1362                  * speed setting, init the timer state machine, and fire it off.
1363                  */
1364                 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1365                         hp->sw_bmcr = BMCR_SPEED100;
1366                 } else {
1367                         if (ep->base.speed == SPEED_100)
1368                                 hp->sw_bmcr = BMCR_SPEED100;
1369                         else
1370                                 hp->sw_bmcr = 0;
1371                         if (ep->base.duplex == DUPLEX_FULL)
1372                                 hp->sw_bmcr |= BMCR_FULLDPLX;
1373                 }
1374                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1375
1376                 if (!is_lucent_phy(hp)) {
1377                         /* OK, seems we need do disable the transceiver for the first
1378                          * tick to make sure we get an accurate link state at the
1379                          * second tick.
1380                          */
1381                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1382                                                                DP83840_CSCONFIG);
1383                         hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1384                         happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1385                                               hp->sw_csconfig);
1386                 }
1387                 hp->timer_state = ltrywait;
1388         }
1389
1390         hp->timer_ticks = 0;
1391         hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1392         add_timer(&hp->happy_timer);
1393 }
1394
1395 /* hp->happy_lock must be held */
1396 static int happy_meal_init(struct happy_meal *hp)
1397 {
1398         const unsigned char *e = &hp->dev->dev_addr[0];
1399         void __iomem *gregs        = hp->gregs;
1400         void __iomem *etxregs      = hp->etxregs;
1401         void __iomem *erxregs      = hp->erxregs;
1402         void __iomem *bregs        = hp->bigmacregs;
1403         void __iomem *tregs        = hp->tcvregs;
1404         u32 regtmp, rxcfg;
1405
1406         /* If auto-negotiation timer is running, kill it. */
1407         del_timer(&hp->happy_timer);
1408
1409         HMD(("happy_meal_init: happy_flags[%08x] ",
1410              hp->happy_flags));
1411         if (!(hp->happy_flags & HFLAG_INIT)) {
1412                 HMD(("set HFLAG_INIT, "));
1413                 hp->happy_flags |= HFLAG_INIT;
1414                 happy_meal_get_counters(hp, bregs);
1415         }
1416
1417         /* Stop polling. */
1418         HMD(("to happy_meal_poll_stop\n"));
1419         happy_meal_poll_stop(hp, tregs);
1420
1421         /* Stop transmitter and receiver. */
1422         HMD(("happy_meal_init: to happy_meal_stop\n"));
1423         happy_meal_stop(hp, gregs);
1424
1425         /* Alloc and reset the tx/rx descriptor chains. */
1426         HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1427         happy_meal_init_rings(hp);
1428
1429         /* Shut up the MIF. */
1430         HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1431              hme_read32(hp, tregs + TCVR_IMASK)));
1432         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1433
1434         /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1435         if (hp->happy_flags & HFLAG_FENABLE) {
1436                 HMD(("use frame old[%08x], ",
1437                      hme_read32(hp, tregs + TCVR_CFG)));
1438                 hme_write32(hp, tregs + TCVR_CFG,
1439                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1440         } else {
1441                 HMD(("use bitbang old[%08x], ",
1442                      hme_read32(hp, tregs + TCVR_CFG)));
1443                 hme_write32(hp, tregs + TCVR_CFG,
1444                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1445         }
1446
1447         /* Check the state of the transceiver. */
1448         HMD(("to happy_meal_transceiver_check\n"));
1449         happy_meal_transceiver_check(hp, tregs);
1450
1451         /* Put the Big Mac into a sane state. */
1452         HMD(("happy_meal_init: "));
1453         switch(hp->tcvr_type) {
1454         case none:
1455                 /* Cannot operate if we don't know the transceiver type! */
1456                 HMD(("AAIEEE no transceiver type, EAGAIN"));
1457                 return -EAGAIN;
1458
1459         case internal:
1460                 /* Using the MII buffers. */
1461                 HMD(("internal, using MII, "));
1462                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1463                 break;
1464
1465         case external:
1466                 /* Not using the MII, disable it. */
1467                 HMD(("external, disable MII, "));
1468                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1469                 break;
1470         }
1471
1472         if (happy_meal_tcvr_reset(hp, tregs))
1473                 return -EAGAIN;
1474
1475         /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1476         HMD(("tx/rx reset, "));
1477         happy_meal_tx_reset(hp, bregs);
1478         happy_meal_rx_reset(hp, bregs);
1479
1480         /* Set jam size and inter-packet gaps to reasonable defaults. */
1481         HMD(("jsize/ipg1/ipg2, "));
1482         hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1483         hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1484         hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1485
1486         /* Load up the MAC address and random seed. */
1487         HMD(("rseed/macaddr, "));
1488
1489         /* The docs recommend to use the 10LSB of our MAC here. */
1490         hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1491
1492         hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1493         hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1494         hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1495
1496         HMD(("htable, "));
1497         if ((hp->dev->flags & IFF_ALLMULTI) ||
1498             (netdev_mc_count(hp->dev) > 64)) {
1499                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1500                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1501                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1502                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1503         } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1504                 u16 hash_table[4];
1505                 struct netdev_hw_addr *ha;
1506                 u32 crc;
1507
1508                 memset(hash_table, 0, sizeof(hash_table));
1509                 netdev_for_each_mc_addr(ha, hp->dev) {
1510                         crc = ether_crc_le(6, ha->addr);
1511                         crc >>= 26;
1512                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1513                 }
1514                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1515                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1516                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1517                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1518         } else {
1519                 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1520                 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1521                 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1522                 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1523         }
1524
1525         /* Set the RX and TX ring ptrs. */
1526         HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1527              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1528              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1529         hme_write32(hp, erxregs + ERX_RING,
1530                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1531         hme_write32(hp, etxregs + ETX_RING,
1532                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1533
1534         /* Parity issues in the ERX unit of some HME revisions can cause some
1535          * registers to not be written unless their parity is even.  Detect such
1536          * lost writes and simply rewrite with a low bit set (which will be ignored
1537          * since the rxring needs to be 2K aligned).
1538          */
1539         if (hme_read32(hp, erxregs + ERX_RING) !=
1540             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1541                 hme_write32(hp, erxregs + ERX_RING,
1542                             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1543                             | 0x4);
1544
1545         /* Set the supported burst sizes. */
1546         HMD(("happy_meal_init: old[%08x] bursts<",
1547              hme_read32(hp, gregs + GREG_CFG)));
1548
1549 #ifndef CONFIG_SPARC
1550         /* It is always PCI and can handle 64byte bursts. */
1551         hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1552 #else
1553         if ((hp->happy_bursts & DMA_BURST64) &&
1554             ((hp->happy_flags & HFLAG_PCI) != 0
1555 #ifdef CONFIG_SBUS
1556              || sbus_can_burst64()
1557 #endif
1558              || 0)) {
1559                 u32 gcfg = GREG_CFG_BURST64;
1560
1561                 /* I have no idea if I should set the extended
1562                  * transfer mode bit for Cheerio, so for now I
1563                  * do not.  -DaveM
1564                  */
1565 #ifdef CONFIG_SBUS
1566                 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1567                         struct platform_device *op = hp->happy_dev;
1568                         if (sbus_can_dma_64bit()) {
1569                                 sbus_set_sbus64(&op->dev,
1570                                                 hp->happy_bursts);
1571                                 gcfg |= GREG_CFG_64BIT;
1572                         }
1573                 }
1574 #endif
1575
1576                 HMD(("64>"));
1577                 hme_write32(hp, gregs + GREG_CFG, gcfg);
1578         } else if (hp->happy_bursts & DMA_BURST32) {
1579                 HMD(("32>"));
1580                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1581         } else if (hp->happy_bursts & DMA_BURST16) {
1582                 HMD(("16>"));
1583                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1584         } else {
1585                 HMD(("XXX>"));
1586                 hme_write32(hp, gregs + GREG_CFG, 0);
1587         }
1588 #endif /* CONFIG_SPARC */
1589
1590         /* Turn off interrupts we do not want to hear. */
1591         HMD((", enable global interrupts, "));
1592         hme_write32(hp, gregs + GREG_IMASK,
1593                     (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1594                      GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1595
1596         /* Set the transmit ring buffer size. */
1597         HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1598              hme_read32(hp, etxregs + ETX_RSIZE)));
1599         hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1600
1601         /* Enable transmitter DVMA. */
1602         HMD(("tx dma enable old[%08x], ",
1603              hme_read32(hp, etxregs + ETX_CFG)));
1604         hme_write32(hp, etxregs + ETX_CFG,
1605                     hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1606
1607         /* This chip really rots, for the receiver sometimes when you
1608          * write to its control registers not all the bits get there
1609          * properly.  I cannot think of a sane way to provide complete
1610          * coverage for this hardware bug yet.
1611          */
1612         HMD(("erx regs bug old[%08x]\n",
1613              hme_read32(hp, erxregs + ERX_CFG)));
1614         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1615         regtmp = hme_read32(hp, erxregs + ERX_CFG);
1616         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1617         if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1618                 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1619                 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1620                        ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1621                 /* XXX Should return failure here... */
1622         }
1623
1624         /* Enable Big Mac hash table filter. */
1625         HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1626              hme_read32(hp, bregs + BMAC_RXCFG)));
1627         rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1628         if (hp->dev->flags & IFF_PROMISC)
1629                 rxcfg |= BIGMAC_RXCFG_PMISC;
1630         hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1631
1632         /* Let the bits settle in the chip. */
1633         udelay(10);
1634
1635         /* Ok, configure the Big Mac transmitter. */
1636         HMD(("BIGMAC init, "));
1637         regtmp = 0;
1638         if (hp->happy_flags & HFLAG_FULL)
1639                 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1640
1641         /* Don't turn on the "don't give up" bit for now.  It could cause hme
1642          * to deadlock with the PHY if a Jabber occurs.
1643          */
1644         hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1645
1646         /* Give up after 16 TX attempts. */
1647         hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1648
1649         /* Enable the output drivers no matter what. */
1650         regtmp = BIGMAC_XCFG_ODENABLE;
1651
1652         /* If card can do lance mode, enable it. */
1653         if (hp->happy_flags & HFLAG_LANCE)
1654                 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1655
1656         /* Disable the MII buffers if using external transceiver. */
1657         if (hp->tcvr_type == external)
1658                 regtmp |= BIGMAC_XCFG_MIIDISAB;
1659
1660         HMD(("XIF config old[%08x], ",
1661              hme_read32(hp, bregs + BMAC_XIFCFG)));
1662         hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1663
1664         /* Start things up. */
1665         HMD(("tx old[%08x] and rx [%08x] ON!\n",
1666              hme_read32(hp, bregs + BMAC_TXCFG),
1667              hme_read32(hp, bregs + BMAC_RXCFG)));
1668
1669         /* Set larger TX/RX size to allow for 802.1q */
1670         hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1671         hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1672
1673         hme_write32(hp, bregs + BMAC_TXCFG,
1674                     hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1675         hme_write32(hp, bregs + BMAC_RXCFG,
1676                     hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1677
1678         /* Get the autonegotiation started, and the watch timer ticking. */
1679         happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1680
1681         /* Success. */
1682         return 0;
1683 }
1684
1685 /* hp->happy_lock must be held */
1686 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1687 {
1688         void __iomem *tregs     = hp->tcvregs;
1689         void __iomem *bregs     = hp->bigmacregs;
1690         void __iomem *gregs     = hp->gregs;
1691
1692         happy_meal_stop(hp, gregs);
1693         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1694         if (hp->happy_flags & HFLAG_FENABLE)
1695                 hme_write32(hp, tregs + TCVR_CFG,
1696                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1697         else
1698                 hme_write32(hp, tregs + TCVR_CFG,
1699                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1700         happy_meal_transceiver_check(hp, tregs);
1701         switch(hp->tcvr_type) {
1702         case none:
1703                 return;
1704         case internal:
1705                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1706                 break;
1707         case external:
1708                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1709                 break;
1710         }
1711         if (happy_meal_tcvr_reset(hp, tregs))
1712                 return;
1713
1714         /* Latch PHY registers as of now. */
1715         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1716         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1717
1718         /* Advertise everything we can support. */
1719         if (hp->sw_bmsr & BMSR_10HALF)
1720                 hp->sw_advertise |= (ADVERTISE_10HALF);
1721         else
1722                 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1723
1724         if (hp->sw_bmsr & BMSR_10FULL)
1725                 hp->sw_advertise |= (ADVERTISE_10FULL);
1726         else
1727                 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1728         if (hp->sw_bmsr & BMSR_100HALF)
1729                 hp->sw_advertise |= (ADVERTISE_100HALF);
1730         else
1731                 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1732         if (hp->sw_bmsr & BMSR_100FULL)
1733                 hp->sw_advertise |= (ADVERTISE_100FULL);
1734         else
1735                 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1736
1737         /* Update the PHY advertisement register. */
1738         happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1739 }
1740
1741 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1742  * the hardware, so we cannot re-read it and get a correct value.
1743  *
1744  * hp->happy_lock must be held
1745  */
1746 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1747 {
1748         int reset = 0;
1749
1750         /* Only print messages for non-counter related interrupts. */
1751         if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1752                       GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1753                       GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1754                       GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1755                       GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1756                       GREG_STAT_SLVPERR))
1757                 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1758                        hp->dev->name, status);
1759
1760         if (status & GREG_STAT_RFIFOVF) {
1761                 /* Receive FIFO overflow is harmless and the hardware will take
1762                    care of it, just some packets are lost. Who cares. */
1763                 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1764         }
1765
1766         if (status & GREG_STAT_STSTERR) {
1767                 /* BigMAC SQE link test failed. */
1768                 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1769                 reset = 1;
1770         }
1771
1772         if (status & GREG_STAT_TFIFO_UND) {
1773                 /* Transmit FIFO underrun, again DMA error likely. */
1774                 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1775                        hp->dev->name);
1776                 reset = 1;
1777         }
1778
1779         if (status & GREG_STAT_MAXPKTERR) {
1780                 /* Driver error, tried to transmit something larger
1781                  * than ethernet max mtu.
1782                  */
1783                 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1784                 reset = 1;
1785         }
1786
1787         if (status & GREG_STAT_NORXD) {
1788                 /* This is harmless, it just means the system is
1789                  * quite loaded and the incoming packet rate was
1790                  * faster than the interrupt handler could keep up
1791                  * with.
1792                  */
1793                 printk(KERN_INFO "%s: Happy Meal out of receive "
1794                        "descriptors, packet dropped.\n",
1795                        hp->dev->name);
1796         }
1797
1798         if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1799                 /* All sorts of DMA receive errors. */
1800                 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1801                 if (status & GREG_STAT_RXERR)
1802                         printk("GenericError ");
1803                 if (status & GREG_STAT_RXPERR)
1804                         printk("ParityError ");
1805                 if (status & GREG_STAT_RXTERR)
1806                         printk("RxTagBotch ");
1807                 printk("]\n");
1808                 reset = 1;
1809         }
1810
1811         if (status & GREG_STAT_EOPERR) {
1812                 /* Driver bug, didn't set EOP bit in tx descriptor given
1813                  * to the happy meal.
1814                  */
1815                 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1816                        hp->dev->name);
1817                 reset = 1;
1818         }
1819
1820         if (status & GREG_STAT_MIFIRQ) {
1821                 /* MIF signalled an interrupt, were we polling it? */
1822                 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1823         }
1824
1825         if (status &
1826             (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1827                 /* All sorts of transmit DMA errors. */
1828                 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1829                 if (status & GREG_STAT_TXEACK)
1830                         printk("GenericError ");
1831                 if (status & GREG_STAT_TXLERR)
1832                         printk("LateError ");
1833                 if (status & GREG_STAT_TXPERR)
1834                         printk("ParityError ");
1835                 if (status & GREG_STAT_TXTERR)
1836                         printk("TagBotch ");
1837                 printk("]\n");
1838                 reset = 1;
1839         }
1840
1841         if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1842                 /* Bus or parity error when cpu accessed happy meal registers
1843                  * or it's internal FIFO's.  Should never see this.
1844                  */
1845                 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1846                        hp->dev->name,
1847                        (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1848                 reset = 1;
1849         }
1850
1851         if (reset) {
1852                 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1853                 happy_meal_init(hp);
1854                 return 1;
1855         }
1856         return 0;
1857 }
1858
1859 /* hp->happy_lock must be held */
1860 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1861 {
1862         void __iomem *tregs = hp->tcvregs;
1863
1864         printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1865         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1866         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1867
1868         /* Use the fastest transmission protocol possible. */
1869         if (hp->sw_lpa & LPA_100FULL) {
1870                 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1871                 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1872         } else if (hp->sw_lpa & LPA_100HALF) {
1873                 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1874                 hp->sw_bmcr |= BMCR_SPEED100;
1875         } else if (hp->sw_lpa & LPA_10FULL) {
1876                 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1877                 hp->sw_bmcr |= BMCR_FULLDPLX;
1878         } else {
1879                 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1880         }
1881         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1882
1883         /* Finally stop polling and shut up the MIF. */
1884         happy_meal_poll_stop(hp, tregs);
1885 }
1886
1887 #ifdef TXDEBUG
1888 #define TXD(x) printk x
1889 #else
1890 #define TXD(x)
1891 #endif
1892
1893 /* hp->happy_lock must be held */
1894 static void happy_meal_tx(struct happy_meal *hp)
1895 {
1896         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1897         struct happy_meal_txd *this;
1898         struct net_device *dev = hp->dev;
1899         int elem;
1900
1901         elem = hp->tx_old;
1902         TXD(("TX<"));
1903         while (elem != hp->tx_new) {
1904                 struct sk_buff *skb;
1905                 u32 flags, dma_addr, dma_len;
1906                 int frag;
1907
1908                 TXD(("[%d]", elem));
1909                 this = &txbase[elem];
1910                 flags = hme_read_desc32(hp, &this->tx_flags);
1911                 if (flags & TXFLAG_OWN)
1912                         break;
1913                 skb = hp->tx_skbs[elem];
1914                 if (skb_shinfo(skb)->nr_frags) {
1915                         int last;
1916
1917                         last = elem + skb_shinfo(skb)->nr_frags;
1918                         last &= (TX_RING_SIZE - 1);
1919                         flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1920                         if (flags & TXFLAG_OWN)
1921                                 break;
1922                 }
1923                 hp->tx_skbs[elem] = NULL;
1924                 dev->stats.tx_bytes += skb->len;
1925
1926                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1927                         dma_addr = hme_read_desc32(hp, &this->tx_addr);
1928                         dma_len = hme_read_desc32(hp, &this->tx_flags);
1929
1930                         dma_len &= TXFLAG_SIZE;
1931                         if (!frag)
1932                                 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1933                         else
1934                                 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1935
1936                         elem = NEXT_TX(elem);
1937                         this = &txbase[elem];
1938                 }
1939
1940                 dev_consume_skb_irq(skb);
1941                 dev->stats.tx_packets++;
1942         }
1943         hp->tx_old = elem;
1944         TXD((">"));
1945
1946         if (netif_queue_stopped(dev) &&
1947             TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1948                 netif_wake_queue(dev);
1949 }
1950
1951 #ifdef RXDEBUG
1952 #define RXD(x) printk x
1953 #else
1954 #define RXD(x)
1955 #endif
1956
1957 /* Originally I used to handle the allocation failure by just giving back just
1958  * that one ring buffer to the happy meal.  Problem is that usually when that
1959  * condition is triggered, the happy meal expects you to do something reasonable
1960  * with all of the packets it has DMA'd in.  So now I just drop the entire
1961  * ring when we cannot get a new skb and give them all back to the happy meal,
1962  * maybe things will be "happier" now.
1963  *
1964  * hp->happy_lock must be held
1965  */
1966 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1967 {
1968         struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1969         struct happy_meal_rxd *this;
1970         int elem = hp->rx_new, drops = 0;
1971         u32 flags;
1972
1973         RXD(("RX<"));
1974         this = &rxbase[elem];
1975         while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1976                 struct sk_buff *skb;
1977                 int len = flags >> 16;
1978                 u16 csum = flags & RXFLAG_CSUM;
1979                 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1980
1981                 RXD(("[%d ", elem));
1982
1983                 /* Check for errors. */
1984                 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
1985                         RXD(("ERR(%08x)]", flags));
1986                         dev->stats.rx_errors++;
1987                         if (len < ETH_ZLEN)
1988                                 dev->stats.rx_length_errors++;
1989                         if (len & (RXFLAG_OVERFLOW >> 16)) {
1990                                 dev->stats.rx_over_errors++;
1991                                 dev->stats.rx_fifo_errors++;
1992                         }
1993
1994                         /* Return it to the Happy meal. */
1995         drop_it:
1996                         dev->stats.rx_dropped++;
1997                         hme_write_rxd(hp, this,
1998                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
1999                                       dma_addr);
2000                         goto next;
2001                 }
2002                 skb = hp->rx_skbs[elem];
2003                 if (len > RX_COPY_THRESHOLD) {
2004                         struct sk_buff *new_skb;
2005                         u32 mapping;
2006
2007                         /* Now refill the entry, if we can. */
2008                         new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2009                         if (new_skb == NULL) {
2010                                 drops++;
2011                                 goto drop_it;
2012                         }
2013                         skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2014                         mapping = dma_map_single(hp->dma_dev, new_skb->data,
2015                                                  RX_BUF_ALLOC_SIZE,
2016                                                  DMA_FROM_DEVICE);
2017                         if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2018                                 dev_kfree_skb_any(new_skb);
2019                                 drops++;
2020                                 goto drop_it;
2021                         }
2022
2023                         dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2024                         hp->rx_skbs[elem] = new_skb;
2025                         hme_write_rxd(hp, this,
2026                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2027                                       mapping);
2028                         skb_reserve(new_skb, RX_OFFSET);
2029
2030                         /* Trim the original skb for the netif. */
2031                         skb_trim(skb, len);
2032                 } else {
2033                         struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2034
2035                         if (copy_skb == NULL) {
2036                                 drops++;
2037                                 goto drop_it;
2038                         }
2039
2040                         skb_reserve(copy_skb, 2);
2041                         skb_put(copy_skb, len);
2042                         dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2043                         skb_copy_from_linear_data(skb, copy_skb->data, len);
2044                         dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2045                         /* Reuse original ring buffer. */
2046                         hme_write_rxd(hp, this,
2047                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2048                                       dma_addr);
2049
2050                         skb = copy_skb;
2051                 }
2052
2053                 /* This card is _fucking_ hot... */
2054                 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2055                 skb->ip_summed = CHECKSUM_COMPLETE;
2056
2057                 RXD(("len=%d csum=%4x]", len, csum));
2058                 skb->protocol = eth_type_trans(skb, dev);
2059                 netif_rx(skb);
2060
2061                 dev->stats.rx_packets++;
2062                 dev->stats.rx_bytes += len;
2063         next:
2064                 elem = NEXT_RX(elem);
2065                 this = &rxbase[elem];
2066         }
2067         hp->rx_new = elem;
2068         if (drops)
2069                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2070         RXD((">"));
2071 }
2072
2073 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2074 {
2075         struct net_device *dev = dev_id;
2076         struct happy_meal *hp  = netdev_priv(dev);
2077         u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2078
2079         HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2080
2081         spin_lock(&hp->happy_lock);
2082
2083         if (happy_status & GREG_STAT_ERRORS) {
2084                 HMD(("ERRORS "));
2085                 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2086                         goto out;
2087         }
2088
2089         if (happy_status & GREG_STAT_MIFIRQ) {
2090                 HMD(("MIFIRQ "));
2091                 happy_meal_mif_interrupt(hp);
2092         }
2093
2094         if (happy_status & GREG_STAT_TXALL) {
2095                 HMD(("TXALL "));
2096                 happy_meal_tx(hp);
2097         }
2098
2099         if (happy_status & GREG_STAT_RXTOHOST) {
2100                 HMD(("RXTOHOST "));
2101                 happy_meal_rx(hp, dev);
2102         }
2103
2104         HMD(("done\n"));
2105 out:
2106         spin_unlock(&hp->happy_lock);
2107
2108         return IRQ_HANDLED;
2109 }
2110
2111 #ifdef CONFIG_SBUS
2112 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2113 {
2114         struct quattro *qp = (struct quattro *) cookie;
2115         int i;
2116
2117         for (i = 0; i < 4; i++) {
2118                 struct net_device *dev = qp->happy_meals[i];
2119                 struct happy_meal *hp  = netdev_priv(dev);
2120                 u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2121
2122                 HMD(("quattro_interrupt: status=%08x ", happy_status));
2123
2124                 if (!(happy_status & (GREG_STAT_ERRORS |
2125                                       GREG_STAT_MIFIRQ |
2126                                       GREG_STAT_TXALL |
2127                                       GREG_STAT_RXTOHOST)))
2128                         continue;
2129
2130                 spin_lock(&hp->happy_lock);
2131
2132                 if (happy_status & GREG_STAT_ERRORS) {
2133                         HMD(("ERRORS "));
2134                         if (happy_meal_is_not_so_happy(hp, happy_status))
2135                                 goto next;
2136                 }
2137
2138                 if (happy_status & GREG_STAT_MIFIRQ) {
2139                         HMD(("MIFIRQ "));
2140                         happy_meal_mif_interrupt(hp);
2141                 }
2142
2143                 if (happy_status & GREG_STAT_TXALL) {
2144                         HMD(("TXALL "));
2145                         happy_meal_tx(hp);
2146                 }
2147
2148                 if (happy_status & GREG_STAT_RXTOHOST) {
2149                         HMD(("RXTOHOST "));
2150                         happy_meal_rx(hp, dev);
2151                 }
2152
2153         next:
2154                 spin_unlock(&hp->happy_lock);
2155         }
2156         HMD(("done\n"));
2157
2158         return IRQ_HANDLED;
2159 }
2160 #endif
2161
2162 static int happy_meal_open(struct net_device *dev)
2163 {
2164         struct happy_meal *hp = netdev_priv(dev);
2165         int res;
2166
2167         HMD(("happy_meal_open: "));
2168
2169         /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2170          * into a single source which we register handling at probe time.
2171          */
2172         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2173                 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2174                                   dev->name, dev);
2175                 if (res) {
2176                         HMD(("EAGAIN\n"));
2177                         printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2178                                hp->irq);
2179
2180                         return -EAGAIN;
2181                 }
2182         }
2183
2184         HMD(("to happy_meal_init\n"));
2185
2186         spin_lock_irq(&hp->happy_lock);
2187         res = happy_meal_init(hp);
2188         spin_unlock_irq(&hp->happy_lock);
2189
2190         if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2191                 free_irq(hp->irq, dev);
2192         return res;
2193 }
2194
2195 static int happy_meal_close(struct net_device *dev)
2196 {
2197         struct happy_meal *hp = netdev_priv(dev);
2198
2199         spin_lock_irq(&hp->happy_lock);
2200         happy_meal_stop(hp, hp->gregs);
2201         happy_meal_clean_rings(hp);
2202
2203         /* If auto-negotiation timer is running, kill it. */
2204         del_timer(&hp->happy_timer);
2205
2206         spin_unlock_irq(&hp->happy_lock);
2207
2208         /* On Quattro QFE cards, all hme interrupts are concentrated
2209          * into a single source which we register handling at probe
2210          * time and never unregister.
2211          */
2212         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2213                 free_irq(hp->irq, dev);
2214
2215         return 0;
2216 }
2217
2218 #ifdef SXDEBUG
2219 #define SXD(x) printk x
2220 #else
2221 #define SXD(x)
2222 #endif
2223
2224 static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
2225 {
2226         struct happy_meal *hp = netdev_priv(dev);
2227
2228         printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2229         tx_dump_log();
2230         printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2231                 hme_read32(hp, hp->gregs + GREG_STAT),
2232                 hme_read32(hp, hp->etxregs + ETX_CFG),
2233                 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2234
2235         spin_lock_irq(&hp->happy_lock);
2236         happy_meal_init(hp);
2237         spin_unlock_irq(&hp->happy_lock);
2238
2239         netif_wake_queue(dev);
2240 }
2241
2242 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2243                                  u32 first_len, u32 first_entry, u32 entry)
2244 {
2245         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2246
2247         dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2248
2249         first_entry = NEXT_TX(first_entry);
2250         while (first_entry != entry) {
2251                 struct happy_meal_txd *this = &txbase[first_entry];
2252                 u32 addr, len;
2253
2254                 addr = hme_read_desc32(hp, &this->tx_addr);
2255                 len = hme_read_desc32(hp, &this->tx_flags);
2256                 len &= TXFLAG_SIZE;
2257                 dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2258         }
2259 }
2260
2261 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2262                                          struct net_device *dev)
2263 {
2264         struct happy_meal *hp = netdev_priv(dev);
2265         int entry;
2266         u32 tx_flags;
2267
2268         tx_flags = TXFLAG_OWN;
2269         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2270                 const u32 csum_start_off = skb_checksum_start_offset(skb);
2271                 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2272
2273                 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2274                             ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2275                             ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2276         }
2277
2278         spin_lock_irq(&hp->happy_lock);
2279
2280         if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2281                 netif_stop_queue(dev);
2282                 spin_unlock_irq(&hp->happy_lock);
2283                 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2284                        dev->name);
2285                 return NETDEV_TX_BUSY;
2286         }
2287
2288         entry = hp->tx_new;
2289         SXD(("SX<l[%d]e[%d]>", len, entry));
2290         hp->tx_skbs[entry] = skb;
2291
2292         if (skb_shinfo(skb)->nr_frags == 0) {
2293                 u32 mapping, len;
2294
2295                 len = skb->len;
2296                 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2297                 if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2298                         goto out_dma_error;
2299                 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2300                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2301                               (tx_flags | (len & TXFLAG_SIZE)),
2302                               mapping);
2303                 entry = NEXT_TX(entry);
2304         } else {
2305                 u32 first_len, first_mapping;
2306                 int frag, first_entry = entry;
2307
2308                 /* We must give this initial chunk to the device last.
2309                  * Otherwise we could race with the device.
2310                  */
2311                 first_len = skb_headlen(skb);
2312                 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2313                                                DMA_TO_DEVICE);
2314                 if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2315                         goto out_dma_error;
2316                 entry = NEXT_TX(entry);
2317
2318                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2319                         const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2320                         u32 len, mapping, this_txflags;
2321
2322                         len = skb_frag_size(this_frag);
2323                         mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2324                                                    0, len, DMA_TO_DEVICE);
2325                         if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2326                                 unmap_partial_tx_skb(hp, first_mapping, first_len,
2327                                                      first_entry, entry);
2328                                 goto out_dma_error;
2329                         }
2330                         this_txflags = tx_flags;
2331                         if (frag == skb_shinfo(skb)->nr_frags - 1)
2332                                 this_txflags |= TXFLAG_EOP;
2333                         hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2334                                       (this_txflags | (len & TXFLAG_SIZE)),
2335                                       mapping);
2336                         entry = NEXT_TX(entry);
2337                 }
2338                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2339                               (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2340                               first_mapping);
2341         }
2342
2343         hp->tx_new = entry;
2344
2345         if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2346                 netif_stop_queue(dev);
2347
2348         /* Get it going. */
2349         hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2350
2351         spin_unlock_irq(&hp->happy_lock);
2352
2353         tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2354         return NETDEV_TX_OK;
2355
2356 out_dma_error:
2357         hp->tx_skbs[hp->tx_new] = NULL;
2358         spin_unlock_irq(&hp->happy_lock);
2359
2360         dev_kfree_skb_any(skb);
2361         dev->stats.tx_dropped++;
2362         return NETDEV_TX_OK;
2363 }
2364
2365 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2366 {
2367         struct happy_meal *hp = netdev_priv(dev);
2368
2369         spin_lock_irq(&hp->happy_lock);
2370         happy_meal_get_counters(hp, hp->bigmacregs);
2371         spin_unlock_irq(&hp->happy_lock);
2372
2373         return &dev->stats;
2374 }
2375
2376 static void happy_meal_set_multicast(struct net_device *dev)
2377 {
2378         struct happy_meal *hp = netdev_priv(dev);
2379         void __iomem *bregs = hp->bigmacregs;
2380         struct netdev_hw_addr *ha;
2381         u32 crc;
2382
2383         spin_lock_irq(&hp->happy_lock);
2384
2385         if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2386                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2387                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2388                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2389                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2390         } else if (dev->flags & IFF_PROMISC) {
2391                 hme_write32(hp, bregs + BMAC_RXCFG,
2392                             hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2393         } else {
2394                 u16 hash_table[4];
2395
2396                 memset(hash_table, 0, sizeof(hash_table));
2397                 netdev_for_each_mc_addr(ha, dev) {
2398                         crc = ether_crc_le(6, ha->addr);
2399                         crc >>= 26;
2400                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
2401                 }
2402                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2403                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2404                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2405                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2406         }
2407
2408         spin_unlock_irq(&hp->happy_lock);
2409 }
2410
2411 /* Ethtool support... */
2412 static int hme_get_link_ksettings(struct net_device *dev,
2413                                   struct ethtool_link_ksettings *cmd)
2414 {
2415         struct happy_meal *hp = netdev_priv(dev);
2416         u32 speed;
2417         u32 supported;
2418
2419         supported =
2420                 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2421                  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2422                  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2423
2424         /* XXX hardcoded stuff for now */
2425         cmd->base.port = PORT_TP; /* XXX no MII support */
2426         cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2427
2428         /* Record PHY settings. */
2429         spin_lock_irq(&hp->happy_lock);
2430         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2431         hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2432         spin_unlock_irq(&hp->happy_lock);
2433
2434         if (hp->sw_bmcr & BMCR_ANENABLE) {
2435                 cmd->base.autoneg = AUTONEG_ENABLE;
2436                 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2437                          SPEED_100 : SPEED_10);
2438                 if (speed == SPEED_100)
2439                         cmd->base.duplex =
2440                                 (hp->sw_lpa & (LPA_100FULL)) ?
2441                                 DUPLEX_FULL : DUPLEX_HALF;
2442                 else
2443                         cmd->base.duplex =
2444                                 (hp->sw_lpa & (LPA_10FULL)) ?
2445                                 DUPLEX_FULL : DUPLEX_HALF;
2446         } else {
2447                 cmd->base.autoneg = AUTONEG_DISABLE;
2448                 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2449                 cmd->base.duplex =
2450                         (hp->sw_bmcr & BMCR_FULLDPLX) ?
2451                         DUPLEX_FULL : DUPLEX_HALF;
2452         }
2453         cmd->base.speed = speed;
2454         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2455                                                 supported);
2456
2457         return 0;
2458 }
2459
2460 static int hme_set_link_ksettings(struct net_device *dev,
2461                                   const struct ethtool_link_ksettings *cmd)
2462 {
2463         struct happy_meal *hp = netdev_priv(dev);
2464
2465         /* Verify the settings we care about. */
2466         if (cmd->base.autoneg != AUTONEG_ENABLE &&
2467             cmd->base.autoneg != AUTONEG_DISABLE)
2468                 return -EINVAL;
2469         if (cmd->base.autoneg == AUTONEG_DISABLE &&
2470             ((cmd->base.speed != SPEED_100 &&
2471               cmd->base.speed != SPEED_10) ||
2472              (cmd->base.duplex != DUPLEX_HALF &&
2473               cmd->base.duplex != DUPLEX_FULL)))
2474                 return -EINVAL;
2475
2476         /* Ok, do it to it. */
2477         spin_lock_irq(&hp->happy_lock);
2478         del_timer(&hp->happy_timer);
2479         happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2480         spin_unlock_irq(&hp->happy_lock);
2481
2482         return 0;
2483 }
2484
2485 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2486 {
2487         struct happy_meal *hp = netdev_priv(dev);
2488
2489         strlcpy(info->driver, "sunhme", sizeof(info->driver));
2490         strlcpy(info->version, "2.02", sizeof(info->version));
2491         if (hp->happy_flags & HFLAG_PCI) {
2492                 struct pci_dev *pdev = hp->happy_dev;
2493                 strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2494         }
2495 #ifdef CONFIG_SBUS
2496         else {
2497                 const struct linux_prom_registers *regs;
2498                 struct platform_device *op = hp->happy_dev;
2499                 regs = of_get_property(op->dev.of_node, "regs", NULL);
2500                 if (regs)
2501                         snprintf(info->bus_info, sizeof(info->bus_info),
2502                                 "SBUS:%d",
2503                                 regs->which_io);
2504         }
2505 #endif
2506 }
2507
2508 static u32 hme_get_link(struct net_device *dev)
2509 {
2510         struct happy_meal *hp = netdev_priv(dev);
2511
2512         spin_lock_irq(&hp->happy_lock);
2513         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2514         spin_unlock_irq(&hp->happy_lock);
2515
2516         return hp->sw_bmsr & BMSR_LSTATUS;
2517 }
2518
2519 static const struct ethtool_ops hme_ethtool_ops = {
2520         .get_drvinfo            = hme_get_drvinfo,
2521         .get_link               = hme_get_link,
2522         .get_link_ksettings     = hme_get_link_ksettings,
2523         .set_link_ksettings     = hme_set_link_ksettings,
2524 };
2525
2526 static int hme_version_printed;
2527
2528 #ifdef CONFIG_SBUS
2529 /* Given a happy meal sbus device, find it's quattro parent.
2530  * If none exist, allocate and return a new one.
2531  *
2532  * Return NULL on failure.
2533  */
2534 static struct quattro *quattro_sbus_find(struct platform_device *child)
2535 {
2536         struct device *parent = child->dev.parent;
2537         struct platform_device *op;
2538         struct quattro *qp;
2539
2540         op = to_platform_device(parent);
2541         qp = platform_get_drvdata(op);
2542         if (qp)
2543                 return qp;
2544
2545         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2546         if (qp != NULL) {
2547                 int i;
2548
2549                 for (i = 0; i < 4; i++)
2550                         qp->happy_meals[i] = NULL;
2551
2552                 qp->quattro_dev = child;
2553                 qp->next = qfe_sbus_list;
2554                 qfe_sbus_list = qp;
2555
2556                 platform_set_drvdata(op, qp);
2557         }
2558         return qp;
2559 }
2560
2561 /* After all quattro cards have been probed, we call these functions
2562  * to register the IRQ handlers for the cards that have been
2563  * successfully probed and skip the cards that failed to initialize
2564  */
2565 static int __init quattro_sbus_register_irqs(void)
2566 {
2567         struct quattro *qp;
2568
2569         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2570                 struct platform_device *op = qp->quattro_dev;
2571                 int err, qfe_slot, skip = 0;
2572
2573                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2574                         if (!qp->happy_meals[qfe_slot])
2575                                 skip = 1;
2576                 }
2577                 if (skip)
2578                         continue;
2579
2580                 err = request_irq(op->archdata.irqs[0],
2581                                   quattro_sbus_interrupt,
2582                                   IRQF_SHARED, "Quattro",
2583                                   qp);
2584                 if (err != 0) {
2585                         printk(KERN_ERR "Quattro HME: IRQ registration "
2586                                "error %d.\n", err);
2587                         return err;
2588                 }
2589         }
2590
2591         return 0;
2592 }
2593
2594 static void quattro_sbus_free_irqs(void)
2595 {
2596         struct quattro *qp;
2597
2598         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2599                 struct platform_device *op = qp->quattro_dev;
2600                 int qfe_slot, skip = 0;
2601
2602                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2603                         if (!qp->happy_meals[qfe_slot])
2604                                 skip = 1;
2605                 }
2606                 if (skip)
2607                         continue;
2608
2609                 free_irq(op->archdata.irqs[0], qp);
2610         }
2611 }
2612 #endif /* CONFIG_SBUS */
2613
2614 #ifdef CONFIG_PCI
2615 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2616 {
2617         struct pci_dev *bdev = pdev->bus->self;
2618         struct quattro *qp;
2619
2620         if (!bdev) return NULL;
2621         for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2622                 struct pci_dev *qpdev = qp->quattro_dev;
2623
2624                 if (qpdev == bdev)
2625                         return qp;
2626         }
2627         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2628         if (qp != NULL) {
2629                 int i;
2630
2631                 for (i = 0; i < 4; i++)
2632                         qp->happy_meals[i] = NULL;
2633
2634                 qp->quattro_dev = bdev;
2635                 qp->next = qfe_pci_list;
2636                 qfe_pci_list = qp;
2637
2638                 /* No range tricks necessary on PCI. */
2639                 qp->nranges = 0;
2640         }
2641         return qp;
2642 }
2643 #endif /* CONFIG_PCI */
2644
2645 static const struct net_device_ops hme_netdev_ops = {
2646         .ndo_open               = happy_meal_open,
2647         .ndo_stop               = happy_meal_close,
2648         .ndo_start_xmit         = happy_meal_start_xmit,
2649         .ndo_tx_timeout         = happy_meal_tx_timeout,
2650         .ndo_get_stats          = happy_meal_get_stats,
2651         .ndo_set_rx_mode        = happy_meal_set_multicast,
2652         .ndo_set_mac_address    = eth_mac_addr,
2653         .ndo_validate_addr      = eth_validate_addr,
2654 };
2655
2656 #ifdef CONFIG_SBUS
2657 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2658 {
2659         struct device_node *dp = op->dev.of_node, *sbus_dp;
2660         struct quattro *qp = NULL;
2661         struct happy_meal *hp;
2662         struct net_device *dev;
2663         int i, qfe_slot = -1;
2664         u8 addr[ETH_ALEN];
2665         int err = -ENODEV;
2666
2667         sbus_dp = op->dev.parent->of_node;
2668
2669         /* We can match PCI devices too, do not accept those here. */
2670         if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2671                 return err;
2672
2673         if (is_qfe) {
2674                 qp = quattro_sbus_find(op);
2675                 if (qp == NULL)
2676                         goto err_out;
2677                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2678                         if (qp->happy_meals[qfe_slot] == NULL)
2679                                 break;
2680                 if (qfe_slot == 4)
2681                         goto err_out;
2682         }
2683
2684         err = -ENOMEM;
2685         dev = alloc_etherdev(sizeof(struct happy_meal));
2686         if (!dev)
2687                 goto err_out;
2688         SET_NETDEV_DEV(dev, &op->dev);
2689
2690         if (hme_version_printed++ == 0)
2691                 printk(KERN_INFO "%s", version);
2692
2693         /* If user did not specify a MAC address specifically, use
2694          * the Quattro local-mac-address property...
2695          */
2696         for (i = 0; i < 6; i++) {
2697                 if (macaddr[i] != 0)
2698                         break;
2699         }
2700         if (i < 6) { /* a mac address was given */
2701                 for (i = 0; i < 6; i++)
2702                         addr[i] = macaddr[i];
2703                 eth_hw_addr_set(dev, addr);
2704                 macaddr[5]++;
2705         } else {
2706                 const unsigned char *addr;
2707                 int len;
2708
2709                 addr = of_get_property(dp, "local-mac-address", &len);
2710
2711                 if (qfe_slot != -1 && addr && len == ETH_ALEN)
2712                         eth_hw_addr_set(dev, addr);
2713                 else
2714                         eth_hw_addr_set(dev, idprom->id_ethaddr);
2715         }
2716
2717         hp = netdev_priv(dev);
2718
2719         hp->happy_dev = op;
2720         hp->dma_dev = &op->dev;
2721
2722         spin_lock_init(&hp->happy_lock);
2723
2724         err = -ENODEV;
2725         if (qp != NULL) {
2726                 hp->qfe_parent = qp;
2727                 hp->qfe_ent = qfe_slot;
2728                 qp->happy_meals[qfe_slot] = dev;
2729         }
2730
2731         hp->gregs = of_ioremap(&op->resource[0], 0,
2732                                GREG_REG_SIZE, "HME Global Regs");
2733         if (!hp->gregs) {
2734                 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2735                 goto err_out_free_netdev;
2736         }
2737
2738         hp->etxregs = of_ioremap(&op->resource[1], 0,
2739                                  ETX_REG_SIZE, "HME TX Regs");
2740         if (!hp->etxregs) {
2741                 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2742                 goto err_out_iounmap;
2743         }
2744
2745         hp->erxregs = of_ioremap(&op->resource[2], 0,
2746                                  ERX_REG_SIZE, "HME RX Regs");
2747         if (!hp->erxregs) {
2748                 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2749                 goto err_out_iounmap;
2750         }
2751
2752         hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2753                                     BMAC_REG_SIZE, "HME BIGMAC Regs");
2754         if (!hp->bigmacregs) {
2755                 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2756                 goto err_out_iounmap;
2757         }
2758
2759         hp->tcvregs = of_ioremap(&op->resource[4], 0,
2760                                  TCVR_REG_SIZE, "HME Tranceiver Regs");
2761         if (!hp->tcvregs) {
2762                 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2763                 goto err_out_iounmap;
2764         }
2765
2766         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2767         if (hp->hm_revision == 0xff)
2768                 hp->hm_revision = 0xa0;
2769
2770         /* Now enable the feature flags we can. */
2771         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2772                 hp->happy_flags = HFLAG_20_21;
2773         else if (hp->hm_revision != 0xa0)
2774                 hp->happy_flags = HFLAG_NOT_A0;
2775
2776         if (qp != NULL)
2777                 hp->happy_flags |= HFLAG_QUATTRO;
2778
2779         /* Get the supported DVMA burst sizes from our Happy SBUS. */
2780         hp->happy_bursts = of_getintprop_default(sbus_dp,
2781                                                  "burst-sizes", 0x00);
2782
2783         hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2784                                              PAGE_SIZE,
2785                                              &hp->hblock_dvma,
2786                                              GFP_ATOMIC);
2787         err = -ENOMEM;
2788         if (!hp->happy_block)
2789                 goto err_out_iounmap;
2790
2791         /* Force check of the link first time we are brought up. */
2792         hp->linkcheck = 0;
2793
2794         /* Force timer state to 'asleep' with count of zero. */
2795         hp->timer_state = asleep;
2796         hp->timer_ticks = 0;
2797
2798         timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2799
2800         hp->dev = dev;
2801         dev->netdev_ops = &hme_netdev_ops;
2802         dev->watchdog_timeo = 5*HZ;
2803         dev->ethtool_ops = &hme_ethtool_ops;
2804
2805         /* Happy Meal can do it all... */
2806         dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2807         dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2808
2809         hp->irq = op->archdata.irqs[0];
2810
2811 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2812         /* Hook up SBUS register/descriptor accessors. */
2813         hp->read_desc32 = sbus_hme_read_desc32;
2814         hp->write_txd = sbus_hme_write_txd;
2815         hp->write_rxd = sbus_hme_write_rxd;
2816         hp->read32 = sbus_hme_read32;
2817         hp->write32 = sbus_hme_write32;
2818 #endif
2819
2820         /* Grrr, Happy Meal comes up by default not advertising
2821          * full duplex 100baseT capabilities, fix this.
2822          */
2823         spin_lock_irq(&hp->happy_lock);
2824         happy_meal_set_initial_advertisement(hp);
2825         spin_unlock_irq(&hp->happy_lock);
2826
2827         err = register_netdev(hp->dev);
2828         if (err) {
2829                 printk(KERN_ERR "happymeal: Cannot register net device, "
2830                        "aborting.\n");
2831                 goto err_out_free_coherent;
2832         }
2833
2834         platform_set_drvdata(op, hp);
2835
2836         if (qfe_slot != -1)
2837                 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2838                        dev->name, qfe_slot);
2839         else
2840                 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2841                        dev->name);
2842
2843         printk("%pM\n", dev->dev_addr);
2844
2845         return 0;
2846
2847 err_out_free_coherent:
2848         dma_free_coherent(hp->dma_dev,
2849                           PAGE_SIZE,
2850                           hp->happy_block,
2851                           hp->hblock_dvma);
2852
2853 err_out_iounmap:
2854         if (hp->gregs)
2855                 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2856         if (hp->etxregs)
2857                 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2858         if (hp->erxregs)
2859                 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2860         if (hp->bigmacregs)
2861                 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2862         if (hp->tcvregs)
2863                 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2864
2865         if (qp)
2866                 qp->happy_meals[qfe_slot] = NULL;
2867
2868 err_out_free_netdev:
2869         free_netdev(dev);
2870
2871 err_out:
2872         return err;
2873 }
2874 #endif
2875
2876 #ifdef CONFIG_PCI
2877 #ifndef CONFIG_SPARC
2878 static int is_quattro_p(struct pci_dev *pdev)
2879 {
2880         struct pci_dev *busdev = pdev->bus->self;
2881         struct pci_dev *this_pdev;
2882         int n_hmes;
2883
2884         if (busdev == NULL ||
2885             busdev->vendor != PCI_VENDOR_ID_DEC ||
2886             busdev->device != PCI_DEVICE_ID_DEC_21153)
2887                 return 0;
2888
2889         n_hmes = 0;
2890         list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2891                 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2892                     this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2893                         n_hmes++;
2894         }
2895
2896         if (n_hmes != 4)
2897                 return 0;
2898
2899         return 1;
2900 }
2901
2902 /* Fetch MAC address from vital product data of PCI ROM. */
2903 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2904 {
2905         int this_offset;
2906
2907         for (this_offset = 0x20; this_offset < len; this_offset++) {
2908                 void __iomem *p = rom_base + this_offset;
2909
2910                 if (readb(p + 0) != 0x90 ||
2911                     readb(p + 1) != 0x00 ||
2912                     readb(p + 2) != 0x09 ||
2913                     readb(p + 3) != 0x4e ||
2914                     readb(p + 4) != 0x41 ||
2915                     readb(p + 5) != 0x06)
2916                         continue;
2917
2918                 this_offset += 6;
2919                 p += 6;
2920
2921                 if (index == 0) {
2922                         int i;
2923
2924                         for (i = 0; i < 6; i++)
2925                                 dev_addr[i] = readb(p + i);
2926                         return 1;
2927                 }
2928                 index--;
2929         }
2930         return 0;
2931 }
2932
2933 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2934 {
2935         size_t size;
2936         void __iomem *p = pci_map_rom(pdev, &size);
2937
2938         if (p) {
2939                 int index = 0;
2940                 int found;
2941
2942                 if (is_quattro_p(pdev))
2943                         index = PCI_SLOT(pdev->devfn);
2944
2945                 found = readb(p) == 0x55 &&
2946                         readb(p + 1) == 0xaa &&
2947                         find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2948                 pci_unmap_rom(pdev, p);
2949                 if (found)
2950                         return;
2951         }
2952
2953         /* Sun MAC prefix then 3 random bytes. */
2954         dev_addr[0] = 0x08;
2955         dev_addr[1] = 0x00;
2956         dev_addr[2] = 0x20;
2957         get_random_bytes(&dev_addr[3], 3);
2958 }
2959 #endif /* !(CONFIG_SPARC) */
2960
2961 static int happy_meal_pci_probe(struct pci_dev *pdev,
2962                                 const struct pci_device_id *ent)
2963 {
2964         struct quattro *qp = NULL;
2965 #ifdef CONFIG_SPARC
2966         struct device_node *dp;
2967 #endif
2968         struct happy_meal *hp;
2969         struct net_device *dev;
2970         void __iomem *hpreg_base;
2971         unsigned long hpreg_res;
2972         int i, qfe_slot = -1;
2973         char prom_name[64];
2974         u8 addr[ETH_ALEN];
2975         int err;
2976
2977         /* Now make sure pci_dev cookie is there. */
2978 #ifdef CONFIG_SPARC
2979         dp = pci_device_to_OF_node(pdev);
2980         snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
2981 #else
2982         if (is_quattro_p(pdev))
2983                 strcpy(prom_name, "SUNW,qfe");
2984         else
2985                 strcpy(prom_name, "SUNW,hme");
2986 #endif
2987
2988         err = -ENODEV;
2989
2990         if (pci_enable_device(pdev))
2991                 goto err_out;
2992         pci_set_master(pdev);
2993
2994         if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2995                 qp = quattro_pci_find(pdev);
2996                 if (qp == NULL)
2997                         goto err_out;
2998                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2999                         if (qp->happy_meals[qfe_slot] == NULL)
3000                                 break;
3001                 if (qfe_slot == 4)
3002                         goto err_out;
3003         }
3004
3005         dev = alloc_etherdev(sizeof(struct happy_meal));
3006         err = -ENOMEM;
3007         if (!dev)
3008                 goto err_out;
3009         SET_NETDEV_DEV(dev, &pdev->dev);
3010
3011         if (hme_version_printed++ == 0)
3012                 printk(KERN_INFO "%s", version);
3013
3014         hp = netdev_priv(dev);
3015
3016         hp->happy_dev = pdev;
3017         hp->dma_dev = &pdev->dev;
3018
3019         spin_lock_init(&hp->happy_lock);
3020
3021         if (qp != NULL) {
3022                 hp->qfe_parent = qp;
3023                 hp->qfe_ent = qfe_slot;
3024                 qp->happy_meals[qfe_slot] = dev;
3025         }
3026
3027         hpreg_res = pci_resource_start(pdev, 0);
3028         err = -ENODEV;
3029         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3030                 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3031                 goto err_out_clear_quattro;
3032         }
3033         if (pci_request_regions(pdev, DRV_NAME)) {
3034                 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3035                        "aborting.\n");
3036                 goto err_out_clear_quattro;
3037         }
3038
3039         if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3040                 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3041                 goto err_out_free_res;
3042         }
3043
3044         for (i = 0; i < 6; i++) {
3045                 if (macaddr[i] != 0)
3046                         break;
3047         }
3048         if (i < 6) { /* a mac address was given */
3049                 for (i = 0; i < 6; i++)
3050                         addr[i] = macaddr[i];
3051                 eth_hw_addr_set(dev, addr);
3052                 macaddr[5]++;
3053         } else {
3054 #ifdef CONFIG_SPARC
3055                 const unsigned char *addr;
3056                 int len;
3057
3058                 if (qfe_slot != -1 &&
3059                     (addr = of_get_property(dp, "local-mac-address", &len))
3060                         != NULL &&
3061                     len == 6) {
3062                         eth_hw_addr_set(dev, addr);
3063                 } else {
3064                         eth_hw_addr_set(dev, idprom->id_ethaddr);
3065                 }
3066 #else
3067                 u8 addr[ETH_ALEN];
3068
3069                 get_hme_mac_nonsparc(pdev, addr);
3070                 eth_hw_addr_set(dev, addr);
3071 #endif
3072         }
3073
3074         /* Layout registers. */
3075         hp->gregs      = (hpreg_base + 0x0000UL);
3076         hp->etxregs    = (hpreg_base + 0x2000UL);
3077         hp->erxregs    = (hpreg_base + 0x4000UL);
3078         hp->bigmacregs = (hpreg_base + 0x6000UL);
3079         hp->tcvregs    = (hpreg_base + 0x7000UL);
3080
3081 #ifdef CONFIG_SPARC
3082         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3083         if (hp->hm_revision == 0xff)
3084                 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3085 #else
3086         /* works with this on non-sparc hosts */
3087         hp->hm_revision = 0x20;
3088 #endif
3089
3090         /* Now enable the feature flags we can. */
3091         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3092                 hp->happy_flags = HFLAG_20_21;
3093         else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3094                 hp->happy_flags = HFLAG_NOT_A0;
3095
3096         if (qp != NULL)
3097                 hp->happy_flags |= HFLAG_QUATTRO;
3098
3099         /* And of course, indicate this is PCI. */
3100         hp->happy_flags |= HFLAG_PCI;
3101
3102 #ifdef CONFIG_SPARC
3103         /* Assume PCI happy meals can handle all burst sizes. */
3104         hp->happy_bursts = DMA_BURSTBITS;
3105 #endif
3106
3107         hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3108                                              &hp->hblock_dvma, GFP_KERNEL);
3109         err = -ENODEV;
3110         if (!hp->happy_block)
3111                 goto err_out_iounmap;
3112
3113         hp->linkcheck = 0;
3114         hp->timer_state = asleep;
3115         hp->timer_ticks = 0;
3116
3117         timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3118
3119         hp->irq = pdev->irq;
3120         hp->dev = dev;
3121         dev->netdev_ops = &hme_netdev_ops;
3122         dev->watchdog_timeo = 5*HZ;
3123         dev->ethtool_ops = &hme_ethtool_ops;
3124
3125         /* Happy Meal can do it all... */
3126         dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3127         dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3128
3129 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3130         /* Hook up PCI register/descriptor accessors. */
3131         hp->read_desc32 = pci_hme_read_desc32;
3132         hp->write_txd = pci_hme_write_txd;
3133         hp->write_rxd = pci_hme_write_rxd;
3134         hp->read32 = pci_hme_read32;
3135         hp->write32 = pci_hme_write32;
3136 #endif
3137
3138         /* Grrr, Happy Meal comes up by default not advertising
3139          * full duplex 100baseT capabilities, fix this.
3140          */
3141         spin_lock_irq(&hp->happy_lock);
3142         happy_meal_set_initial_advertisement(hp);
3143         spin_unlock_irq(&hp->happy_lock);
3144
3145         err = register_netdev(hp->dev);
3146         if (err) {
3147                 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3148                        "aborting.\n");
3149                 goto err_out_free_coherent;
3150         }
3151
3152         pci_set_drvdata(pdev, hp);
3153
3154         if (!qfe_slot) {
3155                 struct pci_dev *qpdev = qp->quattro_dev;
3156
3157                 prom_name[0] = 0;
3158                 if (!strncmp(dev->name, "eth", 3)) {
3159                         int i = simple_strtoul(dev->name + 3, NULL, 10);
3160                         sprintf(prom_name, "-%d", i + 3);
3161                 }
3162                 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3163                 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3164                     qpdev->device == PCI_DEVICE_ID_DEC_21153)
3165                         printk("DEC 21153 PCI Bridge\n");
3166                 else
3167                         printk("unknown bridge %04x.%04x\n",
3168                                 qpdev->vendor, qpdev->device);
3169         }
3170
3171         if (qfe_slot != -1)
3172                 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3173                        dev->name, qfe_slot);
3174         else
3175                 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3176                        dev->name);
3177
3178         printk("%pM\n", dev->dev_addr);
3179
3180         return 0;
3181
3182 err_out_free_coherent:
3183         dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3184                           hp->happy_block, hp->hblock_dvma);
3185
3186 err_out_iounmap:
3187         iounmap(hp->gregs);
3188
3189 err_out_free_res:
3190         pci_release_regions(pdev);
3191
3192 err_out_clear_quattro:
3193         if (qp != NULL)
3194                 qp->happy_meals[qfe_slot] = NULL;
3195
3196         free_netdev(dev);
3197
3198 err_out:
3199         return err;
3200 }
3201
3202 static void happy_meal_pci_remove(struct pci_dev *pdev)
3203 {
3204         struct happy_meal *hp = pci_get_drvdata(pdev);
3205         struct net_device *net_dev = hp->dev;
3206
3207         unregister_netdev(net_dev);
3208
3209         dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3210                           hp->happy_block, hp->hblock_dvma);
3211         iounmap(hp->gregs);
3212         pci_release_regions(hp->happy_dev);
3213
3214         free_netdev(net_dev);
3215 }
3216
3217 static const struct pci_device_id happymeal_pci_ids[] = {
3218         { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3219         { }                     /* Terminating entry */
3220 };
3221
3222 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3223
3224 static struct pci_driver hme_pci_driver = {
3225         .name           = "hme",
3226         .id_table       = happymeal_pci_ids,
3227         .probe          = happy_meal_pci_probe,
3228         .remove         = happy_meal_pci_remove,
3229 };
3230
3231 static int __init happy_meal_pci_init(void)
3232 {
3233         return pci_register_driver(&hme_pci_driver);
3234 }
3235
3236 static void happy_meal_pci_exit(void)
3237 {
3238         pci_unregister_driver(&hme_pci_driver);
3239
3240         while (qfe_pci_list) {
3241                 struct quattro *qfe = qfe_pci_list;
3242                 struct quattro *next = qfe->next;
3243
3244                 kfree(qfe);
3245
3246                 qfe_pci_list = next;
3247         }
3248 }
3249
3250 #endif
3251
3252 #ifdef CONFIG_SBUS
3253 static const struct of_device_id hme_sbus_match[];
3254 static int hme_sbus_probe(struct platform_device *op)
3255 {
3256         const struct of_device_id *match;
3257         struct device_node *dp = op->dev.of_node;
3258         const char *model = of_get_property(dp, "model", NULL);
3259         int is_qfe;
3260
3261         match = of_match_device(hme_sbus_match, &op->dev);
3262         if (!match)
3263                 return -EINVAL;
3264         is_qfe = (match->data != NULL);
3265
3266         if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3267                 is_qfe = 1;
3268
3269         return happy_meal_sbus_probe_one(op, is_qfe);
3270 }
3271
3272 static int hme_sbus_remove(struct platform_device *op)
3273 {
3274         struct happy_meal *hp = platform_get_drvdata(op);
3275         struct net_device *net_dev = hp->dev;
3276
3277         unregister_netdev(net_dev);
3278
3279         /* XXX qfe parent interrupt... */
3280
3281         of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3282         of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3283         of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3284         of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3285         of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3286         dma_free_coherent(hp->dma_dev,
3287                           PAGE_SIZE,
3288                           hp->happy_block,
3289                           hp->hblock_dvma);
3290
3291         free_netdev(net_dev);
3292
3293         return 0;
3294 }
3295
3296 static const struct of_device_id hme_sbus_match[] = {
3297         {
3298                 .name = "SUNW,hme",
3299         },
3300         {
3301                 .name = "SUNW,qfe",
3302                 .data = (void *) 1,
3303         },
3304         {
3305                 .name = "qfe",
3306                 .data = (void *) 1,
3307         },
3308         {},
3309 };
3310
3311 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3312
3313 static struct platform_driver hme_sbus_driver = {
3314         .driver = {
3315                 .name = "hme",
3316                 .of_match_table = hme_sbus_match,
3317         },
3318         .probe          = hme_sbus_probe,
3319         .remove         = hme_sbus_remove,
3320 };
3321
3322 static int __init happy_meal_sbus_init(void)
3323 {
3324         int err;
3325
3326         err = platform_driver_register(&hme_sbus_driver);
3327         if (!err)
3328                 err = quattro_sbus_register_irqs();
3329
3330         return err;
3331 }
3332
3333 static void happy_meal_sbus_exit(void)
3334 {
3335         platform_driver_unregister(&hme_sbus_driver);
3336         quattro_sbus_free_irqs();
3337
3338         while (qfe_sbus_list) {
3339                 struct quattro *qfe = qfe_sbus_list;
3340                 struct quattro *next = qfe->next;
3341
3342                 kfree(qfe);
3343
3344                 qfe_sbus_list = next;
3345         }
3346 }
3347 #endif
3348
3349 static int __init happy_meal_probe(void)
3350 {
3351         int err = 0;
3352
3353 #ifdef CONFIG_SBUS
3354         err = happy_meal_sbus_init();
3355 #endif
3356 #ifdef CONFIG_PCI
3357         if (!err) {
3358                 err = happy_meal_pci_init();
3359 #ifdef CONFIG_SBUS
3360                 if (err)
3361                         happy_meal_sbus_exit();
3362 #endif
3363         }
3364 #endif
3365
3366         return err;
3367 }
3368
3369
3370 static void __exit happy_meal_exit(void)
3371 {
3372 #ifdef CONFIG_SBUS
3373         happy_meal_sbus_exit();
3374 #endif
3375 #ifdef CONFIG_PCI
3376         happy_meal_pci_exit();
3377 #endif
3378 }
3379
3380 module_init(happy_meal_probe);
3381 module_exit(happy_meal_exit);