Merge branch '1GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/tnguy/net-queue
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igc / igc_ptp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3
4 #include "igc.h"
5
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14
15 #define INCVALUE_MASK           0x7fffffff
16 #define ISGN                    0x80000000
17
18 #define IGC_PTP_TX_TIMEOUT              (HZ * 15)
19
20 #define IGC_PTM_STAT_SLEEP              2
21 #define IGC_PTM_STAT_TIMEOUT            100
22
23 /* SYSTIM read access for I225 */
24 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25 {
26         struct igc_hw *hw = &adapter->hw;
27         u32 sec, nsec;
28
29         /* The timestamp is latched when SYSTIML is read. */
30         nsec = rd32(IGC_SYSTIML);
31         sec = rd32(IGC_SYSTIMH);
32
33         ts->tv_sec = sec;
34         ts->tv_nsec = nsec;
35 }
36
37 static void igc_ptp_write_i225(struct igc_adapter *adapter,
38                                const struct timespec64 *ts)
39 {
40         struct igc_hw *hw = &adapter->hw;
41
42         wr32(IGC_SYSTIML, ts->tv_nsec);
43         wr32(IGC_SYSTIMH, ts->tv_sec);
44 }
45
46 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47 {
48         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49                                                ptp_caps);
50         struct igc_hw *hw = &igc->hw;
51         int neg_adj = 0;
52         u64 rate;
53         u32 inca;
54
55         if (scaled_ppm < 0) {
56                 neg_adj = 1;
57                 scaled_ppm = -scaled_ppm;
58         }
59         rate = scaled_ppm;
60         rate <<= 14;
61         rate = div_u64(rate, 78125);
62
63         inca = rate & INCVALUE_MASK;
64         if (neg_adj)
65                 inca |= ISGN;
66
67         wr32(IGC_TIMINCA, inca);
68
69         return 0;
70 }
71
72 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73 {
74         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75                                                ptp_caps);
76         struct timespec64 now, then = ns_to_timespec64(delta);
77         unsigned long flags;
78
79         spin_lock_irqsave(&igc->tmreg_lock, flags);
80
81         igc_ptp_read(igc, &now);
82         now = timespec64_add(now, then);
83         igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84
85         spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86
87         return 0;
88 }
89
90 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91                                    struct timespec64 *ts,
92                                    struct ptp_system_timestamp *sts)
93 {
94         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95                                                ptp_caps);
96         struct igc_hw *hw = &igc->hw;
97         unsigned long flags;
98
99         spin_lock_irqsave(&igc->tmreg_lock, flags);
100
101         ptp_read_system_prets(sts);
102         ts->tv_nsec = rd32(IGC_SYSTIML);
103         ts->tv_sec = rd32(IGC_SYSTIMH);
104         ptp_read_system_postts(sts);
105
106         spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107
108         return 0;
109 }
110
111 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112                                 const struct timespec64 *ts)
113 {
114         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115                                                ptp_caps);
116         unsigned long flags;
117
118         spin_lock_irqsave(&igc->tmreg_lock, flags);
119
120         igc_ptp_write_i225(igc, ts);
121
122         spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123
124         return 0;
125 }
126
127 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128 {
129         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130         static const u32 mask[IGC_N_SDP] = {
131                 IGC_CTRL_SDP0_DIR,
132                 IGC_CTRL_SDP1_DIR,
133                 IGC_CTRL_EXT_SDP2_DIR,
134                 IGC_CTRL_EXT_SDP3_DIR,
135         };
136
137         if (input)
138                 *ptr &= ~mask[pin];
139         else
140                 *ptr |= mask[pin];
141 }
142
143 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144 {
145         static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146                 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147         };
148         static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149                 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150         };
151         static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152                 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153         };
154         static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155                 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156                 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157         };
158         static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159                 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160                 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161         };
162         static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163                 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164                 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165         };
166         static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167                 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168                 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169         };
170         static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171                 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172                 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173         };
174         struct igc_hw *hw = &igc->hw;
175         u32 ctrl, ctrl_ext, tssdp = 0;
176
177         ctrl = rd32(IGC_CTRL);
178         ctrl_ext = rd32(IGC_CTRL_EXT);
179         tssdp = rd32(IGC_TSSDP);
180
181         igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182
183         /* Make sure this pin is not enabled as an input. */
184         if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185                 tssdp &= ~IGC_AUX0_TS_SDP_EN;
186
187         if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188                 tssdp &= ~IGC_AUX1_TS_SDP_EN;
189
190         tssdp &= ~igc_ts_sdp_sel_clr[pin];
191         if (freq) {
192                 if (chan == 1)
193                         tssdp |= igc_ts_sdp_sel_fc1[pin];
194                 else
195                         tssdp |= igc_ts_sdp_sel_fc0[pin];
196         } else {
197                 if (chan == 1)
198                         tssdp |= igc_ts_sdp_sel_tt1[pin];
199                 else
200                         tssdp |= igc_ts_sdp_sel_tt0[pin];
201         }
202         tssdp |= igc_ts_sdp_en[pin];
203
204         wr32(IGC_TSSDP, tssdp);
205         wr32(IGC_CTRL, ctrl);
206         wr32(IGC_CTRL_EXT, ctrl_ext);
207 }
208
209 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210 {
211         static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212                 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213         };
214         static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215                 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216         };
217         static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218                 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219         };
220         struct igc_hw *hw = &igc->hw;
221         u32 ctrl, ctrl_ext, tssdp = 0;
222
223         ctrl = rd32(IGC_CTRL);
224         ctrl_ext = rd32(IGC_CTRL_EXT);
225         tssdp = rd32(IGC_TSSDP);
226
227         igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228
229         /* Make sure this pin is not enabled as an output. */
230         tssdp &= ~igc_ts_sdp_en[pin];
231
232         if (chan == 1) {
233                 tssdp &= ~IGC_AUX1_SEL_SDP3;
234                 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235         } else {
236                 tssdp &= ~IGC_AUX0_SEL_SDP3;
237                 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238         }
239
240         wr32(IGC_TSSDP, tssdp);
241         wr32(IGC_CTRL, ctrl);
242         wr32(IGC_CTRL_EXT, ctrl_ext);
243 }
244
245 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246                                        struct ptp_clock_request *rq, int on)
247 {
248         struct igc_adapter *igc =
249                 container_of(ptp, struct igc_adapter, ptp_caps);
250         struct igc_hw *hw = &igc->hw;
251         unsigned long flags;
252         struct timespec64 ts;
253         int use_freq = 0, pin = -1;
254         u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255         s64 ns;
256
257         switch (rq->type) {
258         case PTP_CLK_REQ_EXTTS:
259                 /* Reject requests with unsupported flags */
260                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261                                         PTP_RISING_EDGE |
262                                         PTP_FALLING_EDGE |
263                                         PTP_STRICT_FLAGS))
264                         return -EOPNOTSUPP;
265
266                 /* Reject requests failing to enable both edges. */
267                 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268                     (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269                     (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270                         return -EOPNOTSUPP;
271
272                 if (on) {
273                         pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274                                            rq->extts.index);
275                         if (pin < 0)
276                                 return -EBUSY;
277                 }
278                 if (rq->extts.index == 1) {
279                         tsauxc_mask = IGC_TSAUXC_EN_TS1;
280                         tsim_mask = IGC_TSICR_AUTT1;
281                 } else {
282                         tsauxc_mask = IGC_TSAUXC_EN_TS0;
283                         tsim_mask = IGC_TSICR_AUTT0;
284                 }
285                 spin_lock_irqsave(&igc->tmreg_lock, flags);
286                 tsauxc = rd32(IGC_TSAUXC);
287                 tsim = rd32(IGC_TSIM);
288                 if (on) {
289                         igc_pin_extts(igc, rq->extts.index, pin);
290                         tsauxc |= tsauxc_mask;
291                         tsim |= tsim_mask;
292                 } else {
293                         tsauxc &= ~tsauxc_mask;
294                         tsim &= ~tsim_mask;
295                 }
296                 wr32(IGC_TSAUXC, tsauxc);
297                 wr32(IGC_TSIM, tsim);
298                 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299                 return 0;
300
301         case PTP_CLK_REQ_PEROUT:
302                 /* Reject requests with unsupported flags */
303                 if (rq->perout.flags)
304                         return -EOPNOTSUPP;
305
306                 if (on) {
307                         pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308                                            rq->perout.index);
309                         if (pin < 0)
310                                 return -EBUSY;
311                 }
312                 ts.tv_sec = rq->perout.period.sec;
313                 ts.tv_nsec = rq->perout.period.nsec;
314                 ns = timespec64_to_ns(&ts);
315                 ns = ns >> 1;
316                 if (on && (ns <= 70000000LL || ns == 125000000LL ||
317                            ns == 250000000LL || ns == 500000000LL)) {
318                         if (ns < 8LL)
319                                 return -EINVAL;
320                         use_freq = 1;
321                 }
322                 ts = ns_to_timespec64(ns);
323                 if (rq->perout.index == 1) {
324                         if (use_freq) {
325                                 tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326                                 tsim_mask = 0;
327                         } else {
328                                 tsauxc_mask = IGC_TSAUXC_EN_TT1;
329                                 tsim_mask = IGC_TSICR_TT1;
330                         }
331                         trgttiml = IGC_TRGTTIML1;
332                         trgttimh = IGC_TRGTTIMH1;
333                         freqout = IGC_FREQOUT1;
334                 } else {
335                         if (use_freq) {
336                                 tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337                                 tsim_mask = 0;
338                         } else {
339                                 tsauxc_mask = IGC_TSAUXC_EN_TT0;
340                                 tsim_mask = IGC_TSICR_TT0;
341                         }
342                         trgttiml = IGC_TRGTTIML0;
343                         trgttimh = IGC_TRGTTIMH0;
344                         freqout = IGC_FREQOUT0;
345                 }
346                 spin_lock_irqsave(&igc->tmreg_lock, flags);
347                 tsauxc = rd32(IGC_TSAUXC);
348                 tsim = rd32(IGC_TSIM);
349                 if (rq->perout.index == 1) {
350                         tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351                                     IGC_TSAUXC_ST1);
352                         tsim &= ~IGC_TSICR_TT1;
353                 } else {
354                         tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355                                     IGC_TSAUXC_ST0);
356                         tsim &= ~IGC_TSICR_TT0;
357                 }
358                 if (on) {
359                         struct timespec64 safe_start;
360                         int i = rq->perout.index;
361
362                         igc_pin_perout(igc, i, pin, use_freq);
363                         igc_ptp_read(igc, &safe_start);
364
365                         /* PPS output start time is triggered by Target time(TT)
366                          * register. Programming any past time value into TT
367                          * register will cause PPS to never start. Need to make
368                          * sure we program the TT register a time ahead in
369                          * future. There isn't a stringent need to fire PPS out
370                          * right away. Adding +2 seconds should take care of
371                          * corner cases. Let's say if the SYSTIML is close to
372                          * wrap up and the timer keeps ticking as we program the
373                          * register, adding +2seconds is safe bet.
374                          */
375                         safe_start.tv_sec += 2;
376
377                         if (rq->perout.start.sec < safe_start.tv_sec)
378                                 igc->perout[i].start.tv_sec = safe_start.tv_sec;
379                         else
380                                 igc->perout[i].start.tv_sec = rq->perout.start.sec;
381                         igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
382                         igc->perout[i].period.tv_sec = ts.tv_sec;
383                         igc->perout[i].period.tv_nsec = ts.tv_nsec;
384                         wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
385                         /* For now, always select timer 0 as source. */
386                         wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
387                                              IGC_TT_IO_TIMER_SEL_SYSTIM0));
388                         if (use_freq)
389                                 wr32(freqout, ns);
390                         tsauxc |= tsauxc_mask;
391                         tsim |= tsim_mask;
392                 }
393                 wr32(IGC_TSAUXC, tsauxc);
394                 wr32(IGC_TSIM, tsim);
395                 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
396                 return 0;
397
398         case PTP_CLK_REQ_PPS:
399                 spin_lock_irqsave(&igc->tmreg_lock, flags);
400                 tsim = rd32(IGC_TSIM);
401                 if (on)
402                         tsim |= IGC_TSICR_SYS_WRAP;
403                 else
404                         tsim &= ~IGC_TSICR_SYS_WRAP;
405                 igc->pps_sys_wrap_on = on;
406                 wr32(IGC_TSIM, tsim);
407                 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
408                 return 0;
409
410         default:
411                 break;
412         }
413
414         return -EOPNOTSUPP;
415 }
416
417 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
418                               enum ptp_pin_function func, unsigned int chan)
419 {
420         switch (func) {
421         case PTP_PF_NONE:
422         case PTP_PF_EXTTS:
423         case PTP_PF_PEROUT:
424                 break;
425         case PTP_PF_PHYSYNC:
426                 return -1;
427         }
428         return 0;
429 }
430
431 /**
432  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
433  * @adapter: board private structure
434  * @hwtstamps: timestamp structure to update
435  * @systim: unsigned 64bit system time value
436  *
437  * We need to convert the system time value stored in the RX/TXSTMP registers
438  * into a hwtstamp which can be used by the upper level timestamping functions.
439  *
440  * Returns 0 on success.
441  **/
442 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
443                                       struct skb_shared_hwtstamps *hwtstamps,
444                                       u64 systim)
445 {
446         switch (adapter->hw.mac.type) {
447         case igc_i225:
448                 memset(hwtstamps, 0, sizeof(*hwtstamps));
449                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
450                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
451                                                 systim & 0xFFFFFFFF);
452                 break;
453         default:
454                 return -EINVAL;
455         }
456         return 0;
457 }
458
459 /**
460  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
461  * @adapter: Pointer to adapter the packet buffer belongs to
462  * @buf: Pointer to packet buffer
463  *
464  * This function retrieves the timestamp saved in the beginning of packet
465  * buffer. While two timestamps are available, one in timer0 reference and the
466  * other in timer1 reference, this function considers only the timestamp in
467  * timer0 reference.
468  *
469  * Returns timestamp value.
470  */
471 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
472 {
473         ktime_t timestamp;
474         u32 secs, nsecs;
475         int adjust;
476
477         /* Timestamps are saved in little endian at the beginning of the packet
478          * buffer following the layout:
479          *
480          * DWORD: | 0              | 1              | 2              | 3              |
481          * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
482          *
483          * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
484          * part of the timestamp.
485          */
486         nsecs = le32_to_cpu(buf[2]);
487         secs = le32_to_cpu(buf[3]);
488
489         timestamp = ktime_set(secs, nsecs);
490
491         /* Adjust timestamp for the RX latency based on link speed */
492         switch (adapter->link_speed) {
493         case SPEED_10:
494                 adjust = IGC_I225_RX_LATENCY_10;
495                 break;
496         case SPEED_100:
497                 adjust = IGC_I225_RX_LATENCY_100;
498                 break;
499         case SPEED_1000:
500                 adjust = IGC_I225_RX_LATENCY_1000;
501                 break;
502         case SPEED_2500:
503                 adjust = IGC_I225_RX_LATENCY_2500;
504                 break;
505         default:
506                 adjust = 0;
507                 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
508                 break;
509         }
510
511         return ktime_sub_ns(timestamp, adjust);
512 }
513
514 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
515 {
516         struct igc_hw *hw = &adapter->hw;
517         u32 val;
518         int i;
519
520         wr32(IGC_TSYNCRXCTL, 0);
521
522         for (i = 0; i < adapter->num_rx_queues; i++) {
523                 val = rd32(IGC_SRRCTL(i));
524                 val &= ~IGC_SRRCTL_TIMESTAMP;
525                 wr32(IGC_SRRCTL(i), val);
526         }
527
528         val = rd32(IGC_RXPBS);
529         val &= ~IGC_RXPBS_CFG_TS_EN;
530         wr32(IGC_RXPBS, val);
531 }
532
533 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
534 {
535         struct igc_hw *hw = &adapter->hw;
536         u32 val;
537         int i;
538
539         val = rd32(IGC_RXPBS);
540         val |= IGC_RXPBS_CFG_TS_EN;
541         wr32(IGC_RXPBS, val);
542
543         for (i = 0; i < adapter->num_rx_queues; i++) {
544                 val = rd32(IGC_SRRCTL(i));
545                 /* FIXME: For now, only support retrieving RX timestamps from
546                  * timer 0.
547                  */
548                 val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
549                        IGC_SRRCTL_TIMESTAMP;
550                 wr32(IGC_SRRCTL(i), val);
551         }
552
553         val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
554               IGC_TSYNCRXCTL_RXSYNSIG;
555         wr32(IGC_TSYNCRXCTL, val);
556 }
557
558 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
559 {
560         unsigned long flags;
561
562         spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
563
564         dev_kfree_skb_any(adapter->ptp_tx_skb);
565         adapter->ptp_tx_skb = NULL;
566
567         spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
568 }
569
570 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
571 {
572         struct igc_hw *hw = &adapter->hw;
573         int i;
574
575         /* Clear the flags first to avoid new packets to be enqueued
576          * for TX timestamping.
577          */
578         for (i = 0; i < adapter->num_tx_queues; i++) {
579                 struct igc_ring *tx_ring = adapter->tx_ring[i];
580
581                 clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
582         }
583
584         /* Now we can clean the pending TX timestamp requests. */
585         igc_ptp_clear_tx_tstamp(adapter);
586
587         wr32(IGC_TSYNCTXCTL, 0);
588 }
589
590 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
591 {
592         struct igc_hw *hw = &adapter->hw;
593         int i;
594
595         wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
596
597         /* Read TXSTMP registers to discard any timestamp previously stored. */
598         rd32(IGC_TXSTMPL);
599         rd32(IGC_TXSTMPH);
600
601         /* The hardware is ready to accept TX timestamp requests,
602          * notify the transmit path.
603          */
604         for (i = 0; i < adapter->num_tx_queues; i++) {
605                 struct igc_ring *tx_ring = adapter->tx_ring[i];
606
607                 set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
608         }
609
610 }
611
612 /**
613  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
614  * @adapter: networking device structure
615  * @config: hwtstamp configuration
616  *
617  * Return: 0 in case of success, negative errno code otherwise.
618  */
619 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
620                                       struct hwtstamp_config *config)
621 {
622         switch (config->tx_type) {
623         case HWTSTAMP_TX_OFF:
624                 igc_ptp_disable_tx_timestamp(adapter);
625                 break;
626         case HWTSTAMP_TX_ON:
627                 igc_ptp_enable_tx_timestamp(adapter);
628                 break;
629         default:
630                 return -ERANGE;
631         }
632
633         switch (config->rx_filter) {
634         case HWTSTAMP_FILTER_NONE:
635                 igc_ptp_disable_rx_timestamp(adapter);
636                 break;
637         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
638         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
639         case HWTSTAMP_FILTER_PTP_V2_EVENT:
640         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
641         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
642         case HWTSTAMP_FILTER_PTP_V2_SYNC:
643         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
644         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
645         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
646         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
647         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
648         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
649         case HWTSTAMP_FILTER_NTP_ALL:
650         case HWTSTAMP_FILTER_ALL:
651                 igc_ptp_enable_rx_timestamp(adapter);
652                 config->rx_filter = HWTSTAMP_FILTER_ALL;
653                 break;
654         default:
655                 return -ERANGE;
656         }
657
658         return 0;
659 }
660
661 /* Requires adapter->ptp_tx_lock held by caller. */
662 static void igc_ptp_tx_timeout(struct igc_adapter *adapter)
663 {
664         struct igc_hw *hw = &adapter->hw;
665
666         dev_kfree_skb_any(adapter->ptp_tx_skb);
667         adapter->ptp_tx_skb = NULL;
668         adapter->tx_hwtstamp_timeouts++;
669         /* Clear the tx valid bit in TSYNCTXCTL register to enable interrupt. */
670         rd32(IGC_TXSTMPH);
671         netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
672 }
673
674 void igc_ptp_tx_hang(struct igc_adapter *adapter)
675 {
676         unsigned long flags;
677
678         spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
679
680         if (!adapter->ptp_tx_skb)
681                 goto unlock;
682
683         if (time_is_after_jiffies(adapter->ptp_tx_start + IGC_PTP_TX_TIMEOUT))
684                 goto unlock;
685
686         igc_ptp_tx_timeout(adapter);
687
688 unlock:
689         spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
690 }
691
692 /**
693  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
694  * @adapter: Board private structure
695  *
696  * If we were asked to do hardware stamping and such a time stamp is
697  * available, then it must have been for this skb here because we only
698  * allow only one such packet into the queue.
699  *
700  * Context: Expects adapter->ptp_tx_lock to be held by caller.
701  */
702 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
703 {
704         struct sk_buff *skb = adapter->ptp_tx_skb;
705         struct skb_shared_hwtstamps shhwtstamps;
706         struct igc_hw *hw = &adapter->hw;
707         u32 tsynctxctl;
708         int adjust = 0;
709         u64 regval;
710
711         if (WARN_ON_ONCE(!skb))
712                 return;
713
714         tsynctxctl = rd32(IGC_TSYNCTXCTL);
715         tsynctxctl &= IGC_TSYNCTXCTL_TXTT_0;
716         if (tsynctxctl) {
717                 regval = rd32(IGC_TXSTMPL);
718                 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
719         } else {
720                 /* There's a bug in the hardware that could cause
721                  * missing interrupts for TX timestamping. The issue
722                  * is that for new interrupts to be triggered, the
723                  * IGC_TXSTMPH_0 register must be read.
724                  *
725                  * To avoid discarding a valid timestamp that just
726                  * happened at the "wrong" time, we need to confirm
727                  * that there was no timestamp captured, we do that by
728                  * assuming that no two timestamps in sequence have
729                  * the same nanosecond value.
730                  *
731                  * So, we read the "low" register, read the "high"
732                  * register (to latch a new timestamp) and read the
733                  * "low" register again, if "old" and "new" versions
734                  * of the "low" register are different, a valid
735                  * timestamp was captured, we can read the "high"
736                  * register again.
737                  */
738                 u32 txstmpl_old, txstmpl_new;
739
740                 txstmpl_old = rd32(IGC_TXSTMPL);
741                 rd32(IGC_TXSTMPH);
742                 txstmpl_new = rd32(IGC_TXSTMPL);
743
744                 if (txstmpl_old == txstmpl_new)
745                         return;
746
747                 regval = txstmpl_new;
748                 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
749         }
750         if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
751                 return;
752
753         switch (adapter->link_speed) {
754         case SPEED_10:
755                 adjust = IGC_I225_TX_LATENCY_10;
756                 break;
757         case SPEED_100:
758                 adjust = IGC_I225_TX_LATENCY_100;
759                 break;
760         case SPEED_1000:
761                 adjust = IGC_I225_TX_LATENCY_1000;
762                 break;
763         case SPEED_2500:
764                 adjust = IGC_I225_TX_LATENCY_2500;
765                 break;
766         }
767
768         shhwtstamps.hwtstamp =
769                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
770
771         adapter->ptp_tx_skb = NULL;
772
773         /* Notify the stack and free the skb after we've unlocked */
774         skb_tstamp_tx(skb, &shhwtstamps);
775         dev_kfree_skb_any(skb);
776 }
777
778 /**
779  * igc_ptp_tx_tstamp_event
780  * @adapter: board private structure
781  *
782  * Called when a TX timestamp interrupt happens to retrieve the
783  * timestamp and send it up to the socket.
784  */
785 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
786 {
787         unsigned long flags;
788
789         spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
790
791         if (!adapter->ptp_tx_skb)
792                 goto unlock;
793
794         igc_ptp_tx_hwtstamp(adapter);
795
796 unlock:
797         spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
798 }
799
800 /**
801  * igc_ptp_set_ts_config - set hardware time stamping config
802  * @netdev: network interface device structure
803  * @ifr: interface request data
804  *
805  **/
806 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
807 {
808         struct igc_adapter *adapter = netdev_priv(netdev);
809         struct hwtstamp_config config;
810         int err;
811
812         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
813                 return -EFAULT;
814
815         err = igc_ptp_set_timestamp_mode(adapter, &config);
816         if (err)
817                 return err;
818
819         /* save these settings for future reference */
820         memcpy(&adapter->tstamp_config, &config,
821                sizeof(adapter->tstamp_config));
822
823         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
824                 -EFAULT : 0;
825 }
826
827 /**
828  * igc_ptp_get_ts_config - get hardware time stamping config
829  * @netdev: network interface device structure
830  * @ifr: interface request data
831  *
832  * Get the hwtstamp_config settings to return to the user. Rather than attempt
833  * to deconstruct the settings from the registers, just return a shadow copy
834  * of the last known settings.
835  **/
836 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
837 {
838         struct igc_adapter *adapter = netdev_priv(netdev);
839         struct hwtstamp_config *config = &adapter->tstamp_config;
840
841         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
842                 -EFAULT : 0;
843 }
844
845 /* The two conditions below must be met for cross timestamping via
846  * PCIe PTM:
847  *
848  * 1. We have an way to convert the timestamps in the PTM messages
849  *    to something related to the system clocks (right now, only
850  *    X86 systems with support for the Always Running Timer allow that);
851  *
852  * 2. We have PTM enabled in the path from the device to the PCIe root port.
853  */
854 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
855 {
856         if (!IS_ENABLED(CONFIG_X86_TSC))
857                 return false;
858
859         /* FIXME: it was noticed that enabling support for PCIe PTM in
860          * some i225-V models could cause lockups when bringing the
861          * interface up/down. There should be no downsides to
862          * disabling crosstimestamping support for i225-V, as it
863          * doesn't have any PTP support. That way we gain some time
864          * while root causing the issue.
865          */
866         if (adapter->pdev->device == IGC_DEV_ID_I225_V)
867                 return false;
868
869         return pcie_ptm_enabled(adapter->pdev);
870 }
871
872 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
873 {
874 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
875         return convert_art_ns_to_tsc(tstamp);
876 #else
877         return (struct system_counterval_t) { };
878 #endif
879 }
880
881 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
882 {
883         struct net_device *netdev = adapter->netdev;
884
885         switch (ptm_stat) {
886         case IGC_PTM_STAT_RET_ERR:
887                 netdev_err(netdev, "PTM Error: Root port timeout\n");
888                 break;
889         case IGC_PTM_STAT_BAD_PTM_RES:
890                 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
891                 break;
892         case IGC_PTM_STAT_T4M1_OVFL:
893                 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
894                 break;
895         case IGC_PTM_STAT_ADJUST_1ST:
896                 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
897                 break;
898         case IGC_PTM_STAT_ADJUST_CYC:
899                 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
900                 break;
901         default:
902                 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
903                 break;
904         }
905 }
906
907 static int igc_phc_get_syncdevicetime(ktime_t *device,
908                                       struct system_counterval_t *system,
909                                       void *ctx)
910 {
911         u32 stat, t2_curr_h, t2_curr_l, ctrl;
912         struct igc_adapter *adapter = ctx;
913         struct igc_hw *hw = &adapter->hw;
914         int err, count = 100;
915         ktime_t t1, t2_curr;
916
917         /* Get a snapshot of system clocks to use as historic value. */
918         ktime_get_snapshot(&adapter->snapshot);
919
920         do {
921                 /* Doing this in a loop because in the event of a
922                  * badly timed (ha!) system clock adjustment, we may
923                  * get PTM errors from the PCI root, but these errors
924                  * are transitory. Repeating the process returns valid
925                  * data eventually.
926                  */
927
928                 /* To "manually" start the PTM cycle we need to clear and
929                  * then set again the TRIG bit.
930                  */
931                 ctrl = rd32(IGC_PTM_CTRL);
932                 ctrl &= ~IGC_PTM_CTRL_TRIG;
933                 wr32(IGC_PTM_CTRL, ctrl);
934                 ctrl |= IGC_PTM_CTRL_TRIG;
935                 wr32(IGC_PTM_CTRL, ctrl);
936
937                 /* The cycle only starts "for real" when software notifies
938                  * that it has read the registers, this is done by setting
939                  * VALID bit.
940                  */
941                 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
942
943                 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
944                                          stat, IGC_PTM_STAT_SLEEP,
945                                          IGC_PTM_STAT_TIMEOUT);
946                 if (err < 0) {
947                         netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
948                         return err;
949                 }
950
951                 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
952                         break;
953
954                 if (stat & ~IGC_PTM_STAT_VALID) {
955                         /* An error occurred, log it. */
956                         igc_ptm_log_error(adapter, stat);
957                         /* The STAT register is write-1-to-clear (W1C),
958                          * so write the previous error status to clear it.
959                          */
960                         wr32(IGC_PTM_STAT, stat);
961                         continue;
962                 }
963         } while (--count);
964
965         if (!count) {
966                 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
967                 return -ETIMEDOUT;
968         }
969
970         t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
971
972         t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
973         t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
974
975         /* FIXME: When the register that tells the endianness of the
976          * PTM registers are implemented, check them here and add the
977          * appropriate conversion.
978          */
979         t2_curr_h = swab32(t2_curr_h);
980
981         t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
982
983         *device = t1;
984         *system = igc_device_tstamp_to_system(t2_curr);
985
986         return 0;
987 }
988
989 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
990                                   struct system_device_crosststamp *cts)
991 {
992         struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
993                                                    ptp_caps);
994
995         return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
996                                              adapter, &adapter->snapshot, cts);
997 }
998
999 /**
1000  * igc_ptp_init - Initialize PTP functionality
1001  * @adapter: Board private structure
1002  *
1003  * This function is called at device probe to initialize the PTP
1004  * functionality.
1005  */
1006 void igc_ptp_init(struct igc_adapter *adapter)
1007 {
1008         struct net_device *netdev = adapter->netdev;
1009         struct igc_hw *hw = &adapter->hw;
1010         int i;
1011
1012         switch (hw->mac.type) {
1013         case igc_i225:
1014                 for (i = 0; i < IGC_N_SDP; i++) {
1015                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1016
1017                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1018                         ppd->index = i;
1019                         ppd->func = PTP_PF_NONE;
1020                 }
1021                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1022                 adapter->ptp_caps.owner = THIS_MODULE;
1023                 adapter->ptp_caps.max_adj = 62499999;
1024                 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1025                 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1026                 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1027                 adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1028                 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1029                 adapter->ptp_caps.pps = 1;
1030                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1031                 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1032                 adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1033                 adapter->ptp_caps.n_pins = IGC_N_SDP;
1034                 adapter->ptp_caps.verify = igc_ptp_verify_pin;
1035
1036                 if (!igc_is_crosststamp_supported(adapter))
1037                         break;
1038
1039                 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1040                 break;
1041         default:
1042                 adapter->ptp_clock = NULL;
1043                 return;
1044         }
1045
1046         spin_lock_init(&adapter->ptp_tx_lock);
1047         spin_lock_init(&adapter->tmreg_lock);
1048
1049         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1050         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1051
1052         adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1053         adapter->ptp_reset_start = ktime_get();
1054
1055         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1056                                                 &adapter->pdev->dev);
1057         if (IS_ERR(adapter->ptp_clock)) {
1058                 adapter->ptp_clock = NULL;
1059                 netdev_err(netdev, "ptp_clock_register failed\n");
1060         } else if (adapter->ptp_clock) {
1061                 netdev_info(netdev, "PHC added\n");
1062                 adapter->ptp_flags |= IGC_PTP_ENABLED;
1063         }
1064 }
1065
1066 static void igc_ptp_time_save(struct igc_adapter *adapter)
1067 {
1068         igc_ptp_read(adapter, &adapter->prev_ptp_time);
1069         adapter->ptp_reset_start = ktime_get();
1070 }
1071
1072 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1073 {
1074         struct timespec64 ts = adapter->prev_ptp_time;
1075         ktime_t delta;
1076
1077         delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1078
1079         timespec64_add_ns(&ts, ktime_to_ns(delta));
1080
1081         igc_ptp_write_i225(adapter, &ts);
1082 }
1083
1084 static void igc_ptm_stop(struct igc_adapter *adapter)
1085 {
1086         struct igc_hw *hw = &adapter->hw;
1087         u32 ctrl;
1088
1089         ctrl = rd32(IGC_PTM_CTRL);
1090         ctrl &= ~IGC_PTM_CTRL_EN;
1091
1092         wr32(IGC_PTM_CTRL, ctrl);
1093 }
1094
1095 /**
1096  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1097  * @adapter: Board private structure
1098  *
1099  * This function stops the overflow check work and PTP Tx timestamp work, and
1100  * will prepare the device for OS suspend.
1101  */
1102 void igc_ptp_suspend(struct igc_adapter *adapter)
1103 {
1104         if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1105                 return;
1106
1107         igc_ptp_clear_tx_tstamp(adapter);
1108
1109         if (pci_device_is_present(adapter->pdev)) {
1110                 igc_ptp_time_save(adapter);
1111                 igc_ptm_stop(adapter);
1112         }
1113 }
1114
1115 /**
1116  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1117  * @adapter: Board private structure.
1118  *
1119  * This function stops the PTP support and cancels the delayed work.
1120  **/
1121 void igc_ptp_stop(struct igc_adapter *adapter)
1122 {
1123         igc_ptp_suspend(adapter);
1124
1125         if (adapter->ptp_clock) {
1126                 ptp_clock_unregister(adapter->ptp_clock);
1127                 netdev_info(adapter->netdev, "PHC removed\n");
1128                 adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1129         }
1130 }
1131
1132 /**
1133  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1134  * @adapter: Board private structure.
1135  *
1136  * This function handles the reset work required to re-enable the PTP device.
1137  **/
1138 void igc_ptp_reset(struct igc_adapter *adapter)
1139 {
1140         struct igc_hw *hw = &adapter->hw;
1141         u32 cycle_ctrl, ctrl;
1142         unsigned long flags;
1143         u32 timadj;
1144
1145         /* reset the tstamp_config */
1146         igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1147
1148         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1149
1150         switch (adapter->hw.mac.type) {
1151         case igc_i225:
1152                 timadj = rd32(IGC_TIMADJ);
1153                 timadj |= IGC_TIMADJ_ADJUST_METH;
1154                 wr32(IGC_TIMADJ, timadj);
1155
1156                 wr32(IGC_TSAUXC, 0x0);
1157                 wr32(IGC_TSSDP, 0x0);
1158                 wr32(IGC_TSIM,
1159                      IGC_TSICR_INTERRUPTS |
1160                      (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1161                 wr32(IGC_IMS, IGC_IMS_TS);
1162
1163                 if (!igc_is_crosststamp_supported(adapter))
1164                         break;
1165
1166                 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1167                 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1168
1169                 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1170
1171                 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1172
1173                 ctrl = IGC_PTM_CTRL_EN |
1174                         IGC_PTM_CTRL_START_NOW |
1175                         IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1176                         IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1177                         IGC_PTM_CTRL_TRIG;
1178
1179                 wr32(IGC_PTM_CTRL, ctrl);
1180
1181                 /* Force the first cycle to run. */
1182                 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1183
1184                 break;
1185         default:
1186                 /* No work to do. */
1187                 goto out;
1188         }
1189
1190         /* Re-initialize the timer. */
1191         if (hw->mac.type == igc_i225) {
1192                 igc_ptp_time_restore(adapter);
1193         } else {
1194                 timecounter_init(&adapter->tc, &adapter->cc,
1195                                  ktime_to_ns(ktime_get_real()));
1196         }
1197 out:
1198         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1199
1200         wrfl();
1201 }