net: intel: Cleanup the copyright/license headers
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24
25 #include "igbvf.h"
26
27 #define DRV_VERSION "2.4.0-k"
28 char igbvf_driver_name[] = "igbvf";
29 const char igbvf_driver_version[] = DRV_VERSION;
30 static const char igbvf_driver_string[] =
31                   "Intel(R) Gigabit Virtual Function Network Driver";
32 static const char igbvf_copyright[] =
33                   "Copyright (c) 2009 - 2012 Intel Corporation.";
34
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 static int igbvf_poll(struct napi_struct *napi, int budget);
41 static void igbvf_reset(struct igbvf_adapter *);
42 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
43 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
44
45 static struct igbvf_info igbvf_vf_info = {
46         .mac            = e1000_vfadapt,
47         .flags          = 0,
48         .pba            = 10,
49         .init_ops       = e1000_init_function_pointers_vf,
50 };
51
52 static struct igbvf_info igbvf_i350_vf_info = {
53         .mac            = e1000_vfadapt_i350,
54         .flags          = 0,
55         .pba            = 10,
56         .init_ops       = e1000_init_function_pointers_vf,
57 };
58
59 static const struct igbvf_info *igbvf_info_tbl[] = {
60         [board_vf]      = &igbvf_vf_info,
61         [board_i350_vf] = &igbvf_i350_vf_info,
62 };
63
64 /**
65  * igbvf_desc_unused - calculate if we have unused descriptors
66  * @rx_ring: address of receive ring structure
67  **/
68 static int igbvf_desc_unused(struct igbvf_ring *ring)
69 {
70         if (ring->next_to_clean > ring->next_to_use)
71                 return ring->next_to_clean - ring->next_to_use - 1;
72
73         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
74 }
75
76 /**
77  * igbvf_receive_skb - helper function to handle Rx indications
78  * @adapter: board private structure
79  * @status: descriptor status field as written by hardware
80  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81  * @skb: pointer to sk_buff to be indicated to stack
82  **/
83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84                               struct net_device *netdev,
85                               struct sk_buff *skb,
86                               u32 status, u16 vlan)
87 {
88         u16 vid;
89
90         if (status & E1000_RXD_STAT_VP) {
91                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92                     (status & E1000_RXDEXT_STATERR_LB))
93                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94                 else
95                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96                 if (test_bit(vid, adapter->active_vlans))
97                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98         }
99
100         napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104                                          u32 status_err, struct sk_buff *skb)
105 {
106         skb_checksum_none_assert(skb);
107
108         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109         if ((status_err & E1000_RXD_STAT_IXSM) ||
110             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111                 return;
112
113         /* TCP/UDP checksum error bit is set */
114         if (status_err &
115             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116                 /* let the stack verify checksum errors */
117                 adapter->hw_csum_err++;
118                 return;
119         }
120
121         /* It must be a TCP or UDP packet with a valid checksum */
122         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123                 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125         adapter->hw_csum_good++;
126 }
127
128 /**
129  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130  * @rx_ring: address of ring structure to repopulate
131  * @cleaned_count: number of buffers to repopulate
132  **/
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134                                    int cleaned_count)
135 {
136         struct igbvf_adapter *adapter = rx_ring->adapter;
137         struct net_device *netdev = adapter->netdev;
138         struct pci_dev *pdev = adapter->pdev;
139         union e1000_adv_rx_desc *rx_desc;
140         struct igbvf_buffer *buffer_info;
141         struct sk_buff *skb;
142         unsigned int i;
143         int bufsz;
144
145         i = rx_ring->next_to_use;
146         buffer_info = &rx_ring->buffer_info[i];
147
148         if (adapter->rx_ps_hdr_size)
149                 bufsz = adapter->rx_ps_hdr_size;
150         else
151                 bufsz = adapter->rx_buffer_len;
152
153         while (cleaned_count--) {
154                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157                         if (!buffer_info->page) {
158                                 buffer_info->page = alloc_page(GFP_ATOMIC);
159                                 if (!buffer_info->page) {
160                                         adapter->alloc_rx_buff_failed++;
161                                         goto no_buffers;
162                                 }
163                                 buffer_info->page_offset = 0;
164                         } else {
165                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
166                         }
167                         buffer_info->page_dma =
168                                 dma_map_page(&pdev->dev, buffer_info->page,
169                                              buffer_info->page_offset,
170                                              PAGE_SIZE / 2,
171                                              DMA_FROM_DEVICE);
172                         if (dma_mapping_error(&pdev->dev,
173                                               buffer_info->page_dma)) {
174                                 __free_page(buffer_info->page);
175                                 buffer_info->page = NULL;
176                                 dev_err(&pdev->dev, "RX DMA map failed\n");
177                                 break;
178                         }
179                 }
180
181                 if (!buffer_info->skb) {
182                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183                         if (!skb) {
184                                 adapter->alloc_rx_buff_failed++;
185                                 goto no_buffers;
186                         }
187
188                         buffer_info->skb = skb;
189                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190                                                           bufsz,
191                                                           DMA_FROM_DEVICE);
192                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193                                 dev_kfree_skb(buffer_info->skb);
194                                 buffer_info->skb = NULL;
195                                 dev_err(&pdev->dev, "RX DMA map failed\n");
196                                 goto no_buffers;
197                         }
198                 }
199                 /* Refresh the desc even if buffer_addrs didn't change because
200                  * each write-back erases this info.
201                  */
202                 if (adapter->rx_ps_hdr_size) {
203                         rx_desc->read.pkt_addr =
204                              cpu_to_le64(buffer_info->page_dma);
205                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206                 } else {
207                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208                         rx_desc->read.hdr_addr = 0;
209                 }
210
211                 i++;
212                 if (i == rx_ring->count)
213                         i = 0;
214                 buffer_info = &rx_ring->buffer_info[i];
215         }
216
217 no_buffers:
218         if (rx_ring->next_to_use != i) {
219                 rx_ring->next_to_use = i;
220                 if (i == 0)
221                         i = (rx_ring->count - 1);
222                 else
223                         i--;
224
225                 /* Force memory writes to complete before letting h/w
226                  * know there are new descriptors to fetch.  (Only
227                  * applicable for weak-ordered memory model archs,
228                  * such as IA-64).
229                 */
230                 wmb();
231                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232         }
233 }
234
235 /**
236  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237  * @adapter: board private structure
238  *
239  * the return value indicates whether actual cleaning was done, there
240  * is no guarantee that everything was cleaned
241  **/
242 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
243                                int *work_done, int work_to_do)
244 {
245         struct igbvf_ring *rx_ring = adapter->rx_ring;
246         struct net_device *netdev = adapter->netdev;
247         struct pci_dev *pdev = adapter->pdev;
248         union e1000_adv_rx_desc *rx_desc, *next_rxd;
249         struct igbvf_buffer *buffer_info, *next_buffer;
250         struct sk_buff *skb;
251         bool cleaned = false;
252         int cleaned_count = 0;
253         unsigned int total_bytes = 0, total_packets = 0;
254         unsigned int i;
255         u32 length, hlen, staterr;
256
257         i = rx_ring->next_to_clean;
258         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
259         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
260
261         while (staterr & E1000_RXD_STAT_DD) {
262                 if (*work_done >= work_to_do)
263                         break;
264                 (*work_done)++;
265                 rmb(); /* read descriptor and rx_buffer_info after status DD */
266
267                 buffer_info = &rx_ring->buffer_info[i];
268
269                 /* HW will not DMA in data larger than the given buffer, even
270                  * if it parses the (NFS, of course) header to be larger.  In
271                  * that case, it fills the header buffer and spills the rest
272                  * into the page.
273                  */
274                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
275                        & E1000_RXDADV_HDRBUFLEN_MASK) >>
276                        E1000_RXDADV_HDRBUFLEN_SHIFT;
277                 if (hlen > adapter->rx_ps_hdr_size)
278                         hlen = adapter->rx_ps_hdr_size;
279
280                 length = le16_to_cpu(rx_desc->wb.upper.length);
281                 cleaned = true;
282                 cleaned_count++;
283
284                 skb = buffer_info->skb;
285                 prefetch(skb->data - NET_IP_ALIGN);
286                 buffer_info->skb = NULL;
287                 if (!adapter->rx_ps_hdr_size) {
288                         dma_unmap_single(&pdev->dev, buffer_info->dma,
289                                          adapter->rx_buffer_len,
290                                          DMA_FROM_DEVICE);
291                         buffer_info->dma = 0;
292                         skb_put(skb, length);
293                         goto send_up;
294                 }
295
296                 if (!skb_shinfo(skb)->nr_frags) {
297                         dma_unmap_single(&pdev->dev, buffer_info->dma,
298                                          adapter->rx_ps_hdr_size,
299                                          DMA_FROM_DEVICE);
300                         buffer_info->dma = 0;
301                         skb_put(skb, hlen);
302                 }
303
304                 if (length) {
305                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
306                                        PAGE_SIZE / 2,
307                                        DMA_FROM_DEVICE);
308                         buffer_info->page_dma = 0;
309
310                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
311                                            buffer_info->page,
312                                            buffer_info->page_offset,
313                                            length);
314
315                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
316                             (page_count(buffer_info->page) != 1))
317                                 buffer_info->page = NULL;
318                         else
319                                 get_page(buffer_info->page);
320
321                         skb->len += length;
322                         skb->data_len += length;
323                         skb->truesize += PAGE_SIZE / 2;
324                 }
325 send_up:
326                 i++;
327                 if (i == rx_ring->count)
328                         i = 0;
329                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
330                 prefetch(next_rxd);
331                 next_buffer = &rx_ring->buffer_info[i];
332
333                 if (!(staterr & E1000_RXD_STAT_EOP)) {
334                         buffer_info->skb = next_buffer->skb;
335                         buffer_info->dma = next_buffer->dma;
336                         next_buffer->skb = skb;
337                         next_buffer->dma = 0;
338                         goto next_desc;
339                 }
340
341                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
342                         dev_kfree_skb_irq(skb);
343                         goto next_desc;
344                 }
345
346                 total_bytes += skb->len;
347                 total_packets++;
348
349                 igbvf_rx_checksum_adv(adapter, staterr, skb);
350
351                 skb->protocol = eth_type_trans(skb, netdev);
352
353                 igbvf_receive_skb(adapter, netdev, skb, staterr,
354                                   rx_desc->wb.upper.vlan);
355
356 next_desc:
357                 rx_desc->wb.upper.status_error = 0;
358
359                 /* return some buffers to hardware, one at a time is too slow */
360                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
361                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
362                         cleaned_count = 0;
363                 }
364
365                 /* use prefetched values */
366                 rx_desc = next_rxd;
367                 buffer_info = next_buffer;
368
369                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
370         }
371
372         rx_ring->next_to_clean = i;
373         cleaned_count = igbvf_desc_unused(rx_ring);
374
375         if (cleaned_count)
376                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
377
378         adapter->total_rx_packets += total_packets;
379         adapter->total_rx_bytes += total_bytes;
380         netdev->stats.rx_bytes += total_bytes;
381         netdev->stats.rx_packets += total_packets;
382         return cleaned;
383 }
384
385 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
386                             struct igbvf_buffer *buffer_info)
387 {
388         if (buffer_info->dma) {
389                 if (buffer_info->mapped_as_page)
390                         dma_unmap_page(&adapter->pdev->dev,
391                                        buffer_info->dma,
392                                        buffer_info->length,
393                                        DMA_TO_DEVICE);
394                 else
395                         dma_unmap_single(&adapter->pdev->dev,
396                                          buffer_info->dma,
397                                          buffer_info->length,
398                                          DMA_TO_DEVICE);
399                 buffer_info->dma = 0;
400         }
401         if (buffer_info->skb) {
402                 dev_kfree_skb_any(buffer_info->skb);
403                 buffer_info->skb = NULL;
404         }
405         buffer_info->time_stamp = 0;
406 }
407
408 /**
409  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
410  * @adapter: board private structure
411  *
412  * Return 0 on success, negative on failure
413  **/
414 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
415                              struct igbvf_ring *tx_ring)
416 {
417         struct pci_dev *pdev = adapter->pdev;
418         int size;
419
420         size = sizeof(struct igbvf_buffer) * tx_ring->count;
421         tx_ring->buffer_info = vzalloc(size);
422         if (!tx_ring->buffer_info)
423                 goto err;
424
425         /* round up to nearest 4K */
426         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
427         tx_ring->size = ALIGN(tx_ring->size, 4096);
428
429         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
430                                            &tx_ring->dma, GFP_KERNEL);
431         if (!tx_ring->desc)
432                 goto err;
433
434         tx_ring->adapter = adapter;
435         tx_ring->next_to_use = 0;
436         tx_ring->next_to_clean = 0;
437
438         return 0;
439 err:
440         vfree(tx_ring->buffer_info);
441         dev_err(&adapter->pdev->dev,
442                 "Unable to allocate memory for the transmit descriptor ring\n");
443         return -ENOMEM;
444 }
445
446 /**
447  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448  * @adapter: board private structure
449  *
450  * Returns 0 on success, negative on failure
451  **/
452 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453                              struct igbvf_ring *rx_ring)
454 {
455         struct pci_dev *pdev = adapter->pdev;
456         int size, desc_len;
457
458         size = sizeof(struct igbvf_buffer) * rx_ring->count;
459         rx_ring->buffer_info = vzalloc(size);
460         if (!rx_ring->buffer_info)
461                 goto err;
462
463         desc_len = sizeof(union e1000_adv_rx_desc);
464
465         /* Round up to nearest 4K */
466         rx_ring->size = rx_ring->count * desc_len;
467         rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470                                            &rx_ring->dma, GFP_KERNEL);
471         if (!rx_ring->desc)
472                 goto err;
473
474         rx_ring->next_to_clean = 0;
475         rx_ring->next_to_use = 0;
476
477         rx_ring->adapter = adapter;
478
479         return 0;
480
481 err:
482         vfree(rx_ring->buffer_info);
483         rx_ring->buffer_info = NULL;
484         dev_err(&adapter->pdev->dev,
485                 "Unable to allocate memory for the receive descriptor ring\n");
486         return -ENOMEM;
487 }
488
489 /**
490  * igbvf_clean_tx_ring - Free Tx Buffers
491  * @tx_ring: ring to be cleaned
492  **/
493 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
494 {
495         struct igbvf_adapter *adapter = tx_ring->adapter;
496         struct igbvf_buffer *buffer_info;
497         unsigned long size;
498         unsigned int i;
499
500         if (!tx_ring->buffer_info)
501                 return;
502
503         /* Free all the Tx ring sk_buffs */
504         for (i = 0; i < tx_ring->count; i++) {
505                 buffer_info = &tx_ring->buffer_info[i];
506                 igbvf_put_txbuf(adapter, buffer_info);
507         }
508
509         size = sizeof(struct igbvf_buffer) * tx_ring->count;
510         memset(tx_ring->buffer_info, 0, size);
511
512         /* Zero out the descriptor ring */
513         memset(tx_ring->desc, 0, tx_ring->size);
514
515         tx_ring->next_to_use = 0;
516         tx_ring->next_to_clean = 0;
517
518         writel(0, adapter->hw.hw_addr + tx_ring->head);
519         writel(0, adapter->hw.hw_addr + tx_ring->tail);
520 }
521
522 /**
523  * igbvf_free_tx_resources - Free Tx Resources per Queue
524  * @tx_ring: ring to free resources from
525  *
526  * Free all transmit software resources
527  **/
528 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
529 {
530         struct pci_dev *pdev = tx_ring->adapter->pdev;
531
532         igbvf_clean_tx_ring(tx_ring);
533
534         vfree(tx_ring->buffer_info);
535         tx_ring->buffer_info = NULL;
536
537         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
538                           tx_ring->dma);
539
540         tx_ring->desc = NULL;
541 }
542
543 /**
544  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
545  * @adapter: board private structure
546  **/
547 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
548 {
549         struct igbvf_adapter *adapter = rx_ring->adapter;
550         struct igbvf_buffer *buffer_info;
551         struct pci_dev *pdev = adapter->pdev;
552         unsigned long size;
553         unsigned int i;
554
555         if (!rx_ring->buffer_info)
556                 return;
557
558         /* Free all the Rx ring sk_buffs */
559         for (i = 0; i < rx_ring->count; i++) {
560                 buffer_info = &rx_ring->buffer_info[i];
561                 if (buffer_info->dma) {
562                         if (adapter->rx_ps_hdr_size) {
563                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
564                                                  adapter->rx_ps_hdr_size,
565                                                  DMA_FROM_DEVICE);
566                         } else {
567                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
568                                                  adapter->rx_buffer_len,
569                                                  DMA_FROM_DEVICE);
570                         }
571                         buffer_info->dma = 0;
572                 }
573
574                 if (buffer_info->skb) {
575                         dev_kfree_skb(buffer_info->skb);
576                         buffer_info->skb = NULL;
577                 }
578
579                 if (buffer_info->page) {
580                         if (buffer_info->page_dma)
581                                 dma_unmap_page(&pdev->dev,
582                                                buffer_info->page_dma,
583                                                PAGE_SIZE / 2,
584                                                DMA_FROM_DEVICE);
585                         put_page(buffer_info->page);
586                         buffer_info->page = NULL;
587                         buffer_info->page_dma = 0;
588                         buffer_info->page_offset = 0;
589                 }
590         }
591
592         size = sizeof(struct igbvf_buffer) * rx_ring->count;
593         memset(rx_ring->buffer_info, 0, size);
594
595         /* Zero out the descriptor ring */
596         memset(rx_ring->desc, 0, rx_ring->size);
597
598         rx_ring->next_to_clean = 0;
599         rx_ring->next_to_use = 0;
600
601         writel(0, adapter->hw.hw_addr + rx_ring->head);
602         writel(0, adapter->hw.hw_addr + rx_ring->tail);
603 }
604
605 /**
606  * igbvf_free_rx_resources - Free Rx Resources
607  * @rx_ring: ring to clean the resources from
608  *
609  * Free all receive software resources
610  **/
611
612 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
613 {
614         struct pci_dev *pdev = rx_ring->adapter->pdev;
615
616         igbvf_clean_rx_ring(rx_ring);
617
618         vfree(rx_ring->buffer_info);
619         rx_ring->buffer_info = NULL;
620
621         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
622                           rx_ring->dma);
623         rx_ring->desc = NULL;
624 }
625
626 /**
627  * igbvf_update_itr - update the dynamic ITR value based on statistics
628  * @adapter: pointer to adapter
629  * @itr_setting: current adapter->itr
630  * @packets: the number of packets during this measurement interval
631  * @bytes: the number of bytes during this measurement interval
632  *
633  * Stores a new ITR value based on packets and byte counts during the last
634  * interrupt.  The advantage of per interrupt computation is faster updates
635  * and more accurate ITR for the current traffic pattern.  Constants in this
636  * function were computed based on theoretical maximum wire speed and thresholds
637  * were set based on testing data as well as attempting to minimize response
638  * time while increasing bulk throughput.
639  **/
640 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
641                                            enum latency_range itr_setting,
642                                            int packets, int bytes)
643 {
644         enum latency_range retval = itr_setting;
645
646         if (packets == 0)
647                 goto update_itr_done;
648
649         switch (itr_setting) {
650         case lowest_latency:
651                 /* handle TSO and jumbo frames */
652                 if (bytes/packets > 8000)
653                         retval = bulk_latency;
654                 else if ((packets < 5) && (bytes > 512))
655                         retval = low_latency;
656                 break;
657         case low_latency:  /* 50 usec aka 20000 ints/s */
658                 if (bytes > 10000) {
659                         /* this if handles the TSO accounting */
660                         if (bytes/packets > 8000)
661                                 retval = bulk_latency;
662                         else if ((packets < 10) || ((bytes/packets) > 1200))
663                                 retval = bulk_latency;
664                         else if ((packets > 35))
665                                 retval = lowest_latency;
666                 } else if (bytes/packets > 2000) {
667                         retval = bulk_latency;
668                 } else if (packets <= 2 && bytes < 512) {
669                         retval = lowest_latency;
670                 }
671                 break;
672         case bulk_latency: /* 250 usec aka 4000 ints/s */
673                 if (bytes > 25000) {
674                         if (packets > 35)
675                                 retval = low_latency;
676                 } else if (bytes < 6000) {
677                         retval = low_latency;
678                 }
679                 break;
680         default:
681                 break;
682         }
683
684 update_itr_done:
685         return retval;
686 }
687
688 static int igbvf_range_to_itr(enum latency_range current_range)
689 {
690         int new_itr;
691
692         switch (current_range) {
693         /* counts and packets in update_itr are dependent on these numbers */
694         case lowest_latency:
695                 new_itr = IGBVF_70K_ITR;
696                 break;
697         case low_latency:
698                 new_itr = IGBVF_20K_ITR;
699                 break;
700         case bulk_latency:
701                 new_itr = IGBVF_4K_ITR;
702                 break;
703         default:
704                 new_itr = IGBVF_START_ITR;
705                 break;
706         }
707         return new_itr;
708 }
709
710 static void igbvf_set_itr(struct igbvf_adapter *adapter)
711 {
712         u32 new_itr;
713
714         adapter->tx_ring->itr_range =
715                         igbvf_update_itr(adapter,
716                                          adapter->tx_ring->itr_val,
717                                          adapter->total_tx_packets,
718                                          adapter->total_tx_bytes);
719
720         /* conservative mode (itr 3) eliminates the lowest_latency setting */
721         if (adapter->requested_itr == 3 &&
722             adapter->tx_ring->itr_range == lowest_latency)
723                 adapter->tx_ring->itr_range = low_latency;
724
725         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
726
727         if (new_itr != adapter->tx_ring->itr_val) {
728                 u32 current_itr = adapter->tx_ring->itr_val;
729                 /* this attempts to bias the interrupt rate towards Bulk
730                  * by adding intermediate steps when interrupt rate is
731                  * increasing
732                  */
733                 new_itr = new_itr > current_itr ?
734                           min(current_itr + (new_itr >> 2), new_itr) :
735                           new_itr;
736                 adapter->tx_ring->itr_val = new_itr;
737
738                 adapter->tx_ring->set_itr = 1;
739         }
740
741         adapter->rx_ring->itr_range =
742                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
743                                          adapter->total_rx_packets,
744                                          adapter->total_rx_bytes);
745         if (adapter->requested_itr == 3 &&
746             adapter->rx_ring->itr_range == lowest_latency)
747                 adapter->rx_ring->itr_range = low_latency;
748
749         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
750
751         if (new_itr != adapter->rx_ring->itr_val) {
752                 u32 current_itr = adapter->rx_ring->itr_val;
753
754                 new_itr = new_itr > current_itr ?
755                           min(current_itr + (new_itr >> 2), new_itr) :
756                           new_itr;
757                 adapter->rx_ring->itr_val = new_itr;
758
759                 adapter->rx_ring->set_itr = 1;
760         }
761 }
762
763 /**
764  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
765  * @adapter: board private structure
766  *
767  * returns true if ring is completely cleaned
768  **/
769 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
770 {
771         struct igbvf_adapter *adapter = tx_ring->adapter;
772         struct net_device *netdev = adapter->netdev;
773         struct igbvf_buffer *buffer_info;
774         struct sk_buff *skb;
775         union e1000_adv_tx_desc *tx_desc, *eop_desc;
776         unsigned int total_bytes = 0, total_packets = 0;
777         unsigned int i, count = 0;
778         bool cleaned = false;
779
780         i = tx_ring->next_to_clean;
781         buffer_info = &tx_ring->buffer_info[i];
782         eop_desc = buffer_info->next_to_watch;
783
784         do {
785                 /* if next_to_watch is not set then there is no work pending */
786                 if (!eop_desc)
787                         break;
788
789                 /* prevent any other reads prior to eop_desc */
790                 smp_rmb();
791
792                 /* if DD is not set pending work has not been completed */
793                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
794                         break;
795
796                 /* clear next_to_watch to prevent false hangs */
797                 buffer_info->next_to_watch = NULL;
798
799                 for (cleaned = false; !cleaned; count++) {
800                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
801                         cleaned = (tx_desc == eop_desc);
802                         skb = buffer_info->skb;
803
804                         if (skb) {
805                                 unsigned int segs, bytecount;
806
807                                 /* gso_segs is currently only valid for tcp */
808                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
809                                 /* multiply data chunks by size of headers */
810                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
811                                             skb->len;
812                                 total_packets += segs;
813                                 total_bytes += bytecount;
814                         }
815
816                         igbvf_put_txbuf(adapter, buffer_info);
817                         tx_desc->wb.status = 0;
818
819                         i++;
820                         if (i == tx_ring->count)
821                                 i = 0;
822
823                         buffer_info = &tx_ring->buffer_info[i];
824                 }
825
826                 eop_desc = buffer_info->next_to_watch;
827         } while (count < tx_ring->count);
828
829         tx_ring->next_to_clean = i;
830
831         if (unlikely(count && netif_carrier_ok(netdev) &&
832             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
833                 /* Make sure that anybody stopping the queue after this
834                  * sees the new next_to_clean.
835                  */
836                 smp_mb();
837                 if (netif_queue_stopped(netdev) &&
838                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
839                         netif_wake_queue(netdev);
840                         ++adapter->restart_queue;
841                 }
842         }
843
844         netdev->stats.tx_bytes += total_bytes;
845         netdev->stats.tx_packets += total_packets;
846         return count < tx_ring->count;
847 }
848
849 static irqreturn_t igbvf_msix_other(int irq, void *data)
850 {
851         struct net_device *netdev = data;
852         struct igbvf_adapter *adapter = netdev_priv(netdev);
853         struct e1000_hw *hw = &adapter->hw;
854
855         adapter->int_counter1++;
856
857         hw->mac.get_link_status = 1;
858         if (!test_bit(__IGBVF_DOWN, &adapter->state))
859                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
860
861         ew32(EIMS, adapter->eims_other);
862
863         return IRQ_HANDLED;
864 }
865
866 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
867 {
868         struct net_device *netdev = data;
869         struct igbvf_adapter *adapter = netdev_priv(netdev);
870         struct e1000_hw *hw = &adapter->hw;
871         struct igbvf_ring *tx_ring = adapter->tx_ring;
872
873         if (tx_ring->set_itr) {
874                 writel(tx_ring->itr_val,
875                        adapter->hw.hw_addr + tx_ring->itr_register);
876                 adapter->tx_ring->set_itr = 0;
877         }
878
879         adapter->total_tx_bytes = 0;
880         adapter->total_tx_packets = 0;
881
882         /* auto mask will automatically re-enable the interrupt when we write
883          * EICS
884          */
885         if (!igbvf_clean_tx_irq(tx_ring))
886                 /* Ring was not completely cleaned, so fire another interrupt */
887                 ew32(EICS, tx_ring->eims_value);
888         else
889                 ew32(EIMS, tx_ring->eims_value);
890
891         return IRQ_HANDLED;
892 }
893
894 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
895 {
896         struct net_device *netdev = data;
897         struct igbvf_adapter *adapter = netdev_priv(netdev);
898
899         adapter->int_counter0++;
900
901         /* Write the ITR value calculated at the end of the
902          * previous interrupt.
903          */
904         if (adapter->rx_ring->set_itr) {
905                 writel(adapter->rx_ring->itr_val,
906                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
907                 adapter->rx_ring->set_itr = 0;
908         }
909
910         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
911                 adapter->total_rx_bytes = 0;
912                 adapter->total_rx_packets = 0;
913                 __napi_schedule(&adapter->rx_ring->napi);
914         }
915
916         return IRQ_HANDLED;
917 }
918
919 #define IGBVF_NO_QUEUE -1
920
921 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
922                                 int tx_queue, int msix_vector)
923 {
924         struct e1000_hw *hw = &adapter->hw;
925         u32 ivar, index;
926
927         /* 82576 uses a table-based method for assigning vectors.
928          * Each queue has a single entry in the table to which we write
929          * a vector number along with a "valid" bit.  Sadly, the layout
930          * of the table is somewhat counterintuitive.
931          */
932         if (rx_queue > IGBVF_NO_QUEUE) {
933                 index = (rx_queue >> 1);
934                 ivar = array_er32(IVAR0, index);
935                 if (rx_queue & 0x1) {
936                         /* vector goes into third byte of register */
937                         ivar = ivar & 0xFF00FFFF;
938                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
939                 } else {
940                         /* vector goes into low byte of register */
941                         ivar = ivar & 0xFFFFFF00;
942                         ivar |= msix_vector | E1000_IVAR_VALID;
943                 }
944                 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
945                 array_ew32(IVAR0, index, ivar);
946         }
947         if (tx_queue > IGBVF_NO_QUEUE) {
948                 index = (tx_queue >> 1);
949                 ivar = array_er32(IVAR0, index);
950                 if (tx_queue & 0x1) {
951                         /* vector goes into high byte of register */
952                         ivar = ivar & 0x00FFFFFF;
953                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
954                 } else {
955                         /* vector goes into second byte of register */
956                         ivar = ivar & 0xFFFF00FF;
957                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
958                 }
959                 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
960                 array_ew32(IVAR0, index, ivar);
961         }
962 }
963
964 /**
965  * igbvf_configure_msix - Configure MSI-X hardware
966  * @adapter: board private structure
967  *
968  * igbvf_configure_msix sets up the hardware to properly
969  * generate MSI-X interrupts.
970  **/
971 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
972 {
973         u32 tmp;
974         struct e1000_hw *hw = &adapter->hw;
975         struct igbvf_ring *tx_ring = adapter->tx_ring;
976         struct igbvf_ring *rx_ring = adapter->rx_ring;
977         int vector = 0;
978
979         adapter->eims_enable_mask = 0;
980
981         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
982         adapter->eims_enable_mask |= tx_ring->eims_value;
983         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
984         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
985         adapter->eims_enable_mask |= rx_ring->eims_value;
986         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
987
988         /* set vector for other causes, i.e. link changes */
989
990         tmp = (vector++ | E1000_IVAR_VALID);
991
992         ew32(IVAR_MISC, tmp);
993
994         adapter->eims_enable_mask = GENMASK(vector - 1, 0);
995         adapter->eims_other = BIT(vector - 1);
996         e1e_flush();
997 }
998
999 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1000 {
1001         if (adapter->msix_entries) {
1002                 pci_disable_msix(adapter->pdev);
1003                 kfree(adapter->msix_entries);
1004                 adapter->msix_entries = NULL;
1005         }
1006 }
1007
1008 /**
1009  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1010  * @adapter: board private structure
1011  *
1012  * Attempt to configure interrupts using the best available
1013  * capabilities of the hardware and kernel.
1014  **/
1015 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1016 {
1017         int err = -ENOMEM;
1018         int i;
1019
1020         /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1021         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1022                                         GFP_KERNEL);
1023         if (adapter->msix_entries) {
1024                 for (i = 0; i < 3; i++)
1025                         adapter->msix_entries[i].entry = i;
1026
1027                 err = pci_enable_msix_range(adapter->pdev,
1028                                             adapter->msix_entries, 3, 3);
1029         }
1030
1031         if (err < 0) {
1032                 /* MSI-X failed */
1033                 dev_err(&adapter->pdev->dev,
1034                         "Failed to initialize MSI-X interrupts.\n");
1035                 igbvf_reset_interrupt_capability(adapter);
1036         }
1037 }
1038
1039 /**
1040  * igbvf_request_msix - Initialize MSI-X interrupts
1041  * @adapter: board private structure
1042  *
1043  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1044  * kernel.
1045  **/
1046 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1047 {
1048         struct net_device *netdev = adapter->netdev;
1049         int err = 0, vector = 0;
1050
1051         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1052                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1053                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1054         } else {
1055                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1056                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1057         }
1058
1059         err = request_irq(adapter->msix_entries[vector].vector,
1060                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1061                           netdev);
1062         if (err)
1063                 goto out;
1064
1065         adapter->tx_ring->itr_register = E1000_EITR(vector);
1066         adapter->tx_ring->itr_val = adapter->current_itr;
1067         vector++;
1068
1069         err = request_irq(adapter->msix_entries[vector].vector,
1070                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1071                           netdev);
1072         if (err)
1073                 goto out;
1074
1075         adapter->rx_ring->itr_register = E1000_EITR(vector);
1076         adapter->rx_ring->itr_val = adapter->current_itr;
1077         vector++;
1078
1079         err = request_irq(adapter->msix_entries[vector].vector,
1080                           igbvf_msix_other, 0, netdev->name, netdev);
1081         if (err)
1082                 goto out;
1083
1084         igbvf_configure_msix(adapter);
1085         return 0;
1086 out:
1087         return err;
1088 }
1089
1090 /**
1091  * igbvf_alloc_queues - Allocate memory for all rings
1092  * @adapter: board private structure to initialize
1093  **/
1094 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1095 {
1096         struct net_device *netdev = adapter->netdev;
1097
1098         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099         if (!adapter->tx_ring)
1100                 return -ENOMEM;
1101
1102         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103         if (!adapter->rx_ring) {
1104                 kfree(adapter->tx_ring);
1105                 return -ENOMEM;
1106         }
1107
1108         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1109
1110         return 0;
1111 }
1112
1113 /**
1114  * igbvf_request_irq - initialize interrupts
1115  * @adapter: board private structure
1116  *
1117  * Attempts to configure interrupts using the best available
1118  * capabilities of the hardware and kernel.
1119  **/
1120 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1121 {
1122         int err = -1;
1123
1124         /* igbvf supports msi-x only */
1125         if (adapter->msix_entries)
1126                 err = igbvf_request_msix(adapter);
1127
1128         if (!err)
1129                 return err;
1130
1131         dev_err(&adapter->pdev->dev,
1132                 "Unable to allocate interrupt, Error: %d\n", err);
1133
1134         return err;
1135 }
1136
1137 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1138 {
1139         struct net_device *netdev = adapter->netdev;
1140         int vector;
1141
1142         if (adapter->msix_entries) {
1143                 for (vector = 0; vector < 3; vector++)
1144                         free_irq(adapter->msix_entries[vector].vector, netdev);
1145         }
1146 }
1147
1148 /**
1149  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1150  * @adapter: board private structure
1151  **/
1152 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1153 {
1154         struct e1000_hw *hw = &adapter->hw;
1155
1156         ew32(EIMC, ~0);
1157
1158         if (adapter->msix_entries)
1159                 ew32(EIAC, 0);
1160 }
1161
1162 /**
1163  * igbvf_irq_enable - Enable default interrupt generation settings
1164  * @adapter: board private structure
1165  **/
1166 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1167 {
1168         struct e1000_hw *hw = &adapter->hw;
1169
1170         ew32(EIAC, adapter->eims_enable_mask);
1171         ew32(EIAM, adapter->eims_enable_mask);
1172         ew32(EIMS, adapter->eims_enable_mask);
1173 }
1174
1175 /**
1176  * igbvf_poll - NAPI Rx polling callback
1177  * @napi: struct associated with this polling callback
1178  * @budget: amount of packets driver is allowed to process this poll
1179  **/
1180 static int igbvf_poll(struct napi_struct *napi, int budget)
1181 {
1182         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1183         struct igbvf_adapter *adapter = rx_ring->adapter;
1184         struct e1000_hw *hw = &adapter->hw;
1185         int work_done = 0;
1186
1187         igbvf_clean_rx_irq(adapter, &work_done, budget);
1188
1189         /* If not enough Rx work done, exit the polling mode */
1190         if (work_done < budget) {
1191                 napi_complete_done(napi, work_done);
1192
1193                 if (adapter->requested_itr & 3)
1194                         igbvf_set_itr(adapter);
1195
1196                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1197                         ew32(EIMS, adapter->rx_ring->eims_value);
1198         }
1199
1200         return work_done;
1201 }
1202
1203 /**
1204  * igbvf_set_rlpml - set receive large packet maximum length
1205  * @adapter: board private structure
1206  *
1207  * Configure the maximum size of packets that will be received
1208  */
1209 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1210 {
1211         int max_frame_size;
1212         struct e1000_hw *hw = &adapter->hw;
1213
1214         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1215
1216         spin_lock_bh(&hw->mbx_lock);
1217
1218         e1000_rlpml_set_vf(hw, max_frame_size);
1219
1220         spin_unlock_bh(&hw->mbx_lock);
1221 }
1222
1223 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1224                                  __be16 proto, u16 vid)
1225 {
1226         struct igbvf_adapter *adapter = netdev_priv(netdev);
1227         struct e1000_hw *hw = &adapter->hw;
1228
1229         spin_lock_bh(&hw->mbx_lock);
1230
1231         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1232                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1233                 spin_unlock_bh(&hw->mbx_lock);
1234                 return -EINVAL;
1235         }
1236
1237         spin_unlock_bh(&hw->mbx_lock);
1238
1239         set_bit(vid, adapter->active_vlans);
1240         return 0;
1241 }
1242
1243 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1244                                   __be16 proto, u16 vid)
1245 {
1246         struct igbvf_adapter *adapter = netdev_priv(netdev);
1247         struct e1000_hw *hw = &adapter->hw;
1248
1249         spin_lock_bh(&hw->mbx_lock);
1250
1251         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1252                 dev_err(&adapter->pdev->dev,
1253                         "Failed to remove vlan id %d\n", vid);
1254                 spin_unlock_bh(&hw->mbx_lock);
1255                 return -EINVAL;
1256         }
1257
1258         spin_unlock_bh(&hw->mbx_lock);
1259
1260         clear_bit(vid, adapter->active_vlans);
1261         return 0;
1262 }
1263
1264 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1265 {
1266         u16 vid;
1267
1268         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1269                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1270 }
1271
1272 /**
1273  * igbvf_configure_tx - Configure Transmit Unit after Reset
1274  * @adapter: board private structure
1275  *
1276  * Configure the Tx unit of the MAC after a reset.
1277  **/
1278 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1279 {
1280         struct e1000_hw *hw = &adapter->hw;
1281         struct igbvf_ring *tx_ring = adapter->tx_ring;
1282         u64 tdba;
1283         u32 txdctl, dca_txctrl;
1284
1285         /* disable transmits */
1286         txdctl = er32(TXDCTL(0));
1287         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1288         e1e_flush();
1289         msleep(10);
1290
1291         /* Setup the HW Tx Head and Tail descriptor pointers */
1292         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1293         tdba = tx_ring->dma;
1294         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1295         ew32(TDBAH(0), (tdba >> 32));
1296         ew32(TDH(0), 0);
1297         ew32(TDT(0), 0);
1298         tx_ring->head = E1000_TDH(0);
1299         tx_ring->tail = E1000_TDT(0);
1300
1301         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1302          * MUST be delivered in order or it will completely screw up
1303          * our bookkeeping.
1304          */
1305         dca_txctrl = er32(DCA_TXCTRL(0));
1306         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1307         ew32(DCA_TXCTRL(0), dca_txctrl);
1308
1309         /* enable transmits */
1310         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1311         ew32(TXDCTL(0), txdctl);
1312
1313         /* Setup Transmit Descriptor Settings for eop descriptor */
1314         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1315
1316         /* enable Report Status bit */
1317         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1318 }
1319
1320 /**
1321  * igbvf_setup_srrctl - configure the receive control registers
1322  * @adapter: Board private structure
1323  **/
1324 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1325 {
1326         struct e1000_hw *hw = &adapter->hw;
1327         u32 srrctl = 0;
1328
1329         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1330                     E1000_SRRCTL_BSIZEHDR_MASK |
1331                     E1000_SRRCTL_BSIZEPKT_MASK);
1332
1333         /* Enable queue drop to avoid head of line blocking */
1334         srrctl |= E1000_SRRCTL_DROP_EN;
1335
1336         /* Setup buffer sizes */
1337         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1338                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1339
1340         if (adapter->rx_buffer_len < 2048) {
1341                 adapter->rx_ps_hdr_size = 0;
1342                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1343         } else {
1344                 adapter->rx_ps_hdr_size = 128;
1345                 srrctl |= adapter->rx_ps_hdr_size <<
1346                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1347                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1348         }
1349
1350         ew32(SRRCTL(0), srrctl);
1351 }
1352
1353 /**
1354  * igbvf_configure_rx - Configure Receive Unit after Reset
1355  * @adapter: board private structure
1356  *
1357  * Configure the Rx unit of the MAC after a reset.
1358  **/
1359 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1360 {
1361         struct e1000_hw *hw = &adapter->hw;
1362         struct igbvf_ring *rx_ring = adapter->rx_ring;
1363         u64 rdba;
1364         u32 rxdctl;
1365
1366         /* disable receives */
1367         rxdctl = er32(RXDCTL(0));
1368         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1369         e1e_flush();
1370         msleep(10);
1371
1372         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1373          * the Base and Length of the Rx Descriptor Ring
1374          */
1375         rdba = rx_ring->dma;
1376         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1377         ew32(RDBAH(0), (rdba >> 32));
1378         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1379         rx_ring->head = E1000_RDH(0);
1380         rx_ring->tail = E1000_RDT(0);
1381         ew32(RDH(0), 0);
1382         ew32(RDT(0), 0);
1383
1384         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1385         rxdctl &= 0xFFF00000;
1386         rxdctl |= IGBVF_RX_PTHRESH;
1387         rxdctl |= IGBVF_RX_HTHRESH << 8;
1388         rxdctl |= IGBVF_RX_WTHRESH << 16;
1389
1390         igbvf_set_rlpml(adapter);
1391
1392         /* enable receives */
1393         ew32(RXDCTL(0), rxdctl);
1394 }
1395
1396 /**
1397  * igbvf_set_multi - Multicast and Promiscuous mode set
1398  * @netdev: network interface device structure
1399  *
1400  * The set_multi entry point is called whenever the multicast address
1401  * list or the network interface flags are updated.  This routine is
1402  * responsible for configuring the hardware for proper multicast,
1403  * promiscuous mode, and all-multi behavior.
1404  **/
1405 static void igbvf_set_multi(struct net_device *netdev)
1406 {
1407         struct igbvf_adapter *adapter = netdev_priv(netdev);
1408         struct e1000_hw *hw = &adapter->hw;
1409         struct netdev_hw_addr *ha;
1410         u8  *mta_list = NULL;
1411         int i;
1412
1413         if (!netdev_mc_empty(netdev)) {
1414                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1415                                          GFP_ATOMIC);
1416                 if (!mta_list)
1417                         return;
1418         }
1419
1420         /* prepare a packed array of only addresses. */
1421         i = 0;
1422         netdev_for_each_mc_addr(ha, netdev)
1423                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1424
1425         spin_lock_bh(&hw->mbx_lock);
1426
1427         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1428
1429         spin_unlock_bh(&hw->mbx_lock);
1430         kfree(mta_list);
1431 }
1432
1433 /**
1434  * igbvf_set_uni - Configure unicast MAC filters
1435  * @netdev: network interface device structure
1436  *
1437  * This routine is responsible for configuring the hardware for proper
1438  * unicast filters.
1439  **/
1440 static int igbvf_set_uni(struct net_device *netdev)
1441 {
1442         struct igbvf_adapter *adapter = netdev_priv(netdev);
1443         struct e1000_hw *hw = &adapter->hw;
1444
1445         if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1446                 pr_err("Too many unicast filters - No Space\n");
1447                 return -ENOSPC;
1448         }
1449
1450         spin_lock_bh(&hw->mbx_lock);
1451
1452         /* Clear all unicast MAC filters */
1453         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1454
1455         spin_unlock_bh(&hw->mbx_lock);
1456
1457         if (!netdev_uc_empty(netdev)) {
1458                 struct netdev_hw_addr *ha;
1459
1460                 /* Add MAC filters one by one */
1461                 netdev_for_each_uc_addr(ha, netdev) {
1462                         spin_lock_bh(&hw->mbx_lock);
1463
1464                         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1465                                                 ha->addr);
1466
1467                         spin_unlock_bh(&hw->mbx_lock);
1468                         udelay(200);
1469                 }
1470         }
1471
1472         return 0;
1473 }
1474
1475 static void igbvf_set_rx_mode(struct net_device *netdev)
1476 {
1477         igbvf_set_multi(netdev);
1478         igbvf_set_uni(netdev);
1479 }
1480
1481 /**
1482  * igbvf_configure - configure the hardware for Rx and Tx
1483  * @adapter: private board structure
1484  **/
1485 static void igbvf_configure(struct igbvf_adapter *adapter)
1486 {
1487         igbvf_set_rx_mode(adapter->netdev);
1488
1489         igbvf_restore_vlan(adapter);
1490
1491         igbvf_configure_tx(adapter);
1492         igbvf_setup_srrctl(adapter);
1493         igbvf_configure_rx(adapter);
1494         igbvf_alloc_rx_buffers(adapter->rx_ring,
1495                                igbvf_desc_unused(adapter->rx_ring));
1496 }
1497
1498 /* igbvf_reset - bring the hardware into a known good state
1499  * @adapter: private board structure
1500  *
1501  * This function boots the hardware and enables some settings that
1502  * require a configuration cycle of the hardware - those cannot be
1503  * set/changed during runtime. After reset the device needs to be
1504  * properly configured for Rx, Tx etc.
1505  */
1506 static void igbvf_reset(struct igbvf_adapter *adapter)
1507 {
1508         struct e1000_mac_info *mac = &adapter->hw.mac;
1509         struct net_device *netdev = adapter->netdev;
1510         struct e1000_hw *hw = &adapter->hw;
1511
1512         spin_lock_bh(&hw->mbx_lock);
1513
1514         /* Allow time for pending master requests to run */
1515         if (mac->ops.reset_hw(hw))
1516                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1517
1518         mac->ops.init_hw(hw);
1519
1520         spin_unlock_bh(&hw->mbx_lock);
1521
1522         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1523                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1524                        netdev->addr_len);
1525                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1526                        netdev->addr_len);
1527         }
1528
1529         adapter->last_reset = jiffies;
1530 }
1531
1532 int igbvf_up(struct igbvf_adapter *adapter)
1533 {
1534         struct e1000_hw *hw = &adapter->hw;
1535
1536         /* hardware has been reset, we need to reload some things */
1537         igbvf_configure(adapter);
1538
1539         clear_bit(__IGBVF_DOWN, &adapter->state);
1540
1541         napi_enable(&adapter->rx_ring->napi);
1542         if (adapter->msix_entries)
1543                 igbvf_configure_msix(adapter);
1544
1545         /* Clear any pending interrupts. */
1546         er32(EICR);
1547         igbvf_irq_enable(adapter);
1548
1549         /* start the watchdog */
1550         hw->mac.get_link_status = 1;
1551         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1552
1553         return 0;
1554 }
1555
1556 void igbvf_down(struct igbvf_adapter *adapter)
1557 {
1558         struct net_device *netdev = adapter->netdev;
1559         struct e1000_hw *hw = &adapter->hw;
1560         u32 rxdctl, txdctl;
1561
1562         /* signal that we're down so the interrupt handler does not
1563          * reschedule our watchdog timer
1564          */
1565         set_bit(__IGBVF_DOWN, &adapter->state);
1566
1567         /* disable receives in the hardware */
1568         rxdctl = er32(RXDCTL(0));
1569         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1570
1571         netif_carrier_off(netdev);
1572         netif_stop_queue(netdev);
1573
1574         /* disable transmits in the hardware */
1575         txdctl = er32(TXDCTL(0));
1576         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1577
1578         /* flush both disables and wait for them to finish */
1579         e1e_flush();
1580         msleep(10);
1581
1582         napi_disable(&adapter->rx_ring->napi);
1583
1584         igbvf_irq_disable(adapter);
1585
1586         del_timer_sync(&adapter->watchdog_timer);
1587
1588         /* record the stats before reset*/
1589         igbvf_update_stats(adapter);
1590
1591         adapter->link_speed = 0;
1592         adapter->link_duplex = 0;
1593
1594         igbvf_reset(adapter);
1595         igbvf_clean_tx_ring(adapter->tx_ring);
1596         igbvf_clean_rx_ring(adapter->rx_ring);
1597 }
1598
1599 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1600 {
1601         might_sleep();
1602         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1603                 usleep_range(1000, 2000);
1604         igbvf_down(adapter);
1605         igbvf_up(adapter);
1606         clear_bit(__IGBVF_RESETTING, &adapter->state);
1607 }
1608
1609 /**
1610  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1611  * @adapter: board private structure to initialize
1612  *
1613  * igbvf_sw_init initializes the Adapter private data structure.
1614  * Fields are initialized based on PCI device information and
1615  * OS network device settings (MTU size).
1616  **/
1617 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1618 {
1619         struct net_device *netdev = adapter->netdev;
1620         s32 rc;
1621
1622         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1623         adapter->rx_ps_hdr_size = 0;
1624         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1625         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1626
1627         adapter->tx_int_delay = 8;
1628         adapter->tx_abs_int_delay = 32;
1629         adapter->rx_int_delay = 0;
1630         adapter->rx_abs_int_delay = 8;
1631         adapter->requested_itr = 3;
1632         adapter->current_itr = IGBVF_START_ITR;
1633
1634         /* Set various function pointers */
1635         adapter->ei->init_ops(&adapter->hw);
1636
1637         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1638         if (rc)
1639                 return rc;
1640
1641         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1642         if (rc)
1643                 return rc;
1644
1645         igbvf_set_interrupt_capability(adapter);
1646
1647         if (igbvf_alloc_queues(adapter))
1648                 return -ENOMEM;
1649
1650         spin_lock_init(&adapter->tx_queue_lock);
1651
1652         /* Explicitly disable IRQ since the NIC can be in any state. */
1653         igbvf_irq_disable(adapter);
1654
1655         spin_lock_init(&adapter->stats_lock);
1656         spin_lock_init(&adapter->hw.mbx_lock);
1657
1658         set_bit(__IGBVF_DOWN, &adapter->state);
1659         return 0;
1660 }
1661
1662 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1663 {
1664         struct e1000_hw *hw = &adapter->hw;
1665
1666         adapter->stats.last_gprc = er32(VFGPRC);
1667         adapter->stats.last_gorc = er32(VFGORC);
1668         adapter->stats.last_gptc = er32(VFGPTC);
1669         adapter->stats.last_gotc = er32(VFGOTC);
1670         adapter->stats.last_mprc = er32(VFMPRC);
1671         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1672         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1673         adapter->stats.last_gorlbc = er32(VFGORLBC);
1674         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1675
1676         adapter->stats.base_gprc = er32(VFGPRC);
1677         adapter->stats.base_gorc = er32(VFGORC);
1678         adapter->stats.base_gptc = er32(VFGPTC);
1679         adapter->stats.base_gotc = er32(VFGOTC);
1680         adapter->stats.base_mprc = er32(VFMPRC);
1681         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1682         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1683         adapter->stats.base_gorlbc = er32(VFGORLBC);
1684         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1685 }
1686
1687 /**
1688  * igbvf_open - Called when a network interface is made active
1689  * @netdev: network interface device structure
1690  *
1691  * Returns 0 on success, negative value on failure
1692  *
1693  * The open entry point is called when a network interface is made
1694  * active by the system (IFF_UP).  At this point all resources needed
1695  * for transmit and receive operations are allocated, the interrupt
1696  * handler is registered with the OS, the watchdog timer is started,
1697  * and the stack is notified that the interface is ready.
1698  **/
1699 static int igbvf_open(struct net_device *netdev)
1700 {
1701         struct igbvf_adapter *adapter = netdev_priv(netdev);
1702         struct e1000_hw *hw = &adapter->hw;
1703         int err;
1704
1705         /* disallow open during test */
1706         if (test_bit(__IGBVF_TESTING, &adapter->state))
1707                 return -EBUSY;
1708
1709         /* allocate transmit descriptors */
1710         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1711         if (err)
1712                 goto err_setup_tx;
1713
1714         /* allocate receive descriptors */
1715         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1716         if (err)
1717                 goto err_setup_rx;
1718
1719         /* before we allocate an interrupt, we must be ready to handle it.
1720          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1721          * as soon as we call pci_request_irq, so we have to setup our
1722          * clean_rx handler before we do so.
1723          */
1724         igbvf_configure(adapter);
1725
1726         err = igbvf_request_irq(adapter);
1727         if (err)
1728                 goto err_req_irq;
1729
1730         /* From here on the code is the same as igbvf_up() */
1731         clear_bit(__IGBVF_DOWN, &adapter->state);
1732
1733         napi_enable(&adapter->rx_ring->napi);
1734
1735         /* clear any pending interrupts */
1736         er32(EICR);
1737
1738         igbvf_irq_enable(adapter);
1739
1740         /* start the watchdog */
1741         hw->mac.get_link_status = 1;
1742         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1743
1744         return 0;
1745
1746 err_req_irq:
1747         igbvf_free_rx_resources(adapter->rx_ring);
1748 err_setup_rx:
1749         igbvf_free_tx_resources(adapter->tx_ring);
1750 err_setup_tx:
1751         igbvf_reset(adapter);
1752
1753         return err;
1754 }
1755
1756 /**
1757  * igbvf_close - Disables a network interface
1758  * @netdev: network interface device structure
1759  *
1760  * Returns 0, this is not allowed to fail
1761  *
1762  * The close entry point is called when an interface is de-activated
1763  * by the OS.  The hardware is still under the drivers control, but
1764  * needs to be disabled.  A global MAC reset is issued to stop the
1765  * hardware, and all transmit and receive resources are freed.
1766  **/
1767 static int igbvf_close(struct net_device *netdev)
1768 {
1769         struct igbvf_adapter *adapter = netdev_priv(netdev);
1770
1771         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1772         igbvf_down(adapter);
1773
1774         igbvf_free_irq(adapter);
1775
1776         igbvf_free_tx_resources(adapter->tx_ring);
1777         igbvf_free_rx_resources(adapter->rx_ring);
1778
1779         return 0;
1780 }
1781
1782 /**
1783  * igbvf_set_mac - Change the Ethernet Address of the NIC
1784  * @netdev: network interface device structure
1785  * @p: pointer to an address structure
1786  *
1787  * Returns 0 on success, negative on failure
1788  **/
1789 static int igbvf_set_mac(struct net_device *netdev, void *p)
1790 {
1791         struct igbvf_adapter *adapter = netdev_priv(netdev);
1792         struct e1000_hw *hw = &adapter->hw;
1793         struct sockaddr *addr = p;
1794
1795         if (!is_valid_ether_addr(addr->sa_data))
1796                 return -EADDRNOTAVAIL;
1797
1798         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1799
1800         spin_lock_bh(&hw->mbx_lock);
1801
1802         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1803
1804         spin_unlock_bh(&hw->mbx_lock);
1805
1806         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1807                 return -EADDRNOTAVAIL;
1808
1809         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1810
1811         return 0;
1812 }
1813
1814 #define UPDATE_VF_COUNTER(reg, name) \
1815 { \
1816         u32 current_counter = er32(reg); \
1817         if (current_counter < adapter->stats.last_##name) \
1818                 adapter->stats.name += 0x100000000LL; \
1819         adapter->stats.last_##name = current_counter; \
1820         adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1821         adapter->stats.name |= current_counter; \
1822 }
1823
1824 /**
1825  * igbvf_update_stats - Update the board statistics counters
1826  * @adapter: board private structure
1827 **/
1828 void igbvf_update_stats(struct igbvf_adapter *adapter)
1829 {
1830         struct e1000_hw *hw = &adapter->hw;
1831         struct pci_dev *pdev = adapter->pdev;
1832
1833         /* Prevent stats update while adapter is being reset, link is down
1834          * or if the pci connection is down.
1835          */
1836         if (adapter->link_speed == 0)
1837                 return;
1838
1839         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1840                 return;
1841
1842         if (pci_channel_offline(pdev))
1843                 return;
1844
1845         UPDATE_VF_COUNTER(VFGPRC, gprc);
1846         UPDATE_VF_COUNTER(VFGORC, gorc);
1847         UPDATE_VF_COUNTER(VFGPTC, gptc);
1848         UPDATE_VF_COUNTER(VFGOTC, gotc);
1849         UPDATE_VF_COUNTER(VFMPRC, mprc);
1850         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1851         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1852         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1853         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1854
1855         /* Fill out the OS statistics structure */
1856         adapter->netdev->stats.multicast = adapter->stats.mprc;
1857 }
1858
1859 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1860 {
1861         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1862                  adapter->link_speed,
1863                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1864 }
1865
1866 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1867 {
1868         struct e1000_hw *hw = &adapter->hw;
1869         s32 ret_val = E1000_SUCCESS;
1870         bool link_active;
1871
1872         /* If interface is down, stay link down */
1873         if (test_bit(__IGBVF_DOWN, &adapter->state))
1874                 return false;
1875
1876         spin_lock_bh(&hw->mbx_lock);
1877
1878         ret_val = hw->mac.ops.check_for_link(hw);
1879
1880         spin_unlock_bh(&hw->mbx_lock);
1881
1882         link_active = !hw->mac.get_link_status;
1883
1884         /* if check for link returns error we will need to reset */
1885         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1886                 schedule_work(&adapter->reset_task);
1887
1888         return link_active;
1889 }
1890
1891 /**
1892  * igbvf_watchdog - Timer Call-back
1893  * @data: pointer to adapter cast into an unsigned long
1894  **/
1895 static void igbvf_watchdog(struct timer_list *t)
1896 {
1897         struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1898
1899         /* Do the rest outside of interrupt context */
1900         schedule_work(&adapter->watchdog_task);
1901 }
1902
1903 static void igbvf_watchdog_task(struct work_struct *work)
1904 {
1905         struct igbvf_adapter *adapter = container_of(work,
1906                                                      struct igbvf_adapter,
1907                                                      watchdog_task);
1908         struct net_device *netdev = adapter->netdev;
1909         struct e1000_mac_info *mac = &adapter->hw.mac;
1910         struct igbvf_ring *tx_ring = adapter->tx_ring;
1911         struct e1000_hw *hw = &adapter->hw;
1912         u32 link;
1913         int tx_pending = 0;
1914
1915         link = igbvf_has_link(adapter);
1916
1917         if (link) {
1918                 if (!netif_carrier_ok(netdev)) {
1919                         mac->ops.get_link_up_info(&adapter->hw,
1920                                                   &adapter->link_speed,
1921                                                   &adapter->link_duplex);
1922                         igbvf_print_link_info(adapter);
1923
1924                         netif_carrier_on(netdev);
1925                         netif_wake_queue(netdev);
1926                 }
1927         } else {
1928                 if (netif_carrier_ok(netdev)) {
1929                         adapter->link_speed = 0;
1930                         adapter->link_duplex = 0;
1931                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1932                         netif_carrier_off(netdev);
1933                         netif_stop_queue(netdev);
1934                 }
1935         }
1936
1937         if (netif_carrier_ok(netdev)) {
1938                 igbvf_update_stats(adapter);
1939         } else {
1940                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1941                               tx_ring->count);
1942                 if (tx_pending) {
1943                         /* We've lost link, so the controller stops DMA,
1944                          * but we've got queued Tx work that's never going
1945                          * to get done, so reset controller to flush Tx.
1946                          * (Do the reset outside of interrupt context).
1947                          */
1948                         adapter->tx_timeout_count++;
1949                         schedule_work(&adapter->reset_task);
1950                 }
1951         }
1952
1953         /* Cause software interrupt to ensure Rx ring is cleaned */
1954         ew32(EICS, adapter->rx_ring->eims_value);
1955
1956         /* Reset the timer */
1957         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1958                 mod_timer(&adapter->watchdog_timer,
1959                           round_jiffies(jiffies + (2 * HZ)));
1960 }
1961
1962 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1963 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1964 #define IGBVF_TX_FLAGS_TSO              0x00000004
1965 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1966 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1967 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1968
1969 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1970                               u32 type_tucmd, u32 mss_l4len_idx)
1971 {
1972         struct e1000_adv_tx_context_desc *context_desc;
1973         struct igbvf_buffer *buffer_info;
1974         u16 i = tx_ring->next_to_use;
1975
1976         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1977         buffer_info = &tx_ring->buffer_info[i];
1978
1979         i++;
1980         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1981
1982         /* set bits to identify this as an advanced context descriptor */
1983         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1984
1985         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1986         context_desc->seqnum_seed       = 0;
1987         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1988         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1989
1990         buffer_info->time_stamp = jiffies;
1991         buffer_info->dma = 0;
1992 }
1993
1994 static int igbvf_tso(struct igbvf_ring *tx_ring,
1995                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1996 {
1997         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1998         union {
1999                 struct iphdr *v4;
2000                 struct ipv6hdr *v6;
2001                 unsigned char *hdr;
2002         } ip;
2003         union {
2004                 struct tcphdr *tcp;
2005                 unsigned char *hdr;
2006         } l4;
2007         u32 paylen, l4_offset;
2008         int err;
2009
2010         if (skb->ip_summed != CHECKSUM_PARTIAL)
2011                 return 0;
2012
2013         if (!skb_is_gso(skb))
2014                 return 0;
2015
2016         err = skb_cow_head(skb, 0);
2017         if (err < 0)
2018                 return err;
2019
2020         ip.hdr = skb_network_header(skb);
2021         l4.hdr = skb_checksum_start(skb);
2022
2023         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2024         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2025
2026         /* initialize outer IP header fields */
2027         if (ip.v4->version == 4) {
2028                 unsigned char *csum_start = skb_checksum_start(skb);
2029                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2030
2031                 /* IP header will have to cancel out any data that
2032                  * is not a part of the outer IP header
2033                  */
2034                 ip.v4->check = csum_fold(csum_partial(trans_start,
2035                                                       csum_start - trans_start,
2036                                                       0));
2037                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2038
2039                 ip.v4->tot_len = 0;
2040         } else {
2041                 ip.v6->payload_len = 0;
2042         }
2043
2044         /* determine offset of inner transport header */
2045         l4_offset = l4.hdr - skb->data;
2046
2047         /* compute length of segmentation header */
2048         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2049
2050         /* remove payload length from inner checksum */
2051         paylen = skb->len - l4_offset;
2052         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2053
2054         /* MSS L4LEN IDX */
2055         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2056         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2057
2058         /* VLAN MACLEN IPLEN */
2059         vlan_macip_lens = l4.hdr - ip.hdr;
2060         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2061         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2062
2063         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2064
2065         return 1;
2066 }
2067
2068 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2069 {
2070         unsigned int offset = 0;
2071
2072         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2073
2074         return offset == skb_checksum_start_offset(skb);
2075 }
2076
2077 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2078                           u32 tx_flags, __be16 protocol)
2079 {
2080         u32 vlan_macip_lens = 0;
2081         u32 type_tucmd = 0;
2082
2083         if (skb->ip_summed != CHECKSUM_PARTIAL) {
2084 csum_failed:
2085                 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2086                         return false;
2087                 goto no_csum;
2088         }
2089
2090         switch (skb->csum_offset) {
2091         case offsetof(struct tcphdr, check):
2092                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2093                 /* fall through */
2094         case offsetof(struct udphdr, check):
2095                 break;
2096         case offsetof(struct sctphdr, checksum):
2097                 /* validate that this is actually an SCTP request */
2098                 if (((protocol == htons(ETH_P_IP)) &&
2099                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2100                     ((protocol == htons(ETH_P_IPV6)) &&
2101                      igbvf_ipv6_csum_is_sctp(skb))) {
2102                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2103                         break;
2104                 }
2105         default:
2106                 skb_checksum_help(skb);
2107                 goto csum_failed;
2108         }
2109
2110         vlan_macip_lens = skb_checksum_start_offset(skb) -
2111                           skb_network_offset(skb);
2112 no_csum:
2113         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2114         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2115
2116         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2117         return true;
2118 }
2119
2120 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2121 {
2122         struct igbvf_adapter *adapter = netdev_priv(netdev);
2123
2124         /* there is enough descriptors then we don't need to worry  */
2125         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2126                 return 0;
2127
2128         netif_stop_queue(netdev);
2129
2130         /* Herbert's original patch had:
2131          *  smp_mb__after_netif_stop_queue();
2132          * but since that doesn't exist yet, just open code it.
2133          */
2134         smp_mb();
2135
2136         /* We need to check again just in case room has been made available */
2137         if (igbvf_desc_unused(adapter->tx_ring) < size)
2138                 return -EBUSY;
2139
2140         netif_wake_queue(netdev);
2141
2142         ++adapter->restart_queue;
2143         return 0;
2144 }
2145
2146 #define IGBVF_MAX_TXD_PWR       16
2147 #define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2148
2149 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2150                                    struct igbvf_ring *tx_ring,
2151                                    struct sk_buff *skb)
2152 {
2153         struct igbvf_buffer *buffer_info;
2154         struct pci_dev *pdev = adapter->pdev;
2155         unsigned int len = skb_headlen(skb);
2156         unsigned int count = 0, i;
2157         unsigned int f;
2158
2159         i = tx_ring->next_to_use;
2160
2161         buffer_info = &tx_ring->buffer_info[i];
2162         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2163         buffer_info->length = len;
2164         /* set time_stamp *before* dma to help avoid a possible race */
2165         buffer_info->time_stamp = jiffies;
2166         buffer_info->mapped_as_page = false;
2167         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2168                                           DMA_TO_DEVICE);
2169         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2170                 goto dma_error;
2171
2172         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2173                 const struct skb_frag_struct *frag;
2174
2175                 count++;
2176                 i++;
2177                 if (i == tx_ring->count)
2178                         i = 0;
2179
2180                 frag = &skb_shinfo(skb)->frags[f];
2181                 len = skb_frag_size(frag);
2182
2183                 buffer_info = &tx_ring->buffer_info[i];
2184                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2185                 buffer_info->length = len;
2186                 buffer_info->time_stamp = jiffies;
2187                 buffer_info->mapped_as_page = true;
2188                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2189                                                     DMA_TO_DEVICE);
2190                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2191                         goto dma_error;
2192         }
2193
2194         tx_ring->buffer_info[i].skb = skb;
2195
2196         return ++count;
2197
2198 dma_error:
2199         dev_err(&pdev->dev, "TX DMA map failed\n");
2200
2201         /* clear timestamp and dma mappings for failed buffer_info mapping */
2202         buffer_info->dma = 0;
2203         buffer_info->time_stamp = 0;
2204         buffer_info->length = 0;
2205         buffer_info->mapped_as_page = false;
2206         if (count)
2207                 count--;
2208
2209         /* clear timestamp and dma mappings for remaining portion of packet */
2210         while (count--) {
2211                 if (i == 0)
2212                         i += tx_ring->count;
2213                 i--;
2214                 buffer_info = &tx_ring->buffer_info[i];
2215                 igbvf_put_txbuf(adapter, buffer_info);
2216         }
2217
2218         return 0;
2219 }
2220
2221 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2222                                       struct igbvf_ring *tx_ring,
2223                                       int tx_flags, int count,
2224                                       unsigned int first, u32 paylen,
2225                                       u8 hdr_len)
2226 {
2227         union e1000_adv_tx_desc *tx_desc = NULL;
2228         struct igbvf_buffer *buffer_info;
2229         u32 olinfo_status = 0, cmd_type_len;
2230         unsigned int i;
2231
2232         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2233                         E1000_ADVTXD_DCMD_DEXT);
2234
2235         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2236                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2237
2238         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2239                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2240
2241                 /* insert tcp checksum */
2242                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2243
2244                 /* insert ip checksum */
2245                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2246                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2247
2248         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2249                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2250         }
2251
2252         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2253
2254         i = tx_ring->next_to_use;
2255         while (count--) {
2256                 buffer_info = &tx_ring->buffer_info[i];
2257                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2258                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2259                 tx_desc->read.cmd_type_len =
2260                          cpu_to_le32(cmd_type_len | buffer_info->length);
2261                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2262                 i++;
2263                 if (i == tx_ring->count)
2264                         i = 0;
2265         }
2266
2267         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2268         /* Force memory writes to complete before letting h/w
2269          * know there are new descriptors to fetch.  (Only
2270          * applicable for weak-ordered memory model archs,
2271          * such as IA-64).
2272          */
2273         wmb();
2274
2275         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2276         tx_ring->next_to_use = i;
2277         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2278         /* we need this if more than one processor can write to our tail
2279          * at a time, it synchronizes IO on IA64/Altix systems
2280          */
2281         mmiowb();
2282 }
2283
2284 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2285                                              struct net_device *netdev,
2286                                              struct igbvf_ring *tx_ring)
2287 {
2288         struct igbvf_adapter *adapter = netdev_priv(netdev);
2289         unsigned int first, tx_flags = 0;
2290         u8 hdr_len = 0;
2291         int count = 0;
2292         int tso = 0;
2293         __be16 protocol = vlan_get_protocol(skb);
2294
2295         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296                 dev_kfree_skb_any(skb);
2297                 return NETDEV_TX_OK;
2298         }
2299
2300         if (skb->len <= 0) {
2301                 dev_kfree_skb_any(skb);
2302                 return NETDEV_TX_OK;
2303         }
2304
2305         /* need: count + 4 desc gap to keep tail from touching
2306          *       + 2 desc gap to keep tail from touching head,
2307          *       + 1 desc for skb->data,
2308          *       + 1 desc for context descriptor,
2309          * head, otherwise try next time
2310          */
2311         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2312                 /* this is a hard error */
2313                 return NETDEV_TX_BUSY;
2314         }
2315
2316         if (skb_vlan_tag_present(skb)) {
2317                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2318                 tx_flags |= (skb_vlan_tag_get(skb) <<
2319                              IGBVF_TX_FLAGS_VLAN_SHIFT);
2320         }
2321
2322         if (protocol == htons(ETH_P_IP))
2323                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2324
2325         first = tx_ring->next_to_use;
2326
2327         tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2328         if (unlikely(tso < 0)) {
2329                 dev_kfree_skb_any(skb);
2330                 return NETDEV_TX_OK;
2331         }
2332
2333         if (tso)
2334                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2335         else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2336                  (skb->ip_summed == CHECKSUM_PARTIAL))
2337                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2338
2339         /* count reflects descriptors mapped, if 0 then mapping error
2340          * has occurred and we need to rewind the descriptor queue
2341          */
2342         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2343
2344         if (count) {
2345                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2346                                    first, skb->len, hdr_len);
2347                 /* Make sure there is space in the ring for the next send. */
2348                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2349         } else {
2350                 dev_kfree_skb_any(skb);
2351                 tx_ring->buffer_info[first].time_stamp = 0;
2352                 tx_ring->next_to_use = first;
2353         }
2354
2355         return NETDEV_TX_OK;
2356 }
2357
2358 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2359                                     struct net_device *netdev)
2360 {
2361         struct igbvf_adapter *adapter = netdev_priv(netdev);
2362         struct igbvf_ring *tx_ring;
2363
2364         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2365                 dev_kfree_skb_any(skb);
2366                 return NETDEV_TX_OK;
2367         }
2368
2369         tx_ring = &adapter->tx_ring[0];
2370
2371         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2372 }
2373
2374 /**
2375  * igbvf_tx_timeout - Respond to a Tx Hang
2376  * @netdev: network interface device structure
2377  **/
2378 static void igbvf_tx_timeout(struct net_device *netdev)
2379 {
2380         struct igbvf_adapter *adapter = netdev_priv(netdev);
2381
2382         /* Do the reset outside of interrupt context */
2383         adapter->tx_timeout_count++;
2384         schedule_work(&adapter->reset_task);
2385 }
2386
2387 static void igbvf_reset_task(struct work_struct *work)
2388 {
2389         struct igbvf_adapter *adapter;
2390
2391         adapter = container_of(work, struct igbvf_adapter, reset_task);
2392
2393         igbvf_reinit_locked(adapter);
2394 }
2395
2396 /**
2397  * igbvf_change_mtu - Change the Maximum Transfer Unit
2398  * @netdev: network interface device structure
2399  * @new_mtu: new value for maximum frame size
2400  *
2401  * Returns 0 on success, negative on failure
2402  **/
2403 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2404 {
2405         struct igbvf_adapter *adapter = netdev_priv(netdev);
2406         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2407
2408         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2409                 usleep_range(1000, 2000);
2410         /* igbvf_down has a dependency on max_frame_size */
2411         adapter->max_frame_size = max_frame;
2412         if (netif_running(netdev))
2413                 igbvf_down(adapter);
2414
2415         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2416          * means we reserve 2 more, this pushes us to allocate from the next
2417          * larger slab size.
2418          * i.e. RXBUFFER_2048 --> size-4096 slab
2419          * However with the new *_jumbo_rx* routines, jumbo receives will use
2420          * fragmented skbs
2421          */
2422
2423         if (max_frame <= 1024)
2424                 adapter->rx_buffer_len = 1024;
2425         else if (max_frame <= 2048)
2426                 adapter->rx_buffer_len = 2048;
2427         else
2428 #if (PAGE_SIZE / 2) > 16384
2429                 adapter->rx_buffer_len = 16384;
2430 #else
2431                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2432 #endif
2433
2434         /* adjust allocation if LPE protects us, and we aren't using SBP */
2435         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2436             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2437                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2438                                          ETH_FCS_LEN;
2439
2440         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2441                  netdev->mtu, new_mtu);
2442         netdev->mtu = new_mtu;
2443
2444         if (netif_running(netdev))
2445                 igbvf_up(adapter);
2446         else
2447                 igbvf_reset(adapter);
2448
2449         clear_bit(__IGBVF_RESETTING, &adapter->state);
2450
2451         return 0;
2452 }
2453
2454 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2455 {
2456         switch (cmd) {
2457         default:
2458                 return -EOPNOTSUPP;
2459         }
2460 }
2461
2462 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2463 {
2464         struct net_device *netdev = pci_get_drvdata(pdev);
2465         struct igbvf_adapter *adapter = netdev_priv(netdev);
2466 #ifdef CONFIG_PM
2467         int retval = 0;
2468 #endif
2469
2470         netif_device_detach(netdev);
2471
2472         if (netif_running(netdev)) {
2473                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2474                 igbvf_down(adapter);
2475                 igbvf_free_irq(adapter);
2476         }
2477
2478 #ifdef CONFIG_PM
2479         retval = pci_save_state(pdev);
2480         if (retval)
2481                 return retval;
2482 #endif
2483
2484         pci_disable_device(pdev);
2485
2486         return 0;
2487 }
2488
2489 #ifdef CONFIG_PM
2490 static int igbvf_resume(struct pci_dev *pdev)
2491 {
2492         struct net_device *netdev = pci_get_drvdata(pdev);
2493         struct igbvf_adapter *adapter = netdev_priv(netdev);
2494         u32 err;
2495
2496         pci_restore_state(pdev);
2497         err = pci_enable_device_mem(pdev);
2498         if (err) {
2499                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2500                 return err;
2501         }
2502
2503         pci_set_master(pdev);
2504
2505         if (netif_running(netdev)) {
2506                 err = igbvf_request_irq(adapter);
2507                 if (err)
2508                         return err;
2509         }
2510
2511         igbvf_reset(adapter);
2512
2513         if (netif_running(netdev))
2514                 igbvf_up(adapter);
2515
2516         netif_device_attach(netdev);
2517
2518         return 0;
2519 }
2520 #endif
2521
2522 static void igbvf_shutdown(struct pci_dev *pdev)
2523 {
2524         igbvf_suspend(pdev, PMSG_SUSPEND);
2525 }
2526
2527 #ifdef CONFIG_NET_POLL_CONTROLLER
2528 /* Polling 'interrupt' - used by things like netconsole to send skbs
2529  * without having to re-enable interrupts. It's not called while
2530  * the interrupt routine is executing.
2531  */
2532 static void igbvf_netpoll(struct net_device *netdev)
2533 {
2534         struct igbvf_adapter *adapter = netdev_priv(netdev);
2535
2536         disable_irq(adapter->pdev->irq);
2537
2538         igbvf_clean_tx_irq(adapter->tx_ring);
2539
2540         enable_irq(adapter->pdev->irq);
2541 }
2542 #endif
2543
2544 /**
2545  * igbvf_io_error_detected - called when PCI error is detected
2546  * @pdev: Pointer to PCI device
2547  * @state: The current pci connection state
2548  *
2549  * This function is called after a PCI bus error affecting
2550  * this device has been detected.
2551  */
2552 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2553                                                 pci_channel_state_t state)
2554 {
2555         struct net_device *netdev = pci_get_drvdata(pdev);
2556         struct igbvf_adapter *adapter = netdev_priv(netdev);
2557
2558         netif_device_detach(netdev);
2559
2560         if (state == pci_channel_io_perm_failure)
2561                 return PCI_ERS_RESULT_DISCONNECT;
2562
2563         if (netif_running(netdev))
2564                 igbvf_down(adapter);
2565         pci_disable_device(pdev);
2566
2567         /* Request a slot slot reset. */
2568         return PCI_ERS_RESULT_NEED_RESET;
2569 }
2570
2571 /**
2572  * igbvf_io_slot_reset - called after the pci bus has been reset.
2573  * @pdev: Pointer to PCI device
2574  *
2575  * Restart the card from scratch, as if from a cold-boot. Implementation
2576  * resembles the first-half of the igbvf_resume routine.
2577  */
2578 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2579 {
2580         struct net_device *netdev = pci_get_drvdata(pdev);
2581         struct igbvf_adapter *adapter = netdev_priv(netdev);
2582
2583         if (pci_enable_device_mem(pdev)) {
2584                 dev_err(&pdev->dev,
2585                         "Cannot re-enable PCI device after reset.\n");
2586                 return PCI_ERS_RESULT_DISCONNECT;
2587         }
2588         pci_set_master(pdev);
2589
2590         igbvf_reset(adapter);
2591
2592         return PCI_ERS_RESULT_RECOVERED;
2593 }
2594
2595 /**
2596  * igbvf_io_resume - called when traffic can start flowing again.
2597  * @pdev: Pointer to PCI device
2598  *
2599  * This callback is called when the error recovery driver tells us that
2600  * its OK to resume normal operation. Implementation resembles the
2601  * second-half of the igbvf_resume routine.
2602  */
2603 static void igbvf_io_resume(struct pci_dev *pdev)
2604 {
2605         struct net_device *netdev = pci_get_drvdata(pdev);
2606         struct igbvf_adapter *adapter = netdev_priv(netdev);
2607
2608         if (netif_running(netdev)) {
2609                 if (igbvf_up(adapter)) {
2610                         dev_err(&pdev->dev,
2611                                 "can't bring device back up after reset\n");
2612                         return;
2613                 }
2614         }
2615
2616         netif_device_attach(netdev);
2617 }
2618
2619 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2620 {
2621         struct e1000_hw *hw = &adapter->hw;
2622         struct net_device *netdev = adapter->netdev;
2623         struct pci_dev *pdev = adapter->pdev;
2624
2625         if (hw->mac.type == e1000_vfadapt_i350)
2626                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2627         else
2628                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2629         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2630 }
2631
2632 static int igbvf_set_features(struct net_device *netdev,
2633                               netdev_features_t features)
2634 {
2635         struct igbvf_adapter *adapter = netdev_priv(netdev);
2636
2637         if (features & NETIF_F_RXCSUM)
2638                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2639         else
2640                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2641
2642         return 0;
2643 }
2644
2645 #define IGBVF_MAX_MAC_HDR_LEN           127
2646 #define IGBVF_MAX_NETWORK_HDR_LEN       511
2647
2648 static netdev_features_t
2649 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2650                      netdev_features_t features)
2651 {
2652         unsigned int network_hdr_len, mac_hdr_len;
2653
2654         /* Make certain the headers can be described by a context descriptor */
2655         mac_hdr_len = skb_network_header(skb) - skb->data;
2656         if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2657                 return features & ~(NETIF_F_HW_CSUM |
2658                                     NETIF_F_SCTP_CRC |
2659                                     NETIF_F_HW_VLAN_CTAG_TX |
2660                                     NETIF_F_TSO |
2661                                     NETIF_F_TSO6);
2662
2663         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2664         if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2665                 return features & ~(NETIF_F_HW_CSUM |
2666                                     NETIF_F_SCTP_CRC |
2667                                     NETIF_F_TSO |
2668                                     NETIF_F_TSO6);
2669
2670         /* We can only support IPV4 TSO in tunnels if we can mangle the
2671          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2672          */
2673         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2674                 features &= ~NETIF_F_TSO;
2675
2676         return features;
2677 }
2678
2679 static const struct net_device_ops igbvf_netdev_ops = {
2680         .ndo_open               = igbvf_open,
2681         .ndo_stop               = igbvf_close,
2682         .ndo_start_xmit         = igbvf_xmit_frame,
2683         .ndo_set_rx_mode        = igbvf_set_rx_mode,
2684         .ndo_set_mac_address    = igbvf_set_mac,
2685         .ndo_change_mtu         = igbvf_change_mtu,
2686         .ndo_do_ioctl           = igbvf_ioctl,
2687         .ndo_tx_timeout         = igbvf_tx_timeout,
2688         .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2689         .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2690 #ifdef CONFIG_NET_POLL_CONTROLLER
2691         .ndo_poll_controller    = igbvf_netpoll,
2692 #endif
2693         .ndo_set_features       = igbvf_set_features,
2694         .ndo_features_check     = igbvf_features_check,
2695 };
2696
2697 /**
2698  * igbvf_probe - Device Initialization Routine
2699  * @pdev: PCI device information struct
2700  * @ent: entry in igbvf_pci_tbl
2701  *
2702  * Returns 0 on success, negative on failure
2703  *
2704  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2705  * The OS initialization, configuring of the adapter private structure,
2706  * and a hardware reset occur.
2707  **/
2708 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2709 {
2710         struct net_device *netdev;
2711         struct igbvf_adapter *adapter;
2712         struct e1000_hw *hw;
2713         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2714
2715         static int cards_found;
2716         int err, pci_using_dac;
2717
2718         err = pci_enable_device_mem(pdev);
2719         if (err)
2720                 return err;
2721
2722         pci_using_dac = 0;
2723         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2724         if (!err) {
2725                 pci_using_dac = 1;
2726         } else {
2727                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2728                 if (err) {
2729                         dev_err(&pdev->dev,
2730                                 "No usable DMA configuration, aborting\n");
2731                         goto err_dma;
2732                 }
2733         }
2734
2735         err = pci_request_regions(pdev, igbvf_driver_name);
2736         if (err)
2737                 goto err_pci_reg;
2738
2739         pci_set_master(pdev);
2740
2741         err = -ENOMEM;
2742         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2743         if (!netdev)
2744                 goto err_alloc_etherdev;
2745
2746         SET_NETDEV_DEV(netdev, &pdev->dev);
2747
2748         pci_set_drvdata(pdev, netdev);
2749         adapter = netdev_priv(netdev);
2750         hw = &adapter->hw;
2751         adapter->netdev = netdev;
2752         adapter->pdev = pdev;
2753         adapter->ei = ei;
2754         adapter->pba = ei->pba;
2755         adapter->flags = ei->flags;
2756         adapter->hw.back = adapter;
2757         adapter->hw.mac.type = ei->mac;
2758         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2759
2760         /* PCI config space info */
2761
2762         hw->vendor_id = pdev->vendor;
2763         hw->device_id = pdev->device;
2764         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2765         hw->subsystem_device_id = pdev->subsystem_device;
2766         hw->revision_id = pdev->revision;
2767
2768         err = -EIO;
2769         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2770                                       pci_resource_len(pdev, 0));
2771
2772         if (!adapter->hw.hw_addr)
2773                 goto err_ioremap;
2774
2775         if (ei->get_variants) {
2776                 err = ei->get_variants(adapter);
2777                 if (err)
2778                         goto err_get_variants;
2779         }
2780
2781         /* setup adapter struct */
2782         err = igbvf_sw_init(adapter);
2783         if (err)
2784                 goto err_sw_init;
2785
2786         /* construct the net_device struct */
2787         netdev->netdev_ops = &igbvf_netdev_ops;
2788
2789         igbvf_set_ethtool_ops(netdev);
2790         netdev->watchdog_timeo = 5 * HZ;
2791         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2792
2793         adapter->bd_number = cards_found++;
2794
2795         netdev->hw_features = NETIF_F_SG |
2796                               NETIF_F_TSO |
2797                               NETIF_F_TSO6 |
2798                               NETIF_F_RXCSUM |
2799                               NETIF_F_HW_CSUM |
2800                               NETIF_F_SCTP_CRC;
2801
2802 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2803                                     NETIF_F_GSO_GRE_CSUM | \
2804                                     NETIF_F_GSO_IPXIP4 | \
2805                                     NETIF_F_GSO_IPXIP6 | \
2806                                     NETIF_F_GSO_UDP_TUNNEL | \
2807                                     NETIF_F_GSO_UDP_TUNNEL_CSUM)
2808
2809         netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2810         netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2811                                IGBVF_GSO_PARTIAL_FEATURES;
2812
2813         netdev->features = netdev->hw_features;
2814
2815         if (pci_using_dac)
2816                 netdev->features |= NETIF_F_HIGHDMA;
2817
2818         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2819         netdev->mpls_features |= NETIF_F_HW_CSUM;
2820         netdev->hw_enc_features |= netdev->vlan_features;
2821
2822         /* set this bit last since it cannot be part of vlan_features */
2823         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2824                             NETIF_F_HW_VLAN_CTAG_RX |
2825                             NETIF_F_HW_VLAN_CTAG_TX;
2826
2827         /* MTU range: 68 - 9216 */
2828         netdev->min_mtu = ETH_MIN_MTU;
2829         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2830
2831         spin_lock_bh(&hw->mbx_lock);
2832
2833         /*reset the controller to put the device in a known good state */
2834         err = hw->mac.ops.reset_hw(hw);
2835         if (err) {
2836                 dev_info(&pdev->dev,
2837                          "PF still in reset state. Is the PF interface up?\n");
2838         } else {
2839                 err = hw->mac.ops.read_mac_addr(hw);
2840                 if (err)
2841                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2842                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2843                         dev_info(&pdev->dev,
2844                                  "MAC address not assigned by administrator.\n");
2845                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2846                        netdev->addr_len);
2847         }
2848
2849         spin_unlock_bh(&hw->mbx_lock);
2850
2851         if (!is_valid_ether_addr(netdev->dev_addr)) {
2852                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2853                 eth_hw_addr_random(netdev);
2854                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2855                        netdev->addr_len);
2856         }
2857
2858         timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2859
2860         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2861         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2862
2863         /* ring size defaults */
2864         adapter->rx_ring->count = 1024;
2865         adapter->tx_ring->count = 1024;
2866
2867         /* reset the hardware with the new settings */
2868         igbvf_reset(adapter);
2869
2870         /* set hardware-specific flags */
2871         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2872                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2873
2874         strcpy(netdev->name, "eth%d");
2875         err = register_netdev(netdev);
2876         if (err)
2877                 goto err_hw_init;
2878
2879         /* tell the stack to leave us alone until igbvf_open() is called */
2880         netif_carrier_off(netdev);
2881         netif_stop_queue(netdev);
2882
2883         igbvf_print_device_info(adapter);
2884
2885         igbvf_initialize_last_counter_stats(adapter);
2886
2887         return 0;
2888
2889 err_hw_init:
2890         kfree(adapter->tx_ring);
2891         kfree(adapter->rx_ring);
2892 err_sw_init:
2893         igbvf_reset_interrupt_capability(adapter);
2894 err_get_variants:
2895         iounmap(adapter->hw.hw_addr);
2896 err_ioremap:
2897         free_netdev(netdev);
2898 err_alloc_etherdev:
2899         pci_release_regions(pdev);
2900 err_pci_reg:
2901 err_dma:
2902         pci_disable_device(pdev);
2903         return err;
2904 }
2905
2906 /**
2907  * igbvf_remove - Device Removal Routine
2908  * @pdev: PCI device information struct
2909  *
2910  * igbvf_remove is called by the PCI subsystem to alert the driver
2911  * that it should release a PCI device.  The could be caused by a
2912  * Hot-Plug event, or because the driver is going to be removed from
2913  * memory.
2914  **/
2915 static void igbvf_remove(struct pci_dev *pdev)
2916 {
2917         struct net_device *netdev = pci_get_drvdata(pdev);
2918         struct igbvf_adapter *adapter = netdev_priv(netdev);
2919         struct e1000_hw *hw = &adapter->hw;
2920
2921         /* The watchdog timer may be rescheduled, so explicitly
2922          * disable it from being rescheduled.
2923          */
2924         set_bit(__IGBVF_DOWN, &adapter->state);
2925         del_timer_sync(&adapter->watchdog_timer);
2926
2927         cancel_work_sync(&adapter->reset_task);
2928         cancel_work_sync(&adapter->watchdog_task);
2929
2930         unregister_netdev(netdev);
2931
2932         igbvf_reset_interrupt_capability(adapter);
2933
2934         /* it is important to delete the NAPI struct prior to freeing the
2935          * Rx ring so that you do not end up with null pointer refs
2936          */
2937         netif_napi_del(&adapter->rx_ring->napi);
2938         kfree(adapter->tx_ring);
2939         kfree(adapter->rx_ring);
2940
2941         iounmap(hw->hw_addr);
2942         if (hw->flash_address)
2943                 iounmap(hw->flash_address);
2944         pci_release_regions(pdev);
2945
2946         free_netdev(netdev);
2947
2948         pci_disable_device(pdev);
2949 }
2950
2951 /* PCI Error Recovery (ERS) */
2952 static const struct pci_error_handlers igbvf_err_handler = {
2953         .error_detected = igbvf_io_error_detected,
2954         .slot_reset = igbvf_io_slot_reset,
2955         .resume = igbvf_io_resume,
2956 };
2957
2958 static const struct pci_device_id igbvf_pci_tbl[] = {
2959         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2960         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2961         { } /* terminate list */
2962 };
2963 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2964
2965 /* PCI Device API Driver */
2966 static struct pci_driver igbvf_driver = {
2967         .name           = igbvf_driver_name,
2968         .id_table       = igbvf_pci_tbl,
2969         .probe          = igbvf_probe,
2970         .remove         = igbvf_remove,
2971 #ifdef CONFIG_PM
2972         /* Power Management Hooks */
2973         .suspend        = igbvf_suspend,
2974         .resume         = igbvf_resume,
2975 #endif
2976         .shutdown       = igbvf_shutdown,
2977         .err_handler    = &igbvf_err_handler
2978 };
2979
2980 /**
2981  * igbvf_init_module - Driver Registration Routine
2982  *
2983  * igbvf_init_module is the first routine called when the driver is
2984  * loaded. All it does is register with the PCI subsystem.
2985  **/
2986 static int __init igbvf_init_module(void)
2987 {
2988         int ret;
2989
2990         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2991         pr_info("%s\n", igbvf_copyright);
2992
2993         ret = pci_register_driver(&igbvf_driver);
2994
2995         return ret;
2996 }
2997 module_init(igbvf_init_module);
2998
2999 /**
3000  * igbvf_exit_module - Driver Exit Cleanup Routine
3001  *
3002  * igbvf_exit_module is called just before the driver is removed
3003  * from memory.
3004  **/
3005 static void __exit igbvf_exit_module(void)
3006 {
3007         pci_unregister_driver(&igbvf_driver);
3008 }
3009 module_exit(igbvf_exit_module);
3010
3011 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3012 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3013 MODULE_LICENSE("GPL");
3014 MODULE_VERSION(DRV_VERSION);
3015
3016 /* netdev.c */