7454b9895a651c0b3ef47f5dab6a095b5355d4db
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3  *
4  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/pci.h>
22 #include <linux/ptp_classify.h>
23
24 #include "igb.h"
25
26 #define INCVALUE_MASK           0x7fffffff
27 #define ISGN                    0x80000000
28
29 /* The 82580 timesync updates the system timer every 8ns by 8ns,
30  * and this update value cannot be reprogrammed.
31  *
32  * Neither the 82576 nor the 82580 offer registers wide enough to hold
33  * nanoseconds time values for very long. For the 82580, SYSTIM always
34  * counts nanoseconds, but the upper 24 bits are not available. The
35  * frequency is adjusted by changing the 32 bit fractional nanoseconds
36  * register, TIMINCA.
37  *
38  * For the 82576, the SYSTIM register time unit is affect by the
39  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
40  * field are needed to provide the nominal 16 nanosecond period,
41  * leaving 19 bits for fractional nanoseconds.
42  *
43  * We scale the NIC clock cycle by a large factor so that relatively
44  * small clock corrections can be added or subtracted at each clock
45  * tick. The drawbacks of a large factor are a) that the clock
46  * register overflows more quickly (not such a big deal) and b) that
47  * the increment per tick has to fit into 24 bits.  As a result we
48  * need to use a shift of 19 so we can fit a value of 16 into the
49  * TIMINCA register.
50  *
51  *
52  *             SYSTIMH            SYSTIML
53  *        +--------------+   +---+---+------+
54  *  82576 |      32      |   | 8 | 5 |  19  |
55  *        +--------------+   +---+---+------+
56  *         \________ 45 bits _______/  fract
57  *
58  *        +----------+---+   +--------------+
59  *  82580 |    24    | 8 |   |      32      |
60  *        +----------+---+   +--------------+
61  *          reserved  \______ 40 bits _____/
62  *
63  *
64  * The 45 bit 82576 SYSTIM overflows every
65  *   2^45 * 10^-9 / 3600 = 9.77 hours.
66  *
67  * The 40 bit 82580 SYSTIM overflows every
68  *   2^40 * 10^-9 /  60  = 18.3 minutes.
69  */
70
71 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
72 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
73 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
75 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580                 40
77
78 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
79
80 /* SYSTIM read access for the 82576 */
81 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
82 {
83         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
84         struct e1000_hw *hw = &igb->hw;
85         u64 val;
86         u32 lo, hi;
87
88         lo = rd32(E1000_SYSTIML);
89         hi = rd32(E1000_SYSTIMH);
90
91         val = ((u64) hi) << 32;
92         val |= lo;
93
94         return val;
95 }
96
97 /* SYSTIM read access for the 82580 */
98 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
99 {
100         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
101         struct e1000_hw *hw = &igb->hw;
102         u32 lo, hi;
103         u64 val;
104
105         /* The timestamp latches on lowest register read. For the 82580
106          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
107          * need to provide nanosecond resolution, so we just ignore it.
108          */
109         rd32(E1000_SYSTIMR);
110         lo = rd32(E1000_SYSTIML);
111         hi = rd32(E1000_SYSTIMH);
112
113         val = ((u64) hi) << 32;
114         val |= lo;
115
116         return val;
117 }
118
119 /* SYSTIM read access for I210/I211 */
120 static void igb_ptp_read_i210(struct igb_adapter *adapter,
121                               struct timespec64 *ts)
122 {
123         struct e1000_hw *hw = &adapter->hw;
124         u32 sec, nsec;
125
126         /* The timestamp latches on lowest register read. For I210/I211, the
127          * lowest register is SYSTIMR. Since we only need to provide nanosecond
128          * resolution, we can ignore it.
129          */
130         rd32(E1000_SYSTIMR);
131         nsec = rd32(E1000_SYSTIML);
132         sec = rd32(E1000_SYSTIMH);
133
134         ts->tv_sec = sec;
135         ts->tv_nsec = nsec;
136 }
137
138 static void igb_ptp_write_i210(struct igb_adapter *adapter,
139                                const struct timespec64 *ts)
140 {
141         struct e1000_hw *hw = &adapter->hw;
142
143         /* Writing the SYSTIMR register is not necessary as it only provides
144          * sub-nanosecond resolution.
145          */
146         wr32(E1000_SYSTIML, ts->tv_nsec);
147         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
148 }
149
150 /**
151  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
152  * @adapter: board private structure
153  * @hwtstamps: timestamp structure to update
154  * @systim: unsigned 64bit system time value.
155  *
156  * We need to convert the system time value stored in the RX/TXSTMP registers
157  * into a hwtstamp which can be used by the upper level timestamping functions.
158  *
159  * The 'tmreg_lock' spinlock is used to protect the consistency of the
160  * system time value. This is needed because reading the 64 bit time
161  * value involves reading two (or three) 32 bit registers. The first
162  * read latches the value. Ditto for writing.
163  *
164  * In addition, here have extended the system time with an overflow
165  * counter in software.
166  **/
167 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
168                                        struct skb_shared_hwtstamps *hwtstamps,
169                                        u64 systim)
170 {
171         unsigned long flags;
172         u64 ns;
173
174         switch (adapter->hw.mac.type) {
175         case e1000_82576:
176         case e1000_82580:
177         case e1000_i354:
178         case e1000_i350:
179                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
180
181                 ns = timecounter_cyc2time(&adapter->tc, systim);
182
183                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
184
185                 memset(hwtstamps, 0, sizeof(*hwtstamps));
186                 hwtstamps->hwtstamp = ns_to_ktime(ns);
187                 break;
188         case e1000_i210:
189         case e1000_i211:
190                 memset(hwtstamps, 0, sizeof(*hwtstamps));
191                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
192                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
193                                                 systim & 0xFFFFFFFF);
194                 break;
195         default:
196                 break;
197         }
198 }
199
200 /* PTP clock operations */
201 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
202 {
203         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
204                                                ptp_caps);
205         struct e1000_hw *hw = &igb->hw;
206         int neg_adj = 0;
207         u64 rate;
208         u32 incvalue;
209
210         if (ppb < 0) {
211                 neg_adj = 1;
212                 ppb = -ppb;
213         }
214         rate = ppb;
215         rate <<= 14;
216         rate = div_u64(rate, 1953125);
217
218         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
219
220         if (neg_adj)
221                 incvalue -= rate;
222         else
223                 incvalue += rate;
224
225         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
226
227         return 0;
228 }
229
230 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
231 {
232         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
233                                                ptp_caps);
234         struct e1000_hw *hw = &igb->hw;
235         int neg_adj = 0;
236         u64 rate;
237         u32 inca;
238
239         if (scaled_ppm < 0) {
240                 neg_adj = 1;
241                 scaled_ppm = -scaled_ppm;
242         }
243         rate = scaled_ppm;
244         rate <<= 13;
245         rate = div_u64(rate, 15625);
246
247         inca = rate & INCVALUE_MASK;
248         if (neg_adj)
249                 inca |= ISGN;
250
251         wr32(E1000_TIMINCA, inca);
252
253         return 0;
254 }
255
256 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
257 {
258         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
259                                                ptp_caps);
260         unsigned long flags;
261
262         spin_lock_irqsave(&igb->tmreg_lock, flags);
263         timecounter_adjtime(&igb->tc, delta);
264         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
265
266         return 0;
267 }
268
269 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
270 {
271         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
272                                                ptp_caps);
273         unsigned long flags;
274         struct timespec64 now, then = ns_to_timespec64(delta);
275
276         spin_lock_irqsave(&igb->tmreg_lock, flags);
277
278         igb_ptp_read_i210(igb, &now);
279         now = timespec64_add(now, then);
280         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
281
282         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
283
284         return 0;
285 }
286
287 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
288                                  struct timespec64 *ts)
289 {
290         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291                                                ptp_caps);
292         unsigned long flags;
293         u64 ns;
294
295         spin_lock_irqsave(&igb->tmreg_lock, flags);
296
297         ns = timecounter_read(&igb->tc);
298
299         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300
301         *ts = ns_to_timespec64(ns);
302
303         return 0;
304 }
305
306 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
307                                 struct timespec64 *ts)
308 {
309         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310                                                ptp_caps);
311         unsigned long flags;
312
313         spin_lock_irqsave(&igb->tmreg_lock, flags);
314
315         igb_ptp_read_i210(igb, ts);
316
317         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318
319         return 0;
320 }
321
322 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
323                                  const struct timespec64 *ts)
324 {
325         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
326                                                ptp_caps);
327         unsigned long flags;
328         u64 ns;
329
330         ns = timespec64_to_ns(ts);
331
332         spin_lock_irqsave(&igb->tmreg_lock, flags);
333
334         timecounter_init(&igb->tc, &igb->cc, ns);
335
336         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
337
338         return 0;
339 }
340
341 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
342                                 const struct timespec64 *ts)
343 {
344         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
345                                                ptp_caps);
346         unsigned long flags;
347
348         spin_lock_irqsave(&igb->tmreg_lock, flags);
349
350         igb_ptp_write_i210(igb, ts);
351
352         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353
354         return 0;
355 }
356
357 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
358 {
359         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
360         static const u32 mask[IGB_N_SDP] = {
361                 E1000_CTRL_SDP0_DIR,
362                 E1000_CTRL_SDP1_DIR,
363                 E1000_CTRL_EXT_SDP2_DIR,
364                 E1000_CTRL_EXT_SDP3_DIR,
365         };
366
367         if (input)
368                 *ptr &= ~mask[pin];
369         else
370                 *ptr |= mask[pin];
371 }
372
373 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
374 {
375         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
376                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
377         };
378         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
379                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
380         };
381         static const u32 ts_sdp_en[IGB_N_SDP] = {
382                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
383         };
384         struct e1000_hw *hw = &igb->hw;
385         u32 ctrl, ctrl_ext, tssdp = 0;
386
387         ctrl = rd32(E1000_CTRL);
388         ctrl_ext = rd32(E1000_CTRL_EXT);
389         tssdp = rd32(E1000_TSSDP);
390
391         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
392
393         /* Make sure this pin is not enabled as an output. */
394         tssdp &= ~ts_sdp_en[pin];
395
396         if (chan == 1) {
397                 tssdp &= ~AUX1_SEL_SDP3;
398                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
399         } else {
400                 tssdp &= ~AUX0_SEL_SDP3;
401                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
402         }
403
404         wr32(E1000_TSSDP, tssdp);
405         wr32(E1000_CTRL, ctrl);
406         wr32(E1000_CTRL_EXT, ctrl_ext);
407 }
408
409 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
410 {
411         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
412                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
413         };
414         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
415                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
416         };
417         static const u32 ts_sdp_en[IGB_N_SDP] = {
418                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
419         };
420         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
421                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
422                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
423         };
424         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
425                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
426                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
427         };
428         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
429                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
430                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
431         };
432         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
433                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
434                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
435         };
436         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
437                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
438                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
439         };
440         struct e1000_hw *hw = &igb->hw;
441         u32 ctrl, ctrl_ext, tssdp = 0;
442
443         ctrl = rd32(E1000_CTRL);
444         ctrl_ext = rd32(E1000_CTRL_EXT);
445         tssdp = rd32(E1000_TSSDP);
446
447         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
448
449         /* Make sure this pin is not enabled as an input. */
450         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
451                 tssdp &= ~AUX0_TS_SDP_EN;
452
453         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
454                 tssdp &= ~AUX1_TS_SDP_EN;
455
456         tssdp &= ~ts_sdp_sel_clr[pin];
457         if (freq) {
458                 if (chan == 1)
459                         tssdp |= ts_sdp_sel_fc1[pin];
460                 else
461                         tssdp |= ts_sdp_sel_fc0[pin];
462         } else {
463                 if (chan == 1)
464                         tssdp |= ts_sdp_sel_tt1[pin];
465                 else
466                         tssdp |= ts_sdp_sel_tt0[pin];
467         }
468         tssdp |= ts_sdp_en[pin];
469
470         wr32(E1000_TSSDP, tssdp);
471         wr32(E1000_CTRL, ctrl);
472         wr32(E1000_CTRL_EXT, ctrl_ext);
473 }
474
475 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
476                                        struct ptp_clock_request *rq, int on)
477 {
478         struct igb_adapter *igb =
479                 container_of(ptp, struct igb_adapter, ptp_caps);
480         struct e1000_hw *hw = &igb->hw;
481         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
482         unsigned long flags;
483         struct timespec64 ts;
484         int use_freq = 0, pin = -1;
485         s64 ns;
486
487         switch (rq->type) {
488         case PTP_CLK_REQ_EXTTS:
489                 if (on) {
490                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
491                                            rq->extts.index);
492                         if (pin < 0)
493                                 return -EBUSY;
494                 }
495                 if (rq->extts.index == 1) {
496                         tsauxc_mask = TSAUXC_EN_TS1;
497                         tsim_mask = TSINTR_AUTT1;
498                 } else {
499                         tsauxc_mask = TSAUXC_EN_TS0;
500                         tsim_mask = TSINTR_AUTT0;
501                 }
502                 spin_lock_irqsave(&igb->tmreg_lock, flags);
503                 tsauxc = rd32(E1000_TSAUXC);
504                 tsim = rd32(E1000_TSIM);
505                 if (on) {
506                         igb_pin_extts(igb, rq->extts.index, pin);
507                         tsauxc |= tsauxc_mask;
508                         tsim |= tsim_mask;
509                 } else {
510                         tsauxc &= ~tsauxc_mask;
511                         tsim &= ~tsim_mask;
512                 }
513                 wr32(E1000_TSAUXC, tsauxc);
514                 wr32(E1000_TSIM, tsim);
515                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
516                 return 0;
517
518         case PTP_CLK_REQ_PEROUT:
519                 if (on) {
520                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
521                                            rq->perout.index);
522                         if (pin < 0)
523                                 return -EBUSY;
524                 }
525                 ts.tv_sec = rq->perout.period.sec;
526                 ts.tv_nsec = rq->perout.period.nsec;
527                 ns = timespec64_to_ns(&ts);
528                 ns = ns >> 1;
529                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
530                            (ns == 250000000LL) || (ns == 500000000LL))) {
531                         if (ns < 8LL)
532                                 return -EINVAL;
533                         use_freq = 1;
534                 }
535                 ts = ns_to_timespec64(ns);
536                 if (rq->perout.index == 1) {
537                         if (use_freq) {
538                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
539                                 tsim_mask = 0;
540                         } else {
541                                 tsauxc_mask = TSAUXC_EN_TT1;
542                                 tsim_mask = TSINTR_TT1;
543                         }
544                         trgttiml = E1000_TRGTTIML1;
545                         trgttimh = E1000_TRGTTIMH1;
546                         freqout = E1000_FREQOUT1;
547                 } else {
548                         if (use_freq) {
549                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
550                                 tsim_mask = 0;
551                         } else {
552                                 tsauxc_mask = TSAUXC_EN_TT0;
553                                 tsim_mask = TSINTR_TT0;
554                         }
555                         trgttiml = E1000_TRGTTIML0;
556                         trgttimh = E1000_TRGTTIMH0;
557                         freqout = E1000_FREQOUT0;
558                 }
559                 spin_lock_irqsave(&igb->tmreg_lock, flags);
560                 tsauxc = rd32(E1000_TSAUXC);
561                 tsim = rd32(E1000_TSIM);
562                 if (rq->perout.index == 1) {
563                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
564                         tsim &= ~TSINTR_TT1;
565                 } else {
566                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
567                         tsim &= ~TSINTR_TT0;
568                 }
569                 if (on) {
570                         int i = rq->perout.index;
571                         igb_pin_perout(igb, i, pin, use_freq);
572                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
573                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
574                         igb->perout[i].period.tv_sec = ts.tv_sec;
575                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
576                         wr32(trgttimh, rq->perout.start.sec);
577                         wr32(trgttiml, rq->perout.start.nsec);
578                         if (use_freq)
579                                 wr32(freqout, ns);
580                         tsauxc |= tsauxc_mask;
581                         tsim |= tsim_mask;
582                 }
583                 wr32(E1000_TSAUXC, tsauxc);
584                 wr32(E1000_TSIM, tsim);
585                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
586                 return 0;
587
588         case PTP_CLK_REQ_PPS:
589                 spin_lock_irqsave(&igb->tmreg_lock, flags);
590                 tsim = rd32(E1000_TSIM);
591                 if (on)
592                         tsim |= TSINTR_SYS_WRAP;
593                 else
594                         tsim &= ~TSINTR_SYS_WRAP;
595                 igb->pps_sys_wrap_on = !!on;
596                 wr32(E1000_TSIM, tsim);
597                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
598                 return 0;
599         }
600
601         return -EOPNOTSUPP;
602 }
603
604 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
605                                   struct ptp_clock_request *rq, int on)
606 {
607         return -EOPNOTSUPP;
608 }
609
610 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
611                               enum ptp_pin_function func, unsigned int chan)
612 {
613         switch (func) {
614         case PTP_PF_NONE:
615         case PTP_PF_EXTTS:
616         case PTP_PF_PEROUT:
617                 break;
618         case PTP_PF_PHYSYNC:
619                 return -1;
620         }
621         return 0;
622 }
623
624 /**
625  * igb_ptp_tx_work
626  * @work: pointer to work struct
627  *
628  * This work function polls the TSYNCTXCTL valid bit to determine when a
629  * timestamp has been taken for the current stored skb.
630  **/
631 static void igb_ptp_tx_work(struct work_struct *work)
632 {
633         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
634                                                    ptp_tx_work);
635         struct e1000_hw *hw = &adapter->hw;
636         u32 tsynctxctl;
637
638         if (!adapter->ptp_tx_skb)
639                 return;
640
641         if (time_is_before_jiffies(adapter->ptp_tx_start +
642                                    IGB_PTP_TX_TIMEOUT)) {
643                 dev_kfree_skb_any(adapter->ptp_tx_skb);
644                 adapter->ptp_tx_skb = NULL;
645                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
646                 adapter->tx_hwtstamp_timeouts++;
647                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
648                  * interrupt
649                  */
650                 rd32(E1000_TXSTMPH);
651                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
652                 return;
653         }
654
655         tsynctxctl = rd32(E1000_TSYNCTXCTL);
656         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
657                 igb_ptp_tx_hwtstamp(adapter);
658         else
659                 /* reschedule to check later */
660                 schedule_work(&adapter->ptp_tx_work);
661 }
662
663 static void igb_ptp_overflow_check(struct work_struct *work)
664 {
665         struct igb_adapter *igb =
666                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
667         struct timespec64 ts;
668
669         igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
670
671         pr_debug("igb overflow check at %lld.%09lu\n",
672                  (long long) ts.tv_sec, ts.tv_nsec);
673
674         schedule_delayed_work(&igb->ptp_overflow_work,
675                               IGB_SYSTIM_OVERFLOW_PERIOD);
676 }
677
678 /**
679  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
680  * @adapter: private network adapter structure
681  *
682  * This watchdog task is scheduled to detect error case where hardware has
683  * dropped an Rx packet that was timestamped when the ring is full. The
684  * particular error is rare but leaves the device in a state unable to timestamp
685  * any future packets.
686  **/
687 void igb_ptp_rx_hang(struct igb_adapter *adapter)
688 {
689         struct e1000_hw *hw = &adapter->hw;
690         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
691         unsigned long rx_event;
692
693         /* Other hardware uses per-packet timestamps */
694         if (hw->mac.type != e1000_82576)
695                 return;
696
697         /* If we don't have a valid timestamp in the registers, just update the
698          * timeout counter and exit
699          */
700         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
701                 adapter->last_rx_ptp_check = jiffies;
702                 return;
703         }
704
705         /* Determine the most recent watchdog or rx_timestamp event */
706         rx_event = adapter->last_rx_ptp_check;
707         if (time_after(adapter->last_rx_timestamp, rx_event))
708                 rx_event = adapter->last_rx_timestamp;
709
710         /* Only need to read the high RXSTMP register to clear the lock */
711         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
712                 rd32(E1000_RXSTMPH);
713                 adapter->last_rx_ptp_check = jiffies;
714                 adapter->rx_hwtstamp_cleared++;
715                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
716         }
717 }
718
719 /**
720  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
721  * @adapter: private network adapter structure
722  */
723 void igb_ptp_tx_hang(struct igb_adapter *adapter)
724 {
725         struct e1000_hw *hw = &adapter->hw;
726         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
727                                               IGB_PTP_TX_TIMEOUT);
728
729         if (!adapter->ptp_tx_skb)
730                 return;
731
732         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
733                 return;
734
735         /* If we haven't received a timestamp within the timeout, it is
736          * reasonable to assume that it will never occur, so we can unlock the
737          * timestamp bit when this occurs.
738          */
739         if (timeout) {
740                 cancel_work_sync(&adapter->ptp_tx_work);
741                 dev_kfree_skb_any(adapter->ptp_tx_skb);
742                 adapter->ptp_tx_skb = NULL;
743                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
744                 adapter->tx_hwtstamp_timeouts++;
745                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
746                  * interrupt
747                  */
748                 rd32(E1000_TXSTMPH);
749                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
750         }
751 }
752
753 /**
754  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
755  * @adapter: Board private structure.
756  *
757  * If we were asked to do hardware stamping and such a time stamp is
758  * available, then it must have been for this skb here because we only
759  * allow only one such packet into the queue.
760  **/
761 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
762 {
763         struct sk_buff *skb = adapter->ptp_tx_skb;
764         struct e1000_hw *hw = &adapter->hw;
765         struct skb_shared_hwtstamps shhwtstamps;
766         u64 regval;
767         int adjust = 0;
768
769         regval = rd32(E1000_TXSTMPL);
770         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
771
772         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
773         /* adjust timestamp for the TX latency based on link speed */
774         if (adapter->hw.mac.type == e1000_i210) {
775                 switch (adapter->link_speed) {
776                 case SPEED_10:
777                         adjust = IGB_I210_TX_LATENCY_10;
778                         break;
779                 case SPEED_100:
780                         adjust = IGB_I210_TX_LATENCY_100;
781                         break;
782                 case SPEED_1000:
783                         adjust = IGB_I210_TX_LATENCY_1000;
784                         break;
785                 }
786         }
787
788         shhwtstamps.hwtstamp =
789                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
790
791         /* Clear the lock early before calling skb_tstamp_tx so that
792          * applications are not woken up before the lock bit is clear. We use
793          * a copy of the skb pointer to ensure other threads can't change it
794          * while we're notifying the stack.
795          */
796         adapter->ptp_tx_skb = NULL;
797         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
798
799         /* Notify the stack and free the skb after we've unlocked */
800         skb_tstamp_tx(skb, &shhwtstamps);
801         dev_kfree_skb_any(skb);
802 }
803
804 /**
805  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
806  * @q_vector: Pointer to interrupt specific structure
807  * @va: Pointer to address containing Rx buffer
808  * @skb: Buffer containing timestamp and packet
809  *
810  * This function is meant to retrieve a timestamp from the first buffer of an
811  * incoming frame.  The value is stored in little endian format starting on
812  * byte 8.
813  **/
814 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
815                          struct sk_buff *skb)
816 {
817         __le64 *regval = (__le64 *)va;
818         struct igb_adapter *adapter = q_vector->adapter;
819         int adjust = 0;
820
821         /* The timestamp is recorded in little endian format.
822          * DWORD: 0        1        2        3
823          * Field: Reserved Reserved SYSTIML  SYSTIMH
824          */
825         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
826                                    le64_to_cpu(regval[1]));
827
828         /* adjust timestamp for the RX latency based on link speed */
829         if (adapter->hw.mac.type == e1000_i210) {
830                 switch (adapter->link_speed) {
831                 case SPEED_10:
832                         adjust = IGB_I210_RX_LATENCY_10;
833                         break;
834                 case SPEED_100:
835                         adjust = IGB_I210_RX_LATENCY_100;
836                         break;
837                 case SPEED_1000:
838                         adjust = IGB_I210_RX_LATENCY_1000;
839                         break;
840                 }
841         }
842         skb_hwtstamps(skb)->hwtstamp =
843                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
844 }
845
846 /**
847  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
848  * @q_vector: Pointer to interrupt specific structure
849  * @skb: Buffer containing timestamp and packet
850  *
851  * This function is meant to retrieve a timestamp from the internal registers
852  * of the adapter and store it in the skb.
853  **/
854 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
855                          struct sk_buff *skb)
856 {
857         struct igb_adapter *adapter = q_vector->adapter;
858         struct e1000_hw *hw = &adapter->hw;
859         u64 regval;
860         int adjust = 0;
861
862         /* If this bit is set, then the RX registers contain the time stamp. No
863          * other packet will be time stamped until we read these registers, so
864          * read the registers to make them available again. Because only one
865          * packet can be time stamped at a time, we know that the register
866          * values must belong to this one here and therefore we don't need to
867          * compare any of the additional attributes stored for it.
868          *
869          * If nothing went wrong, then it should have a shared tx_flags that we
870          * can turn into a skb_shared_hwtstamps.
871          */
872         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
873                 return;
874
875         regval = rd32(E1000_RXSTMPL);
876         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
877
878         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
879
880         /* adjust timestamp for the RX latency based on link speed */
881         if (adapter->hw.mac.type == e1000_i210) {
882                 switch (adapter->link_speed) {
883                 case SPEED_10:
884                         adjust = IGB_I210_RX_LATENCY_10;
885                         break;
886                 case SPEED_100:
887                         adjust = IGB_I210_RX_LATENCY_100;
888                         break;
889                 case SPEED_1000:
890                         adjust = IGB_I210_RX_LATENCY_1000;
891                         break;
892                 }
893         }
894         skb_hwtstamps(skb)->hwtstamp =
895                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
896
897         /* Update the last_rx_timestamp timer in order to enable watchdog check
898          * for error case of latched timestamp on a dropped packet.
899          */
900         adapter->last_rx_timestamp = jiffies;
901 }
902
903 /**
904  * igb_ptp_get_ts_config - get hardware time stamping config
905  * @netdev:
906  * @ifreq:
907  *
908  * Get the hwtstamp_config settings to return to the user. Rather than attempt
909  * to deconstruct the settings from the registers, just return a shadow copy
910  * of the last known settings.
911  **/
912 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
913 {
914         struct igb_adapter *adapter = netdev_priv(netdev);
915         struct hwtstamp_config *config = &adapter->tstamp_config;
916
917         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
918                 -EFAULT : 0;
919 }
920
921 /**
922  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
923  * @adapter: networking device structure
924  * @config: hwtstamp configuration
925  *
926  * Outgoing time stamping can be enabled and disabled. Play nice and
927  * disable it when requested, although it shouldn't case any overhead
928  * when no packet needs it. At most one packet in the queue may be
929  * marked for time stamping, otherwise it would be impossible to tell
930  * for sure to which packet the hardware time stamp belongs.
931  *
932  * Incoming time stamping has to be configured via the hardware
933  * filters. Not all combinations are supported, in particular event
934  * type has to be specified. Matching the kind of event packet is
935  * not supported, with the exception of "all V2 events regardless of
936  * level 2 or 4".
937  */
938 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
939                                       struct hwtstamp_config *config)
940 {
941         struct e1000_hw *hw = &adapter->hw;
942         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
943         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
944         u32 tsync_rx_cfg = 0;
945         bool is_l4 = false;
946         bool is_l2 = false;
947         u32 regval;
948
949         /* reserved for future extensions */
950         if (config->flags)
951                 return -EINVAL;
952
953         switch (config->tx_type) {
954         case HWTSTAMP_TX_OFF:
955                 tsync_tx_ctl = 0;
956         case HWTSTAMP_TX_ON:
957                 break;
958         default:
959                 return -ERANGE;
960         }
961
962         switch (config->rx_filter) {
963         case HWTSTAMP_FILTER_NONE:
964                 tsync_rx_ctl = 0;
965                 break;
966         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
967                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
968                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
969                 is_l4 = true;
970                 break;
971         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
972                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
973                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
974                 is_l4 = true;
975                 break;
976         case HWTSTAMP_FILTER_PTP_V2_EVENT:
977         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
978         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
979         case HWTSTAMP_FILTER_PTP_V2_SYNC:
980         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
981         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
982         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
983         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
984         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
985                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
986                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
987                 is_l2 = true;
988                 is_l4 = true;
989                 break;
990         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
991         case HWTSTAMP_FILTER_NTP_ALL:
992         case HWTSTAMP_FILTER_ALL:
993                 /* 82576 cannot timestamp all packets, which it needs to do to
994                  * support both V1 Sync and Delay_Req messages
995                  */
996                 if (hw->mac.type != e1000_82576) {
997                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
998                         config->rx_filter = HWTSTAMP_FILTER_ALL;
999                         break;
1000                 }
1001                 /* fall through */
1002         default:
1003                 config->rx_filter = HWTSTAMP_FILTER_NONE;
1004                 return -ERANGE;
1005         }
1006
1007         if (hw->mac.type == e1000_82575) {
1008                 if (tsync_rx_ctl | tsync_tx_ctl)
1009                         return -EINVAL;
1010                 return 0;
1011         }
1012
1013         /* Per-packet timestamping only works if all packets are
1014          * timestamped, so enable timestamping in all packets as
1015          * long as one Rx filter was configured.
1016          */
1017         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1018                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1019                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1020                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1021                 is_l2 = true;
1022                 is_l4 = true;
1023
1024                 if ((hw->mac.type == e1000_i210) ||
1025                     (hw->mac.type == e1000_i211)) {
1026                         regval = rd32(E1000_RXPBS);
1027                         regval |= E1000_RXPBS_CFG_TS_EN;
1028                         wr32(E1000_RXPBS, regval);
1029                 }
1030         }
1031
1032         /* enable/disable TX */
1033         regval = rd32(E1000_TSYNCTXCTL);
1034         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1035         regval |= tsync_tx_ctl;
1036         wr32(E1000_TSYNCTXCTL, regval);
1037
1038         /* enable/disable RX */
1039         regval = rd32(E1000_TSYNCRXCTL);
1040         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1041         regval |= tsync_rx_ctl;
1042         wr32(E1000_TSYNCRXCTL, regval);
1043
1044         /* define which PTP packets are time stamped */
1045         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1046
1047         /* define ethertype filter for timestamped packets */
1048         if (is_l2)
1049                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1050                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1051                       E1000_ETQF_1588 | /* enable timestamping */
1052                       ETH_P_1588));     /* 1588 eth protocol type */
1053         else
1054                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1055
1056         /* L4 Queue Filter[3]: filter by destination port and protocol */
1057         if (is_l4) {
1058                 u32 ftqf = (IPPROTO_UDP /* UDP */
1059                         | E1000_FTQF_VF_BP /* VF not compared */
1060                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1061                         | E1000_FTQF_MASK); /* mask all inputs */
1062                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1063
1064                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1065                 wr32(E1000_IMIREXT(3),
1066                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1067                 if (hw->mac.type == e1000_82576) {
1068                         /* enable source port check */
1069                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1070                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1071                 }
1072                 wr32(E1000_FTQF(3), ftqf);
1073         } else {
1074                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1075         }
1076         wrfl();
1077
1078         /* clear TX/RX time stamp registers, just to be sure */
1079         regval = rd32(E1000_TXSTMPL);
1080         regval = rd32(E1000_TXSTMPH);
1081         regval = rd32(E1000_RXSTMPL);
1082         regval = rd32(E1000_RXSTMPH);
1083
1084         return 0;
1085 }
1086
1087 /**
1088  * igb_ptp_set_ts_config - set hardware time stamping config
1089  * @netdev:
1090  * @ifreq:
1091  *
1092  **/
1093 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1094 {
1095         struct igb_adapter *adapter = netdev_priv(netdev);
1096         struct hwtstamp_config config;
1097         int err;
1098
1099         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1100                 return -EFAULT;
1101
1102         err = igb_ptp_set_timestamp_mode(adapter, &config);
1103         if (err)
1104                 return err;
1105
1106         /* save these settings for future reference */
1107         memcpy(&adapter->tstamp_config, &config,
1108                sizeof(adapter->tstamp_config));
1109
1110         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1111                 -EFAULT : 0;
1112 }
1113
1114 /**
1115  * igb_ptp_init - Initialize PTP functionality
1116  * @adapter: Board private structure
1117  *
1118  * This function is called at device probe to initialize the PTP
1119  * functionality.
1120  */
1121 void igb_ptp_init(struct igb_adapter *adapter)
1122 {
1123         struct e1000_hw *hw = &adapter->hw;
1124         struct net_device *netdev = adapter->netdev;
1125         int i;
1126
1127         switch (hw->mac.type) {
1128         case e1000_82576:
1129                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1130                 adapter->ptp_caps.owner = THIS_MODULE;
1131                 adapter->ptp_caps.max_adj = 999999881;
1132                 adapter->ptp_caps.n_ext_ts = 0;
1133                 adapter->ptp_caps.pps = 0;
1134                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1135                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1136                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1137                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1138                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1139                 adapter->cc.read = igb_ptp_read_82576;
1140                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1141                 adapter->cc.mult = 1;
1142                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1143                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1144                 break;
1145         case e1000_82580:
1146         case e1000_i354:
1147         case e1000_i350:
1148                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1149                 adapter->ptp_caps.owner = THIS_MODULE;
1150                 adapter->ptp_caps.max_adj = 62499999;
1151                 adapter->ptp_caps.n_ext_ts = 0;
1152                 adapter->ptp_caps.pps = 0;
1153                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1154                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1155                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1156                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1157                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1158                 adapter->cc.read = igb_ptp_read_82580;
1159                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1160                 adapter->cc.mult = 1;
1161                 adapter->cc.shift = 0;
1162                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1163                 break;
1164         case e1000_i210:
1165         case e1000_i211:
1166                 for (i = 0; i < IGB_N_SDP; i++) {
1167                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1168
1169                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1170                         ppd->index = i;
1171                         ppd->func = PTP_PF_NONE;
1172                 }
1173                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1174                 adapter->ptp_caps.owner = THIS_MODULE;
1175                 adapter->ptp_caps.max_adj = 62499999;
1176                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1177                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1178                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1179                 adapter->ptp_caps.pps = 1;
1180                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1181                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1182                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1183                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1184                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1185                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1186                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1187                 break;
1188         default:
1189                 adapter->ptp_clock = NULL;
1190                 return;
1191         }
1192
1193         spin_lock_init(&adapter->tmreg_lock);
1194         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1195
1196         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1197                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1198                                   igb_ptp_overflow_check);
1199
1200         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1201         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1202
1203         igb_ptp_reset(adapter);
1204
1205         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1206                                                 &adapter->pdev->dev);
1207         if (IS_ERR(adapter->ptp_clock)) {
1208                 adapter->ptp_clock = NULL;
1209                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1210         } else if (adapter->ptp_clock) {
1211                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1212                          adapter->netdev->name);
1213                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1214         }
1215 }
1216
1217 /**
1218  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1219  * @adapter: Board private structure
1220  *
1221  * This function stops the overflow check work and PTP Tx timestamp work, and
1222  * will prepare the device for OS suspend.
1223  */
1224 void igb_ptp_suspend(struct igb_adapter *adapter)
1225 {
1226         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1227                 return;
1228
1229         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1230                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1231
1232         cancel_work_sync(&adapter->ptp_tx_work);
1233         if (adapter->ptp_tx_skb) {
1234                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1235                 adapter->ptp_tx_skb = NULL;
1236                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1237         }
1238 }
1239
1240 /**
1241  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1242  * @adapter: Board private structure.
1243  *
1244  * This function stops the PTP support and cancels the delayed work.
1245  **/
1246 void igb_ptp_stop(struct igb_adapter *adapter)
1247 {
1248         igb_ptp_suspend(adapter);
1249
1250         if (adapter->ptp_clock) {
1251                 ptp_clock_unregister(adapter->ptp_clock);
1252                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1253                          adapter->netdev->name);
1254                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1255         }
1256 }
1257
1258 /**
1259  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1260  * @adapter: Board private structure.
1261  *
1262  * This function handles the reset work required to re-enable the PTP device.
1263  **/
1264 void igb_ptp_reset(struct igb_adapter *adapter)
1265 {
1266         struct e1000_hw *hw = &adapter->hw;
1267         unsigned long flags;
1268
1269         /* reset the tstamp_config */
1270         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1271
1272         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1273
1274         switch (adapter->hw.mac.type) {
1275         case e1000_82576:
1276                 /* Dial the nominal frequency. */
1277                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1278                 break;
1279         case e1000_82580:
1280         case e1000_i354:
1281         case e1000_i350:
1282         case e1000_i210:
1283         case e1000_i211:
1284                 wr32(E1000_TSAUXC, 0x0);
1285                 wr32(E1000_TSSDP, 0x0);
1286                 wr32(E1000_TSIM,
1287                      TSYNC_INTERRUPTS |
1288                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1289                 wr32(E1000_IMS, E1000_IMS_TS);
1290                 break;
1291         default:
1292                 /* No work to do. */
1293                 goto out;
1294         }
1295
1296         /* Re-initialize the timer. */
1297         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1298                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1299
1300                 igb_ptp_write_i210(adapter, &ts);
1301         } else {
1302                 timecounter_init(&adapter->tc, &adapter->cc,
1303                                  ktime_to_ns(ktime_get_real()));
1304         }
1305 out:
1306         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1307
1308         wrfl();
1309
1310         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1311                 schedule_delayed_work(&adapter->ptp_overflow_work,
1312                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1313 }