Input: wm97xx: add new AC97 bus support
[sfrench/cifs-2.6.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44                          int size, dma_addr_t dma, int frag_end,
45                          int buf_num, enum hns_desc_type type, int mtu)
46 {
47         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49         struct iphdr *iphdr;
50         struct ipv6hdr *ipv6hdr;
51         struct sk_buff *skb;
52         __be16 protocol;
53         u8 bn_pid = 0;
54         u8 rrcfv = 0;
55         u8 ip_offset = 0;
56         u8 tvsvsn = 0;
57         u16 mss = 0;
58         u8 l4_len = 0;
59         u16 paylen = 0;
60
61         desc_cb->priv = priv;
62         desc_cb->length = size;
63         desc_cb->dma = dma;
64         desc_cb->type = type;
65
66         desc->addr = cpu_to_le64(dma);
67         desc->tx.send_size = cpu_to_le16((u16)size);
68
69         /* config bd buffer end */
70         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72
73         /* fill port_id in the tx bd for sending management pkts */
74         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76
77         if (type == DESC_TYPE_SKB) {
78                 skb = (struct sk_buff *)priv;
79
80                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
81                         skb_reset_mac_len(skb);
82                         protocol = skb->protocol;
83                         ip_offset = ETH_HLEN;
84
85                         if (protocol == htons(ETH_P_8021Q)) {
86                                 ip_offset += VLAN_HLEN;
87                                 protocol = vlan_get_protocol(skb);
88                                 skb->protocol = protocol;
89                         }
90
91                         if (skb->protocol == htons(ETH_P_IP)) {
92                                 iphdr = ip_hdr(skb);
93                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95
96                                 /* check for tcp/udp header */
97                                 if (iphdr->protocol == IPPROTO_TCP &&
98                                     skb_is_gso(skb)) {
99                                         hnae_set_bit(tvsvsn,
100                                                      HNSV2_TXD_TSE_B, 1);
101                                         l4_len = tcp_hdrlen(skb);
102                                         mss = skb_shinfo(skb)->gso_size;
103                                         paylen = skb->len - SKB_TMP_LEN(skb);
104                                 }
105                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
106                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107                                 ipv6hdr = ipv6_hdr(skb);
108                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109
110                                 /* check for tcp/udp header */
111                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113                                         hnae_set_bit(tvsvsn,
114                                                      HNSV2_TXD_TSE_B, 1);
115                                         l4_len = tcp_hdrlen(skb);
116                                         mss = skb_shinfo(skb)->gso_size;
117                                         paylen = skb->len - SKB_TMP_LEN(skb);
118                                 }
119                         }
120                         desc->tx.ip_offset = ip_offset;
121                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122                         desc->tx.mss = cpu_to_le16(mss);
123                         desc->tx.l4_len = l4_len;
124                         desc->tx.paylen = cpu_to_le16(paylen);
125                 }
126         }
127
128         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129
130         desc->tx.bn_pid = bn_pid;
131         desc->tx.ra_ri_cs_fe_vld = rrcfv;
132
133         ring_ptr_move_fw(ring, next_to_use);
134 }
135
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137         { "HISI00C1", 0 },
138         { "HISI00C2", 0 },
139         { },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144                       int size, dma_addr_t dma, int frag_end,
145                       int buf_num, enum hns_desc_type type, int mtu)
146 {
147         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149         struct sk_buff *skb;
150         __be16 protocol;
151         u32 ip_offset;
152         u32 asid_bufnum_pid = 0;
153         u32 flag_ipoffset = 0;
154
155         desc_cb->priv = priv;
156         desc_cb->length = size;
157         desc_cb->dma = dma;
158         desc_cb->type = type;
159
160         desc->addr = cpu_to_le64(dma);
161         desc->tx.send_size = cpu_to_le16((u16)size);
162
163         /*config bd buffer end */
164         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165
166         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167
168         if (type == DESC_TYPE_SKB) {
169                 skb = (struct sk_buff *)priv;
170
171                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
172                         protocol = skb->protocol;
173                         ip_offset = ETH_HLEN;
174
175                         /*if it is a SW VLAN check the next protocol*/
176                         if (protocol == htons(ETH_P_8021Q)) {
177                                 ip_offset += VLAN_HLEN;
178                                 protocol = vlan_get_protocol(skb);
179                                 skb->protocol = protocol;
180                         }
181
182                         if (skb->protocol == htons(ETH_P_IP)) {
183                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184                                 /* check for tcp/udp header */
185                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186
187                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
188                                 /* ipv6 has not l3 cs, check for L4 header */
189                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190                         }
191
192                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193                 }
194         }
195
196         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197
198         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200
201         ring_ptr_move_fw(ring, next_to_use);
202 }
203
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206         ring_ptr_move_bw(ring, next_to_use);
207 }
208
209 static int hns_nic_maybe_stop_tx(
210         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212         struct sk_buff *skb = *out_skb;
213         struct sk_buff *new_skb = NULL;
214         int buf_num;
215
216         /* no. of segments (plus a header) */
217         buf_num = skb_shinfo(skb)->nr_frags + 1;
218
219         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220                 if (ring_space(ring) < 1)
221                         return -EBUSY;
222
223                 new_skb = skb_copy(skb, GFP_ATOMIC);
224                 if (!new_skb)
225                         return -ENOMEM;
226
227                 dev_kfree_skb_any(skb);
228                 *out_skb = new_skb;
229                 buf_num = 1;
230         } else if (buf_num > ring_space(ring)) {
231                 return -EBUSY;
232         }
233
234         *bnum = buf_num;
235         return 0;
236 }
237
238 static int hns_nic_maybe_stop_tso(
239         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241         int i;
242         int size;
243         int buf_num;
244         int frag_num;
245         struct sk_buff *skb = *out_skb;
246         struct sk_buff *new_skb = NULL;
247         struct skb_frag_struct *frag;
248
249         size = skb_headlen(skb);
250         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251
252         frag_num = skb_shinfo(skb)->nr_frags;
253         for (i = 0; i < frag_num; i++) {
254                 frag = &skb_shinfo(skb)->frags[i];
255                 size = skb_frag_size(frag);
256                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257         }
258
259         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261                 if (ring_space(ring) < buf_num)
262                         return -EBUSY;
263                 /* manual split the send packet */
264                 new_skb = skb_copy(skb, GFP_ATOMIC);
265                 if (!new_skb)
266                         return -ENOMEM;
267                 dev_kfree_skb_any(skb);
268                 *out_skb = new_skb;
269
270         } else if (ring_space(ring) < buf_num) {
271                 return -EBUSY;
272         }
273
274         *bnum = buf_num;
275         return 0;
276 }
277
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279                           int size, dma_addr_t dma, int frag_end,
280                           int buf_num, enum hns_desc_type type, int mtu)
281 {
282         int frag_buf_num;
283         int sizeoflast;
284         int k;
285
286         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287         sizeoflast = size % BD_MAX_SEND_SIZE;
288         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289
290         /* when the frag size is bigger than hardware, split this frag */
291         for (k = 0; k < frag_buf_num; k++)
292                 fill_v2_desc(ring, priv,
293                              (k == frag_buf_num - 1) ?
294                                         sizeoflast : BD_MAX_SEND_SIZE,
295                              dma + BD_MAX_SEND_SIZE * k,
296                              frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297                              buf_num,
298                              (type == DESC_TYPE_SKB && !k) ?
299                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
300                              mtu);
301 }
302
303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304                                 struct sk_buff *skb,
305                                 struct hns_nic_ring_data *ring_data)
306 {
307         struct hns_nic_priv *priv = netdev_priv(ndev);
308         struct hnae_ring *ring = ring_data->ring;
309         struct device *dev = ring_to_dev(ring);
310         struct netdev_queue *dev_queue;
311         struct skb_frag_struct *frag;
312         int buf_num;
313         int seg_num;
314         dma_addr_t dma;
315         int size, next_to_use;
316         int i;
317
318         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319         case -EBUSY:
320                 ring->stats.tx_busy++;
321                 goto out_net_tx_busy;
322         case -ENOMEM:
323                 ring->stats.sw_err_cnt++;
324                 netdev_err(ndev, "no memory to xmit!\n");
325                 goto out_err_tx_ok;
326         default:
327                 break;
328         }
329
330         /* no. of segments (plus a header) */
331         seg_num = skb_shinfo(skb)->nr_frags + 1;
332         next_to_use = ring->next_to_use;
333
334         /* fill the first part */
335         size = skb_headlen(skb);
336         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337         if (dma_mapping_error(dev, dma)) {
338                 netdev_err(ndev, "TX head DMA map failed\n");
339                 ring->stats.sw_err_cnt++;
340                 goto out_err_tx_ok;
341         }
342         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343                             buf_num, DESC_TYPE_SKB, ndev->mtu);
344
345         /* fill the fragments */
346         for (i = 1; i < seg_num; i++) {
347                 frag = &skb_shinfo(skb)->frags[i - 1];
348                 size = skb_frag_size(frag);
349                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350                 if (dma_mapping_error(dev, dma)) {
351                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352                         ring->stats.sw_err_cnt++;
353                         goto out_map_frag_fail;
354                 }
355                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356                                     seg_num - 1 == i ? 1 : 0, buf_num,
357                                     DESC_TYPE_PAGE, ndev->mtu);
358         }
359
360         /*complete translate all packets*/
361         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362         netdev_tx_sent_queue(dev_queue, skb->len);
363
364         netif_trans_update(ndev);
365         ndev->stats.tx_bytes += skb->len;
366         ndev->stats.tx_packets++;
367
368         wmb(); /* commit all data before submit */
369         assert(skb->queue_mapping < priv->ae_handle->q_num);
370         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371         ring->stats.tx_pkts++;
372         ring->stats.tx_bytes += skb->len;
373
374         return NETDEV_TX_OK;
375
376 out_map_frag_fail:
377
378         while (ring->next_to_use != next_to_use) {
379                 unfill_desc(ring);
380                 if (ring->next_to_use != next_to_use)
381                         dma_unmap_page(dev,
382                                        ring->desc_cb[ring->next_to_use].dma,
383                                        ring->desc_cb[ring->next_to_use].length,
384                                        DMA_TO_DEVICE);
385                 else
386                         dma_unmap_single(dev,
387                                          ring->desc_cb[next_to_use].dma,
388                                          ring->desc_cb[next_to_use].length,
389                                          DMA_TO_DEVICE);
390         }
391
392 out_err_tx_ok:
393
394         dev_kfree_skb_any(skb);
395         return NETDEV_TX_OK;
396
397 out_net_tx_busy:
398
399         netif_stop_subqueue(ndev, skb->queue_mapping);
400
401         /* Herbert's original patch had:
402          *  smp_mb__after_netif_stop_queue();
403          * but since that doesn't exist yet, just open code it.
404          */
405         smp_mb();
406         return NETDEV_TX_BUSY;
407 }
408
409 /**
410  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
411  * @data: pointer to the start of the headers
412  * @max: total length of section to find headers in
413  *
414  * This function is meant to determine the length of headers that will
415  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
416  * motivation of doing this is to only perform one pull for IPv4 TCP
417  * packets so that we can do basic things like calculating the gso_size
418  * based on the average data per packet.
419  **/
420 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
421                                         unsigned int max_size)
422 {
423         unsigned char *network;
424         u8 hlen;
425
426         /* this should never happen, but better safe than sorry */
427         if (max_size < ETH_HLEN)
428                 return max_size;
429
430         /* initialize network frame pointer */
431         network = data;
432
433         /* set first protocol and move network header forward */
434         network += ETH_HLEN;
435
436         /* handle any vlan tag if present */
437         if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
438                 == HNS_RX_FLAG_VLAN_PRESENT) {
439                 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
440                         return max_size;
441
442                 network += VLAN_HLEN;
443         }
444
445         /* handle L3 protocols */
446         if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
447                 == HNS_RX_FLAG_L3ID_IPV4) {
448                 if ((typeof(max_size))(network - data) >
449                     (max_size - sizeof(struct iphdr)))
450                         return max_size;
451
452                 /* access ihl as a u8 to avoid unaligned access on ia64 */
453                 hlen = (network[0] & 0x0F) << 2;
454
455                 /* verify hlen meets minimum size requirements */
456                 if (hlen < sizeof(struct iphdr))
457                         return network - data;
458
459                 /* record next protocol if header is present */
460         } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
461                 == HNS_RX_FLAG_L3ID_IPV6) {
462                 if ((typeof(max_size))(network - data) >
463                     (max_size - sizeof(struct ipv6hdr)))
464                         return max_size;
465
466                 /* record next protocol */
467                 hlen = sizeof(struct ipv6hdr);
468         } else {
469                 return network - data;
470         }
471
472         /* relocate pointer to start of L4 header */
473         network += hlen;
474
475         /* finally sort out TCP/UDP */
476         if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
477                 == HNS_RX_FLAG_L4ID_TCP) {
478                 if ((typeof(max_size))(network - data) >
479                     (max_size - sizeof(struct tcphdr)))
480                         return max_size;
481
482                 /* access doff as a u8 to avoid unaligned access on ia64 */
483                 hlen = (network[12] & 0xF0) >> 2;
484
485                 /* verify hlen meets minimum size requirements */
486                 if (hlen < sizeof(struct tcphdr))
487                         return network - data;
488
489                 network += hlen;
490         } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
491                 == HNS_RX_FLAG_L4ID_UDP) {
492                 if ((typeof(max_size))(network - data) >
493                     (max_size - sizeof(struct udphdr)))
494                         return max_size;
495
496                 network += sizeof(struct udphdr);
497         }
498
499         /* If everything has gone correctly network should be the
500          * data section of the packet and will be the end of the header.
501          * If not then it probably represents the end of the last recognized
502          * header.
503          */
504         if ((typeof(max_size))(network - data) < max_size)
505                 return network - data;
506         else
507                 return max_size;
508 }
509
510 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
511                                struct hnae_ring *ring, int pull_len,
512                                struct hnae_desc_cb *desc_cb)
513 {
514         struct hnae_desc *desc;
515         int truesize, size;
516         int last_offset;
517         bool twobufs;
518
519         twobufs = ((PAGE_SIZE < 8192) &&
520                 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
521
522         desc = &ring->desc[ring->next_to_clean];
523         size = le16_to_cpu(desc->rx.size);
524
525         if (twobufs) {
526                 truesize = hnae_buf_size(ring);
527         } else {
528                 truesize = ALIGN(size, L1_CACHE_BYTES);
529                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
530         }
531
532         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
533                         size - pull_len, truesize - pull_len);
534
535          /* avoid re-using remote pages,flag default unreuse */
536         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
537                 return;
538
539         if (twobufs) {
540                 /* if we are only owner of page we can reuse it */
541                 if (likely(page_count(desc_cb->priv) == 1)) {
542                         /* flip page offset to other buffer */
543                         desc_cb->page_offset ^= truesize;
544
545                         desc_cb->reuse_flag = 1;
546                         /* bump ref count on page before it is given*/
547                         get_page(desc_cb->priv);
548                 }
549                 return;
550         }
551
552         /* move offset up to the next cache line */
553         desc_cb->page_offset += truesize;
554
555         if (desc_cb->page_offset <= last_offset) {
556                 desc_cb->reuse_flag = 1;
557                 /* bump ref count on page before it is given*/
558                 get_page(desc_cb->priv);
559         }
560 }
561
562 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564         *out_bnum = hnae_get_field(bnum_flag,
565                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
566 }
567
568 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
569 {
570         *out_bnum = hnae_get_field(bnum_flag,
571                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
572 }
573
574 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
575                                 struct sk_buff *skb, u32 flag)
576 {
577         struct net_device *netdev = ring_data->napi.dev;
578         u32 l3id;
579         u32 l4id;
580
581         /* check if RX checksum offload is enabled */
582         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
583                 return;
584
585         /* In hardware, we only support checksum for the following protocols:
586          * 1) IPv4,
587          * 2) TCP(over IPv4 or IPv6),
588          * 3) UDP(over IPv4 or IPv6),
589          * 4) SCTP(over IPv4 or IPv6)
590          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
591          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
592          *
593          * Hardware limitation:
594          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
595          * Error" bit (which usually can be used to indicate whether checksum
596          * was calculated by the hardware and if there was any error encountered
597          * during checksum calculation).
598          *
599          * Software workaround:
600          * We do get info within the RX descriptor about the kind of L3/L4
601          * protocol coming in the packet and the error status. These errors
602          * might not just be checksum errors but could be related to version,
603          * length of IPv4, UDP, TCP etc.
604          * Because there is no-way of knowing if it is a L3/L4 error due to bad
605          * checksum or any other L3/L4 error, we will not (cannot) convey
606          * checksum status for such cases to upper stack and will not maintain
607          * the RX L3/L4 checksum counters as well.
608          */
609
610         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
611         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
612
613         /*  check L3 protocol for which checksum is supported */
614         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
615                 return;
616
617         /* check for any(not just checksum)flagged L3 protocol errors */
618         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
619                 return;
620
621         /* we do not support checksum of fragmented packets */
622         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
623                 return;
624
625         /*  check L4 protocol for which checksum is supported */
626         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
627             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
628             (l4id != HNS_RX_FLAG_L4ID_SCTP))
629                 return;
630
631         /* check for any(not just checksum)flagged L4 protocol errors */
632         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
633                 return;
634
635         /* now, this has to be a packet with valid RX checksum */
636         skb->ip_summed = CHECKSUM_UNNECESSARY;
637 }
638
639 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
640                                struct sk_buff **out_skb, int *out_bnum)
641 {
642         struct hnae_ring *ring = ring_data->ring;
643         struct net_device *ndev = ring_data->napi.dev;
644         struct hns_nic_priv *priv = netdev_priv(ndev);
645         struct sk_buff *skb;
646         struct hnae_desc *desc;
647         struct hnae_desc_cb *desc_cb;
648         unsigned char *va;
649         int bnum, length, i;
650         int pull_len;
651         u32 bnum_flag;
652
653         desc = &ring->desc[ring->next_to_clean];
654         desc_cb = &ring->desc_cb[ring->next_to_clean];
655
656         prefetch(desc);
657
658         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
659
660         /* prefetch first cache line of first page */
661         prefetch(va);
662 #if L1_CACHE_BYTES < 128
663         prefetch(va + L1_CACHE_BYTES);
664 #endif
665
666         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
667                                         HNS_RX_HEAD_SIZE);
668         if (unlikely(!skb)) {
669                 netdev_err(ndev, "alloc rx skb fail\n");
670                 ring->stats.sw_err_cnt++;
671                 return -ENOMEM;
672         }
673
674         prefetchw(skb->data);
675         length = le16_to_cpu(desc->rx.pkt_len);
676         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
677         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
678         *out_bnum = bnum;
679
680         if (length <= HNS_RX_HEAD_SIZE) {
681                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
682
683                 /* we can reuse buffer as-is, just make sure it is local */
684                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
685                         desc_cb->reuse_flag = 1;
686                 else /* this page cannot be reused so discard it */
687                         put_page(desc_cb->priv);
688
689                 ring_ptr_move_fw(ring, next_to_clean);
690
691                 if (unlikely(bnum != 1)) { /* check err*/
692                         *out_bnum = 1;
693                         goto out_bnum_err;
694                 }
695         } else {
696                 ring->stats.seg_pkt_cnt++;
697
698                 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
699                 memcpy(__skb_put(skb, pull_len), va,
700                        ALIGN(pull_len, sizeof(long)));
701
702                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
703                 ring_ptr_move_fw(ring, next_to_clean);
704
705                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
706                         *out_bnum = 1;
707                         goto out_bnum_err;
708                 }
709                 for (i = 1; i < bnum; i++) {
710                         desc = &ring->desc[ring->next_to_clean];
711                         desc_cb = &ring->desc_cb[ring->next_to_clean];
712
713                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
714                         ring_ptr_move_fw(ring, next_to_clean);
715                 }
716         }
717
718         /* check except process, free skb and jump the desc */
719         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
720 out_bnum_err:
721                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
722                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
723                            bnum, ring->max_desc_num_per_pkt,
724                            length, (int)MAX_SKB_FRAGS,
725                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
726                 ring->stats.err_bd_num++;
727                 dev_kfree_skb_any(skb);
728                 return -EDOM;
729         }
730
731         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
732
733         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
734                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
735                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
736                 ring->stats.non_vld_descs++;
737                 dev_kfree_skb_any(skb);
738                 return -EINVAL;
739         }
740
741         if (unlikely((!desc->rx.pkt_len) ||
742                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
743                 ring->stats.err_pkt_len++;
744                 dev_kfree_skb_any(skb);
745                 return -EFAULT;
746         }
747
748         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
749                 ring->stats.l2_err++;
750                 dev_kfree_skb_any(skb);
751                 return -EFAULT;
752         }
753
754         ring->stats.rx_pkts++;
755         ring->stats.rx_bytes += skb->len;
756
757         /* indicate to upper stack if our hardware has already calculated
758          * the RX checksum
759          */
760         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
761
762         return 0;
763 }
764
765 static void
766 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
767 {
768         int i, ret;
769         struct hnae_desc_cb res_cbs;
770         struct hnae_desc_cb *desc_cb;
771         struct hnae_ring *ring = ring_data->ring;
772         struct net_device *ndev = ring_data->napi.dev;
773
774         for (i = 0; i < cleand_count; i++) {
775                 desc_cb = &ring->desc_cb[ring->next_to_use];
776                 if (desc_cb->reuse_flag) {
777                         ring->stats.reuse_pg_cnt++;
778                         hnae_reuse_buffer(ring, ring->next_to_use);
779                 } else {
780                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
781                         if (ret) {
782                                 ring->stats.sw_err_cnt++;
783                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
784                                 break;
785                         }
786                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
787                 }
788
789                 ring_ptr_move_fw(ring, next_to_use);
790         }
791
792         wmb(); /* make all data has been write before submit */
793         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
794 }
795
796 /* return error number for error or number of desc left to take
797  */
798 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
799                               struct sk_buff *skb)
800 {
801         struct net_device *ndev = ring_data->napi.dev;
802
803         skb->protocol = eth_type_trans(skb, ndev);
804         (void)napi_gro_receive(&ring_data->napi, skb);
805 }
806
807 static int hns_desc_unused(struct hnae_ring *ring)
808 {
809         int ntc = ring->next_to_clean;
810         int ntu = ring->next_to_use;
811
812         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
813 }
814
815 #define HNS_LOWEST_LATENCY_RATE         27      /* 27 MB/s */
816 #define HNS_LOW_LATENCY_RATE                    80      /* 80 MB/s */
817
818 #define HNS_COAL_BDNUM                  3
819
820 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
821 {
822         bool coal_enable = ring->q->handle->coal_adapt_en;
823
824         if (coal_enable &&
825             ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
826                 return HNS_COAL_BDNUM;
827         else
828                 return 0;
829 }
830
831 static void hns_update_rx_rate(struct hnae_ring *ring)
832 {
833         bool coal_enable = ring->q->handle->coal_adapt_en;
834         u32 time_passed_ms;
835         u64 total_bytes;
836
837         if (!coal_enable ||
838             time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
839                 return;
840
841         /* ring->stats.rx_bytes overflowed */
842         if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
843                 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
844                 ring->coal_last_jiffies = jiffies;
845                 return;
846         }
847
848         total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
849         time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
850         do_div(total_bytes, time_passed_ms);
851         ring->coal_rx_rate = total_bytes >> 10;
852
853         ring->coal_last_rx_bytes = ring->stats.rx_bytes;
854         ring->coal_last_jiffies = jiffies;
855 }
856
857 /**
858  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
859  **/
860 static u32 smooth_alg(u32 new_param, u32 old_param)
861 {
862         u32 gap = (new_param > old_param) ? new_param - old_param
863                                           : old_param - new_param;
864
865         if (gap > 8)
866                 gap >>= 3;
867
868         if (new_param > old_param)
869                 return old_param + gap;
870         else
871                 return old_param - gap;
872 }
873
874 /**
875  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
876  * @ring_data: pointer to hns_nic_ring_data
877  **/
878 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
879 {
880         struct hnae_ring *ring = ring_data->ring;
881         struct hnae_handle *handle = ring->q->handle;
882         u32 new_coal_param, old_coal_param = ring->coal_param;
883
884         if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
885                 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
886         else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
887                 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
888         else
889                 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
890
891         if (new_coal_param == old_coal_param &&
892             new_coal_param == handle->coal_param)
893                 return;
894
895         new_coal_param = smooth_alg(new_coal_param, old_coal_param);
896         ring->coal_param = new_coal_param;
897
898         /**
899          * Because all ring in one port has one coalesce param, when one ring
900          * calculate its own coalesce param, it cannot write to hardware at
901          * once. There are three conditions as follows:
902          *       1. current ring's coalesce param is larger than the hardware.
903          *       2. or ring which adapt last time can change again.
904          *       3. timeout.
905          */
906         if (new_coal_param == handle->coal_param) {
907                 handle->coal_last_jiffies = jiffies;
908                 handle->coal_ring_idx = ring_data->queue_index;
909         } else if (new_coal_param > handle->coal_param ||
910                    handle->coal_ring_idx == ring_data->queue_index ||
911                    time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
912                 handle->dev->ops->set_coalesce_usecs(handle,
913                                         new_coal_param);
914                 handle->dev->ops->set_coalesce_frames(handle,
915                                         1, new_coal_param);
916                 handle->coal_param = new_coal_param;
917                 handle->coal_ring_idx = ring_data->queue_index;
918                 handle->coal_last_jiffies = jiffies;
919         }
920 }
921
922 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
923                                int budget, void *v)
924 {
925         struct hnae_ring *ring = ring_data->ring;
926         struct sk_buff *skb;
927         int num, bnum;
928 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
929         int recv_pkts, recv_bds, clean_count, err;
930         int unused_count = hns_desc_unused(ring);
931
932         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
933         rmb(); /* make sure num taken effect before the other data is touched */
934
935         recv_pkts = 0, recv_bds = 0, clean_count = 0;
936         num -= unused_count;
937
938         while (recv_pkts < budget && recv_bds < num) {
939                 /* reuse or realloc buffers */
940                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
941                         hns_nic_alloc_rx_buffers(ring_data,
942                                                  clean_count + unused_count);
943                         clean_count = 0;
944                         unused_count = hns_desc_unused(ring);
945                 }
946
947                 /* poll one pkt */
948                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
949                 if (unlikely(!skb)) /* this fault cannot be repaired */
950                         goto out;
951
952                 recv_bds += bnum;
953                 clean_count += bnum;
954                 if (unlikely(err)) {  /* do jump the err */
955                         recv_pkts++;
956                         continue;
957                 }
958
959                 /* do update ip stack process*/
960                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
961                                                         ring_data, skb);
962                 recv_pkts++;
963         }
964
965 out:
966         /* make all data has been write before submit */
967         if (clean_count + unused_count > 0)
968                 hns_nic_alloc_rx_buffers(ring_data,
969                                          clean_count + unused_count);
970
971         return recv_pkts;
972 }
973
974 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
975 {
976         struct hnae_ring *ring = ring_data->ring;
977         int num = 0;
978         bool rx_stopped;
979
980         hns_update_rx_rate(ring);
981
982         /* for hardware bug fixed */
983         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
984         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
985
986         if (num <= hns_coal_rx_bdnum(ring)) {
987                 if (ring->q->handle->coal_adapt_en)
988                         hns_nic_adpt_coalesce(ring_data);
989
990                 rx_stopped = true;
991         } else {
992                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
993                         ring_data->ring, 1);
994
995                 rx_stopped = false;
996         }
997
998         return rx_stopped;
999 }
1000
1001 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1002 {
1003         struct hnae_ring *ring = ring_data->ring;
1004         int num;
1005
1006         hns_update_rx_rate(ring);
1007         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
1008
1009         if (num <= hns_coal_rx_bdnum(ring)) {
1010                 if (ring->q->handle->coal_adapt_en)
1011                         hns_nic_adpt_coalesce(ring_data);
1012
1013                 return true;
1014         }
1015
1016         return false;
1017 }
1018
1019 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
1020                                             int *bytes, int *pkts)
1021 {
1022         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1023
1024         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1025         (*bytes) += desc_cb->length;
1026         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1027         hnae_free_buffer_detach(ring, ring->next_to_clean);
1028
1029         ring_ptr_move_fw(ring, next_to_clean);
1030 }
1031
1032 static int is_valid_clean_head(struct hnae_ring *ring, int h)
1033 {
1034         int u = ring->next_to_use;
1035         int c = ring->next_to_clean;
1036
1037         if (unlikely(h > ring->desc_num))
1038                 return 0;
1039
1040         assert(u > 0 && u < ring->desc_num);
1041         assert(c > 0 && c < ring->desc_num);
1042         assert(u != c && h != c); /* must be checked before call this func */
1043
1044         return u > c ? (h > c && h <= u) : (h > c || h <= u);
1045 }
1046
1047 /* netif_tx_lock will turn down the performance, set only when necessary */
1048 #ifdef CONFIG_NET_POLL_CONTROLLER
1049 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
1050 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
1051 #else
1052 #define NETIF_TX_LOCK(ring)
1053 #define NETIF_TX_UNLOCK(ring)
1054 #endif
1055
1056 /* reclaim all desc in one budget
1057  * return error or number of desc left
1058  */
1059 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
1060                                int budget, void *v)
1061 {
1062         struct hnae_ring *ring = ring_data->ring;
1063         struct net_device *ndev = ring_data->napi.dev;
1064         struct netdev_queue *dev_queue;
1065         struct hns_nic_priv *priv = netdev_priv(ndev);
1066         int head;
1067         int bytes, pkts;
1068
1069         NETIF_TX_LOCK(ring);
1070
1071         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1072         rmb(); /* make sure head is ready before touch any data */
1073
1074         if (is_ring_empty(ring) || head == ring->next_to_clean) {
1075                 NETIF_TX_UNLOCK(ring);
1076                 return 0; /* no data to poll */
1077         }
1078
1079         if (!is_valid_clean_head(ring, head)) {
1080                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
1081                            ring->next_to_use, ring->next_to_clean);
1082                 ring->stats.io_err_cnt++;
1083                 NETIF_TX_UNLOCK(ring);
1084                 return -EIO;
1085         }
1086
1087         bytes = 0;
1088         pkts = 0;
1089         while (head != ring->next_to_clean) {
1090                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1091                 /* issue prefetch for next Tx descriptor */
1092                 prefetch(&ring->desc_cb[ring->next_to_clean]);
1093         }
1094
1095         NETIF_TX_UNLOCK(ring);
1096
1097         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1098         netdev_tx_completed_queue(dev_queue, pkts, bytes);
1099
1100         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1101                 netif_carrier_on(ndev);
1102
1103         if (unlikely(pkts && netif_carrier_ok(ndev) &&
1104                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1105                 /* Make sure that anybody stopping the queue after this
1106                  * sees the new next_to_clean.
1107                  */
1108                 smp_mb();
1109                 if (netif_tx_queue_stopped(dev_queue) &&
1110                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
1111                         netif_tx_wake_queue(dev_queue);
1112                         ring->stats.restart_queue++;
1113                 }
1114         }
1115         return 0;
1116 }
1117
1118 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1119 {
1120         struct hnae_ring *ring = ring_data->ring;
1121         int head;
1122
1123         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1124
1125         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1126
1127         if (head != ring->next_to_clean) {
1128                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1129                         ring_data->ring, 1);
1130
1131                 return false;
1132         } else {
1133                 return true;
1134         }
1135 }
1136
1137 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1138 {
1139         struct hnae_ring *ring = ring_data->ring;
1140         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1141
1142         if (head == ring->next_to_clean)
1143                 return true;
1144         else
1145                 return false;
1146 }
1147
1148 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1149 {
1150         struct hnae_ring *ring = ring_data->ring;
1151         struct net_device *ndev = ring_data->napi.dev;
1152         struct netdev_queue *dev_queue;
1153         int head;
1154         int bytes, pkts;
1155
1156         NETIF_TX_LOCK(ring);
1157
1158         head = ring->next_to_use; /* ntu :soft setted ring position*/
1159         bytes = 0;
1160         pkts = 0;
1161         while (head != ring->next_to_clean)
1162                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1163
1164         NETIF_TX_UNLOCK(ring);
1165
1166         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1167         netdev_tx_reset_queue(dev_queue);
1168 }
1169
1170 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1171 {
1172         int clean_complete = 0;
1173         struct hns_nic_ring_data *ring_data =
1174                 container_of(napi, struct hns_nic_ring_data, napi);
1175         struct hnae_ring *ring = ring_data->ring;
1176
1177 try_again:
1178         clean_complete += ring_data->poll_one(
1179                                 ring_data, budget - clean_complete,
1180                                 ring_data->ex_process);
1181
1182         if (clean_complete < budget) {
1183                 if (ring_data->fini_process(ring_data)) {
1184                         napi_complete(napi);
1185                         ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1186                 } else {
1187                         goto try_again;
1188                 }
1189         }
1190
1191         return clean_complete;
1192 }
1193
1194 static irqreturn_t hns_irq_handle(int irq, void *dev)
1195 {
1196         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1197
1198         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1199                 ring_data->ring, 1);
1200         napi_schedule(&ring_data->napi);
1201
1202         return IRQ_HANDLED;
1203 }
1204
1205 /**
1206  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1207  *@ndev: net device
1208  */
1209 static void hns_nic_adjust_link(struct net_device *ndev)
1210 {
1211         struct hns_nic_priv *priv = netdev_priv(ndev);
1212         struct hnae_handle *h = priv->ae_handle;
1213         int state = 1;
1214
1215         if (ndev->phydev) {
1216                 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1217                                          ndev->phydev->duplex);
1218                 state = ndev->phydev->link;
1219         }
1220         state = state && h->dev->ops->get_status(h);
1221
1222         if (state != priv->link) {
1223                 if (state) {
1224                         netif_carrier_on(ndev);
1225                         netif_tx_wake_all_queues(ndev);
1226                         netdev_info(ndev, "link up\n");
1227                 } else {
1228                         netif_carrier_off(ndev);
1229                         netdev_info(ndev, "link down\n");
1230                 }
1231                 priv->link = state;
1232         }
1233 }
1234
1235 /**
1236  *hns_nic_init_phy - init phy
1237  *@ndev: net device
1238  *@h: ae handle
1239  * Return 0 on success, negative on failure
1240  */
1241 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1242 {
1243         struct phy_device *phy_dev = h->phy_dev;
1244         int ret;
1245
1246         if (!h->phy_dev)
1247                 return 0;
1248
1249         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1250                 phy_dev->dev_flags = 0;
1251
1252                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1253                                          h->phy_if);
1254         } else {
1255                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1256         }
1257         if (unlikely(ret))
1258                 return -ENODEV;
1259
1260         phy_dev->supported &= h->if_support;
1261         phy_dev->advertising = phy_dev->supported;
1262
1263         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1264                 phy_dev->autoneg = false;
1265
1266         return 0;
1267 }
1268
1269 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1270 {
1271         struct hns_nic_priv *priv = netdev_priv(netdev);
1272         struct hnae_handle *h = priv->ae_handle;
1273
1274         napi_enable(&priv->ring_data[idx].napi);
1275
1276         enable_irq(priv->ring_data[idx].ring->irq);
1277         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1278
1279         return 0;
1280 }
1281
1282 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1283 {
1284         struct hns_nic_priv *priv = netdev_priv(ndev);
1285         struct hnae_handle *h = priv->ae_handle;
1286         struct sockaddr *mac_addr = p;
1287         int ret;
1288
1289         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1290                 return -EADDRNOTAVAIL;
1291
1292         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1293         if (ret) {
1294                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1295                 return ret;
1296         }
1297
1298         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1299
1300         return 0;
1301 }
1302
1303 void hns_nic_update_stats(struct net_device *netdev)
1304 {
1305         struct hns_nic_priv *priv = netdev_priv(netdev);
1306         struct hnae_handle *h = priv->ae_handle;
1307
1308         h->dev->ops->update_stats(h, &netdev->stats);
1309 }
1310
1311 /* set mac addr if it is configed. or leave it to the AE driver */
1312 static void hns_init_mac_addr(struct net_device *ndev)
1313 {
1314         struct hns_nic_priv *priv = netdev_priv(ndev);
1315
1316         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1317                 eth_hw_addr_random(ndev);
1318                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1319                          ndev->dev_addr);
1320         }
1321 }
1322
1323 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1324 {
1325         struct hns_nic_priv *priv = netdev_priv(netdev);
1326         struct hnae_handle *h = priv->ae_handle;
1327
1328         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1329         disable_irq(priv->ring_data[idx].ring->irq);
1330
1331         napi_disable(&priv->ring_data[idx].napi);
1332 }
1333
1334 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1335                                       struct hnae_ring *ring, cpumask_t *mask)
1336 {
1337         int cpu;
1338
1339         /* Diffrent irq banlance between 16core and 32core.
1340          * The cpu mask set by ring index according to the ring flag
1341          * which indicate the ring is tx or rx.
1342          */
1343         if (q_num == num_possible_cpus()) {
1344                 if (is_tx_ring(ring))
1345                         cpu = ring_idx;
1346                 else
1347                         cpu = ring_idx - q_num;
1348         } else {
1349                 if (is_tx_ring(ring))
1350                         cpu = ring_idx * 2;
1351                 else
1352                         cpu = (ring_idx - q_num) * 2 + 1;
1353         }
1354
1355         cpumask_clear(mask);
1356         cpumask_set_cpu(cpu, mask);
1357
1358         return cpu;
1359 }
1360
1361 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1362 {
1363         struct hnae_handle *h = priv->ae_handle;
1364         struct hns_nic_ring_data *rd;
1365         int i;
1366         int ret;
1367         int cpu;
1368
1369         for (i = 0; i < h->q_num * 2; i++) {
1370                 rd = &priv->ring_data[i];
1371
1372                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1373                         break;
1374
1375                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1376                          "%s-%s%d", priv->netdev->name,
1377                          (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1378
1379                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1380
1381                 ret = request_irq(rd->ring->irq,
1382                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1383                 if (ret) {
1384                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1385                                    rd->ring->irq);
1386                         return ret;
1387                 }
1388                 disable_irq(rd->ring->irq);
1389
1390                 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1391                                                  rd->ring, &rd->mask);
1392
1393                 if (cpu_online(cpu))
1394                         irq_set_affinity_hint(rd->ring->irq,
1395                                               &rd->mask);
1396
1397                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1398         }
1399
1400         return 0;
1401 }
1402
1403 static int hns_nic_net_up(struct net_device *ndev)
1404 {
1405         struct hns_nic_priv *priv = netdev_priv(ndev);
1406         struct hnae_handle *h = priv->ae_handle;
1407         int i, j;
1408         int ret;
1409
1410         ret = hns_nic_init_irq(priv);
1411         if (ret != 0) {
1412                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1413                 return ret;
1414         }
1415
1416         for (i = 0; i < h->q_num * 2; i++) {
1417                 ret = hns_nic_ring_open(ndev, i);
1418                 if (ret)
1419                         goto out_has_some_queues;
1420         }
1421
1422         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1423         if (ret)
1424                 goto out_set_mac_addr_err;
1425
1426         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1427         if (ret)
1428                 goto out_start_err;
1429
1430         if (ndev->phydev)
1431                 phy_start(ndev->phydev);
1432
1433         clear_bit(NIC_STATE_DOWN, &priv->state);
1434         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1435
1436         return 0;
1437
1438 out_start_err:
1439         netif_stop_queue(ndev);
1440 out_set_mac_addr_err:
1441 out_has_some_queues:
1442         for (j = i - 1; j >= 0; j--)
1443                 hns_nic_ring_close(ndev, j);
1444
1445         set_bit(NIC_STATE_DOWN, &priv->state);
1446
1447         return ret;
1448 }
1449
1450 static void hns_nic_net_down(struct net_device *ndev)
1451 {
1452         int i;
1453         struct hnae_ae_ops *ops;
1454         struct hns_nic_priv *priv = netdev_priv(ndev);
1455
1456         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1457                 return;
1458
1459         (void)del_timer_sync(&priv->service_timer);
1460         netif_tx_stop_all_queues(ndev);
1461         netif_carrier_off(ndev);
1462         netif_tx_disable(ndev);
1463         priv->link = 0;
1464
1465         if (ndev->phydev)
1466                 phy_stop(ndev->phydev);
1467
1468         ops = priv->ae_handle->dev->ops;
1469
1470         if (ops->stop)
1471                 ops->stop(priv->ae_handle);
1472
1473         netif_tx_stop_all_queues(ndev);
1474
1475         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1476                 hns_nic_ring_close(ndev, i);
1477                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1478
1479                 /* clean tx buffers*/
1480                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1481         }
1482 }
1483
1484 void hns_nic_net_reset(struct net_device *ndev)
1485 {
1486         struct hns_nic_priv *priv = netdev_priv(ndev);
1487         struct hnae_handle *handle = priv->ae_handle;
1488
1489         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1490                 usleep_range(1000, 2000);
1491
1492         (void)hnae_reinit_handle(handle);
1493
1494         clear_bit(NIC_STATE_RESETTING, &priv->state);
1495 }
1496
1497 void hns_nic_net_reinit(struct net_device *netdev)
1498 {
1499         struct hns_nic_priv *priv = netdev_priv(netdev);
1500         enum hnae_port_type type = priv->ae_handle->port_type;
1501
1502         netif_trans_update(priv->netdev);
1503         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1504                 usleep_range(1000, 2000);
1505
1506         hns_nic_net_down(netdev);
1507
1508         /* Only do hns_nic_net_reset in debug mode
1509          * because of hardware limitation.
1510          */
1511         if (type == HNAE_PORT_DEBUG)
1512                 hns_nic_net_reset(netdev);
1513
1514         (void)hns_nic_net_up(netdev);
1515         clear_bit(NIC_STATE_REINITING, &priv->state);
1516 }
1517
1518 static int hns_nic_net_open(struct net_device *ndev)
1519 {
1520         struct hns_nic_priv *priv = netdev_priv(ndev);
1521         struct hnae_handle *h = priv->ae_handle;
1522         int ret;
1523
1524         if (test_bit(NIC_STATE_TESTING, &priv->state))
1525                 return -EBUSY;
1526
1527         priv->link = 0;
1528         netif_carrier_off(ndev);
1529
1530         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1531         if (ret < 0) {
1532                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1533                            ret);
1534                 return ret;
1535         }
1536
1537         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1538         if (ret < 0) {
1539                 netdev_err(ndev,
1540                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1541                 return ret;
1542         }
1543
1544         ret = hns_nic_net_up(ndev);
1545         if (ret) {
1546                 netdev_err(ndev,
1547                            "hns net up fail, ret=%d!\n", ret);
1548                 return ret;
1549         }
1550
1551         return 0;
1552 }
1553
1554 static int hns_nic_net_stop(struct net_device *ndev)
1555 {
1556         hns_nic_net_down(ndev);
1557
1558         return 0;
1559 }
1560
1561 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1562 static void hns_nic_net_timeout(struct net_device *ndev)
1563 {
1564         struct hns_nic_priv *priv = netdev_priv(ndev);
1565
1566         hns_tx_timeout_reset(priv);
1567 }
1568
1569 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1570                             int cmd)
1571 {
1572         struct phy_device *phy_dev = netdev->phydev;
1573
1574         if (!netif_running(netdev))
1575                 return -EINVAL;
1576
1577         if (!phy_dev)
1578                 return -ENOTSUPP;
1579
1580         return phy_mii_ioctl(phy_dev, ifr, cmd);
1581 }
1582
1583 /* use only for netconsole to poll with the device without interrupt */
1584 #ifdef CONFIG_NET_POLL_CONTROLLER
1585 void hns_nic_poll_controller(struct net_device *ndev)
1586 {
1587         struct hns_nic_priv *priv = netdev_priv(ndev);
1588         unsigned long flags;
1589         int i;
1590
1591         local_irq_save(flags);
1592         for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1593                 napi_schedule(&priv->ring_data[i].napi);
1594         local_irq_restore(flags);
1595 }
1596 #endif
1597
1598 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1599                                     struct net_device *ndev)
1600 {
1601         struct hns_nic_priv *priv = netdev_priv(ndev);
1602
1603         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1604
1605         return hns_nic_net_xmit_hw(ndev, skb,
1606                                    &tx_ring_data(priv, skb->queue_mapping));
1607 }
1608
1609 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1610                                   struct sk_buff *skb)
1611 {
1612         dev_kfree_skb_any(skb);
1613 }
1614
1615 #define HNS_LB_TX_RING  0
1616 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1617 {
1618         struct sk_buff *skb;
1619         struct ethhdr *ethhdr;
1620         int frame_len;
1621
1622         /* allocate test skb */
1623         skb = alloc_skb(64, GFP_KERNEL);
1624         if (!skb)
1625                 return NULL;
1626
1627         skb_put(skb, 64);
1628         skb->dev = ndev;
1629         memset(skb->data, 0xFF, skb->len);
1630
1631         /* must be tcp/ip package */
1632         ethhdr = (struct ethhdr *)skb->data;
1633         ethhdr->h_proto = htons(ETH_P_IP);
1634
1635         frame_len = skb->len & (~1ul);
1636         memset(&skb->data[frame_len / 2], 0xAA,
1637                frame_len / 2 - 1);
1638
1639         skb->queue_mapping = HNS_LB_TX_RING;
1640
1641         return skb;
1642 }
1643
1644 static int hns_enable_serdes_lb(struct net_device *ndev)
1645 {
1646         struct hns_nic_priv *priv = netdev_priv(ndev);
1647         struct hnae_handle *h = priv->ae_handle;
1648         struct hnae_ae_ops *ops = h->dev->ops;
1649         int speed, duplex;
1650         int ret;
1651
1652         ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1653         if (ret)
1654                 return ret;
1655
1656         ret = ops->start ? ops->start(h) : 0;
1657         if (ret)
1658                 return ret;
1659
1660         /* link adjust duplex*/
1661         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1662                 speed = 1000;
1663         else
1664                 speed = 10000;
1665         duplex = 1;
1666
1667         ops->adjust_link(h, speed, duplex);
1668
1669         /* wait h/w ready */
1670         mdelay(300);
1671
1672         return 0;
1673 }
1674
1675 static void hns_disable_serdes_lb(struct net_device *ndev)
1676 {
1677         struct hns_nic_priv *priv = netdev_priv(ndev);
1678         struct hnae_handle *h = priv->ae_handle;
1679         struct hnae_ae_ops *ops = h->dev->ops;
1680
1681         ops->stop(h);
1682         ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1683 }
1684
1685 /**
1686  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1687  *function as follows:
1688  *    1. if one rx ring has found the page_offset is not equal 0 between head
1689  *       and tail, it means that the chip fetched the wrong descs for the ring
1690  *       which buffer size is 4096.
1691  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1692  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1693  *       recieving all packages and it will fetch new descriptions.
1694  *    4. recover to the original state.
1695  *
1696  *@ndev: net device
1697  */
1698 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1699 {
1700         struct hns_nic_priv *priv = netdev_priv(ndev);
1701         struct hnae_handle *h = priv->ae_handle;
1702         struct hnae_ae_ops *ops = h->dev->ops;
1703         struct hns_nic_ring_data *rd;
1704         struct hnae_ring *ring;
1705         struct sk_buff *skb;
1706         u32 *org_indir;
1707         u32 *cur_indir;
1708         int indir_size;
1709         int head, tail;
1710         int fetch_num;
1711         int i, j;
1712         bool found;
1713         int retry_times;
1714         int ret = 0;
1715
1716         /* alloc indir memory */
1717         indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1718         org_indir = kzalloc(indir_size, GFP_KERNEL);
1719         if (!org_indir)
1720                 return -ENOMEM;
1721
1722         /* store the orginal indirection */
1723         ops->get_rss(h, org_indir, NULL, NULL);
1724
1725         cur_indir = kzalloc(indir_size, GFP_KERNEL);
1726         if (!cur_indir) {
1727                 ret = -ENOMEM;
1728                 goto cur_indir_alloc_err;
1729         }
1730
1731         /* set loopback */
1732         if (hns_enable_serdes_lb(ndev)) {
1733                 ret = -EINVAL;
1734                 goto enable_serdes_lb_err;
1735         }
1736
1737         /* foreach every rx ring to clear fetch desc */
1738         for (i = 0; i < h->q_num; i++) {
1739                 ring = &h->qs[i]->rx_ring;
1740                 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1741                 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1742                 found = false;
1743                 fetch_num = ring_dist(ring, head, tail);
1744
1745                 while (head != tail) {
1746                         if (ring->desc_cb[head].page_offset != 0) {
1747                                 found = true;
1748                                 break;
1749                         }
1750
1751                         head++;
1752                         if (head == ring->desc_num)
1753                                 head = 0;
1754                 }
1755
1756                 if (found) {
1757                         for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1758                                 cur_indir[j] = i;
1759                         ops->set_rss(h, cur_indir, NULL, 0);
1760
1761                         for (j = 0; j < fetch_num; j++) {
1762                                 /* alloc one skb and init */
1763                                 skb = hns_assemble_skb(ndev);
1764                                 if (!skb)
1765                                         goto out;
1766                                 rd = &tx_ring_data(priv, skb->queue_mapping);
1767                                 hns_nic_net_xmit_hw(ndev, skb, rd);
1768
1769                                 retry_times = 0;
1770                                 while (retry_times++ < 10) {
1771                                         mdelay(10);
1772                                         /* clean rx */
1773                                         rd = &rx_ring_data(priv, i);
1774                                         if (rd->poll_one(rd, fetch_num,
1775                                                          hns_nic_drop_rx_fetch))
1776                                                 break;
1777                                 }
1778
1779                                 retry_times = 0;
1780                                 while (retry_times++ < 10) {
1781                                         mdelay(10);
1782                                         /* clean tx ring 0 send package */
1783                                         rd = &tx_ring_data(priv,
1784                                                            HNS_LB_TX_RING);
1785                                         if (rd->poll_one(rd, fetch_num, NULL))
1786                                                 break;
1787                                 }
1788                         }
1789                 }
1790         }
1791
1792 out:
1793         /* restore everything */
1794         ops->set_rss(h, org_indir, NULL, 0);
1795         hns_disable_serdes_lb(ndev);
1796 enable_serdes_lb_err:
1797         kfree(cur_indir);
1798 cur_indir_alloc_err:
1799         kfree(org_indir);
1800
1801         return ret;
1802 }
1803
1804 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1805 {
1806         struct hns_nic_priv *priv = netdev_priv(ndev);
1807         struct hnae_handle *h = priv->ae_handle;
1808         bool if_running = netif_running(ndev);
1809         int ret;
1810
1811         /* MTU < 68 is an error and causes problems on some kernels */
1812         if (new_mtu < 68)
1813                 return -EINVAL;
1814
1815         /* MTU no change */
1816         if (new_mtu == ndev->mtu)
1817                 return 0;
1818
1819         if (!h->dev->ops->set_mtu)
1820                 return -ENOTSUPP;
1821
1822         if (if_running) {
1823                 (void)hns_nic_net_stop(ndev);
1824                 msleep(100);
1825         }
1826
1827         if (priv->enet_ver != AE_VERSION_1 &&
1828             ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1829             new_mtu > BD_SIZE_2048_MAX_MTU) {
1830                 /* update desc */
1831                 hnae_reinit_all_ring_desc(h);
1832
1833                 /* clear the package which the chip has fetched */
1834                 ret = hns_nic_clear_all_rx_fetch(ndev);
1835
1836                 /* the page offset must be consist with desc */
1837                 hnae_reinit_all_ring_page_off(h);
1838
1839                 if (ret) {
1840                         netdev_err(ndev, "clear the fetched desc fail\n");
1841                         goto out;
1842                 }
1843         }
1844
1845         ret = h->dev->ops->set_mtu(h, new_mtu);
1846         if (ret) {
1847                 netdev_err(ndev, "set mtu fail, return value %d\n",
1848                            ret);
1849                 goto out;
1850         }
1851
1852         /* finally, set new mtu to netdevice */
1853         ndev->mtu = new_mtu;
1854
1855 out:
1856         if (if_running) {
1857                 if (hns_nic_net_open(ndev)) {
1858                         netdev_err(ndev, "hns net open fail\n");
1859                         ret = -EINVAL;
1860                 }
1861         }
1862
1863         return ret;
1864 }
1865
1866 static int hns_nic_set_features(struct net_device *netdev,
1867                                 netdev_features_t features)
1868 {
1869         struct hns_nic_priv *priv = netdev_priv(netdev);
1870
1871         switch (priv->enet_ver) {
1872         case AE_VERSION_1:
1873                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1874                         netdev_info(netdev, "enet v1 do not support tso!\n");
1875                 break;
1876         default:
1877                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1878                         priv->ops.fill_desc = fill_tso_desc;
1879                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1880                         /* The chip only support 7*4096 */
1881                         netif_set_gso_max_size(netdev, 7 * 4096);
1882                 } else {
1883                         priv->ops.fill_desc = fill_v2_desc;
1884                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1885                 }
1886                 break;
1887         }
1888         netdev->features = features;
1889         return 0;
1890 }
1891
1892 static netdev_features_t hns_nic_fix_features(
1893                 struct net_device *netdev, netdev_features_t features)
1894 {
1895         struct hns_nic_priv *priv = netdev_priv(netdev);
1896
1897         switch (priv->enet_ver) {
1898         case AE_VERSION_1:
1899                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1900                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1901                 break;
1902         default:
1903                 break;
1904         }
1905         return features;
1906 }
1907
1908 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1909 {
1910         struct hns_nic_priv *priv = netdev_priv(netdev);
1911         struct hnae_handle *h = priv->ae_handle;
1912
1913         if (h->dev->ops->add_uc_addr)
1914                 return h->dev->ops->add_uc_addr(h, addr);
1915
1916         return 0;
1917 }
1918
1919 static int hns_nic_uc_unsync(struct net_device *netdev,
1920                              const unsigned char *addr)
1921 {
1922         struct hns_nic_priv *priv = netdev_priv(netdev);
1923         struct hnae_handle *h = priv->ae_handle;
1924
1925         if (h->dev->ops->rm_uc_addr)
1926                 return h->dev->ops->rm_uc_addr(h, addr);
1927
1928         return 0;
1929 }
1930
1931 /**
1932  * nic_set_multicast_list - set mutl mac address
1933  * @netdev: net device
1934  * @p: mac address
1935  *
1936  * return void
1937  */
1938 void hns_set_multicast_list(struct net_device *ndev)
1939 {
1940         struct hns_nic_priv *priv = netdev_priv(ndev);
1941         struct hnae_handle *h = priv->ae_handle;
1942         struct netdev_hw_addr *ha = NULL;
1943
1944         if (!h) {
1945                 netdev_err(ndev, "hnae handle is null\n");
1946                 return;
1947         }
1948
1949         if (h->dev->ops->clr_mc_addr)
1950                 if (h->dev->ops->clr_mc_addr(h))
1951                         netdev_err(ndev, "clear multicast address fail\n");
1952
1953         if (h->dev->ops->set_mc_addr) {
1954                 netdev_for_each_mc_addr(ha, ndev)
1955                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1956                                 netdev_err(ndev, "set multicast fail\n");
1957         }
1958 }
1959
1960 void hns_nic_set_rx_mode(struct net_device *ndev)
1961 {
1962         struct hns_nic_priv *priv = netdev_priv(ndev);
1963         struct hnae_handle *h = priv->ae_handle;
1964
1965         if (h->dev->ops->set_promisc_mode) {
1966                 if (ndev->flags & IFF_PROMISC)
1967                         h->dev->ops->set_promisc_mode(h, 1);
1968                 else
1969                         h->dev->ops->set_promisc_mode(h, 0);
1970         }
1971
1972         hns_set_multicast_list(ndev);
1973
1974         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1975                 netdev_err(ndev, "sync uc address fail\n");
1976 }
1977
1978 static void hns_nic_get_stats64(struct net_device *ndev,
1979                                 struct rtnl_link_stats64 *stats)
1980 {
1981         int idx = 0;
1982         u64 tx_bytes = 0;
1983         u64 rx_bytes = 0;
1984         u64 tx_pkts = 0;
1985         u64 rx_pkts = 0;
1986         struct hns_nic_priv *priv = netdev_priv(ndev);
1987         struct hnae_handle *h = priv->ae_handle;
1988
1989         for (idx = 0; idx < h->q_num; idx++) {
1990                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1991                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1992                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1993                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1994         }
1995
1996         stats->tx_bytes = tx_bytes;
1997         stats->tx_packets = tx_pkts;
1998         stats->rx_bytes = rx_bytes;
1999         stats->rx_packets = rx_pkts;
2000
2001         stats->rx_errors = ndev->stats.rx_errors;
2002         stats->multicast = ndev->stats.multicast;
2003         stats->rx_length_errors = ndev->stats.rx_length_errors;
2004         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
2005         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
2006
2007         stats->tx_errors = ndev->stats.tx_errors;
2008         stats->rx_dropped = ndev->stats.rx_dropped;
2009         stats->tx_dropped = ndev->stats.tx_dropped;
2010         stats->collisions = ndev->stats.collisions;
2011         stats->rx_over_errors = ndev->stats.rx_over_errors;
2012         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
2013         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
2014         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
2015         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
2016         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
2017         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
2018         stats->tx_window_errors = ndev->stats.tx_window_errors;
2019         stats->rx_compressed = ndev->stats.rx_compressed;
2020         stats->tx_compressed = ndev->stats.tx_compressed;
2021 }
2022
2023 static u16
2024 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
2025                      void *accel_priv, select_queue_fallback_t fallback)
2026 {
2027         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
2028         struct hns_nic_priv *priv = netdev_priv(ndev);
2029
2030         /* fix hardware broadcast/multicast packets queue loopback */
2031         if (!AE_IS_VER1(priv->enet_ver) &&
2032             is_multicast_ether_addr(eth_hdr->h_dest))
2033                 return 0;
2034         else
2035                 return fallback(ndev, skb);
2036 }
2037
2038 static const struct net_device_ops hns_nic_netdev_ops = {
2039         .ndo_open = hns_nic_net_open,
2040         .ndo_stop = hns_nic_net_stop,
2041         .ndo_start_xmit = hns_nic_net_xmit,
2042         .ndo_tx_timeout = hns_nic_net_timeout,
2043         .ndo_set_mac_address = hns_nic_net_set_mac_address,
2044         .ndo_change_mtu = hns_nic_change_mtu,
2045         .ndo_do_ioctl = hns_nic_do_ioctl,
2046         .ndo_set_features = hns_nic_set_features,
2047         .ndo_fix_features = hns_nic_fix_features,
2048         .ndo_get_stats64 = hns_nic_get_stats64,
2049 #ifdef CONFIG_NET_POLL_CONTROLLER
2050         .ndo_poll_controller = hns_nic_poll_controller,
2051 #endif
2052         .ndo_set_rx_mode = hns_nic_set_rx_mode,
2053         .ndo_select_queue = hns_nic_select_queue,
2054 };
2055
2056 static void hns_nic_update_link_status(struct net_device *netdev)
2057 {
2058         struct hns_nic_priv *priv = netdev_priv(netdev);
2059
2060         struct hnae_handle *h = priv->ae_handle;
2061
2062         if (h->phy_dev) {
2063                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2064                         return;
2065
2066                 (void)genphy_read_status(h->phy_dev);
2067         }
2068         hns_nic_adjust_link(netdev);
2069 }
2070
2071 /* for dumping key regs*/
2072 static void hns_nic_dump(struct hns_nic_priv *priv)
2073 {
2074         struct hnae_handle *h = priv->ae_handle;
2075         struct hnae_ae_ops *ops = h->dev->ops;
2076         u32 *data, reg_num, i;
2077
2078         if (ops->get_regs_len && ops->get_regs) {
2079                 reg_num = ops->get_regs_len(priv->ae_handle);
2080                 reg_num = (reg_num + 3ul) & ~3ul;
2081                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2082                 if (data) {
2083                         ops->get_regs(priv->ae_handle, data);
2084                         for (i = 0; i < reg_num; i += 4)
2085                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2086                                         i, data[i], data[i + 1],
2087                                         data[i + 2], data[i + 3]);
2088                         kfree(data);
2089                 }
2090         }
2091
2092         for (i = 0; i < h->q_num; i++) {
2093                 pr_info("tx_queue%d_next_to_clean:%d\n",
2094                         i, h->qs[i]->tx_ring.next_to_clean);
2095                 pr_info("tx_queue%d_next_to_use:%d\n",
2096                         i, h->qs[i]->tx_ring.next_to_use);
2097                 pr_info("rx_queue%d_next_to_clean:%d\n",
2098                         i, h->qs[i]->rx_ring.next_to_clean);
2099                 pr_info("rx_queue%d_next_to_use:%d\n",
2100                         i, h->qs[i]->rx_ring.next_to_use);
2101         }
2102 }
2103
2104 /* for resetting subtask */
2105 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2106 {
2107         enum hnae_port_type type = priv->ae_handle->port_type;
2108
2109         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2110                 return;
2111         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2112
2113         /* If we're already down, removing or resetting, just bail */
2114         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2115             test_bit(NIC_STATE_REMOVING, &priv->state) ||
2116             test_bit(NIC_STATE_RESETTING, &priv->state))
2117                 return;
2118
2119         hns_nic_dump(priv);
2120         netdev_info(priv->netdev, "try to reset %s port!\n",
2121                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2122
2123         rtnl_lock();
2124         /* put off any impending NetWatchDogTimeout */
2125         netif_trans_update(priv->netdev);
2126         hns_nic_net_reinit(priv->netdev);
2127
2128         rtnl_unlock();
2129 }
2130
2131 /* for doing service complete*/
2132 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2133 {
2134         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2135         /* make sure to commit the things */
2136         smp_mb__before_atomic();
2137         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2138 }
2139
2140 static void hns_nic_service_task(struct work_struct *work)
2141 {
2142         struct hns_nic_priv *priv
2143                 = container_of(work, struct hns_nic_priv, service_task);
2144         struct hnae_handle *h = priv->ae_handle;
2145
2146         hns_nic_update_link_status(priv->netdev);
2147         h->dev->ops->update_led_status(h);
2148         hns_nic_update_stats(priv->netdev);
2149
2150         hns_nic_reset_subtask(priv);
2151         hns_nic_service_event_complete(priv);
2152 }
2153
2154 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2155 {
2156         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2157             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2158             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2159                 (void)schedule_work(&priv->service_task);
2160 }
2161
2162 static void hns_nic_service_timer(unsigned long data)
2163 {
2164         struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
2165
2166         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2167
2168         hns_nic_task_schedule(priv);
2169 }
2170
2171 /**
2172  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2173  * @priv: driver private struct
2174  **/
2175 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2176 {
2177         /* Do the reset outside of interrupt context */
2178         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2179                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2180                 netdev_warn(priv->netdev,
2181                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
2182                             priv->tx_timeout_count, priv->state);
2183                 priv->tx_timeout_count++;
2184                 hns_nic_task_schedule(priv);
2185         }
2186 }
2187
2188 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2189 {
2190         struct hnae_handle *h = priv->ae_handle;
2191         struct hns_nic_ring_data *rd;
2192         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2193         int i;
2194
2195         if (h->q_num > NIC_MAX_Q_PER_VF) {
2196                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2197                 return -EINVAL;
2198         }
2199
2200         priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2201                                   GFP_KERNEL);
2202         if (!priv->ring_data)
2203                 return -ENOMEM;
2204
2205         for (i = 0; i < h->q_num; i++) {
2206                 rd = &priv->ring_data[i];
2207                 rd->queue_index = i;
2208                 rd->ring = &h->qs[i]->tx_ring;
2209                 rd->poll_one = hns_nic_tx_poll_one;
2210                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2211                         hns_nic_tx_fini_pro_v2;
2212
2213                 netif_napi_add(priv->netdev, &rd->napi,
2214                                hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2215                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2216         }
2217         for (i = h->q_num; i < h->q_num * 2; i++) {
2218                 rd = &priv->ring_data[i];
2219                 rd->queue_index = i - h->q_num;
2220                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2221                 rd->poll_one = hns_nic_rx_poll_one;
2222                 rd->ex_process = hns_nic_rx_up_pro;
2223                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2224                         hns_nic_rx_fini_pro_v2;
2225
2226                 netif_napi_add(priv->netdev, &rd->napi,
2227                                hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2228                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2229         }
2230
2231         return 0;
2232 }
2233
2234 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2235 {
2236         struct hnae_handle *h = priv->ae_handle;
2237         int i;
2238
2239         for (i = 0; i < h->q_num * 2; i++) {
2240                 netif_napi_del(&priv->ring_data[i].napi);
2241                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2242                         (void)irq_set_affinity_hint(
2243                                 priv->ring_data[i].ring->irq,
2244                                 NULL);
2245                         free_irq(priv->ring_data[i].ring->irq,
2246                                  &priv->ring_data[i]);
2247                 }
2248
2249                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2250         }
2251         kfree(priv->ring_data);
2252 }
2253
2254 static void hns_nic_set_priv_ops(struct net_device *netdev)
2255 {
2256         struct hns_nic_priv *priv = netdev_priv(netdev);
2257         struct hnae_handle *h = priv->ae_handle;
2258
2259         if (AE_IS_VER1(priv->enet_ver)) {
2260                 priv->ops.fill_desc = fill_desc;
2261                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2262                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2263         } else {
2264                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2265                 if ((netdev->features & NETIF_F_TSO) ||
2266                     (netdev->features & NETIF_F_TSO6)) {
2267                         priv->ops.fill_desc = fill_tso_desc;
2268                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2269                         /* This chip only support 7*4096 */
2270                         netif_set_gso_max_size(netdev, 7 * 4096);
2271                 } else {
2272                         priv->ops.fill_desc = fill_v2_desc;
2273                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2274                 }
2275                 /* enable tso when init
2276                  * control tso on/off through TSE bit in bd
2277                  */
2278                 h->dev->ops->set_tso_stats(h, 1);
2279         }
2280 }
2281
2282 static int hns_nic_try_get_ae(struct net_device *ndev)
2283 {
2284         struct hns_nic_priv *priv = netdev_priv(ndev);
2285         struct hnae_handle *h;
2286         int ret;
2287
2288         h = hnae_get_handle(&priv->netdev->dev,
2289                             priv->fwnode, priv->port_id, NULL);
2290         if (IS_ERR_OR_NULL(h)) {
2291                 ret = -ENODEV;
2292                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2293                 goto out;
2294         }
2295         priv->ae_handle = h;
2296
2297         ret = hns_nic_init_phy(ndev, h);
2298         if (ret) {
2299                 dev_err(priv->dev, "probe phy device fail!\n");
2300                 goto out_init_phy;
2301         }
2302
2303         ret = hns_nic_init_ring_data(priv);
2304         if (ret) {
2305                 ret = -ENOMEM;
2306                 goto out_init_ring_data;
2307         }
2308
2309         hns_nic_set_priv_ops(ndev);
2310
2311         ret = register_netdev(ndev);
2312         if (ret) {
2313                 dev_err(priv->dev, "probe register netdev fail!\n");
2314                 goto out_reg_ndev_fail;
2315         }
2316         return 0;
2317
2318 out_reg_ndev_fail:
2319         hns_nic_uninit_ring_data(priv);
2320         priv->ring_data = NULL;
2321 out_init_phy:
2322 out_init_ring_data:
2323         hnae_put_handle(priv->ae_handle);
2324         priv->ae_handle = NULL;
2325 out:
2326         return ret;
2327 }
2328
2329 static int hns_nic_notifier_action(struct notifier_block *nb,
2330                                    unsigned long action, void *data)
2331 {
2332         struct hns_nic_priv *priv =
2333                 container_of(nb, struct hns_nic_priv, notifier_block);
2334
2335         assert(action == HNAE_AE_REGISTER);
2336
2337         if (!hns_nic_try_get_ae(priv->netdev)) {
2338                 hnae_unregister_notifier(&priv->notifier_block);
2339                 priv->notifier_block.notifier_call = NULL;
2340         }
2341         return 0;
2342 }
2343
2344 static int hns_nic_dev_probe(struct platform_device *pdev)
2345 {
2346         struct device *dev = &pdev->dev;
2347         struct net_device *ndev;
2348         struct hns_nic_priv *priv;
2349         u32 port_id;
2350         int ret;
2351
2352         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2353         if (!ndev)
2354                 return -ENOMEM;
2355
2356         platform_set_drvdata(pdev, ndev);
2357
2358         priv = netdev_priv(ndev);
2359         priv->dev = dev;
2360         priv->netdev = ndev;
2361
2362         if (dev_of_node(dev)) {
2363                 struct device_node *ae_node;
2364
2365                 if (of_device_is_compatible(dev->of_node,
2366                                             "hisilicon,hns-nic-v1"))
2367                         priv->enet_ver = AE_VERSION_1;
2368                 else
2369                         priv->enet_ver = AE_VERSION_2;
2370
2371                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2372                 if (IS_ERR_OR_NULL(ae_node)) {
2373                         ret = PTR_ERR(ae_node);
2374                         dev_err(dev, "not find ae-handle\n");
2375                         goto out_read_prop_fail;
2376                 }
2377                 priv->fwnode = &ae_node->fwnode;
2378         } else if (is_acpi_node(dev->fwnode)) {
2379                 struct acpi_reference_args args;
2380
2381                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2382                         priv->enet_ver = AE_VERSION_1;
2383                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2384                         priv->enet_ver = AE_VERSION_2;
2385                 else
2386                         return -ENXIO;
2387
2388                 /* try to find port-idx-in-ae first */
2389                 ret = acpi_node_get_property_reference(dev->fwnode,
2390                                                        "ae-handle", 0, &args);
2391                 if (ret) {
2392                         dev_err(dev, "not find ae-handle\n");
2393                         goto out_read_prop_fail;
2394                 }
2395                 priv->fwnode = acpi_fwnode_handle(args.adev);
2396         } else {
2397                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2398                 return -ENXIO;
2399         }
2400
2401         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2402         if (ret) {
2403                 /* only for old code compatible */
2404                 ret = device_property_read_u32(dev, "port-id", &port_id);
2405                 if (ret)
2406                         goto out_read_prop_fail;
2407                 /* for old dts, we need to caculate the port offset */
2408                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2409                         : port_id - HNS_SRV_OFFSET;
2410         }
2411         priv->port_id = port_id;
2412
2413         hns_init_mac_addr(ndev);
2414
2415         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2416         ndev->priv_flags |= IFF_UNICAST_FLT;
2417         ndev->netdev_ops = &hns_nic_netdev_ops;
2418         hns_ethtool_set_ops(ndev);
2419
2420         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2421                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2422                 NETIF_F_GRO;
2423         ndev->vlan_features |=
2424                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2425         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2426
2427         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2428         ndev->min_mtu = MAC_MIN_MTU;
2429         switch (priv->enet_ver) {
2430         case AE_VERSION_2:
2431                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2432                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2433                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2434                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2435                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2436                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2437                 break;
2438         default:
2439                 ndev->max_mtu = MAC_MAX_MTU -
2440                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2441                 break;
2442         }
2443
2444         SET_NETDEV_DEV(ndev, dev);
2445
2446         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2447                 dev_dbg(dev, "set mask to 64bit\n");
2448         else
2449                 dev_err(dev, "set mask to 64bit fail!\n");
2450
2451         /* carrier off reporting is important to ethtool even BEFORE open */
2452         netif_carrier_off(ndev);
2453
2454         setup_timer(&priv->service_timer, hns_nic_service_timer,
2455                     (unsigned long)priv);
2456         INIT_WORK(&priv->service_task, hns_nic_service_task);
2457
2458         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2459         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2460         set_bit(NIC_STATE_DOWN, &priv->state);
2461
2462         if (hns_nic_try_get_ae(priv->netdev)) {
2463                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2464                 ret = hnae_register_notifier(&priv->notifier_block);
2465                 if (ret) {
2466                         dev_err(dev, "register notifier fail!\n");
2467                         goto out_notify_fail;
2468                 }
2469                 dev_dbg(dev, "has not handle, register notifier!\n");
2470         }
2471
2472         return 0;
2473
2474 out_notify_fail:
2475         (void)cancel_work_sync(&priv->service_task);
2476 out_read_prop_fail:
2477         free_netdev(ndev);
2478         return ret;
2479 }
2480
2481 static int hns_nic_dev_remove(struct platform_device *pdev)
2482 {
2483         struct net_device *ndev = platform_get_drvdata(pdev);
2484         struct hns_nic_priv *priv = netdev_priv(ndev);
2485
2486         if (ndev->reg_state != NETREG_UNINITIALIZED)
2487                 unregister_netdev(ndev);
2488
2489         if (priv->ring_data)
2490                 hns_nic_uninit_ring_data(priv);
2491         priv->ring_data = NULL;
2492
2493         if (ndev->phydev)
2494                 phy_disconnect(ndev->phydev);
2495
2496         if (!IS_ERR_OR_NULL(priv->ae_handle))
2497                 hnae_put_handle(priv->ae_handle);
2498         priv->ae_handle = NULL;
2499         if (priv->notifier_block.notifier_call)
2500                 hnae_unregister_notifier(&priv->notifier_block);
2501         priv->notifier_block.notifier_call = NULL;
2502
2503         set_bit(NIC_STATE_REMOVING, &priv->state);
2504         (void)cancel_work_sync(&priv->service_task);
2505
2506         free_netdev(ndev);
2507         return 0;
2508 }
2509
2510 static const struct of_device_id hns_enet_of_match[] = {
2511         {.compatible = "hisilicon,hns-nic-v1",},
2512         {.compatible = "hisilicon,hns-nic-v2",},
2513         {},
2514 };
2515
2516 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2517
2518 static struct platform_driver hns_nic_dev_driver = {
2519         .driver = {
2520                 .name = "hns-nic",
2521                 .of_match_table = hns_enet_of_match,
2522                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2523         },
2524         .probe = hns_nic_dev_probe,
2525         .remove = hns_nic_dev_remove,
2526 };
2527
2528 module_platform_driver(hns_nic_dev_driver);
2529
2530 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2531 MODULE_AUTHOR("Hisilicon, Inc.");
2532 MODULE_LICENSE("GPL");
2533 MODULE_ALIAS("platform:hns-nic");