]> git.samba.org - sfrench/cifs-2.6.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
854b1717a70d7aa4a42c11d507c01a281769d33b
[sfrench/cifs-2.6.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 #if defined(CONFIG_CHELSIO_TLS_DEVICE)
70 #include <net/tls.h>
71 #endif
72
73 #include "cxgb4.h"
74 #include "cxgb4_filter.h"
75 #include "t4_regs.h"
76 #include "t4_values.h"
77 #include "t4_msg.h"
78 #include "t4fw_api.h"
79 #include "t4fw_version.h"
80 #include "cxgb4_dcb.h"
81 #include "srq.h"
82 #include "cxgb4_debugfs.h"
83 #include "clip_tbl.h"
84 #include "l2t.h"
85 #include "smt.h"
86 #include "sched.h"
87 #include "cxgb4_tc_u32.h"
88 #include "cxgb4_tc_flower.h"
89 #include "cxgb4_tc_mqprio.h"
90 #include "cxgb4_tc_matchall.h"
91 #include "cxgb4_ptp.h"
92 #include "cxgb4_cudbg.h"
93
94 char cxgb4_driver_name[] = KBUILD_MODNAME;
95
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105         static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116                 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119                 { 0, } \
120         }
121
122 #include "t4_pci_id_tbl.h"
123
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181
182 static struct dentry *cxgb4_debugfs_root;
183
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 LIST_HEAD(uld_list);
187
188 static int cfg_queues(struct adapter *adap);
189
190 static void link_report(struct net_device *dev)
191 {
192         if (!netif_carrier_ok(dev))
193                 netdev_info(dev, "link down\n");
194         else {
195                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
196
197                 const char *s;
198                 const struct port_info *p = netdev_priv(dev);
199
200                 switch (p->link_cfg.speed) {
201                 case 100:
202                         s = "100Mbps";
203                         break;
204                 case 1000:
205                         s = "1Gbps";
206                         break;
207                 case 10000:
208                         s = "10Gbps";
209                         break;
210                 case 25000:
211                         s = "25Gbps";
212                         break;
213                 case 40000:
214                         s = "40Gbps";
215                         break;
216                 case 50000:
217                         s = "50Gbps";
218                         break;
219                 case 100000:
220                         s = "100Gbps";
221                         break;
222                 default:
223                         pr_info("%s: unsupported speed: %d\n",
224                                 dev->name, p->link_cfg.speed);
225                         return;
226                 }
227
228                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
229                             fc[p->link_cfg.fc]);
230         }
231 }
232
233 #ifdef CONFIG_CHELSIO_T4_DCB
234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
236 {
237         struct port_info *pi = netdev_priv(dev);
238         struct adapter *adap = pi->adapter;
239         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
240         int i;
241
242         /* We use a simple mapping of Port TX Queue Index to DCB
243          * Priority when we're enabling DCB.
244          */
245         for (i = 0; i < pi->nqsets; i++, txq++) {
246                 u32 name, value;
247                 int err;
248
249                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
250                         FW_PARAMS_PARAM_X_V(
251                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
252                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
253                 value = enable ? i : 0xffffffff;
254
255                 /* Since we can be called while atomic (from "interrupt
256                  * level") we need to issue the Set Parameters Commannd
257                  * without sleeping (timeout < 0).
258                  */
259                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
260                                             &name, &value,
261                                             -FW_CMD_MAX_TIMEOUT);
262
263                 if (err)
264                         dev_err(adap->pdev_dev,
265                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
266                                 enable ? "set" : "unset", pi->port_id, i, -err);
267                 else
268                         txq->dcb_prio = enable ? value : 0;
269         }
270 }
271
272 int cxgb4_dcb_enabled(const struct net_device *dev)
273 {
274         struct port_info *pi = netdev_priv(dev);
275
276         if (!pi->dcb.enabled)
277                 return 0;
278
279         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
280                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
281 }
282 #endif /* CONFIG_CHELSIO_T4_DCB */
283
284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
285 {
286         struct net_device *dev = adapter->port[port_id];
287
288         /* Skip changes from disabled ports. */
289         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
290                 if (link_stat)
291                         netif_carrier_on(dev);
292                 else {
293 #ifdef CONFIG_CHELSIO_T4_DCB
294                         if (cxgb4_dcb_enabled(dev)) {
295                                 cxgb4_dcb_reset(dev);
296                                 dcb_tx_queue_prio_enable(dev, false);
297                         }
298 #endif /* CONFIG_CHELSIO_T4_DCB */
299                         netif_carrier_off(dev);
300                 }
301
302                 link_report(dev);
303         }
304 }
305
306 void t4_os_portmod_changed(struct adapter *adap, int port_id)
307 {
308         static const char *mod_str[] = {
309                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310         };
311
312         struct net_device *dev = adap->port[port_id];
313         struct port_info *pi = netdev_priv(dev);
314
315         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316                 netdev_info(dev, "port module unplugged\n");
317         else if (pi->mod_type < ARRAY_SIZE(mod_str))
318                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
320                 netdev_info(dev, "%s: unsupported port module inserted\n",
321                             dev->name);
322         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
323                 netdev_info(dev, "%s: unknown port module inserted\n",
324                             dev->name);
325         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
326                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
327         else
328                 netdev_info(dev, "%s: unknown module type %d inserted\n",
329                             dev->name, pi->mod_type);
330
331         /* If the interface is running, then we'll need any "sticky" Link
332          * Parameters redone with a new Transceiver Module.
333          */
334         pi->link_cfg.redo_l1cfg = netif_running(dev);
335 }
336
337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
338 module_param(dbfifo_int_thresh, int, 0644);
339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
340
341 /*
342  * usecs to sleep while draining the dbfifo
343  */
344 static int dbfifo_drain_delay = 1000;
345 module_param(dbfifo_drain_delay, int, 0644);
346 MODULE_PARM_DESC(dbfifo_drain_delay,
347                  "usecs to sleep while draining the dbfifo");
348
349 static inline int cxgb4_set_addr_hash(struct port_info *pi)
350 {
351         struct adapter *adap = pi->adapter;
352         u64 vec = 0;
353         bool ucast = false;
354         struct hash_mac_addr *entry;
355
356         /* Calculate the hash vector for the updated list and program it */
357         list_for_each_entry(entry, &adap->mac_hlist, list) {
358                 ucast |= is_unicast_ether_addr(entry->addr);
359                 vec |= (1ULL << hash_mac_addr(entry->addr));
360         }
361         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
362                                 vec, false);
363 }
364
365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
366 {
367         struct port_info *pi = netdev_priv(netdev);
368         struct adapter *adap = pi->adapter;
369         int ret;
370         u64 mhash = 0;
371         u64 uhash = 0;
372         /* idx stores the index of allocated filters,
373          * its size should be modified based on the number of
374          * MAC addresses that we allocate filters for
375          */
376
377         u16 idx[1] = {};
378         bool free = false;
379         bool ucast = is_unicast_ether_addr(mac_addr);
380         const u8 *maclist[1] = {mac_addr};
381         struct hash_mac_addr *new_entry;
382
383         ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
384                                    idx, ucast ? &uhash : &mhash, false);
385         if (ret < 0)
386                 goto out;
387         /* if hash != 0, then add the addr to hash addr list
388          * so on the end we will calculate the hash for the
389          * list and program it
390          */
391         if (uhash || mhash) {
392                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
393                 if (!new_entry)
394                         return -ENOMEM;
395                 ether_addr_copy(new_entry->addr, mac_addr);
396                 list_add_tail(&new_entry->list, &adap->mac_hlist);
397                 ret = cxgb4_set_addr_hash(pi);
398         }
399 out:
400         return ret < 0 ? ret : 0;
401 }
402
403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
404 {
405         struct port_info *pi = netdev_priv(netdev);
406         struct adapter *adap = pi->adapter;
407         int ret;
408         const u8 *maclist[1] = {mac_addr};
409         struct hash_mac_addr *entry, *tmp;
410
411         /* If the MAC address to be removed is in the hash addr
412          * list, delete it from the list and update hash vector
413          */
414         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
415                 if (ether_addr_equal(entry->addr, mac_addr)) {
416                         list_del(&entry->list);
417                         kfree(entry);
418                         return cxgb4_set_addr_hash(pi);
419                 }
420         }
421
422         ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
423         return ret < 0 ? -EINVAL : 0;
424 }
425
426 /*
427  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
428  * If @mtu is -1 it is left unchanged.
429  */
430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
431 {
432         struct port_info *pi = netdev_priv(dev);
433         struct adapter *adapter = pi->adapter;
434
435         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
437
438         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
439                              (dev->flags & IFF_PROMISC) ? 1 : 0,
440                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
441                              sleep_ok);
442 }
443
444 /**
445  *      cxgb4_change_mac - Update match filter for a MAC address.
446  *      @pi: the port_info
447  *      @viid: the VI id
448  *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
449  *                 or -1
450  *      @addr: the new MAC address value
451  *      @persist: whether a new MAC allocation should be persistent
452  *      @add_smt: if true also add the address to the HW SMT
453  *
454  *      Modifies an MPS filter and sets it to the new MAC address if
455  *      @tcam_idx >= 0, or adds the MAC address to a new filter if
456  *      @tcam_idx < 0. In the latter case the address is added persistently
457  *      if @persist is %true.
458  *      Addresses are programmed to hash region, if tcam runs out of entries.
459  *
460  */
461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
462                      int *tcam_idx, const u8 *addr, bool persist,
463                      u8 *smt_idx)
464 {
465         struct adapter *adapter = pi->adapter;
466         struct hash_mac_addr *entry, *new_entry;
467         int ret;
468
469         ret = t4_change_mac(adapter, adapter->mbox, viid,
470                             *tcam_idx, addr, persist, smt_idx);
471         /* We ran out of TCAM entries. try programming hash region. */
472         if (ret == -ENOMEM) {
473                 /* If the MAC address to be updated is in the hash addr
474                  * list, update it from the list
475                  */
476                 list_for_each_entry(entry, &adapter->mac_hlist, list) {
477                         if (entry->iface_mac) {
478                                 ether_addr_copy(entry->addr, addr);
479                                 goto set_hash;
480                         }
481                 }
482                 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
483                 if (!new_entry)
484                         return -ENOMEM;
485                 ether_addr_copy(new_entry->addr, addr);
486                 new_entry->iface_mac = true;
487                 list_add_tail(&new_entry->list, &adapter->mac_hlist);
488 set_hash:
489                 ret = cxgb4_set_addr_hash(pi);
490         } else if (ret >= 0) {
491                 *tcam_idx = ret;
492                 ret = 0;
493         }
494
495         return ret;
496 }
497
498 /*
499  *      link_start - enable a port
500  *      @dev: the port to enable
501  *
502  *      Performs the MAC and PHY actions needed to enable a port.
503  */
504 static int link_start(struct net_device *dev)
505 {
506         int ret;
507         struct port_info *pi = netdev_priv(dev);
508         unsigned int mb = pi->adapter->pf;
509
510         /*
511          * We do not set address filters and promiscuity here, the stack does
512          * that step explicitly.
513          */
514         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
515                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516         if (ret == 0)
517                 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518                                             dev->dev_addr, true, &pi->smt_idx);
519         if (ret == 0)
520                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521                                     &pi->link_cfg);
522         if (ret == 0) {
523                 local_bh_disable();
524                 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525                                           true, CXGB4_DCB_ENABLED);
526                 local_bh_enable();
527         }
528
529         return ret;
530 }
531
532 #ifdef CONFIG_CHELSIO_T4_DCB
533 /* Handle a Data Center Bridging update message from the firmware. */
534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535 {
536         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537         struct net_device *dev = adap->port[adap->chan_map[port]];
538         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539         int new_dcb_enabled;
540
541         cxgb4_dcb_handle_fw_update(adap, pcmd);
542         new_dcb_enabled = cxgb4_dcb_enabled(dev);
543
544         /* If the DCB has become enabled or disabled on the port then we're
545          * going to need to set up/tear down DCB Priority parameters for the
546          * TX Queues associated with the port.
547          */
548         if (new_dcb_enabled != old_dcb_enabled)
549                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550 }
551 #endif /* CONFIG_CHELSIO_T4_DCB */
552
553 /* Response queue handler for the FW event queue.
554  */
555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556                           const struct pkt_gl *gl)
557 {
558         u8 opcode = ((const struct rss_header *)rsp)->opcode;
559
560         rsp++;                                          /* skip RSS header */
561
562         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563          */
564         if (unlikely(opcode == CPL_FW4_MSG &&
565            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566                 rsp++;
567                 opcode = ((const struct rss_header *)rsp)->opcode;
568                 rsp++;
569                 if (opcode != CPL_SGE_EGR_UPDATE) {
570                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571                                 , opcode);
572                         goto out;
573                 }
574         }
575
576         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577                 const struct cpl_sge_egr_update *p = (void *)rsp;
578                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579                 struct sge_txq *txq;
580
581                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582                 txq->restarts++;
583                 if (txq->q_type == CXGB4_TXQ_ETH) {
584                         struct sge_eth_txq *eq;
585
586                         eq = container_of(txq, struct sge_eth_txq, q);
587                         t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588                 } else {
589                         struct sge_uld_txq *oq;
590
591                         oq = container_of(txq, struct sge_uld_txq, q);
592                         tasklet_schedule(&oq->qresume_tsk);
593                 }
594         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595                 const struct cpl_fw6_msg *p = (void *)rsp;
596
597 #ifdef CONFIG_CHELSIO_T4_DCB
598                 const struct fw_port_cmd *pcmd = (const void *)p->data;
599                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600                 unsigned int action =
601                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602
603                 if (cmd == FW_PORT_CMD &&
604                     (action == FW_PORT_ACTION_GET_PORT_INFO ||
605                      action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606                         int port = FW_PORT_CMD_PORTID_G(
607                                         be32_to_cpu(pcmd->op_to_portid));
608                         struct net_device *dev;
609                         int dcbxdis, state_input;
610
611                         dev = q->adap->port[q->adap->chan_map[port]];
612                         dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613                           ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614                           : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615                                & FW_PORT_CMD_DCBXDIS32_F));
616                         state_input = (dcbxdis
617                                        ? CXGB4_DCB_INPUT_FW_DISABLED
618                                        : CXGB4_DCB_INPUT_FW_ENABLED);
619
620                         cxgb4_dcb_state_fsm(dev, state_input);
621                 }
622
623                 if (cmd == FW_PORT_CMD &&
624                     action == FW_PORT_ACTION_L2_DCB_CFG)
625                         dcb_rpl(q->adap, pcmd);
626                 else
627 #endif
628                         if (p->type == 0)
629                                 t4_handle_fw_rpl(q->adap, p->data);
630         } else if (opcode == CPL_L2T_WRITE_RPL) {
631                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
632
633                 do_l2t_write_rpl(q->adap, p);
634         } else if (opcode == CPL_SMT_WRITE_RPL) {
635                 const struct cpl_smt_write_rpl *p = (void *)rsp;
636
637                 do_smt_write_rpl(q->adap, p);
638         } else if (opcode == CPL_SET_TCB_RPL) {
639                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641                 filter_rpl(q->adap, p);
642         } else if (opcode == CPL_ACT_OPEN_RPL) {
643                 const struct cpl_act_open_rpl *p = (void *)rsp;
644
645                 hash_filter_rpl(q->adap, p);
646         } else if (opcode == CPL_ABORT_RPL_RSS) {
647                 const struct cpl_abort_rpl_rss *p = (void *)rsp;
648
649                 hash_del_filter_rpl(q->adap, p);
650         } else if (opcode == CPL_SRQ_TABLE_RPL) {
651                 const struct cpl_srq_table_rpl *p = (void *)rsp;
652
653                 do_srq_table_rpl(q->adap, p);
654         } else
655                 dev_err(q->adap->pdev_dev,
656                         "unexpected CPL %#x on FW event queue\n", opcode);
657 out:
658         return 0;
659 }
660
661 static void disable_msi(struct adapter *adapter)
662 {
663         if (adapter->flags & CXGB4_USING_MSIX) {
664                 pci_disable_msix(adapter->pdev);
665                 adapter->flags &= ~CXGB4_USING_MSIX;
666         } else if (adapter->flags & CXGB4_USING_MSI) {
667                 pci_disable_msi(adapter->pdev);
668                 adapter->flags &= ~CXGB4_USING_MSI;
669         }
670 }
671
672 /*
673  * Interrupt handler for non-data events used with MSI-X.
674  */
675 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676 {
677         struct adapter *adap = cookie;
678         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679
680         if (v & PFSW_F) {
681                 adap->swintr = 1;
682                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683         }
684         if (adap->flags & CXGB4_MASTER_PF)
685                 t4_slow_intr_handler(adap);
686         return IRQ_HANDLED;
687 }
688
689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690                        cpumask_var_t *aff_mask, int idx)
691 {
692         int rv;
693
694         if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695                 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696                 return -ENOMEM;
697         }
698
699         cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700                         *aff_mask);
701
702         rv = irq_set_affinity_hint(vec, *aff_mask);
703         if (rv)
704                 dev_warn(adap->pdev_dev,
705                          "irq_set_affinity_hint %u failed %d\n",
706                          vec, rv);
707
708         return 0;
709 }
710
711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712 {
713         irq_set_affinity_hint(vec, NULL);
714         free_cpumask_var(aff_mask);
715 }
716
717 static int request_msix_queue_irqs(struct adapter *adap)
718 {
719         struct sge *s = &adap->sge;
720         struct msix_info *minfo;
721         int err, ethqidx;
722
723         if (s->fwevtq_msix_idx < 0)
724                 return -ENOMEM;
725
726         err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727                           t4_sge_intr_msix, 0,
728                           adap->msix_info[s->fwevtq_msix_idx].desc,
729                           &s->fw_evtq);
730         if (err)
731                 return err;
732
733         for_each_ethrxq(s, ethqidx) {
734                 minfo = s->ethrxq[ethqidx].msix;
735                 err = request_irq(minfo->vec,
736                                   t4_sge_intr_msix, 0,
737                                   minfo->desc,
738                                   &s->ethrxq[ethqidx].rspq);
739                 if (err)
740                         goto unwind;
741
742                 cxgb4_set_msix_aff(adap, minfo->vec,
743                                    &minfo->aff_mask, ethqidx);
744         }
745         return 0;
746
747 unwind:
748         while (--ethqidx >= 0) {
749                 minfo = s->ethrxq[ethqidx].msix;
750                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751                 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752         }
753         free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754         return err;
755 }
756
757 static void free_msix_queue_irqs(struct adapter *adap)
758 {
759         struct sge *s = &adap->sge;
760         struct msix_info *minfo;
761         int i;
762
763         free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764         for_each_ethrxq(s, i) {
765                 minfo = s->ethrxq[i].msix;
766                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767                 free_irq(minfo->vec, &s->ethrxq[i].rspq);
768         }
769 }
770
771 static int setup_ppod_edram(struct adapter *adap)
772 {
773         unsigned int param, val;
774         int ret;
775
776         /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777          * if firmware supports ppod edram feature or not. If firmware
778          * returns 1, then driver can enable this feature by sending
779          * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780          * enable ppod edram feature.
781          */
782         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784
785         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
786         if (ret < 0) {
787                 dev_warn(adap->pdev_dev,
788                          "querying PPOD_EDRAM support failed: %d\n",
789                          ret);
790                 return -1;
791         }
792
793         if (val != 1)
794                 return -1;
795
796         ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
797         if (ret < 0) {
798                 dev_err(adap->pdev_dev,
799                         "setting PPOD_EDRAM failed: %d\n", ret);
800                 return -1;
801         }
802         return 0;
803 }
804
805 static void adap_config_hpfilter(struct adapter *adapter)
806 {
807         u32 param, val = 0;
808         int ret;
809
810         /* Enable HP filter region. Older fw will fail this request and
811          * it is fine.
812          */
813         param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814         ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815                             1, &param, &val);
816
817         /* An error means FW doesn't know about HP filter support,
818          * it's not a problem, don't return an error.
819          */
820         if (ret < 0)
821                 dev_err(adapter->pdev_dev,
822                         "HP filter region isn't supported by FW\n");
823 }
824
825 /**
826  *      cxgb4_write_rss - write the RSS table for a given port
827  *      @pi: the port
828  *      @queues: array of queue indices for RSS
829  *
830  *      Sets up the portion of the HW RSS table for the port's VI to distribute
831  *      packets to the Rx queues in @queues.
832  *      Should never be called before setting up sge eth rx queues
833  */
834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
835 {
836         u16 *rss;
837         int i, err;
838         struct adapter *adapter = pi->adapter;
839         const struct sge_eth_rxq *rxq;
840
841         rxq = &adapter->sge.ethrxq[pi->first_qset];
842         rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
843         if (!rss)
844                 return -ENOMEM;
845
846         /* map the queue indices to queue ids */
847         for (i = 0; i < pi->rss_size; i++, queues++)
848                 rss[i] = rxq[*queues].rspq.abs_id;
849
850         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
851                                   pi->rss_size, rss, pi->rss_size);
852         /* If Tunnel All Lookup isn't specified in the global RSS
853          * Configuration, then we need to specify a default Ingress
854          * Queue for any ingress packets which aren't hashed.  We'll
855          * use our first ingress queue ...
856          */
857         if (!err)
858                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
859                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
860                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
861                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
862                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
863                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
864                                        rss[0]);
865         kfree(rss);
866         return err;
867 }
868
869 /**
870  *      setup_rss - configure RSS
871  *      @adap: the adapter
872  *
873  *      Sets up RSS for each port.
874  */
875 static int setup_rss(struct adapter *adap)
876 {
877         int i, j, err;
878
879         for_each_port(adap, i) {
880                 const struct port_info *pi = adap2pinfo(adap, i);
881
882                 /* Fill default values with equal distribution */
883                 for (j = 0; j < pi->rss_size; j++)
884                         pi->rss[j] = j % pi->nqsets;
885
886                 err = cxgb4_write_rss(pi, pi->rss);
887                 if (err)
888                         return err;
889         }
890         return 0;
891 }
892
893 /*
894  * Return the channel of the ingress queue with the given qid.
895  */
896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
897 {
898         qid -= p->ingr_start;
899         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
900 }
901
902 void cxgb4_quiesce_rx(struct sge_rspq *q)
903 {
904         if (q->handler)
905                 napi_disable(&q->napi);
906 }
907
908 /*
909  * Wait until all NAPI handlers are descheduled.
910  */
911 static void quiesce_rx(struct adapter *adap)
912 {
913         int i;
914
915         for (i = 0; i < adap->sge.ingr_sz; i++) {
916                 struct sge_rspq *q = adap->sge.ingr_map[i];
917
918                 if (!q)
919                         continue;
920
921                 cxgb4_quiesce_rx(q);
922         }
923 }
924
925 /* Disable interrupt and napi handler */
926 static void disable_interrupts(struct adapter *adap)
927 {
928         struct sge *s = &adap->sge;
929
930         if (adap->flags & CXGB4_FULL_INIT_DONE) {
931                 t4_intr_disable(adap);
932                 if (adap->flags & CXGB4_USING_MSIX) {
933                         free_msix_queue_irqs(adap);
934                         free_irq(adap->msix_info[s->nd_msix_idx].vec,
935                                  adap);
936                 } else {
937                         free_irq(adap->pdev->irq, adap);
938                 }
939                 quiesce_rx(adap);
940         }
941 }
942
943 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
944 {
945         if (q->handler)
946                 napi_enable(&q->napi);
947
948         /* 0-increment GTS to start the timer and enable interrupts */
949         t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
950                      SEINTARM_V(q->intr_params) |
951                      INGRESSQID_V(q->cntxt_id));
952 }
953
954 /*
955  * Enable NAPI scheduling and interrupt generation for all Rx queues.
956  */
957 static void enable_rx(struct adapter *adap)
958 {
959         int i;
960
961         for (i = 0; i < adap->sge.ingr_sz; i++) {
962                 struct sge_rspq *q = adap->sge.ingr_map[i];
963
964                 if (!q)
965                         continue;
966
967                 cxgb4_enable_rx(adap, q);
968         }
969 }
970
971 static int setup_non_data_intr(struct adapter *adap)
972 {
973         int msix;
974
975         adap->sge.nd_msix_idx = -1;
976         if (!(adap->flags & CXGB4_USING_MSIX))
977                 return 0;
978
979         /* Request MSI-X vector for non-data interrupt */
980         msix = cxgb4_get_msix_idx_from_bmap(adap);
981         if (msix < 0)
982                 return -ENOMEM;
983
984         snprintf(adap->msix_info[msix].desc,
985                  sizeof(adap->msix_info[msix].desc),
986                  "%s", adap->port[0]->name);
987
988         adap->sge.nd_msix_idx = msix;
989         return 0;
990 }
991
992 static int setup_fw_sge_queues(struct adapter *adap)
993 {
994         struct sge *s = &adap->sge;
995         int msix, err = 0;
996
997         bitmap_zero(s->starving_fl, s->egr_sz);
998         bitmap_zero(s->txq_maperr, s->egr_sz);
999
1000         if (adap->flags & CXGB4_USING_MSIX) {
1001                 s->fwevtq_msix_idx = -1;
1002                 msix = cxgb4_get_msix_idx_from_bmap(adap);
1003                 if (msix < 0)
1004                         return -ENOMEM;
1005
1006                 snprintf(adap->msix_info[msix].desc,
1007                          sizeof(adap->msix_info[msix].desc),
1008                          "%s-FWeventq", adap->port[0]->name);
1009         } else {
1010                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1011                                        NULL, NULL, NULL, -1);
1012                 if (err)
1013                         return err;
1014                 msix = -((int)s->intrq.abs_id + 1);
1015         }
1016
1017         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1018                                msix, NULL, fwevtq_handler, NULL, -1);
1019         if (err && msix >= 0)
1020                 cxgb4_free_msix_idx_in_bmap(adap, msix);
1021
1022         s->fwevtq_msix_idx = msix;
1023         return err;
1024 }
1025
1026 /**
1027  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1028  *      @adap: the adapter
1029  *
1030  *      Determines how many sets of SGE queues to use and initializes them.
1031  *      We support multiple queue sets per port if we have MSI-X, otherwise
1032  *      just one queue set per port.
1033  */
1034 static int setup_sge_queues(struct adapter *adap)
1035 {
1036         struct sge_uld_rxq_info *rxq_info = NULL;
1037         struct sge *s = &adap->sge;
1038         unsigned int cmplqid = 0;
1039         int err, i, j, msix = 0;
1040
1041         if (is_uld(adap))
1042                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1043
1044         if (!(adap->flags & CXGB4_USING_MSIX))
1045                 msix = -((int)s->intrq.abs_id + 1);
1046
1047         for_each_port(adap, i) {
1048                 struct net_device *dev = adap->port[i];
1049                 struct port_info *pi = netdev_priv(dev);
1050                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1051                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1052
1053                 for (j = 0; j < pi->nqsets; j++, q++) {
1054                         if (msix >= 0) {
1055                                 msix = cxgb4_get_msix_idx_from_bmap(adap);
1056                                 if (msix < 0) {
1057                                         err = msix;
1058                                         goto freeout;
1059                                 }
1060
1061                                 snprintf(adap->msix_info[msix].desc,
1062                                          sizeof(adap->msix_info[msix].desc),
1063                                          "%s-Rx%d", dev->name, j);
1064                                 q->msix = &adap->msix_info[msix];
1065                         }
1066
1067                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1068                                                msix, &q->fl,
1069                                                t4_ethrx_handler,
1070                                                NULL,
1071                                                t4_get_tp_ch_map(adap,
1072                                                                 pi->tx_chan));
1073                         if (err)
1074                                 goto freeout;
1075                         q->rspq.idx = j;
1076                         memset(&q->stats, 0, sizeof(q->stats));
1077                 }
1078
1079                 q = &s->ethrxq[pi->first_qset];
1080                 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1081                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1082                                         netdev_get_tx_queue(dev, j),
1083                                         q->rspq.cntxt_id,
1084                                         !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1085                         if (err)
1086                                 goto freeout;
1087                 }
1088         }
1089
1090         for_each_port(adap, i) {
1091                 /* Note that cmplqid below is 0 if we don't
1092                  * have RDMA queues, and that's the right value.
1093                  */
1094                 if (rxq_info)
1095                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1096
1097                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1098                                             s->fw_evtq.cntxt_id, cmplqid);
1099                 if (err)
1100                         goto freeout;
1101         }
1102
1103         if (!is_t4(adap->params.chip)) {
1104                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1105                                            netdev_get_tx_queue(adap->port[0], 0)
1106                                            , s->fw_evtq.cntxt_id, false);
1107                 if (err)
1108                         goto freeout;
1109         }
1110
1111         t4_write_reg(adap, is_t4(adap->params.chip) ?
1112                                 MPS_TRC_RSS_CONTROL_A :
1113                                 MPS_T5_TRC_RSS_CONTROL_A,
1114                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1115                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1116         return 0;
1117 freeout:
1118         dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1119         t4_free_sge_resources(adap);
1120         return err;
1121 }
1122
1123 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1124                              struct net_device *sb_dev)
1125 {
1126         int txq;
1127
1128 #ifdef CONFIG_CHELSIO_T4_DCB
1129         /* If a Data Center Bridging has been successfully negotiated on this
1130          * link then we'll use the skb's priority to map it to a TX Queue.
1131          * The skb's priority is determined via the VLAN Tag Priority Code
1132          * Point field.
1133          */
1134         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1135                 u16 vlan_tci;
1136                 int err;
1137
1138                 err = vlan_get_tag(skb, &vlan_tci);
1139                 if (unlikely(err)) {
1140                         if (net_ratelimit())
1141                                 netdev_warn(dev,
1142                                             "TX Packet without VLAN Tag on DCB Link\n");
1143                         txq = 0;
1144                 } else {
1145                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1146 #ifdef CONFIG_CHELSIO_T4_FCOE
1147                         if (skb->protocol == htons(ETH_P_FCOE))
1148                                 txq = skb->priority & 0x7;
1149 #endif /* CONFIG_CHELSIO_T4_FCOE */
1150                 }
1151                 return txq;
1152         }
1153 #endif /* CONFIG_CHELSIO_T4_DCB */
1154
1155         if (dev->num_tc) {
1156                 struct port_info *pi = netdev2pinfo(dev);
1157                 u8 ver, proto;
1158
1159                 ver = ip_hdr(skb)->version;
1160                 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1161                                      ip_hdr(skb)->protocol;
1162
1163                 /* Send unsupported traffic pattern to normal NIC queues. */
1164                 txq = netdev_pick_tx(dev, skb, sb_dev);
1165                 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1166                     skb->encapsulation ||
1167                     (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1168                         txq = txq % pi->nqsets;
1169
1170                 return txq;
1171         }
1172
1173         if (select_queue) {
1174                 txq = (skb_rx_queue_recorded(skb)
1175                         ? skb_get_rx_queue(skb)
1176                         : smp_processor_id());
1177
1178                 while (unlikely(txq >= dev->real_num_tx_queues))
1179                         txq -= dev->real_num_tx_queues;
1180
1181                 return txq;
1182         }
1183
1184         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1185 }
1186
1187 static int closest_timer(const struct sge *s, int time)
1188 {
1189         int i, delta, match = 0, min_delta = INT_MAX;
1190
1191         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1192                 delta = time - s->timer_val[i];
1193                 if (delta < 0)
1194                         delta = -delta;
1195                 if (delta < min_delta) {
1196                         min_delta = delta;
1197                         match = i;
1198                 }
1199         }
1200         return match;
1201 }
1202
1203 static int closest_thres(const struct sge *s, int thres)
1204 {
1205         int i, delta, match = 0, min_delta = INT_MAX;
1206
1207         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1208                 delta = thres - s->counter_val[i];
1209                 if (delta < 0)
1210                         delta = -delta;
1211                 if (delta < min_delta) {
1212                         min_delta = delta;
1213                         match = i;
1214                 }
1215         }
1216         return match;
1217 }
1218
1219 /**
1220  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1221  *      @q: the Rx queue
1222  *      @us: the hold-off time in us, or 0 to disable timer
1223  *      @cnt: the hold-off packet count, or 0 to disable counter
1224  *
1225  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1226  *      one of the two needs to be enabled for the queue to generate interrupts.
1227  */
1228 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1229                                unsigned int us, unsigned int cnt)
1230 {
1231         struct adapter *adap = q->adap;
1232
1233         if ((us | cnt) == 0)
1234                 cnt = 1;
1235
1236         if (cnt) {
1237                 int err;
1238                 u32 v, new_idx;
1239
1240                 new_idx = closest_thres(&adap->sge, cnt);
1241                 if (q->desc && q->pktcnt_idx != new_idx) {
1242                         /* the queue has already been created, update it */
1243                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1244                             FW_PARAMS_PARAM_X_V(
1245                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1246                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1247                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1248                                             &v, &new_idx);
1249                         if (err)
1250                                 return err;
1251                 }
1252                 q->pktcnt_idx = new_idx;
1253         }
1254
1255         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1256         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1257         return 0;
1258 }
1259
1260 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1261 {
1262         const struct port_info *pi = netdev_priv(dev);
1263         netdev_features_t changed = dev->features ^ features;
1264         int err;
1265
1266         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1267                 return 0;
1268
1269         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1270                             -1, -1, -1,
1271                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1272         if (unlikely(err))
1273                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1274         return err;
1275 }
1276
1277 static int setup_debugfs(struct adapter *adap)
1278 {
1279         if (IS_ERR_OR_NULL(adap->debugfs_root))
1280                 return -1;
1281
1282 #ifdef CONFIG_DEBUG_FS
1283         t4_setup_debugfs(adap);
1284 #endif
1285         return 0;
1286 }
1287
1288 /*
1289  * upper-layer driver support
1290  */
1291
1292 /*
1293  * Allocate an active-open TID and set it to the supplied value.
1294  */
1295 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1296 {
1297         int atid = -1;
1298
1299         spin_lock_bh(&t->atid_lock);
1300         if (t->afree) {
1301                 union aopen_entry *p = t->afree;
1302
1303                 atid = (p - t->atid_tab) + t->atid_base;
1304                 t->afree = p->next;
1305                 p->data = data;
1306                 t->atids_in_use++;
1307         }
1308         spin_unlock_bh(&t->atid_lock);
1309         return atid;
1310 }
1311 EXPORT_SYMBOL(cxgb4_alloc_atid);
1312
1313 /*
1314  * Release an active-open TID.
1315  */
1316 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1317 {
1318         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1319
1320         spin_lock_bh(&t->atid_lock);
1321         p->next = t->afree;
1322         t->afree = p;
1323         t->atids_in_use--;
1324         spin_unlock_bh(&t->atid_lock);
1325 }
1326 EXPORT_SYMBOL(cxgb4_free_atid);
1327
1328 /*
1329  * Allocate a server TID and set it to the supplied value.
1330  */
1331 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1332 {
1333         int stid;
1334
1335         spin_lock_bh(&t->stid_lock);
1336         if (family == PF_INET) {
1337                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1338                 if (stid < t->nstids)
1339                         __set_bit(stid, t->stid_bmap);
1340                 else
1341                         stid = -1;
1342         } else {
1343                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1344                 if (stid < 0)
1345                         stid = -1;
1346         }
1347         if (stid >= 0) {
1348                 t->stid_tab[stid].data = data;
1349                 stid += t->stid_base;
1350                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1351                  * This is equivalent to 4 TIDs. With CLIP enabled it
1352                  * needs 2 TIDs.
1353                  */
1354                 if (family == PF_INET6) {
1355                         t->stids_in_use += 2;
1356                         t->v6_stids_in_use += 2;
1357                 } else {
1358                         t->stids_in_use++;
1359                 }
1360         }
1361         spin_unlock_bh(&t->stid_lock);
1362         return stid;
1363 }
1364 EXPORT_SYMBOL(cxgb4_alloc_stid);
1365
1366 /* Allocate a server filter TID and set it to the supplied value.
1367  */
1368 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1369 {
1370         int stid;
1371
1372         spin_lock_bh(&t->stid_lock);
1373         if (family == PF_INET) {
1374                 stid = find_next_zero_bit(t->stid_bmap,
1375                                 t->nstids + t->nsftids, t->nstids);
1376                 if (stid < (t->nstids + t->nsftids))
1377                         __set_bit(stid, t->stid_bmap);
1378                 else
1379                         stid = -1;
1380         } else {
1381                 stid = -1;
1382         }
1383         if (stid >= 0) {
1384                 t->stid_tab[stid].data = data;
1385                 stid -= t->nstids;
1386                 stid += t->sftid_base;
1387                 t->sftids_in_use++;
1388         }
1389         spin_unlock_bh(&t->stid_lock);
1390         return stid;
1391 }
1392 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1393
1394 /* Release a server TID.
1395  */
1396 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1397 {
1398         /* Is it a server filter TID? */
1399         if (t->nsftids && (stid >= t->sftid_base)) {
1400                 stid -= t->sftid_base;
1401                 stid += t->nstids;
1402         } else {
1403                 stid -= t->stid_base;
1404         }
1405
1406         spin_lock_bh(&t->stid_lock);
1407         if (family == PF_INET)
1408                 __clear_bit(stid, t->stid_bmap);
1409         else
1410                 bitmap_release_region(t->stid_bmap, stid, 1);
1411         t->stid_tab[stid].data = NULL;
1412         if (stid < t->nstids) {
1413                 if (family == PF_INET6) {
1414                         t->stids_in_use -= 2;
1415                         t->v6_stids_in_use -= 2;
1416                 } else {
1417                         t->stids_in_use--;
1418                 }
1419         } else {
1420                 t->sftids_in_use--;
1421         }
1422
1423         spin_unlock_bh(&t->stid_lock);
1424 }
1425 EXPORT_SYMBOL(cxgb4_free_stid);
1426
1427 /*
1428  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1429  */
1430 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1431                            unsigned int tid)
1432 {
1433         struct cpl_tid_release *req;
1434
1435         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1436         req = __skb_put(skb, sizeof(*req));
1437         INIT_TP_WR(req, tid);
1438         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1439 }
1440
1441 /*
1442  * Queue a TID release request and if necessary schedule a work queue to
1443  * process it.
1444  */
1445 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1446                                     unsigned int tid)
1447 {
1448         struct adapter *adap = container_of(t, struct adapter, tids);
1449         void **p = &t->tid_tab[tid - t->tid_base];
1450
1451         spin_lock_bh(&adap->tid_release_lock);
1452         *p = adap->tid_release_head;
1453         /* Low 2 bits encode the Tx channel number */
1454         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1455         if (!adap->tid_release_task_busy) {
1456                 adap->tid_release_task_busy = true;
1457                 queue_work(adap->workq, &adap->tid_release_task);
1458         }
1459         spin_unlock_bh(&adap->tid_release_lock);
1460 }
1461
1462 /*
1463  * Process the list of pending TID release requests.
1464  */
1465 static void process_tid_release_list(struct work_struct *work)
1466 {
1467         struct sk_buff *skb;
1468         struct adapter *adap;
1469
1470         adap = container_of(work, struct adapter, tid_release_task);
1471
1472         spin_lock_bh(&adap->tid_release_lock);
1473         while (adap->tid_release_head) {
1474                 void **p = adap->tid_release_head;
1475                 unsigned int chan = (uintptr_t)p & 3;
1476                 p = (void *)p - chan;
1477
1478                 adap->tid_release_head = *p;
1479                 *p = NULL;
1480                 spin_unlock_bh(&adap->tid_release_lock);
1481
1482                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1483                                          GFP_KERNEL)))
1484                         schedule_timeout_uninterruptible(1);
1485
1486                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1487                 t4_ofld_send(adap, skb);
1488                 spin_lock_bh(&adap->tid_release_lock);
1489         }
1490         adap->tid_release_task_busy = false;
1491         spin_unlock_bh(&adap->tid_release_lock);
1492 }
1493
1494 /*
1495  * Release a TID and inform HW.  If we are unable to allocate the release
1496  * message we defer to a work queue.
1497  */
1498 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1499                       unsigned short family)
1500 {
1501         struct adapter *adap = container_of(t, struct adapter, tids);
1502         struct sk_buff *skb;
1503
1504         WARN_ON(tid_out_of_range(&adap->tids, tid));
1505
1506         if (t->tid_tab[tid - adap->tids.tid_base]) {
1507                 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1508                 atomic_dec(&t->conns_in_use);
1509                 if (t->hash_base && (tid >= t->hash_base)) {
1510                         if (family == AF_INET6)
1511                                 atomic_sub(2, &t->hash_tids_in_use);
1512                         else
1513                                 atomic_dec(&t->hash_tids_in_use);
1514                 } else {
1515                         if (family == AF_INET6)
1516                                 atomic_sub(2, &t->tids_in_use);
1517                         else
1518                                 atomic_dec(&t->tids_in_use);
1519                 }
1520         }
1521
1522         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1523         if (likely(skb)) {
1524                 mk_tid_release(skb, chan, tid);
1525                 t4_ofld_send(adap, skb);
1526         } else
1527                 cxgb4_queue_tid_release(t, chan, tid);
1528 }
1529 EXPORT_SYMBOL(cxgb4_remove_tid);
1530
1531 /*
1532  * Allocate and initialize the TID tables.  Returns 0 on success.
1533  */
1534 static int tid_init(struct tid_info *t)
1535 {
1536         struct adapter *adap = container_of(t, struct adapter, tids);
1537         unsigned int max_ftids = t->nftids + t->nsftids;
1538         unsigned int natids = t->natids;
1539         unsigned int hpftid_bmap_size;
1540         unsigned int eotid_bmap_size;
1541         unsigned int stid_bmap_size;
1542         unsigned int ftid_bmap_size;
1543         size_t size;
1544
1545         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1546         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1547         hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1548         eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1549         size = t->ntids * sizeof(*t->tid_tab) +
1550                natids * sizeof(*t->atid_tab) +
1551                t->nstids * sizeof(*t->stid_tab) +
1552                t->nsftids * sizeof(*t->stid_tab) +
1553                stid_bmap_size * sizeof(long) +
1554                t->nhpftids * sizeof(*t->hpftid_tab) +
1555                hpftid_bmap_size * sizeof(long) +
1556                max_ftids * sizeof(*t->ftid_tab) +
1557                ftid_bmap_size * sizeof(long) +
1558                t->neotids * sizeof(*t->eotid_tab) +
1559                eotid_bmap_size * sizeof(long);
1560
1561         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1562         if (!t->tid_tab)
1563                 return -ENOMEM;
1564
1565         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1566         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1567         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1568         t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1569         t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1570         t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1571         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1572         t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1573         t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1574         spin_lock_init(&t->stid_lock);
1575         spin_lock_init(&t->atid_lock);
1576         spin_lock_init(&t->ftid_lock);
1577
1578         t->stids_in_use = 0;
1579         t->v6_stids_in_use = 0;
1580         t->sftids_in_use = 0;
1581         t->afree = NULL;
1582         t->atids_in_use = 0;
1583         atomic_set(&t->tids_in_use, 0);
1584         atomic_set(&t->conns_in_use, 0);
1585         atomic_set(&t->hash_tids_in_use, 0);
1586         atomic_set(&t->eotids_in_use, 0);
1587
1588         /* Setup the free list for atid_tab and clear the stid bitmap. */
1589         if (natids) {
1590                 while (--natids)
1591                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1592                 t->afree = t->atid_tab;
1593         }
1594
1595         if (is_offload(adap)) {
1596                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1597                 /* Reserve stid 0 for T4/T5 adapters */
1598                 if (!t->stid_base &&
1599                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1600                         __set_bit(0, t->stid_bmap);
1601
1602                 if (t->neotids)
1603                         bitmap_zero(t->eotid_bmap, t->neotids);
1604         }
1605
1606         if (t->nhpftids)
1607                 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1608         bitmap_zero(t->ftid_bmap, t->nftids);
1609         return 0;
1610 }
1611
1612 /**
1613  *      cxgb4_create_server - create an IP server
1614  *      @dev: the device
1615  *      @stid: the server TID
1616  *      @sip: local IP address to bind server to
1617  *      @sport: the server's TCP port
1618  *      @queue: queue to direct messages from this server to
1619  *
1620  *      Create an IP server for the given port and address.
1621  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1622  */
1623 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1624                         __be32 sip, __be16 sport, __be16 vlan,
1625                         unsigned int queue)
1626 {
1627         unsigned int chan;
1628         struct sk_buff *skb;
1629         struct adapter *adap;
1630         struct cpl_pass_open_req *req;
1631         int ret;
1632
1633         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1634         if (!skb)
1635                 return -ENOMEM;
1636
1637         adap = netdev2adap(dev);
1638         req = __skb_put(skb, sizeof(*req));
1639         INIT_TP_WR(req, 0);
1640         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1641         req->local_port = sport;
1642         req->peer_port = htons(0);
1643         req->local_ip = sip;
1644         req->peer_ip = htonl(0);
1645         chan = rxq_to_chan(&adap->sge, queue);
1646         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1647         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1648                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1649         ret = t4_mgmt_tx(adap, skb);
1650         return net_xmit_eval(ret);
1651 }
1652 EXPORT_SYMBOL(cxgb4_create_server);
1653
1654 /*      cxgb4_create_server6 - create an IPv6 server
1655  *      @dev: the device
1656  *      @stid: the server TID
1657  *      @sip: local IPv6 address to bind server to
1658  *      @sport: the server's TCP port
1659  *      @queue: queue to direct messages from this server to
1660  *
1661  *      Create an IPv6 server for the given port and address.
1662  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1663  */
1664 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1665                          const struct in6_addr *sip, __be16 sport,
1666                          unsigned int queue)
1667 {
1668         unsigned int chan;
1669         struct sk_buff *skb;
1670         struct adapter *adap;
1671         struct cpl_pass_open_req6 *req;
1672         int ret;
1673
1674         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1675         if (!skb)
1676                 return -ENOMEM;
1677
1678         adap = netdev2adap(dev);
1679         req = __skb_put(skb, sizeof(*req));
1680         INIT_TP_WR(req, 0);
1681         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1682         req->local_port = sport;
1683         req->peer_port = htons(0);
1684         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1685         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1686         req->peer_ip_hi = cpu_to_be64(0);
1687         req->peer_ip_lo = cpu_to_be64(0);
1688         chan = rxq_to_chan(&adap->sge, queue);
1689         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1690         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1691                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1692         ret = t4_mgmt_tx(adap, skb);
1693         return net_xmit_eval(ret);
1694 }
1695 EXPORT_SYMBOL(cxgb4_create_server6);
1696
1697 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1698                         unsigned int queue, bool ipv6)
1699 {
1700         struct sk_buff *skb;
1701         struct adapter *adap;
1702         struct cpl_close_listsvr_req *req;
1703         int ret;
1704
1705         adap = netdev2adap(dev);
1706
1707         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1708         if (!skb)
1709                 return -ENOMEM;
1710
1711         req = __skb_put(skb, sizeof(*req));
1712         INIT_TP_WR(req, 0);
1713         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1714         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1715                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1716         ret = t4_mgmt_tx(adap, skb);
1717         return net_xmit_eval(ret);
1718 }
1719 EXPORT_SYMBOL(cxgb4_remove_server);
1720
1721 /**
1722  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1723  *      @mtus: the HW MTU table
1724  *      @mtu: the target MTU
1725  *      @idx: index of selected entry in the MTU table
1726  *
1727  *      Returns the index and the value in the HW MTU table that is closest to
1728  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1729  *      table, in which case that smallest available value is selected.
1730  */
1731 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1732                             unsigned int *idx)
1733 {
1734         unsigned int i = 0;
1735
1736         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1737                 ++i;
1738         if (idx)
1739                 *idx = i;
1740         return mtus[i];
1741 }
1742 EXPORT_SYMBOL(cxgb4_best_mtu);
1743
1744 /**
1745  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1746  *     @mtus: the HW MTU table
1747  *     @header_size: Header Size
1748  *     @data_size_max: maximum Data Segment Size
1749  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1750  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1751  *
1752  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1753  *     MTU Table based solely on a Maximum MTU parameter, we break that
1754  *     parameter up into a Header Size and Maximum Data Segment Size, and
1755  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1756  *     the Hardware MTU Table which will result in a Data Segment Size with
1757  *     the requested alignment _and_ that MTU isn't "too far" from the
1758  *     closest MTU, then we'll return that rather than the closest MTU.
1759  */
1760 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1761                                     unsigned short header_size,
1762                                     unsigned short data_size_max,
1763                                     unsigned short data_size_align,
1764                                     unsigned int *mtu_idxp)
1765 {
1766         unsigned short max_mtu = header_size + data_size_max;
1767         unsigned short data_size_align_mask = data_size_align - 1;
1768         int mtu_idx, aligned_mtu_idx;
1769
1770         /* Scan the MTU Table till we find an MTU which is larger than our
1771          * Maximum MTU or we reach the end of the table.  Along the way,
1772          * record the last MTU found, if any, which will result in a Data
1773          * Segment Length matching the requested alignment.
1774          */
1775         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1776                 unsigned short data_size = mtus[mtu_idx] - header_size;
1777
1778                 /* If this MTU minus the Header Size would result in a
1779                  * Data Segment Size of the desired alignment, remember it.
1780                  */
1781                 if ((data_size & data_size_align_mask) == 0)
1782                         aligned_mtu_idx = mtu_idx;
1783
1784                 /* If we're not at the end of the Hardware MTU Table and the
1785                  * next element is larger than our Maximum MTU, drop out of
1786                  * the loop.
1787                  */
1788                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1789                         break;
1790         }
1791
1792         /* If we fell out of the loop because we ran to the end of the table,
1793          * then we just have to use the last [largest] entry.
1794          */
1795         if (mtu_idx == NMTUS)
1796                 mtu_idx--;
1797
1798         /* If we found an MTU which resulted in the requested Data Segment
1799          * Length alignment and that's "not far" from the largest MTU which is
1800          * less than or equal to the maximum MTU, then use that.
1801          */
1802         if (aligned_mtu_idx >= 0 &&
1803             mtu_idx - aligned_mtu_idx <= 1)
1804                 mtu_idx = aligned_mtu_idx;
1805
1806         /* If the caller has passed in an MTU Index pointer, pass the
1807          * MTU Index back.  Return the MTU value.
1808          */
1809         if (mtu_idxp)
1810                 *mtu_idxp = mtu_idx;
1811         return mtus[mtu_idx];
1812 }
1813 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1814
1815 /**
1816  *      cxgb4_port_chan - get the HW channel of a port
1817  *      @dev: the net device for the port
1818  *
1819  *      Return the HW Tx channel of the given port.
1820  */
1821 unsigned int cxgb4_port_chan(const struct net_device *dev)
1822 {
1823         return netdev2pinfo(dev)->tx_chan;
1824 }
1825 EXPORT_SYMBOL(cxgb4_port_chan);
1826
1827 /**
1828  *      cxgb4_port_e2cchan - get the HW c-channel of a port
1829  *      @dev: the net device for the port
1830  *
1831  *      Return the HW RX c-channel of the given port.
1832  */
1833 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1834 {
1835         return netdev2pinfo(dev)->rx_cchan;
1836 }
1837 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1838
1839 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1840 {
1841         struct adapter *adap = netdev2adap(dev);
1842         u32 v1, v2, lp_count, hp_count;
1843
1844         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1845         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1846         if (is_t4(adap->params.chip)) {
1847                 lp_count = LP_COUNT_G(v1);
1848                 hp_count = HP_COUNT_G(v1);
1849         } else {
1850                 lp_count = LP_COUNT_T5_G(v1);
1851                 hp_count = HP_COUNT_T5_G(v2);
1852         }
1853         return lpfifo ? lp_count : hp_count;
1854 }
1855 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1856
1857 /**
1858  *      cxgb4_port_viid - get the VI id of a port
1859  *      @dev: the net device for the port
1860  *
1861  *      Return the VI id of the given port.
1862  */
1863 unsigned int cxgb4_port_viid(const struct net_device *dev)
1864 {
1865         return netdev2pinfo(dev)->viid;
1866 }
1867 EXPORT_SYMBOL(cxgb4_port_viid);
1868
1869 /**
1870  *      cxgb4_port_idx - get the index of a port
1871  *      @dev: the net device for the port
1872  *
1873  *      Return the index of the given port.
1874  */
1875 unsigned int cxgb4_port_idx(const struct net_device *dev)
1876 {
1877         return netdev2pinfo(dev)->port_id;
1878 }
1879 EXPORT_SYMBOL(cxgb4_port_idx);
1880
1881 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1882                          struct tp_tcp_stats *v6)
1883 {
1884         struct adapter *adap = pci_get_drvdata(pdev);
1885
1886         spin_lock(&adap->stats_lock);
1887         t4_tp_get_tcp_stats(adap, v4, v6, false);
1888         spin_unlock(&adap->stats_lock);
1889 }
1890 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1891
1892 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1893                       const unsigned int *pgsz_order)
1894 {
1895         struct adapter *adap = netdev2adap(dev);
1896
1897         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1898         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1899                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1900                      HPZ3_V(pgsz_order[3]));
1901 }
1902 EXPORT_SYMBOL(cxgb4_iscsi_init);
1903
1904 int cxgb4_flush_eq_cache(struct net_device *dev)
1905 {
1906         struct adapter *adap = netdev2adap(dev);
1907
1908         return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1909 }
1910 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1911
1912 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1913 {
1914         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1915         __be64 indices;
1916         int ret;
1917
1918         spin_lock(&adap->win0_lock);
1919         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1920                            sizeof(indices), (__be32 *)&indices,
1921                            T4_MEMORY_READ);
1922         spin_unlock(&adap->win0_lock);
1923         if (!ret) {
1924                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1925                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1926         }
1927         return ret;
1928 }
1929
1930 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1931                         u16 size)
1932 {
1933         struct adapter *adap = netdev2adap(dev);
1934         u16 hw_pidx, hw_cidx;
1935         int ret;
1936
1937         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1938         if (ret)
1939                 goto out;
1940
1941         if (pidx != hw_pidx) {
1942                 u16 delta;
1943                 u32 val;
1944
1945                 if (pidx >= hw_pidx)
1946                         delta = pidx - hw_pidx;
1947                 else
1948                         delta = size - hw_pidx + pidx;
1949
1950                 if (is_t4(adap->params.chip))
1951                         val = PIDX_V(delta);
1952                 else
1953                         val = PIDX_T5_V(delta);
1954                 wmb();
1955                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1956                              QID_V(qid) | val);
1957         }
1958 out:
1959         return ret;
1960 }
1961 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1962
1963 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1964 {
1965         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1966         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1967         u32 offset, memtype, memaddr;
1968         struct adapter *adap;
1969         u32 hma_size = 0;
1970         int ret;
1971
1972         adap = netdev2adap(dev);
1973
1974         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1975
1976         /* Figure out where the offset lands in the Memory Type/Address scheme.
1977          * This code assumes that the memory is laid out starting at offset 0
1978          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1979          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1980          * MC0, and some have both MC0 and MC1.
1981          */
1982         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1983         edc0_size = EDRAM0_SIZE_G(size) << 20;
1984         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1985         edc1_size = EDRAM1_SIZE_G(size) << 20;
1986         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1987         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1988
1989         if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1990                 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1991                 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1992         }
1993         edc0_end = edc0_size;
1994         edc1_end = edc0_end + edc1_size;
1995         mc0_end = edc1_end + mc0_size;
1996
1997         if (offset < edc0_end) {
1998                 memtype = MEM_EDC0;
1999                 memaddr = offset;
2000         } else if (offset < edc1_end) {
2001                 memtype = MEM_EDC1;
2002                 memaddr = offset - edc0_end;
2003         } else {
2004                 if (hma_size && (offset < (edc1_end + hma_size))) {
2005                         memtype = MEM_HMA;
2006                         memaddr = offset - edc1_end;
2007                 } else if (offset < mc0_end) {
2008                         memtype = MEM_MC0;
2009                         memaddr = offset - edc1_end;
2010                 } else if (is_t5(adap->params.chip)) {
2011                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2012                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2013                         mc1_end = mc0_end + mc1_size;
2014                         if (offset < mc1_end) {
2015                                 memtype = MEM_MC1;
2016                                 memaddr = offset - mc0_end;
2017                         } else {
2018                                 /* offset beyond the end of any memory */
2019                                 goto err;
2020                         }
2021                 } else {
2022                         /* T4/T6 only has a single memory channel */
2023                         goto err;
2024                 }
2025         }
2026
2027         spin_lock(&adap->win0_lock);
2028         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2029         spin_unlock(&adap->win0_lock);
2030         return ret;
2031
2032 err:
2033         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2034                 stag, offset);
2035         return -EINVAL;
2036 }
2037 EXPORT_SYMBOL(cxgb4_read_tpte);
2038
2039 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2040 {
2041         u32 hi, lo;
2042         struct adapter *adap;
2043
2044         adap = netdev2adap(dev);
2045         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2046         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2047
2048         return ((u64)hi << 32) | (u64)lo;
2049 }
2050 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2051
2052 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2053                          unsigned int qid,
2054                          enum cxgb4_bar2_qtype qtype,
2055                          int user,
2056                          u64 *pbar2_qoffset,
2057                          unsigned int *pbar2_qid)
2058 {
2059         return t4_bar2_sge_qregs(netdev2adap(dev),
2060                                  qid,
2061                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2062                                   ? T4_BAR2_QTYPE_EGRESS
2063                                   : T4_BAR2_QTYPE_INGRESS),
2064                                  user,
2065                                  pbar2_qoffset,
2066                                  pbar2_qid);
2067 }
2068 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2069
2070 static struct pci_driver cxgb4_driver;
2071
2072 static void check_neigh_update(struct neighbour *neigh)
2073 {
2074         const struct device *parent;
2075         const struct net_device *netdev = neigh->dev;
2076
2077         if (is_vlan_dev(netdev))
2078                 netdev = vlan_dev_real_dev(netdev);
2079         parent = netdev->dev.parent;
2080         if (parent && parent->driver == &cxgb4_driver.driver)
2081                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2082 }
2083
2084 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2085                        void *data)
2086 {
2087         switch (event) {
2088         case NETEVENT_NEIGH_UPDATE:
2089                 check_neigh_update(data);
2090                 break;
2091         case NETEVENT_REDIRECT:
2092         default:
2093                 break;
2094         }
2095         return 0;
2096 }
2097
2098 static bool netevent_registered;
2099 static struct notifier_block cxgb4_netevent_nb = {
2100         .notifier_call = netevent_cb
2101 };
2102
2103 static void drain_db_fifo(struct adapter *adap, int usecs)
2104 {
2105         u32 v1, v2, lp_count, hp_count;
2106
2107         do {
2108                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2109                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2110                 if (is_t4(adap->params.chip)) {
2111                         lp_count = LP_COUNT_G(v1);
2112                         hp_count = HP_COUNT_G(v1);
2113                 } else {
2114                         lp_count = LP_COUNT_T5_G(v1);
2115                         hp_count = HP_COUNT_T5_G(v2);
2116                 }
2117
2118                 if (lp_count == 0 && hp_count == 0)
2119                         break;
2120                 set_current_state(TASK_UNINTERRUPTIBLE);
2121                 schedule_timeout(usecs_to_jiffies(usecs));
2122         } while (1);
2123 }
2124
2125 static void disable_txq_db(struct sge_txq *q)
2126 {
2127         unsigned long flags;
2128
2129         spin_lock_irqsave(&q->db_lock, flags);
2130         q->db_disabled = 1;
2131         spin_unlock_irqrestore(&q->db_lock, flags);
2132 }
2133
2134 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2135 {
2136         spin_lock_irq(&q->db_lock);
2137         if (q->db_pidx_inc) {
2138                 /* Make sure that all writes to the TX descriptors
2139                  * are committed before we tell HW about them.
2140                  */
2141                 wmb();
2142                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2143                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2144                 q->db_pidx_inc = 0;
2145         }
2146         q->db_disabled = 0;
2147         spin_unlock_irq(&q->db_lock);
2148 }
2149
2150 static void disable_dbs(struct adapter *adap)
2151 {
2152         int i;
2153
2154         for_each_ethrxq(&adap->sge, i)
2155                 disable_txq_db(&adap->sge.ethtxq[i].q);
2156         if (is_offload(adap)) {
2157                 struct sge_uld_txq_info *txq_info =
2158                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2159
2160                 if (txq_info) {
2161                         for_each_ofldtxq(&adap->sge, i) {
2162                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2163
2164                                 disable_txq_db(&txq->q);
2165                         }
2166                 }
2167         }
2168         for_each_port(adap, i)
2169                 disable_txq_db(&adap->sge.ctrlq[i].q);
2170 }
2171
2172 static void enable_dbs(struct adapter *adap)
2173 {
2174         int i;
2175
2176         for_each_ethrxq(&adap->sge, i)
2177                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2178         if (is_offload(adap)) {
2179                 struct sge_uld_txq_info *txq_info =
2180                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2181
2182                 if (txq_info) {
2183                         for_each_ofldtxq(&adap->sge, i) {
2184                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2185
2186                                 enable_txq_db(adap, &txq->q);
2187                         }
2188                 }
2189         }
2190         for_each_port(adap, i)
2191                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2192 }
2193
2194 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2195 {
2196         enum cxgb4_uld type = CXGB4_ULD_RDMA;
2197
2198         if (adap->uld && adap->uld[type].handle)
2199                 adap->uld[type].control(adap->uld[type].handle, cmd);
2200 }
2201
2202 static void process_db_full(struct work_struct *work)
2203 {
2204         struct adapter *adap;
2205
2206         adap = container_of(work, struct adapter, db_full_task);
2207
2208         drain_db_fifo(adap, dbfifo_drain_delay);
2209         enable_dbs(adap);
2210         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2211         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2212                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2213                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2214                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2215         else
2216                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2217                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2218 }
2219
2220 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2221 {
2222         u16 hw_pidx, hw_cidx;
2223         int ret;
2224
2225         spin_lock_irq(&q->db_lock);
2226         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2227         if (ret)
2228                 goto out;
2229         if (q->db_pidx != hw_pidx) {
2230                 u16 delta;
2231                 u32 val;
2232
2233                 if (q->db_pidx >= hw_pidx)
2234                         delta = q->db_pidx - hw_pidx;
2235                 else
2236                         delta = q->size - hw_pidx + q->db_pidx;
2237
2238                 if (is_t4(adap->params.chip))
2239                         val = PIDX_V(delta);
2240                 else
2241                         val = PIDX_T5_V(delta);
2242                 wmb();
2243                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2244                              QID_V(q->cntxt_id) | val);
2245         }
2246 out:
2247         q->db_disabled = 0;
2248         q->db_pidx_inc = 0;
2249         spin_unlock_irq(&q->db_lock);
2250         if (ret)
2251                 CH_WARN(adap, "DB drop recovery failed.\n");
2252 }
2253
2254 static void recover_all_queues(struct adapter *adap)
2255 {
2256         int i;
2257
2258         for_each_ethrxq(&adap->sge, i)
2259                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2260         if (is_offload(adap)) {
2261                 struct sge_uld_txq_info *txq_info =
2262                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2263                 if (txq_info) {
2264                         for_each_ofldtxq(&adap->sge, i) {
2265                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2266
2267                                 sync_txq_pidx(adap, &txq->q);
2268                         }
2269                 }
2270         }
2271         for_each_port(adap, i)
2272                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2273 }
2274
2275 static void process_db_drop(struct work_struct *work)
2276 {
2277         struct adapter *adap;
2278
2279         adap = container_of(work, struct adapter, db_drop_task);
2280
2281         if (is_t4(adap->params.chip)) {
2282                 drain_db_fifo(adap, dbfifo_drain_delay);
2283                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2284                 drain_db_fifo(adap, dbfifo_drain_delay);
2285                 recover_all_queues(adap);
2286                 drain_db_fifo(adap, dbfifo_drain_delay);
2287                 enable_dbs(adap);
2288                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2289         } else if (is_t5(adap->params.chip)) {
2290                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2291                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2292                 u16 pidx_inc = dropped_db & 0x1fff;
2293                 u64 bar2_qoffset;
2294                 unsigned int bar2_qid;
2295                 int ret;
2296
2297                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2298                                         0, &bar2_qoffset, &bar2_qid);
2299                 if (ret)
2300                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2301                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2302                 else
2303                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2304                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2305
2306                 /* Re-enable BAR2 WC */
2307                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2308         }
2309
2310         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2311                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2312 }
2313
2314 void t4_db_full(struct adapter *adap)
2315 {
2316         if (is_t4(adap->params.chip)) {
2317                 disable_dbs(adap);
2318                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2319                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2320                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2321                 queue_work(adap->workq, &adap->db_full_task);
2322         }
2323 }
2324
2325 void t4_db_dropped(struct adapter *adap)
2326 {
2327         if (is_t4(adap->params.chip)) {
2328                 disable_dbs(adap);
2329                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2330         }
2331         queue_work(adap->workq, &adap->db_drop_task);
2332 }
2333
2334 void t4_register_netevent_notifier(void)
2335 {
2336         if (!netevent_registered) {
2337                 register_netevent_notifier(&cxgb4_netevent_nb);
2338                 netevent_registered = true;
2339         }
2340 }
2341
2342 static void detach_ulds(struct adapter *adap)
2343 {
2344         unsigned int i;
2345
2346         mutex_lock(&uld_mutex);
2347         list_del(&adap->list_node);
2348
2349         for (i = 0; i < CXGB4_ULD_MAX; i++)
2350                 if (adap->uld && adap->uld[i].handle)
2351                         adap->uld[i].state_change(adap->uld[i].handle,
2352                                              CXGB4_STATE_DETACH);
2353
2354         if (netevent_registered && list_empty(&adapter_list)) {
2355                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2356                 netevent_registered = false;
2357         }
2358         mutex_unlock(&uld_mutex);
2359 }
2360
2361 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2362 {
2363         unsigned int i;
2364
2365         mutex_lock(&uld_mutex);
2366         for (i = 0; i < CXGB4_ULD_MAX; i++)
2367                 if (adap->uld && adap->uld[i].handle)
2368                         adap->uld[i].state_change(adap->uld[i].handle,
2369                                                   new_state);
2370         mutex_unlock(&uld_mutex);
2371 }
2372
2373 #if IS_ENABLED(CONFIG_IPV6)
2374 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2375                                    unsigned long event, void *data)
2376 {
2377         struct inet6_ifaddr *ifa = data;
2378         struct net_device *event_dev = ifa->idev->dev;
2379         const struct device *parent = NULL;
2380 #if IS_ENABLED(CONFIG_BONDING)
2381         struct adapter *adap;
2382 #endif
2383         if (is_vlan_dev(event_dev))
2384                 event_dev = vlan_dev_real_dev(event_dev);
2385 #if IS_ENABLED(CONFIG_BONDING)
2386         if (event_dev->flags & IFF_MASTER) {
2387                 list_for_each_entry(adap, &adapter_list, list_node) {
2388                         switch (event) {
2389                         case NETDEV_UP:
2390                                 cxgb4_clip_get(adap->port[0],
2391                                                (const u32 *)ifa, 1);
2392                                 break;
2393                         case NETDEV_DOWN:
2394                                 cxgb4_clip_release(adap->port[0],
2395                                                    (const u32 *)ifa, 1);
2396                                 break;
2397                         default:
2398                                 break;
2399                         }
2400                 }
2401                 return NOTIFY_OK;
2402         }
2403 #endif
2404
2405         if (event_dev)
2406                 parent = event_dev->dev.parent;
2407
2408         if (parent && parent->driver == &cxgb4_driver.driver) {
2409                 switch (event) {
2410                 case NETDEV_UP:
2411                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2412                         break;
2413                 case NETDEV_DOWN:
2414                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2415                         break;
2416                 default:
2417                         break;
2418                 }
2419         }
2420         return NOTIFY_OK;
2421 }
2422
2423 static bool inet6addr_registered;
2424 static struct notifier_block cxgb4_inet6addr_notifier = {
2425         .notifier_call = cxgb4_inet6addr_handler
2426 };
2427
2428 static void update_clip(const struct adapter *adap)
2429 {
2430         int i;
2431         struct net_device *dev;
2432         int ret;
2433
2434         rcu_read_lock();
2435
2436         for (i = 0; i < MAX_NPORTS; i++) {
2437                 dev = adap->port[i];
2438                 ret = 0;
2439
2440                 if (dev)
2441                         ret = cxgb4_update_root_dev_clip(dev);
2442
2443                 if (ret < 0)
2444                         break;
2445         }
2446         rcu_read_unlock();
2447 }
2448 #endif /* IS_ENABLED(CONFIG_IPV6) */
2449
2450 /**
2451  *      cxgb_up - enable the adapter
2452  *      @adap: adapter being enabled
2453  *
2454  *      Called when the first port is enabled, this function performs the
2455  *      actions necessary to make an adapter operational, such as completing
2456  *      the initialization of HW modules, and enabling interrupts.
2457  *
2458  *      Must be called with the rtnl lock held.
2459  */
2460 static int cxgb_up(struct adapter *adap)
2461 {
2462         struct sge *s = &adap->sge;
2463         int err;
2464
2465         mutex_lock(&uld_mutex);
2466         err = setup_sge_queues(adap);
2467         if (err)
2468                 goto rel_lock;
2469         err = setup_rss(adap);
2470         if (err)
2471                 goto freeq;
2472
2473         if (adap->flags & CXGB4_USING_MSIX) {
2474                 if (s->nd_msix_idx < 0) {
2475                         err = -ENOMEM;
2476                         goto irq_err;
2477                 }
2478
2479                 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2480                                   t4_nondata_intr, 0,
2481                                   adap->msix_info[s->nd_msix_idx].desc, adap);
2482                 if (err)
2483                         goto irq_err;
2484
2485                 err = request_msix_queue_irqs(adap);
2486                 if (err)
2487                         goto irq_err_free_nd_msix;
2488         } else {
2489                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2490                                   (adap->flags & CXGB4_USING_MSI) ? 0
2491                                                                   : IRQF_SHARED,
2492                                   adap->port[0]->name, adap);
2493                 if (err)
2494                         goto irq_err;
2495         }
2496
2497         enable_rx(adap);
2498         t4_sge_start(adap);
2499         t4_intr_enable(adap);
2500         adap->flags |= CXGB4_FULL_INIT_DONE;
2501         mutex_unlock(&uld_mutex);
2502
2503         notify_ulds(adap, CXGB4_STATE_UP);
2504 #if IS_ENABLED(CONFIG_IPV6)
2505         update_clip(adap);
2506 #endif
2507         return err;
2508
2509 irq_err_free_nd_msix:
2510         free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2511 irq_err:
2512         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2513 freeq:
2514         t4_free_sge_resources(adap);
2515 rel_lock:
2516         mutex_unlock(&uld_mutex);
2517         return err;
2518 }
2519
2520 static void cxgb_down(struct adapter *adapter)
2521 {
2522         cancel_work_sync(&adapter->tid_release_task);
2523         cancel_work_sync(&adapter->db_full_task);
2524         cancel_work_sync(&adapter->db_drop_task);
2525         adapter->tid_release_task_busy = false;
2526         adapter->tid_release_head = NULL;
2527
2528         t4_sge_stop(adapter);
2529         t4_free_sge_resources(adapter);
2530
2531         adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2532 }
2533
2534 /*
2535  * net_device operations
2536  */
2537 int cxgb_open(struct net_device *dev)
2538 {
2539         struct port_info *pi = netdev_priv(dev);
2540         struct adapter *adapter = pi->adapter;
2541         int err;
2542
2543         netif_carrier_off(dev);
2544
2545         if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2546                 err = cxgb_up(adapter);
2547                 if (err < 0)
2548                         return err;
2549         }
2550
2551         /* It's possible that the basic port information could have
2552          * changed since we first read it.
2553          */
2554         err = t4_update_port_info(pi);
2555         if (err < 0)
2556                 return err;
2557
2558         err = link_start(dev);
2559         if (!err)
2560                 netif_tx_start_all_queues(dev);
2561         return err;
2562 }
2563
2564 int cxgb_close(struct net_device *dev)
2565 {
2566         struct port_info *pi = netdev_priv(dev);
2567         struct adapter *adapter = pi->adapter;
2568         int ret;
2569
2570         netif_tx_stop_all_queues(dev);
2571         netif_carrier_off(dev);
2572         ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2573                                   false, false, false);
2574 #ifdef CONFIG_CHELSIO_T4_DCB
2575         cxgb4_dcb_reset(dev);
2576         dcb_tx_queue_prio_enable(dev, false);
2577 #endif
2578         return ret;
2579 }
2580
2581 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2582                 __be32 sip, __be16 sport, __be16 vlan,
2583                 unsigned int queue, unsigned char port, unsigned char mask)
2584 {
2585         int ret;
2586         struct filter_entry *f;
2587         struct adapter *adap;
2588         int i;
2589         u8 *val;
2590
2591         adap = netdev2adap(dev);
2592
2593         /* Adjust stid to correct filter index */
2594         stid -= adap->tids.sftid_base;
2595         stid += adap->tids.nftids;
2596
2597         /* Check to make sure the filter requested is writable ...
2598          */
2599         f = &adap->tids.ftid_tab[stid];
2600         ret = writable_filter(f);
2601         if (ret)
2602                 return ret;
2603
2604         /* Clear out any old resources being used by the filter before
2605          * we start constructing the new filter.
2606          */
2607         if (f->valid)
2608                 clear_filter(adap, f);
2609
2610         /* Clear out filter specifications */
2611         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2612         f->fs.val.lport = cpu_to_be16(sport);
2613         f->fs.mask.lport  = ~0;
2614         val = (u8 *)&sip;
2615         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2616                 for (i = 0; i < 4; i++) {
2617                         f->fs.val.lip[i] = val[i];
2618                         f->fs.mask.lip[i] = ~0;
2619                 }
2620                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2621                         f->fs.val.iport = port;
2622                         f->fs.mask.iport = mask;
2623                 }
2624         }
2625
2626         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2627                 f->fs.val.proto = IPPROTO_TCP;
2628                 f->fs.mask.proto = ~0;
2629         }
2630
2631         f->fs.dirsteer = 1;
2632         f->fs.iq = queue;
2633         /* Mark filter as locked */
2634         f->locked = 1;
2635         f->fs.rpttid = 1;
2636
2637         /* Save the actual tid. We need this to get the corresponding
2638          * filter entry structure in filter_rpl.
2639          */
2640         f->tid = stid + adap->tids.ftid_base;
2641         ret = set_filter_wr(adap, stid);
2642         if (ret) {
2643                 clear_filter(adap, f);
2644                 return ret;
2645         }
2646
2647         return 0;
2648 }
2649 EXPORT_SYMBOL(cxgb4_create_server_filter);
2650
2651 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2652                 unsigned int queue, bool ipv6)
2653 {
2654         struct filter_entry *f;
2655         struct adapter *adap;
2656
2657         adap = netdev2adap(dev);
2658
2659         /* Adjust stid to correct filter index */
2660         stid -= adap->tids.sftid_base;
2661         stid += adap->tids.nftids;
2662
2663         f = &adap->tids.ftid_tab[stid];
2664         /* Unlock the filter */
2665         f->locked = 0;
2666
2667         return delete_filter(adap, stid);
2668 }
2669 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2670
2671 static void cxgb_get_stats(struct net_device *dev,
2672                            struct rtnl_link_stats64 *ns)
2673 {
2674         struct port_stats stats;
2675         struct port_info *p = netdev_priv(dev);
2676         struct adapter *adapter = p->adapter;
2677
2678         /* Block retrieving statistics during EEH error
2679          * recovery. Otherwise, the recovery might fail
2680          * and the PCI device will be removed permanently
2681          */
2682         spin_lock(&adapter->stats_lock);
2683         if (!netif_device_present(dev)) {
2684                 spin_unlock(&adapter->stats_lock);
2685                 return;
2686         }
2687         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2688                                  &p->stats_base);
2689         spin_unlock(&adapter->stats_lock);
2690
2691         ns->tx_bytes   = stats.tx_octets;
2692         ns->tx_packets = stats.tx_frames;
2693         ns->rx_bytes   = stats.rx_octets;
2694         ns->rx_packets = stats.rx_frames;
2695         ns->multicast  = stats.rx_mcast_frames;
2696
2697         /* detailed rx_errors */
2698         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2699                                stats.rx_runt;
2700         ns->rx_over_errors   = 0;
2701         ns->rx_crc_errors    = stats.rx_fcs_err;
2702         ns->rx_frame_errors  = stats.rx_symbol_err;
2703         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2704                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2705                                stats.rx_trunc0 + stats.rx_trunc1 +
2706                                stats.rx_trunc2 + stats.rx_trunc3;
2707         ns->rx_missed_errors = 0;
2708
2709         /* detailed tx_errors */
2710         ns->tx_aborted_errors   = 0;
2711         ns->tx_carrier_errors   = 0;
2712         ns->tx_fifo_errors      = 0;
2713         ns->tx_heartbeat_errors = 0;
2714         ns->tx_window_errors    = 0;
2715
2716         ns->tx_errors = stats.tx_error_frames;
2717         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2718                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2719 }
2720
2721 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2722 {
2723         unsigned int mbox;
2724         int ret = 0, prtad, devad;
2725         struct port_info *pi = netdev_priv(dev);
2726         struct adapter *adapter = pi->adapter;
2727         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2728
2729         switch (cmd) {
2730         case SIOCGMIIPHY:
2731                 if (pi->mdio_addr < 0)
2732                         return -EOPNOTSUPP;
2733                 data->phy_id = pi->mdio_addr;
2734                 break;
2735         case SIOCGMIIREG:
2736         case SIOCSMIIREG:
2737                 if (mdio_phy_id_is_c45(data->phy_id)) {
2738                         prtad = mdio_phy_id_prtad(data->phy_id);
2739                         devad = mdio_phy_id_devad(data->phy_id);
2740                 } else if (data->phy_id < 32) {
2741                         prtad = data->phy_id;
2742                         devad = 0;
2743                         data->reg_num &= 0x1f;
2744                 } else
2745                         return -EINVAL;
2746
2747                 mbox = pi->adapter->pf;
2748                 if (cmd == SIOCGMIIREG)
2749                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2750                                          data->reg_num, &data->val_out);
2751                 else
2752                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2753                                          data->reg_num, data->val_in);
2754                 break;
2755         case SIOCGHWTSTAMP:
2756                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2757                                     sizeof(pi->tstamp_config)) ?
2758                         -EFAULT : 0;
2759         case SIOCSHWTSTAMP:
2760                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2761                                    sizeof(pi->tstamp_config)))
2762                         return -EFAULT;
2763
2764                 if (!is_t4(adapter->params.chip)) {
2765                         switch (pi->tstamp_config.tx_type) {
2766                         case HWTSTAMP_TX_OFF:
2767                         case HWTSTAMP_TX_ON:
2768                                 break;
2769                         default:
2770                                 return -ERANGE;
2771                         }
2772
2773                         switch (pi->tstamp_config.rx_filter) {
2774                         case HWTSTAMP_FILTER_NONE:
2775                                 pi->rxtstamp = false;
2776                                 break;
2777                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2778                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2779                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2780                                                          PTP_TS_L4);
2781                                 break;
2782                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2783                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2784                                                          PTP_TS_L2_L4);
2785                                 break;
2786                         case HWTSTAMP_FILTER_ALL:
2787                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2788                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2789                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2790                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2791                                 pi->rxtstamp = true;
2792                                 break;
2793                         default:
2794                                 pi->tstamp_config.rx_filter =
2795                                         HWTSTAMP_FILTER_NONE;
2796                                 return -ERANGE;
2797                         }
2798
2799                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2800                             (pi->tstamp_config.rx_filter ==
2801                                 HWTSTAMP_FILTER_NONE)) {
2802                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2803                                         pi->ptp_enable = false;
2804                         }
2805
2806                         if (pi->tstamp_config.rx_filter !=
2807                                 HWTSTAMP_FILTER_NONE) {
2808                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
2809                                                                  pi) >= 0)
2810                                         pi->ptp_enable = true;
2811                         }
2812                 } else {
2813                         /* For T4 Adapters */
2814                         switch (pi->tstamp_config.rx_filter) {
2815                         case HWTSTAMP_FILTER_NONE:
2816                         pi->rxtstamp = false;
2817                         break;
2818                         case HWTSTAMP_FILTER_ALL:
2819                         pi->rxtstamp = true;
2820                         break;
2821                         default:
2822                         pi->tstamp_config.rx_filter =
2823                         HWTSTAMP_FILTER_NONE;
2824                         return -ERANGE;
2825                         }
2826                 }
2827                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2828                                     sizeof(pi->tstamp_config)) ?
2829                         -EFAULT : 0;
2830         default:
2831                 return -EOPNOTSUPP;
2832         }
2833         return ret;
2834 }
2835
2836 static void cxgb_set_rxmode(struct net_device *dev)
2837 {
2838         /* unfortunately we can't return errors to the stack */
2839         set_rxmode(dev, -1, false);
2840 }
2841
2842 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2843 {
2844         int ret;
2845         struct port_info *pi = netdev_priv(dev);
2846
2847         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2848                             -1, -1, -1, true);
2849         if (!ret)
2850                 dev->mtu = new_mtu;
2851         return ret;
2852 }
2853
2854 #ifdef CONFIG_PCI_IOV
2855 static int cxgb4_mgmt_open(struct net_device *dev)
2856 {
2857         /* Turn carrier off since we don't have to transmit anything on this
2858          * interface.
2859          */
2860         netif_carrier_off(dev);
2861         return 0;
2862 }
2863
2864 /* Fill MAC address that will be assigned by the FW */
2865 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2866 {
2867         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2868         unsigned int i, vf, nvfs;
2869         u16 a, b;
2870         int err;
2871         u8 *na;
2872
2873         adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2874                                                             PCI_CAP_ID_VPD);
2875         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2876         if (err)
2877                 return;
2878
2879         na = adap->params.vpd.na;
2880         for (i = 0; i < ETH_ALEN; i++)
2881                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2882                               hex2val(na[2 * i + 1]));
2883
2884         a = (hw_addr[0] << 8) | hw_addr[1];
2885         b = (hw_addr[1] << 8) | hw_addr[2];
2886         a ^= b;
2887         a |= 0x0200;    /* locally assigned Ethernet MAC address */
2888         a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2889         macaddr[0] = a >> 8;
2890         macaddr[1] = a & 0xff;
2891
2892         for (i = 2; i < 5; i++)
2893                 macaddr[i] = hw_addr[i + 1];
2894
2895         for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2896                 vf < nvfs; vf++) {
2897                 macaddr[5] = adap->pf * nvfs + vf;
2898                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2899         }
2900 }
2901
2902 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2903 {
2904         struct port_info *pi = netdev_priv(dev);
2905         struct adapter *adap = pi->adapter;
2906         int ret;
2907
2908         /* verify MAC addr is valid */
2909         if (!is_valid_ether_addr(mac)) {
2910                 dev_err(pi->adapter->pdev_dev,
2911                         "Invalid Ethernet address %pM for VF %d\n",
2912                         mac, vf);
2913                 return -EINVAL;
2914         }
2915
2916         dev_info(pi->adapter->pdev_dev,
2917                  "Setting MAC %pM on VF %d\n", mac, vf);
2918         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2919         if (!ret)
2920                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2921         return ret;
2922 }
2923
2924 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2925                                     int vf, struct ifla_vf_info *ivi)
2926 {
2927         struct port_info *pi = netdev_priv(dev);
2928         struct adapter *adap = pi->adapter;
2929         struct vf_info *vfinfo;
2930
2931         if (vf >= adap->num_vfs)
2932                 return -EINVAL;
2933         vfinfo = &adap->vfinfo[vf];
2934
2935         ivi->vf = vf;
2936         ivi->max_tx_rate = vfinfo->tx_rate;
2937         ivi->min_tx_rate = 0;
2938         ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2939         ivi->vlan = vfinfo->vlan;
2940         ivi->linkstate = vfinfo->link_state;
2941         return 0;
2942 }
2943
2944 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2945                                        struct netdev_phys_item_id *ppid)
2946 {
2947         struct port_info *pi = netdev_priv(dev);
2948         unsigned int phy_port_id;
2949
2950         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2951         ppid->id_len = sizeof(phy_port_id);
2952         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2953         return 0;
2954 }
2955
2956 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2957                                   int min_tx_rate, int max_tx_rate)
2958 {
2959         struct port_info *pi = netdev_priv(dev);
2960         struct adapter *adap = pi->adapter;
2961         unsigned int link_ok, speed, mtu;
2962         u32 fw_pfvf, fw_class;
2963         int class_id = vf;
2964         int ret;
2965         u16 pktsize;
2966
2967         if (vf >= adap->num_vfs)
2968                 return -EINVAL;
2969
2970         if (min_tx_rate) {
2971                 dev_err(adap->pdev_dev,
2972                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2973                         min_tx_rate, vf);
2974                 return -EINVAL;
2975         }
2976
2977         if (max_tx_rate == 0) {
2978                 /* unbind VF to to any Traffic Class */
2979                 fw_pfvf =
2980                     (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2981                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2982                 fw_class = 0xffffffff;
2983                 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2984                                     &fw_pfvf, &fw_class);
2985                 if (ret) {
2986                         dev_err(adap->pdev_dev,
2987                                 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2988                                 ret, adap->pf, vf);
2989                         return -EINVAL;
2990                 }
2991                 dev_info(adap->pdev_dev,
2992                          "PF %d VF %d is unbound from TX Rate Limiting\n",
2993                          adap->pf, vf);
2994                 adap->vfinfo[vf].tx_rate = 0;
2995                 return 0;
2996         }
2997
2998         ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2999         if (ret != FW_SUCCESS) {
3000                 dev_err(adap->pdev_dev,
3001                         "Failed to get link information for VF %d\n", vf);
3002                 return -EINVAL;
3003         }
3004
3005         if (!link_ok) {
3006                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3007                 return -EINVAL;
3008         }
3009
3010         if (max_tx_rate > speed) {
3011                 dev_err(adap->pdev_dev,
3012                         "Max tx rate %d for VF %d can't be > link-speed %u",
3013                         max_tx_rate, vf, speed);
3014                 return -EINVAL;
3015         }
3016
3017         pktsize = mtu;
3018         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3019         pktsize = pktsize - sizeof(struct ethhdr) - 4;
3020         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3021         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3022         /* configure Traffic Class for rate-limiting */
3023         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3024                               SCHED_CLASS_LEVEL_CL_RL,
3025                               SCHED_CLASS_MODE_CLASS,
3026                               SCHED_CLASS_RATEUNIT_BITS,
3027                               SCHED_CLASS_RATEMODE_ABS,
3028                               pi->tx_chan, class_id, 0,
3029                               max_tx_rate * 1000, 0, pktsize, 0);
3030         if (ret) {
3031                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3032                         ret);
3033                 return -EINVAL;
3034         }
3035         dev_info(adap->pdev_dev,
3036                  "Class %d with MSS %u configured with rate %u\n",
3037                  class_id, pktsize, max_tx_rate);
3038
3039         /* bind VF to configured Traffic Class */
3040         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3041                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3042         fw_class = class_id;
3043         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3044                             &fw_class);
3045         if (ret) {
3046                 dev_err(adap->pdev_dev,
3047                         "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3048                         ret, adap->pf, vf, class_id);
3049                 return -EINVAL;
3050         }
3051         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3052                  adap->pf, vf, class_id);
3053         adap->vfinfo[vf].tx_rate = max_tx_rate;
3054         return 0;
3055 }
3056
3057 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3058                                   u16 vlan, u8 qos, __be16 vlan_proto)
3059 {
3060         struct port_info *pi = netdev_priv(dev);
3061         struct adapter *adap = pi->adapter;
3062         int ret;
3063
3064         if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3065                 return -EINVAL;
3066
3067         if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3068                 return -EPROTONOSUPPORT;
3069
3070         ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3071         if (!ret) {
3072                 adap->vfinfo[vf].vlan = vlan;
3073                 return 0;
3074         }
3075
3076         dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3077                 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3078         return ret;
3079 }
3080
3081 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3082                                         int link)
3083 {
3084         struct port_info *pi = netdev_priv(dev);
3085         struct adapter *adap = pi->adapter;
3086         u32 param, val;
3087         int ret = 0;
3088
3089         if (vf >= adap->num_vfs)
3090                 return -EINVAL;
3091
3092         switch (link) {
3093         case IFLA_VF_LINK_STATE_AUTO:
3094                 val = FW_VF_LINK_STATE_AUTO;
3095                 break;
3096
3097         case IFLA_VF_LINK_STATE_ENABLE:
3098                 val = FW_VF_LINK_STATE_ENABLE;
3099                 break;
3100
3101         case IFLA_VF_LINK_STATE_DISABLE:
3102                 val = FW_VF_LINK_STATE_DISABLE;
3103                 break;
3104
3105         default:
3106                 return -EINVAL;
3107         }
3108
3109         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3110                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3111         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3112                             &param, &val);
3113         if (ret) {
3114                 dev_err(adap->pdev_dev,
3115                         "Error %d in setting PF %d VF %d link state\n",
3116                         ret, adap->pf, vf);
3117                 return -EINVAL;
3118         }
3119
3120         adap->vfinfo[vf].link_state = link;
3121         return ret;
3122 }
3123 #endif /* CONFIG_PCI_IOV */
3124
3125 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3126 {
3127         int ret;
3128         struct sockaddr *addr = p;
3129         struct port_info *pi = netdev_priv(dev);
3130
3131         if (!is_valid_ether_addr(addr->sa_data))
3132                 return -EADDRNOTAVAIL;
3133
3134         ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3135                                     addr->sa_data, true, &pi->smt_idx);
3136         if (ret < 0)
3137                 return ret;
3138
3139         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3140         return 0;
3141 }
3142
3143 #ifdef CONFIG_NET_POLL_CONTROLLER
3144 static void cxgb_netpoll(struct net_device *dev)
3145 {
3146         struct port_info *pi = netdev_priv(dev);
3147         struct adapter *adap = pi->adapter;
3148
3149         if (adap->flags & CXGB4_USING_MSIX) {
3150                 int i;
3151                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3152
3153                 for (i = pi->nqsets; i; i--, rx++)
3154                         t4_sge_intr_msix(0, &rx->rspq);
3155         } else
3156                 t4_intr_handler(adap)(0, adap);
3157 }
3158 #endif
3159
3160 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3161 {
3162         struct port_info *pi = netdev_priv(dev);
3163         struct adapter *adap = pi->adapter;
3164         struct ch_sched_queue qe = { 0 };
3165         struct ch_sched_params p = { 0 };
3166         struct sched_class *e;
3167         u32 req_rate;
3168         int err = 0;
3169
3170         if (!can_sched(dev))
3171                 return -ENOTSUPP;
3172
3173         if (index < 0 || index > pi->nqsets - 1)
3174                 return -EINVAL;
3175
3176         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3177                 dev_err(adap->pdev_dev,
3178                         "Failed to rate limit on queue %d. Link Down?\n",
3179                         index);
3180                 return -EINVAL;
3181         }
3182
3183         qe.queue = index;
3184         e = cxgb4_sched_queue_lookup(dev, &qe);
3185         if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3186                 dev_err(adap->pdev_dev,
3187                         "Queue %u already bound to class %u of type: %u\n",
3188                         index, e->idx, e->info.u.params.level);
3189                 return -EBUSY;
3190         }
3191
3192         /* Convert from Mbps to Kbps */
3193         req_rate = rate * 1000;
3194
3195         /* Max rate is 100 Gbps */
3196         if (req_rate > SCHED_MAX_RATE_KBPS) {
3197                 dev_err(adap->pdev_dev,
3198                         "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3199                         rate, SCHED_MAX_RATE_KBPS / 1000);
3200                 return -ERANGE;
3201         }
3202
3203         /* First unbind the queue from any existing class */
3204         memset(&qe, 0, sizeof(qe));
3205         qe.queue = index;
3206         qe.class = SCHED_CLS_NONE;
3207
3208         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3209         if (err) {
3210                 dev_err(adap->pdev_dev,
3211                         "Unbinding Queue %d on port %d fail. Err: %d\n",
3212                         index, pi->port_id, err);
3213                 return err;
3214         }
3215
3216         /* Queue already unbound */
3217         if (!req_rate)
3218                 return 0;
3219
3220         /* Fetch any available unused or matching scheduling class */
3221         p.type = SCHED_CLASS_TYPE_PACKET;
3222         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3223         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3224         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3225         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3226         p.u.params.channel  = pi->tx_chan;
3227         p.u.params.class    = SCHED_CLS_NONE;
3228         p.u.params.minrate  = 0;
3229         p.u.params.maxrate  = req_rate;
3230         p.u.params.weight   = 0;
3231         p.u.params.pktsize  = dev->mtu;
3232
3233         e = cxgb4_sched_class_alloc(dev, &p);
3234         if (!e)
3235                 return -ENOMEM;
3236
3237         /* Bind the queue to a scheduling class */
3238         memset(&qe, 0, sizeof(qe));
3239         qe.queue = index;
3240         qe.class = e->idx;
3241
3242         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3243         if (err)
3244                 dev_err(adap->pdev_dev,
3245                         "Queue rate limiting failed. Err: %d\n", err);
3246         return err;
3247 }
3248
3249 static int cxgb_setup_tc_flower(struct net_device *dev,
3250                                 struct flow_cls_offload *cls_flower)
3251 {
3252         switch (cls_flower->command) {
3253         case FLOW_CLS_REPLACE:
3254                 return cxgb4_tc_flower_replace(dev, cls_flower);
3255         case FLOW_CLS_DESTROY:
3256                 return cxgb4_tc_flower_destroy(dev, cls_flower);
3257         case FLOW_CLS_STATS:
3258                 return cxgb4_tc_flower_stats(dev, cls_flower);
3259         default:
3260                 return -EOPNOTSUPP;
3261         }
3262 }
3263
3264 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3265                                  struct tc_cls_u32_offload *cls_u32)
3266 {
3267         switch (cls_u32->command) {
3268         case TC_CLSU32_NEW_KNODE:
3269         case TC_CLSU32_REPLACE_KNODE:
3270                 return cxgb4_config_knode(dev, cls_u32);
3271         case TC_CLSU32_DELETE_KNODE:
3272                 return cxgb4_delete_knode(dev, cls_u32);
3273         default:
3274                 return -EOPNOTSUPP;
3275         }
3276 }
3277
3278 static int cxgb_setup_tc_matchall(struct net_device *dev,
3279                                   struct tc_cls_matchall_offload *cls_matchall,
3280                                   bool ingress)
3281 {
3282         struct adapter *adap = netdev2adap(dev);
3283
3284         if (!adap->tc_matchall)
3285                 return -ENOMEM;
3286
3287         switch (cls_matchall->command) {
3288         case TC_CLSMATCHALL_REPLACE:
3289                 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3290         case TC_CLSMATCHALL_DESTROY:
3291                 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3292         case TC_CLSMATCHALL_STATS:
3293                 if (ingress)
3294                         return cxgb4_tc_matchall_stats(dev, cls_matchall);
3295                 break;
3296         default:
3297                 break;
3298         }
3299
3300         return -EOPNOTSUPP;
3301 }
3302
3303 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3304                                           void *type_data, void *cb_priv)
3305 {
3306         struct net_device *dev = cb_priv;
3307         struct port_info *pi = netdev2pinfo(dev);
3308         struct adapter *adap = netdev2adap(dev);
3309
3310         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3311                 dev_err(adap->pdev_dev,
3312                         "Failed to setup tc on port %d. Link Down?\n",
3313                         pi->port_id);
3314                 return -EINVAL;
3315         }
3316
3317         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3318                 return -EOPNOTSUPP;
3319
3320         switch (type) {
3321         case TC_SETUP_CLSU32:
3322                 return cxgb_setup_tc_cls_u32(dev, type_data);
3323         case TC_SETUP_CLSFLOWER:
3324                 return cxgb_setup_tc_flower(dev, type_data);
3325         case TC_SETUP_CLSMATCHALL:
3326                 return cxgb_setup_tc_matchall(dev, type_data, true);
3327         default:
3328                 return -EOPNOTSUPP;
3329         }
3330 }
3331
3332 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3333                                          void *type_data, void *cb_priv)
3334 {
3335         struct net_device *dev = cb_priv;
3336         struct port_info *pi = netdev2pinfo(dev);
3337         struct adapter *adap = netdev2adap(dev);
3338
3339         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3340                 dev_err(adap->pdev_dev,
3341                         "Failed to setup tc on port %d. Link Down?\n",
3342                         pi->port_id);
3343                 return -EINVAL;
3344         }
3345
3346         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3347                 return -EOPNOTSUPP;
3348
3349         switch (type) {
3350         case TC_SETUP_CLSMATCHALL:
3351                 return cxgb_setup_tc_matchall(dev, type_data, false);
3352         default:
3353                 break;
3354         }
3355
3356         return -EOPNOTSUPP;
3357 }
3358
3359 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3360                                 struct tc_mqprio_qopt_offload *mqprio)
3361 {
3362         struct adapter *adap = netdev2adap(dev);
3363
3364         if (!is_ethofld(adap) || !adap->tc_mqprio)
3365                 return -ENOMEM;
3366
3367         return cxgb4_setup_tc_mqprio(dev, mqprio);
3368 }
3369
3370 static LIST_HEAD(cxgb_block_cb_list);
3371
3372 static int cxgb_setup_tc_block(struct net_device *dev,
3373                                struct flow_block_offload *f)
3374 {
3375         struct port_info *pi = netdev_priv(dev);
3376         flow_setup_cb_t *cb;
3377         bool ingress_only;
3378
3379         pi->tc_block_shared = f->block_shared;
3380         if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3381                 cb = cxgb_setup_tc_block_egress_cb;
3382                 ingress_only = false;
3383         } else {
3384                 cb = cxgb_setup_tc_block_ingress_cb;
3385                 ingress_only = true;
3386         }
3387
3388         return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3389                                           cb, pi, dev, ingress_only);
3390 }
3391
3392 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3393                          void *type_data)
3394 {
3395         switch (type) {
3396         case TC_SETUP_QDISC_MQPRIO:
3397                 return cxgb_setup_tc_mqprio(dev, type_data);
3398         case TC_SETUP_BLOCK:
3399                 return cxgb_setup_tc_block(dev, type_data);
3400         default:
3401                 return -EOPNOTSUPP;
3402         }
3403 }
3404
3405 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3406                                 struct udp_tunnel_info *ti)
3407 {
3408         struct port_info *pi = netdev_priv(netdev);
3409         struct adapter *adapter = pi->adapter;
3410         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3411         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3412         int ret = 0, i;
3413
3414         if (chip_ver < CHELSIO_T6)
3415                 return;
3416
3417         switch (ti->type) {
3418         case UDP_TUNNEL_TYPE_VXLAN:
3419                 if (!adapter->vxlan_port_cnt ||
3420                     adapter->vxlan_port != ti->port)
3421                         return; /* Invalid VxLAN destination port */
3422
3423                 adapter->vxlan_port_cnt--;
3424                 if (adapter->vxlan_port_cnt)
3425                         return;
3426
3427                 adapter->vxlan_port = 0;
3428                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3429                 break;
3430         case UDP_TUNNEL_TYPE_GENEVE:
3431                 if (!adapter->geneve_port_cnt ||
3432                     adapter->geneve_port != ti->port)
3433                         return; /* Invalid GENEVE destination port */
3434
3435                 adapter->geneve_port_cnt--;
3436                 if (adapter->geneve_port_cnt)
3437                         return;
3438
3439                 adapter->geneve_port = 0;
3440                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3441                 break;
3442         default:
3443                 return;
3444         }
3445
3446         /* Matchall mac entries can be deleted only after all tunnel ports
3447          * are brought down or removed.
3448          */
3449         if (!adapter->rawf_cnt)
3450                 return;
3451         for_each_port(adapter, i) {
3452                 pi = adap2pinfo(adapter, i);
3453                 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3454                                            match_all_mac, match_all_mac,
3455                                            adapter->rawf_start +
3456                                             pi->port_id,
3457                                            1, pi->port_id, false);
3458                 if (ret < 0) {
3459                         netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3460                                     i);
3461                         return;
3462                 }
3463         }
3464 }
3465
3466 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3467                                 struct udp_tunnel_info *ti)
3468 {
3469         struct port_info *pi = netdev_priv(netdev);
3470         struct adapter *adapter = pi->adapter;
3471         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3472         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3473         int i, ret;
3474
3475         if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3476                 return;
3477
3478         switch (ti->type) {
3479         case UDP_TUNNEL_TYPE_VXLAN:
3480                 /* Callback for adding vxlan port can be called with the same
3481                  * port for both IPv4 and IPv6. We should not disable the
3482                  * offloading when the same port for both protocols is added
3483                  * and later one of them is removed.
3484                  */
3485                 if (adapter->vxlan_port_cnt &&
3486                     adapter->vxlan_port == ti->port) {
3487                         adapter->vxlan_port_cnt++;
3488                         return;
3489                 }
3490
3491                 /* We will support only one VxLAN port */
3492                 if (adapter->vxlan_port_cnt) {
3493                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3494                                     be16_to_cpu(adapter->vxlan_port),
3495                                     be16_to_cpu(ti->port));
3496                         return;
3497                 }
3498
3499                 adapter->vxlan_port = ti->port;
3500                 adapter->vxlan_port_cnt = 1;
3501
3502                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3503                              VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3504                 break;
3505         case UDP_TUNNEL_TYPE_GENEVE:
3506                 if (adapter->geneve_port_cnt &&
3507                     adapter->geneve_port == ti->port) {
3508                         adapter->geneve_port_cnt++;
3509                         return;
3510                 }
3511
3512                 /* We will support only one GENEVE port */
3513                 if (adapter->geneve_port_cnt) {
3514                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3515                                     be16_to_cpu(adapter->geneve_port),
3516                                     be16_to_cpu(ti->port));
3517                         return;
3518                 }
3519
3520                 adapter->geneve_port = ti->port;
3521                 adapter->geneve_port_cnt = 1;
3522
3523                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3524                              GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3525                 break;
3526         default:
3527                 return;
3528         }
3529
3530         /* Create a 'match all' mac filter entry for inner mac,
3531          * if raw mac interface is supported. Once the linux kernel provides
3532          * driver entry points for adding/deleting the inner mac addresses,
3533          * we will remove this 'match all' entry and fallback to adding
3534          * exact match filters.
3535          */
3536         for_each_port(adapter, i) {
3537                 pi = adap2pinfo(adapter, i);
3538
3539                 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3540                                             match_all_mac,
3541                                             match_all_mac,
3542                                             adapter->rawf_start +
3543                                             pi->port_id,
3544                                             1, pi->port_id, false);
3545                 if (ret < 0) {
3546                         netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3547                                     be16_to_cpu(ti->port));
3548                         cxgb_del_udp_tunnel(netdev, ti);
3549                         return;
3550                 }
3551         }
3552 }
3553
3554 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3555                                              struct net_device *dev,
3556                                              netdev_features_t features)
3557 {
3558         struct port_info *pi = netdev_priv(dev);
3559         struct adapter *adapter = pi->adapter;
3560
3561         if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3562                 return features;
3563
3564         /* Check if hw supports offload for this packet */
3565         if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3566                 return features;
3567
3568         /* Offload is not supported for this encapsulated packet */
3569         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3570 }
3571
3572 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3573                                            netdev_features_t features)
3574 {
3575         /* Disable GRO, if RX_CSUM is disabled */
3576         if (!(features & NETIF_F_RXCSUM))
3577                 features &= ~NETIF_F_GRO;
3578
3579         return features;
3580 }
3581
3582 static const struct net_device_ops cxgb4_netdev_ops = {
3583         .ndo_open             = cxgb_open,
3584         .ndo_stop             = cxgb_close,
3585         .ndo_start_xmit       = t4_start_xmit,
3586         .ndo_select_queue     = cxgb_select_queue,
3587         .ndo_get_stats64      = cxgb_get_stats,
3588         .ndo_set_rx_mode      = cxgb_set_rxmode,
3589         .ndo_set_mac_address  = cxgb_set_mac_addr,
3590         .ndo_set_features     = cxgb_set_features,
3591         .ndo_validate_addr    = eth_validate_addr,
3592         .ndo_do_ioctl         = cxgb_ioctl,
3593         .ndo_change_mtu       = cxgb_change_mtu,
3594 #ifdef CONFIG_NET_POLL_CONTROLLER
3595         .ndo_poll_controller  = cxgb_netpoll,
3596 #endif
3597 #ifdef CONFIG_CHELSIO_T4_FCOE
3598         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3599         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3600 #endif /* CONFIG_CHELSIO_T4_FCOE */
3601         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3602         .ndo_setup_tc         = cxgb_setup_tc,
3603         .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3604         .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3605         .ndo_features_check   = cxgb_features_check,
3606         .ndo_fix_features     = cxgb_fix_features,
3607 };
3608
3609 #ifdef CONFIG_PCI_IOV
3610 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3611         .ndo_open               = cxgb4_mgmt_open,
3612         .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3613         .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3614         .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3615         .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3616         .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3617         .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3618 };
3619 #endif
3620
3621 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3622                                    struct ethtool_drvinfo *info)
3623 {
3624         struct adapter *adapter = netdev2adap(dev);
3625
3626         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3627         strlcpy(info->bus_info, pci_name(adapter->pdev),
3628                 sizeof(info->bus_info));
3629 }
3630
3631 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3632         .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3633 };
3634
3635 static void notify_fatal_err(struct work_struct *work)
3636 {
3637         struct adapter *adap;
3638
3639         adap = container_of(work, struct adapter, fatal_err_notify_task);
3640         notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3641 }
3642
3643 void t4_fatal_err(struct adapter *adap)
3644 {
3645         int port;
3646
3647         if (pci_channel_offline(adap->pdev))
3648                 return;
3649
3650         /* Disable the SGE since ULDs are going to free resources that
3651          * could be exposed to the adapter.  RDMA MWs for example...
3652          */
3653         t4_shutdown_adapter(adap);
3654         for_each_port(adap, port) {
3655                 struct net_device *dev = adap->port[port];
3656
3657                 /* If we get here in very early initialization the network
3658                  * devices may not have been set up yet.
3659                  */
3660                 if (!dev)
3661                         continue;
3662
3663                 netif_tx_stop_all_queues(dev);
3664                 netif_carrier_off(dev);
3665         }
3666         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3667         queue_work(adap->workq, &adap->fatal_err_notify_task);
3668 }
3669
3670 static void setup_memwin(struct adapter *adap)
3671 {
3672         u32 nic_win_base = t4_get_util_window(adap);
3673
3674         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3675 }
3676
3677 static void setup_memwin_rdma(struct adapter *adap)
3678 {
3679         if (adap->vres.ocq.size) {
3680                 u32 start;
3681                 unsigned int sz_kb;
3682
3683                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3684                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3685                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3686                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3687                 t4_write_reg(adap,
3688                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3689                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3690                 t4_write_reg(adap,
3691                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3692                              adap->vres.ocq.start);
3693                 t4_read_reg(adap,
3694                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3695         }
3696 }
3697
3698 /* HMA Definitions */
3699
3700 /* The maximum number of address that can be send in a single FW cmd */
3701 #define HMA_MAX_ADDR_IN_CMD     5
3702
3703 #define HMA_PAGE_SIZE           PAGE_SIZE
3704
3705 #define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3706
3707 #define HMA_PAGE_ORDER                                  \
3708         ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3709         ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3710
3711 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3712  * configuration(in units of MB).
3713  */
3714 #define HMA_MIN_TOTAL_SIZE      1
3715 #define HMA_MAX_TOTAL_SIZE                              \
3716         (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3717           HMA_MAX_NO_FW_ADDRESS) >> 20)
3718
3719 static void adap_free_hma_mem(struct adapter *adapter)
3720 {
3721         struct scatterlist *iter;
3722         struct page *page;
3723         int i;
3724
3725         if (!adapter->hma.sgt)
3726                 return;
3727
3728         if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3729                 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3730                              adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3731                 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3732         }
3733
3734         for_each_sg(adapter->hma.sgt->sgl, iter,
3735                     adapter->hma.sgt->orig_nents, i) {
3736                 page = sg_page(iter);
3737                 if (page)
3738                         __free_pages(page, HMA_PAGE_ORDER);
3739         }
3740
3741         kfree(adapter->hma.phy_addr);
3742         sg_free_table(adapter->hma.sgt);
3743         kfree(adapter->hma.sgt);
3744         adapter->hma.sgt = NULL;
3745 }
3746
3747 static int adap_config_hma(struct adapter *adapter)
3748 {
3749         struct scatterlist *sgl, *iter;
3750         struct sg_table *sgt;
3751         struct page *newpage;
3752         unsigned int i, j, k;
3753         u32 param, hma_size;
3754         unsigned int ncmds;
3755         size_t page_size;
3756         u32 page_order;
3757         int node, ret;
3758
3759         /* HMA is supported only for T6+ cards.
3760          * Avoid initializing HMA in kdump kernels.
3761          */
3762         if (is_kdump_kernel() ||
3763             CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3764                 return 0;
3765
3766         /* Get the HMA region size required by fw */
3767         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3768                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3769         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3770                               1, &param, &hma_size);
3771         /* An error means card has its own memory or HMA is not supported by
3772          * the firmware. Return without any errors.
3773          */
3774         if (ret || !hma_size)
3775                 return 0;
3776
3777         if (hma_size < HMA_MIN_TOTAL_SIZE ||
3778             hma_size > HMA_MAX_TOTAL_SIZE) {
3779                 dev_err(adapter->pdev_dev,
3780                         "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3781                         hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3782                 return -EINVAL;
3783         }
3784
3785         page_size = HMA_PAGE_SIZE;
3786         page_order = HMA_PAGE_ORDER;
3787         adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3788         if (unlikely(!adapter->hma.sgt)) {
3789                 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3790                 return -ENOMEM;
3791         }
3792         sgt = adapter->hma.sgt;
3793         /* FW returned value will be in MB's
3794          */
3795         sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3796         if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3797                 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3798                 kfree(adapter->hma.sgt);
3799                 adapter->hma.sgt = NULL;
3800                 return -ENOMEM;
3801         }
3802
3803         sgl = adapter->hma.sgt->sgl;
3804         node = dev_to_node(adapter->pdev_dev);
3805         for_each_sg(sgl, iter, sgt->orig_nents, i) {
3806                 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3807                                            __GFP_ZERO, page_order);
3808                 if (!newpage) {
3809                         dev_err(adapter->pdev_dev,
3810                                 "Not enough memory for HMA page allocation\n");
3811                         ret = -ENOMEM;
3812                         goto free_hma;
3813                 }
3814                 sg_set_page(iter, newpage, page_size << page_order, 0);
3815         }
3816
3817         sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3818                                 DMA_BIDIRECTIONAL);
3819         if (!sgt->nents) {
3820                 dev_err(adapter->pdev_dev,
3821                         "Not enough memory for HMA DMA mapping");
3822                 ret = -ENOMEM;
3823                 goto free_hma;
3824         }
3825         adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3826
3827         adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3828                                         GFP_KERNEL);
3829         if (unlikely(!adapter->hma.phy_addr))
3830                 goto free_hma;
3831
3832         for_each_sg(sgl, iter, sgt->nents, i) {
3833                 newpage = sg_page(iter);
3834                 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3835         }
3836
3837         ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3838         /* Pass on the addresses to firmware */
3839         for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3840                 struct fw_hma_cmd hma_cmd;
3841                 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3842                 u8 soc = 0, eoc = 0;
3843                 u8 hma_mode = 1; /* Presently we support only Page table mode */
3844
3845                 soc = (i == 0) ? 1 : 0;
3846                 eoc = (i == ncmds - 1) ? 1 : 0;
3847
3848                 /* For last cmd, set naddr corresponding to remaining
3849                  * addresses
3850                  */
3851                 if (i == ncmds - 1) {
3852                         naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3853                         naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3854                 }
3855                 memset(&hma_cmd, 0, sizeof(hma_cmd));
3856                 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3857                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3858                 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3859
3860                 hma_cmd.mode_to_pcie_params =
3861                         htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3862                               FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3863
3864                 /* HMA cmd size specified in MB's */
3865                 hma_cmd.naddr_size =
3866                         htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3867                               FW_HMA_CMD_NADDR_V(naddr));
3868
3869                 /* Total Page size specified in units of 4K */
3870                 hma_cmd.addr_size_pkd =
3871                         htonl(FW_HMA_CMD_ADDR_SIZE_V
3872                                 ((page_size << page_order) >> 12));
3873
3874                 /* Fill the 5 addresses */
3875                 for (j = 0; j < naddr; j++) {
3876                         hma_cmd.phy_address[j] =
3877                                 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3878                 }
3879                 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3880                                  sizeof(hma_cmd), &hma_cmd);
3881                 if (ret) {
3882                         dev_err(adapter->pdev_dev,
3883                                 "HMA FW command failed with err %d\n", ret);
3884                         goto free_hma;
3885                 }
3886         }
3887
3888         if (!ret)
3889                 dev_info(adapter->pdev_dev,
3890                          "Reserved %uMB host memory for HMA\n", hma_size);
3891         return ret;
3892
3893 free_hma:
3894         adap_free_hma_mem(adapter);
3895         return ret;
3896 }
3897
3898 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3899 {
3900         u32 v;
3901         int ret;
3902
3903         /* Now that we've successfully configured and initialized the adapter
3904          * can ask the Firmware what resources it has provisioned for us.
3905          */
3906         ret = t4_get_pfres(adap);
3907         if (ret) {
3908                 dev_err(adap->pdev_dev,
3909                         "Unable to retrieve resource provisioning information\n");
3910                 return ret;
3911         }
3912
3913         /* get device capabilities */
3914         memset(c, 0, sizeof(*c));
3915         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3916                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3917         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3918         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3919         if (ret < 0)
3920                 return ret;
3921
3922         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3923                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3924         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3925         if (ret < 0)
3926                 return ret;
3927
3928         ret = t4_config_glbl_rss(adap, adap->pf,
3929                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3930                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3931                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3932         if (ret < 0)
3933                 return ret;
3934
3935         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3936                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3937                           FW_CMD_CAP_PF);
3938         if (ret < 0)
3939                 return ret;
3940
3941         t4_sge_init(adap);
3942
3943         /* tweak some settings */
3944         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3945         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3946         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3947         v = t4_read_reg(adap, TP_PIO_DATA_A);
3948         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3949
3950         /* first 4 Tx modulation queues point to consecutive Tx channels */
3951         adap->params.tp.tx_modq_map = 0xE4;
3952         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3953                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3954
3955         /* associate each Tx modulation queue with consecutive Tx channels */
3956         v = 0x84218421;
3957         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3958                           &v, 1, TP_TX_SCHED_HDR_A);
3959         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3960                           &v, 1, TP_TX_SCHED_FIFO_A);
3961         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3962                           &v, 1, TP_TX_SCHED_PCMD_A);
3963
3964 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3965         if (is_offload(adap)) {
3966                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3967                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3968                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3969                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3970                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3971                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3972                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3973                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3974                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3975                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3976         }
3977
3978         /* get basic stuff going */
3979         return t4_early_init(adap, adap->pf);
3980 }
3981
3982 /*
3983  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3984  */
3985 #define MAX_ATIDS 8192U
3986
3987 /*
3988  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3989  *
3990  * If the firmware we're dealing with has Configuration File support, then
3991  * we use that to perform all configuration
3992  */
3993
3994 /*
3995  * Tweak configuration based on module parameters, etc.  Most of these have
3996  * defaults assigned to them by Firmware Configuration Files (if we're using
3997  * them) but need to be explicitly set if we're using hard-coded
3998  * initialization.  But even in the case of using Firmware Configuration
3999  * Files, we'd like to expose the ability to change these via module
4000  * parameters so these are essentially common tweaks/settings for
4001  * Configuration Files and hard-coded initialization ...
4002  */
4003 static int adap_init0_tweaks(struct adapter *adapter)
4004 {
4005         /*
4006          * Fix up various Host-Dependent Parameters like Page Size, Cache
4007          * Line Size, etc.  The firmware default is for a 4KB Page Size and
4008          * 64B Cache Line Size ...
4009          */
4010         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4011
4012         /*
4013          * Process module parameters which affect early initialization.
4014          */
4015         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4016                 dev_err(&adapter->pdev->dev,
4017                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
4018                         rx_dma_offset);
4019                 rx_dma_offset = 2;
4020         }
4021         t4_set_reg_field(adapter, SGE_CONTROL_A,
4022                          PKTSHIFT_V(PKTSHIFT_M),
4023                          PKTSHIFT_V(rx_dma_offset));
4024
4025         /*
4026          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4027          * adds the pseudo header itself.
4028          */
4029         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4030                                CSUM_HAS_PSEUDO_HDR_F, 0);
4031
4032         return 0;
4033 }
4034
4035 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4036  * unto themselves and they contain their own firmware to perform their
4037  * tasks ...
4038  */
4039 static int phy_aq1202_version(const u8 *phy_fw_data,
4040                               size_t phy_fw_size)
4041 {
4042         int offset;
4043
4044         /* At offset 0x8 you're looking for the primary image's
4045          * starting offset which is 3 Bytes wide
4046          *
4047          * At offset 0xa of the primary image, you look for the offset
4048          * of the DRAM segment which is 3 Bytes wide.
4049          *
4050          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4051          * wide
4052          */
4053         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4054         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4055         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4056
4057         offset = le24(phy_fw_data + 0x8) << 12;
4058         offset = le24(phy_fw_data + offset + 0xa);
4059         return be16(phy_fw_data + offset + 0x27e);
4060
4061         #undef be16
4062         #undef le16
4063         #undef le24
4064 }
4065
4066 static struct info_10gbt_phy_fw {
4067         unsigned int phy_fw_id;         /* PCI Device ID */
4068         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
4069         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4070         int phy_flash;                  /* Has FLASH for PHY Firmware */
4071 } phy_info_array[] = {
4072         {
4073                 PHY_AQ1202_DEVICEID,
4074                 PHY_AQ1202_FIRMWARE,
4075                 phy_aq1202_version,
4076                 1,
4077         },
4078         {
4079                 PHY_BCM84834_DEVICEID,
4080                 PHY_BCM84834_FIRMWARE,
4081                 NULL,
4082                 0,
4083         },
4084         { 0, NULL, NULL },
4085 };
4086
4087 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4088 {
4089         int i;
4090
4091         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4092                 if (phy_info_array[i].phy_fw_id == devid)
4093                         return &phy_info_array[i];
4094         }
4095         return NULL;
4096 }
4097
4098 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4099  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4100  * we return a negative error number.  If we transfer new firmware we return 1
4101  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4102  */
4103 static int adap_init0_phy(struct adapter *adap)
4104 {
4105         const struct firmware *phyf;
4106         int ret;
4107         struct info_10gbt_phy_fw *phy_info;
4108
4109         /* Use the device ID to determine which PHY file to flash.
4110          */
4111         phy_info = find_phy_info(adap->pdev->device);
4112         if (!phy_info) {
4113                 dev_warn(adap->pdev_dev,
4114                          "No PHY Firmware file found for this PHY\n");
4115                 return -EOPNOTSUPP;
4116         }
4117
4118         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4119          * use that. The adapter firmware provides us with a memory buffer
4120          * where we can load a PHY firmware file from the host if we want to
4121          * override the PHY firmware File in flash.
4122          */
4123         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4124                                       adap->pdev_dev);
4125         if (ret < 0) {
4126                 /* For adapters without FLASH attached to PHY for their
4127                  * firmware, it's obviously a fatal error if we can't get the
4128                  * firmware to the adapter.  For adapters with PHY firmware
4129                  * FLASH storage, it's worth a warning if we can't find the
4130                  * PHY Firmware but we'll neuter the error ...
4131                  */
4132                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4133                         "/lib/firmware/%s, error %d\n",
4134                         phy_info->phy_fw_file, -ret);
4135                 if (phy_info->phy_flash) {
4136                         int cur_phy_fw_ver = 0;
4137
4138                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4139                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4140                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
4141                         ret = 0;
4142                 }
4143
4144                 return ret;
4145         }
4146
4147         /* Load PHY Firmware onto adapter.
4148          */
4149         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
4150                              phy_info->phy_fw_version,
4151                              (u8 *)phyf->data, phyf->size);
4152         if (ret < 0)
4153                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4154                         -ret);
4155         else if (ret > 0) {
4156                 int new_phy_fw_ver = 0;
4157
4158                 if (phy_info->phy_fw_version)
4159                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4160                                                                   phyf->size);
4161                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4162                          "Firmware /lib/firmware/%s, version %#x\n",
4163                          phy_info->phy_fw_file, new_phy_fw_ver);
4164         }
4165
4166         release_firmware(phyf);
4167
4168         return ret;
4169 }
4170
4171 /*
4172  * Attempt to initialize the adapter via a Firmware Configuration File.
4173  */
4174 static int adap_init0_config(struct adapter *adapter, int reset)
4175 {
4176         char *fw_config_file, fw_config_file_path[256];
4177         u32 finiver, finicsum, cfcsum, param, val;
4178         struct fw_caps_config_cmd caps_cmd;
4179         unsigned long mtype = 0, maddr = 0;
4180         const struct firmware *cf;
4181         char *config_name = NULL;
4182         int config_issued = 0;
4183         int ret;
4184
4185         /*
4186          * Reset device if necessary.
4187          */
4188         if (reset) {
4189                 ret = t4_fw_reset(adapter, adapter->mbox,
4190                                   PIORSTMODE_F | PIORST_F);
4191                 if (ret < 0)
4192                         goto bye;
4193         }
4194
4195         /* If this is a 10Gb/s-BT adapter make sure the chip-external
4196          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4197          * to be performed after any global adapter RESET above since some
4198          * PHYs only have local RAM copies of the PHY firmware.
4199          */
4200         if (is_10gbt_device(adapter->pdev->device)) {
4201                 ret = adap_init0_phy(adapter);
4202                 if (ret < 0)
4203                         goto bye;
4204         }
4205         /*
4206          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4207          * then use that.  Otherwise, use the configuration file stored
4208          * in the adapter flash ...
4209          */
4210         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4211         case CHELSIO_T4:
4212                 fw_config_file = FW4_CFNAME;
4213                 break;
4214         case CHELSIO_T5:
4215                 fw_config_file = FW5_CFNAME;
4216                 break;
4217         case CHELSIO_T6:
4218                 fw_config_file = FW6_CFNAME;
4219                 break;
4220         default:
4221                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4222                        adapter->pdev->device);
4223                 ret = -EINVAL;
4224                 goto bye;
4225         }
4226
4227         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4228         if (ret < 0) {
4229                 config_name = "On FLASH";
4230                 mtype = FW_MEMTYPE_CF_FLASH;
4231                 maddr = t4_flash_cfg_addr(adapter);
4232         } else {
4233                 u32 params[7], val[7];
4234
4235                 sprintf(fw_config_file_path,
4236                         "/lib/firmware/%s", fw_config_file);
4237                 config_name = fw_config_file_path;
4238
4239                 if (cf->size >= FLASH_CFG_MAX_SIZE)
4240                         ret = -ENOMEM;
4241                 else {
4242                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4243                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4244                         ret = t4_query_params(adapter, adapter->mbox,
4245                                               adapter->pf, 0, 1, params, val);
4246                         if (ret == 0) {
4247                                 /*
4248                                  * For t4_memory_rw() below addresses and
4249                                  * sizes have to be in terms of multiples of 4
4250                                  * bytes.  So, if the Configuration File isn't
4251                                  * a multiple of 4 bytes in length we'll have
4252                                  * to write that out separately since we can't
4253                                  * guarantee that the bytes following the
4254                                  * residual byte in the buffer returned by
4255                                  * request_firmware() are zeroed out ...
4256                                  */
4257                                 size_t resid = cf->size & 0x3;
4258                                 size_t size = cf->size & ~0x3;
4259                                 __be32 *data = (__be32 *)cf->data;
4260
4261                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4262                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4263
4264                                 spin_lock(&adapter->win0_lock);
4265                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4266                                                    size, data, T4_MEMORY_WRITE);
4267                                 if (ret == 0 && resid != 0) {
4268                                         union {
4269                                                 __be32 word;
4270                                                 char buf[4];
4271                                         } last;
4272                                         int i;
4273
4274                                         last.word = data[size >> 2];
4275                                         for (i = resid; i < 4; i++)
4276                                                 last.buf[i] = 0;
4277                                         ret = t4_memory_rw(adapter, 0, mtype,
4278                                                            maddr + size,
4279                                                            4, &last.word,
4280                                                            T4_MEMORY_WRITE);
4281                                 }
4282                                 spin_unlock(&adapter->win0_lock);
4283                         }
4284                 }
4285
4286                 release_firmware(cf);
4287                 if (ret)
4288                         goto bye;
4289         }
4290
4291         val = 0;
4292
4293         /* Ofld + Hash filter is supported. Older fw will fail this request and
4294          * it is fine.
4295          */
4296         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4297                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4298         ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4299                             1, &param, &val);
4300
4301         /* FW doesn't know about Hash filter + ofld support,
4302          * it's not a problem, don't return an error.
4303          */
4304         if (ret < 0) {
4305                 dev_warn(adapter->pdev_dev,
4306                          "Hash filter with ofld is not supported by FW\n");
4307         }
4308
4309         /*
4310          * Issue a Capability Configuration command to the firmware to get it
4311          * to parse the Configuration File.  We don't use t4_fw_config_file()
4312          * because we want the ability to modify various features after we've
4313          * processed the configuration file ...
4314          */
4315         memset(&caps_cmd, 0, sizeof(caps_cmd));
4316         caps_cmd.op_to_write =
4317                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4318                       FW_CMD_REQUEST_F |
4319                       FW_CMD_READ_F);
4320         caps_cmd.cfvalid_to_len16 =
4321                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4322                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4323                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4324                       FW_LEN16(caps_cmd));
4325         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4326                          &caps_cmd);
4327
4328         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4329          * Configuration File in FLASH), our last gasp effort is to use the
4330          * Firmware Configuration File which is embedded in the firmware.  A
4331          * very few early versions of the firmware didn't have one embedded
4332          * but we can ignore those.
4333          */
4334         if (ret == -ENOENT) {
4335                 memset(&caps_cmd, 0, sizeof(caps_cmd));
4336                 caps_cmd.op_to_write =
4337                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4338                                         FW_CMD_REQUEST_F |
4339                                         FW_CMD_READ_F);
4340                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4341                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4342                                 sizeof(caps_cmd), &caps_cmd);
4343                 config_name = "Firmware Default";
4344         }
4345
4346         config_issued = 1;
4347         if (ret < 0)
4348                 goto bye;
4349
4350         finiver = ntohl(caps_cmd.finiver);
4351         finicsum = ntohl(caps_cmd.finicsum);
4352         cfcsum = ntohl(caps_cmd.cfcsum);
4353         if (finicsum != cfcsum)
4354                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4355                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4356                          finicsum, cfcsum);
4357
4358         /*
4359          * And now tell the firmware to use the configuration we just loaded.
4360          */
4361         caps_cmd.op_to_write =
4362                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4363                       FW_CMD_REQUEST_F |
4364                       FW_CMD_WRITE_F);
4365         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4366         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4367                          NULL);
4368         if (ret < 0)
4369                 goto bye;
4370
4371         /*
4372          * Tweak configuration based on system architecture, module
4373          * parameters, etc.
4374          */
4375         ret = adap_init0_tweaks(adapter);
4376         if (ret < 0)
4377                 goto bye;
4378
4379         /* We will proceed even if HMA init fails. */
4380         ret = adap_config_hma(adapter);
4381         if (ret)
4382                 dev_err(adapter->pdev_dev,
4383                         "HMA configuration failed with error %d\n", ret);
4384
4385         if (is_t6(adapter->params.chip)) {
4386                 adap_config_hpfilter(adapter);
4387                 ret = setup_ppod_edram(adapter);
4388                 if (!ret)
4389                         dev_info(adapter->pdev_dev, "Successfully enabled "
4390                                  "ppod edram feature\n");
4391         }
4392
4393         /*
4394          * And finally tell the firmware to initialize itself using the
4395          * parameters from the Configuration File.
4396          */
4397         ret = t4_fw_initialize(adapter, adapter->mbox);
4398         if (ret < 0)
4399                 goto bye;
4400
4401         /* Emit Firmware Configuration File information and return
4402          * successfully.
4403          */
4404         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4405                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4406                  config_name, finiver, cfcsum);
4407         return 0;
4408
4409         /*
4410          * Something bad happened.  Return the error ...  (If the "error"
4411          * is that there's no Configuration File on the adapter we don't
4412          * want to issue a warning since this is fairly common.)
4413          */
4414 bye:
4415         if (config_issued && ret != -ENOENT)
4416                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4417                          config_name, -ret);
4418         return ret;
4419 }
4420
4421 static struct fw_info fw_info_array[] = {
4422         {
4423                 .chip = CHELSIO_T4,
4424                 .fs_name = FW4_CFNAME,
4425                 .fw_mod_name = FW4_FNAME,
4426                 .fw_hdr = {
4427                         .chip = FW_HDR_CHIP_T4,
4428                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4429                         .intfver_nic = FW_INTFVER(T4, NIC),
4430                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4431                         .intfver_ri = FW_INTFVER(T4, RI),
4432                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4433                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4434                 },
4435         }, {
4436                 .chip = CHELSIO_T5,
4437                 .fs_name = FW5_CFNAME,
4438                 .fw_mod_name = FW5_FNAME,
4439                 .fw_hdr = {
4440                         .chip = FW_HDR_CHIP_T5,
4441                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4442                         .intfver_nic = FW_INTFVER(T5, NIC),
4443                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4444                         .intfver_ri = FW_INTFVER(T5, RI),
4445                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4446                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4447                 },
4448         }, {
4449                 .chip = CHELSIO_T6,
4450                 .fs_name = FW6_CFNAME,
4451                 .fw_mod_name = FW6_FNAME,
4452                 .fw_hdr = {
4453                         .chip = FW_HDR_CHIP_T6,
4454                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4455                         .intfver_nic = FW_INTFVER(T6, NIC),
4456                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4457                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4458                         .intfver_ri = FW_INTFVER(T6, RI),
4459                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4460                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4461                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4462                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4463                 },
4464         }
4465
4466 };
4467
4468 static struct fw_info *find_fw_info(int chip)
4469 {
4470         int i;
4471
4472         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4473                 if (fw_info_array[i].chip == chip)
4474                         return &fw_info_array[i];
4475         }
4476         return NULL;
4477 }
4478
4479 /*
4480  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4481  */
4482 static int adap_init0(struct adapter *adap, int vpd_skip)
4483 {
4484         struct fw_caps_config_cmd caps_cmd;
4485         u32 params[7], val[7];
4486         enum dev_state state;
4487         u32 v, port_vec;
4488         int reset = 1;
4489         int ret;
4490
4491         /* Grab Firmware Device Log parameters as early as possible so we have
4492          * access to it for debugging, etc.
4493          */
4494         ret = t4_init_devlog_params(adap);
4495         if (ret < 0)
4496                 return ret;
4497
4498         /* Contact FW, advertising Master capability */
4499         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4500                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4501         if (ret < 0) {
4502                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4503                         ret);
4504                 return ret;
4505         }
4506         if (ret == adap->mbox)
4507                 adap->flags |= CXGB4_MASTER_PF;
4508
4509         /*
4510          * If we're the Master PF Driver and the device is uninitialized,
4511          * then let's consider upgrading the firmware ...  (We always want
4512          * to check the firmware version number in order to A. get it for
4513          * later reporting and B. to warn if the currently loaded firmware
4514          * is excessively mismatched relative to the driver.)
4515          */
4516
4517         t4_get_version_info(adap);
4518         ret = t4_check_fw_version(adap);
4519         /* If firmware is too old (not supported by driver) force an update. */
4520         if (ret)
4521                 state = DEV_STATE_UNINIT;
4522         if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4523                 struct fw_info *fw_info;
4524                 struct fw_hdr *card_fw;
4525                 const struct firmware *fw;
4526                 const u8 *fw_data = NULL;
4527                 unsigned int fw_size = 0;
4528
4529                 /* This is the firmware whose headers the driver was compiled
4530                  * against
4531                  */
4532                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4533                 if (fw_info == NULL) {
4534                         dev_err(adap->pdev_dev,
4535                                 "unable to get firmware info for chip %d.\n",
4536                                 CHELSIO_CHIP_VERSION(adap->params.chip));
4537                         return -EINVAL;
4538                 }
4539
4540                 /* allocate memory to read the header of the firmware on the
4541                  * card
4542                  */
4543                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4544                 if (!card_fw) {
4545                         ret = -ENOMEM;
4546                         goto bye;
4547                 }
4548
4549                 /* Get FW from from /lib/firmware/ */
4550                 ret = request_firmware(&fw, fw_info->fw_mod_name,
4551                                        adap->pdev_dev);
4552                 if (ret < 0) {
4553                         dev_err(adap->pdev_dev,
4554                                 "unable to load firmware image %s, error %d\n",
4555                                 fw_info->fw_mod_name, ret);
4556                 } else {
4557                         fw_data = fw->data;
4558                         fw_size = fw->size;
4559                 }
4560
4561                 /* upgrade FW logic */
4562                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4563                                  state, &reset);
4564
4565                 /* Cleaning up */
4566                 release_firmware(fw);
4567                 kvfree(card_fw);
4568
4569                 if (ret < 0)
4570                         goto bye;
4571         }
4572
4573         /* If the firmware is initialized already, emit a simply note to that
4574          * effect. Otherwise, it's time to try initializing the adapter.
4575          */
4576         if (state == DEV_STATE_INIT) {
4577                 ret = adap_config_hma(adap);
4578                 if (ret)
4579                         dev_err(adap->pdev_dev,
4580                                 "HMA configuration failed with error %d\n",
4581                                 ret);
4582                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4583                          "Adapter already initialized\n",
4584                          adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4585         } else {
4586                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4587                          "Initializing adapter\n");
4588
4589                 /* Find out whether we're dealing with a version of the
4590                  * firmware which has configuration file support.
4591                  */
4592                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4593                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4594                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4595                                       params, val);
4596
4597                 /* If the firmware doesn't support Configuration Files,
4598                  * return an error.
4599                  */
4600                 if (ret < 0) {
4601                         dev_err(adap->pdev_dev, "firmware doesn't support "
4602                                 "Firmware Configuration Files\n");
4603                         goto bye;
4604                 }
4605
4606                 /* The firmware provides us with a memory buffer where we can
4607                  * load a Configuration File from the host if we want to
4608                  * override the Configuration File in flash.
4609                  */
4610                 ret = adap_init0_config(adap, reset);
4611                 if (ret == -ENOENT) {
4612                         dev_err(adap->pdev_dev, "no Configuration File "
4613                                 "present on adapter.\n");
4614                         goto bye;
4615                 }
4616                 if (ret < 0) {
4617                         dev_err(adap->pdev_dev, "could not initialize "
4618                                 "adapter, error %d\n", -ret);
4619                         goto bye;
4620                 }
4621         }
4622
4623         /* Now that we've successfully configured and initialized the adapter
4624          * (or found it already initialized), we can ask the Firmware what
4625          * resources it has provisioned for us.
4626          */
4627         ret = t4_get_pfres(adap);
4628         if (ret) {
4629                 dev_err(adap->pdev_dev,
4630                         "Unable to retrieve resource provisioning information\n");
4631                 goto bye;
4632         }
4633
4634         /* Grab VPD parameters.  This should be done after we establish a
4635          * connection to the firmware since some of the VPD parameters
4636          * (notably the Core Clock frequency) are retrieved via requests to
4637          * the firmware.  On the other hand, we need these fairly early on
4638          * so we do this right after getting ahold of the firmware.
4639          *
4640          * We need to do this after initializing the adapter because someone
4641          * could have FLASHed a new VPD which won't be read by the firmware
4642          * until we do the RESET ...
4643          */
4644         if (!vpd_skip) {
4645                 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4646                 if (ret < 0)
4647                         goto bye;
4648         }
4649
4650         /* Find out what ports are available to us.  Note that we need to do
4651          * this before calling adap_init0_no_config() since it needs nports
4652          * and portvec ...
4653          */
4654         v =
4655             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4656             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4657         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4658         if (ret < 0)
4659                 goto bye;
4660
4661         adap->params.nports = hweight32(port_vec);
4662         adap->params.portvec = port_vec;
4663
4664         /* Give the SGE code a chance to pull in anything that it needs ...
4665          * Note that this must be called after we retrieve our VPD parameters
4666          * in order to know how to convert core ticks to seconds, etc.
4667          */
4668         ret = t4_sge_init(adap);
4669         if (ret < 0)
4670                 goto bye;
4671
4672         /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4673          * indicates that the Firmware and Hardware support this.
4674          */
4675         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4676                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4677         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4678                               1, params, val);
4679
4680         if (!ret) {
4681                 adap->sge.dbqtimer_tick = val[0];
4682                 ret = t4_read_sge_dbqtimers(adap,
4683                                             ARRAY_SIZE(adap->sge.dbqtimer_val),
4684                                             adap->sge.dbqtimer_val);
4685         }
4686
4687         if (!ret)
4688                 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4689
4690         if (is_bypass_device(adap->pdev->device))
4691                 adap->params.bypass = 1;
4692
4693         /*
4694          * Grab some of our basic fundamental operating parameters.
4695          */
4696         params[0] = FW_PARAM_PFVF(EQ_START);
4697         params[1] = FW_PARAM_PFVF(L2T_START);
4698         params[2] = FW_PARAM_PFVF(L2T_END);
4699         params[3] = FW_PARAM_PFVF(FILTER_START);
4700         params[4] = FW_PARAM_PFVF(FILTER_END);
4701         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4702         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4703         if (ret < 0)
4704                 goto bye;
4705         adap->sge.egr_start = val[0];
4706         adap->l2t_start = val[1];
4707         adap->l2t_end = val[2];
4708         adap->tids.ftid_base = val[3];
4709         adap->tids.nftids = val[4] - val[3] + 1;
4710         adap->sge.ingr_start = val[5];
4711
4712         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4713                 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4714                 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4715                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4716                                       params, val);
4717                 if (ret < 0)
4718                         goto bye;
4719
4720                 adap->tids.hpftid_base = val[0];
4721                 adap->tids.nhpftids = val[1] - val[0] + 1;
4722
4723                 /* Read the raw mps entries. In T6, the last 2 tcam entries
4724                  * are reserved for raw mac addresses (rawf = 2, one per port).
4725                  */
4726                 params[0] = FW_PARAM_PFVF(RAWF_START);
4727                 params[1] = FW_PARAM_PFVF(RAWF_END);
4728                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4729                                       params, val);
4730                 if (ret == 0) {
4731                         adap->rawf_start = val[0];
4732                         adap->rawf_cnt = val[1] - val[0] + 1;
4733                 }
4734
4735                 adap->tids.tid_base =
4736                         t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
4737         }
4738
4739         /* qids (ingress/egress) returned from firmware can be anywhere
4740          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4741          * Hence driver needs to allocate memory for this range to
4742          * store the queue info. Get the highest IQFLINT/EQ index returned
4743          * in FW_EQ_*_CMD.alloc command.
4744          */
4745         params[0] = FW_PARAM_PFVF(EQ_END);
4746         params[1] = FW_PARAM_PFVF(IQFLINT_END);
4747         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4748         if (ret < 0)
4749                 goto bye;
4750         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4751         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4752
4753         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4754                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
4755         if (!adap->sge.egr_map) {
4756                 ret = -ENOMEM;
4757                 goto bye;
4758         }
4759
4760         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4761                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4762         if (!adap->sge.ingr_map) {
4763                 ret = -ENOMEM;
4764                 goto bye;
4765         }
4766
4767         /* Allocate the memory for the vaious egress queue bitmaps
4768          * ie starving_fl, txq_maperr and blocked_fl.
4769          */
4770         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4771                                         sizeof(long), GFP_KERNEL);
4772         if (!adap->sge.starving_fl) {
4773                 ret = -ENOMEM;
4774                 goto bye;
4775         }
4776
4777         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4778                                        sizeof(long), GFP_KERNEL);
4779         if (!adap->sge.txq_maperr) {
4780                 ret = -ENOMEM;
4781                 goto bye;
4782         }
4783
4784 #ifdef CONFIG_DEBUG_FS
4785         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4786                                        sizeof(long), GFP_KERNEL);
4787         if (!adap->sge.blocked_fl) {
4788                 ret = -ENOMEM;
4789                 goto bye;
4790         }
4791 #endif
4792
4793         params[0] = FW_PARAM_PFVF(CLIP_START);
4794         params[1] = FW_PARAM_PFVF(CLIP_END);
4795         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4796         if (ret < 0)
4797                 goto bye;
4798         adap->clipt_start = val[0];
4799         adap->clipt_end = val[1];
4800
4801         /* Get the supported number of traffic classes */
4802         params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
4803         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4804         if (ret < 0) {
4805                 /* We couldn't retrieve the number of Traffic Classes
4806                  * supported by the hardware/firmware. So we hard
4807                  * code it here.
4808                  */
4809                 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4810         } else {
4811                 adap->params.nsched_cls = val[0];
4812         }
4813
4814         /* query params related to active filter region */
4815         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4816         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4817         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4818         /* If Active filter size is set we enable establishing
4819          * offload connection through firmware work request
4820          */
4821         if ((val[0] != val[1]) && (ret >= 0)) {
4822                 adap->flags |= CXGB4_FW_OFLD_CONN;
4823                 adap->tids.aftid_base = val[0];
4824                 adap->tids.aftid_end = val[1];
4825         }
4826
4827         /* If we're running on newer firmware, let it know that we're
4828          * prepared to deal with encapsulated CPL messages.  Older
4829          * firmware won't understand this and we'll just get
4830          * unencapsulated messages ...
4831          */
4832         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4833         val[0] = 1;
4834         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4835
4836         /*
4837          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4838          * capability.  Earlier versions of the firmware didn't have the
4839          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4840          * permission to use ULPTX MEMWRITE DSGL.
4841          */
4842         if (is_t4(adap->params.chip)) {
4843                 adap->params.ulptx_memwrite_dsgl = false;
4844         } else {
4845                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4846                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4847                                       1, params, val);
4848                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4849         }
4850
4851         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4852         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4853         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4854                               1, params, val);
4855         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4856
4857         /* See if FW supports FW_FILTER2 work request */
4858         if (is_t4(adap->params.chip)) {
4859                 adap->params.filter2_wr_support = 0;
4860         } else {
4861                 params[0] = FW_PARAM_DEV(FILTER2_WR);
4862                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4863                                       1, params, val);
4864                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4865         }
4866
4867         /* Check if FW supports returning vin and smt index.
4868          * If this is not supported, driver will interpret
4869          * these values from viid.
4870          */
4871         params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4872         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4873                               1, params, val);
4874         adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4875
4876         /*
4877          * Get device capabilities so we can determine what resources we need
4878          * to manage.
4879          */
4880         memset(&caps_cmd, 0, sizeof(caps_cmd));
4881         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4882                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4883         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4884         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4885                          &caps_cmd);
4886         if (ret < 0)
4887                 goto bye;
4888
4889         /* hash filter has some mandatory register settings to be tested and for
4890          * that it needs to test whether offload is enabled or not, hence
4891          * checking and setting it here.
4892          */
4893         if (caps_cmd.ofldcaps)
4894                 adap->params.offload = 1;
4895
4896         if (caps_cmd.ofldcaps ||
4897             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
4898             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
4899                 /* query offload-related parameters */
4900                 params[0] = FW_PARAM_DEV(NTID);
4901                 params[1] = FW_PARAM_PFVF(SERVER_START);
4902                 params[2] = FW_PARAM_PFVF(SERVER_END);
4903                 params[3] = FW_PARAM_PFVF(TDDP_START);
4904                 params[4] = FW_PARAM_PFVF(TDDP_END);
4905                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4906                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4907                                       params, val);
4908                 if (ret < 0)
4909                         goto bye;
4910                 adap->tids.ntids = val[0];
4911                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4912                 adap->tids.stid_base = val[1];
4913                 adap->tids.nstids = val[2] - val[1] + 1;
4914                 /*
4915                  * Setup server filter region. Divide the available filter
4916                  * region into two parts. Regular filters get 1/3rd and server
4917                  * filters get 2/3rd part. This is only enabled if workarond
4918                  * path is enabled.
4919                  * 1. For regular filters.
4920                  * 2. Server filter: This are special filters which are used
4921                  * to redirect SYN packets to offload queue.
4922                  */
4923                 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4924                         adap->tids.sftid_base = adap->tids.ftid_base +
4925                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4926                         adap->tids.nsftids = adap->tids.nftids -
4927                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4928                         adap->tids.nftids = adap->tids.sftid_base -
4929                                                 adap->tids.ftid_base;
4930                 }
4931                 adap->vres.ddp.start = val[3];
4932                 adap->vres.ddp.size = val[4] - val[3] + 1;
4933                 adap->params.ofldq_wr_cred = val[5];
4934
4935                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4936                         init_hash_filter(adap);
4937                 } else {
4938                         adap->num_ofld_uld += 1;
4939                 }
4940
4941                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
4942                         params[0] = FW_PARAM_PFVF(ETHOFLD_START);
4943                         params[1] = FW_PARAM_PFVF(ETHOFLD_END);
4944                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4945                                               params, val);
4946                         if (!ret) {
4947                                 adap->tids.eotid_base = val[0];
4948                                 adap->tids.neotids = min_t(u32, MAX_ATIDS,
4949                                                            val[1] - val[0] + 1);
4950                                 adap->params.ethofld = 1;
4951                         }
4952                 }
4953         }
4954         if (caps_cmd.rdmacaps) {
4955                 params[0] = FW_PARAM_PFVF(STAG_START);
4956                 params[1] = FW_PARAM_PFVF(STAG_END);
4957                 params[2] = FW_PARAM_PFVF(RQ_START);
4958                 params[3] = FW_PARAM_PFVF(RQ_END);
4959                 params[4] = FW_PARAM_PFVF(PBL_START);
4960                 params[5] = FW_PARAM_PFVF(PBL_END);
4961                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4962                                       params, val);
4963                 if (ret < 0)
4964                         goto bye;
4965                 adap->vres.stag.start = val[0];
4966                 adap->vres.stag.size = val[1] - val[0] + 1;
4967                 adap->vres.rq.start = val[2];
4968                 adap->vres.rq.size = val[3] - val[2] + 1;
4969                 adap->vres.pbl.start = val[4];
4970                 adap->vres.pbl.size = val[5] - val[4] + 1;
4971
4972                 params[0] = FW_PARAM_PFVF(SRQ_START);
4973                 params[1] = FW_PARAM_PFVF(SRQ_END);
4974                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4975                                       params, val);
4976                 if (!ret) {
4977                         adap->vres.srq.start = val[0];
4978                         adap->vres.srq.size = val[1] - val[0] + 1;
4979                 }
4980                 if (adap->vres.srq.size) {
4981                         adap->srq = t4_init_srq(adap->vres.srq.size);
4982                         if (!adap->srq)
4983                                 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4984                 }
4985
4986                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4987                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4988                 params[2] = FW_PARAM_PFVF(CQ_START);
4989                 params[3] = FW_PARAM_PFVF(CQ_END);
4990                 params[4] = FW_PARAM_PFVF(OCQ_START);
4991                 params[5] = FW_PARAM_PFVF(OCQ_END);
4992                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4993                                       val);
4994                 if (ret < 0)
4995                         goto bye;
4996                 adap->vres.qp.start = val[0];
4997                 adap->vres.qp.size = val[1] - val[0] + 1;
4998                 adap->vres.cq.start = val[2];
4999                 adap->vres.cq.size = val[3] - val[2] + 1;
5000                 adap->vres.ocq.start = val[4];
5001                 adap->vres.ocq.size = val[5] - val[4] + 1;
5002
5003                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5004                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5005                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5006                                       val);
5007                 if (ret < 0) {
5008                         adap->params.max_ordird_qp = 8;
5009                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5010                         ret = 0;
5011                 } else {
5012                         adap->params.max_ordird_qp = val[0];
5013                         adap->params.max_ird_adapter = val[1];
5014                 }
5015                 dev_info(adap->pdev_dev,
5016                          "max_ordird_qp %d max_ird_adapter %d\n",
5017                          adap->params.max_ordird_qp,
5018                          adap->params.max_ird_adapter);
5019
5020                 /* Enable write_with_immediate if FW supports it */
5021                 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5022                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5023                                       val);
5024                 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5025
5026                 /* Enable write_cmpl if FW supports it */
5027                 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5028                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5029                                       val);
5030                 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5031                 adap->num_ofld_uld += 2;
5032         }
5033         if (caps_cmd.iscsicaps) {
5034                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5035                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5036                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5037                                       params, val);
5038                 if (ret < 0)
5039                         goto bye;
5040                 adap->vres.iscsi.start = val[0];
5041                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5042                 if (is_t6(adap->params.chip)) {
5043                         params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5044                         params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5045                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5046                                               params, val);
5047                         if (!ret) {
5048                                 adap->vres.ppod_edram.start = val[0];
5049                                 adap->vres.ppod_edram.size =
5050                                         val[1] - val[0] + 1;
5051
5052                                 dev_info(adap->pdev_dev,
5053                                          "ppod edram start 0x%x end 0x%x size 0x%x\n",
5054                                          val[0], val[1],
5055                                          adap->vres.ppod_edram.size);
5056                         }
5057                 }
5058                 /* LIO target and cxgb4i initiaitor */
5059                 adap->num_ofld_uld += 2;
5060         }
5061         if (caps_cmd.cryptocaps) {
5062                 if (ntohs(caps_cmd.cryptocaps) &
5063                     FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5064                         params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5065                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5066                                               2, params, val);
5067                         if (ret < 0) {
5068                                 if (ret != -EINVAL)
5069                                         goto bye;
5070                         } else {
5071                                 adap->vres.ncrypto_fc = val[0];
5072                         }
5073                         adap->num_ofld_uld += 1;
5074                 }
5075                 if (ntohs(caps_cmd.cryptocaps) &
5076                     FW_CAPS_CONFIG_TLS_INLINE) {
5077                         params[0] = FW_PARAM_PFVF(TLS_START);
5078                         params[1] = FW_PARAM_PFVF(TLS_END);
5079                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5080                                               2, params, val);
5081                         if (ret < 0)
5082                                 goto bye;
5083                         adap->vres.key.start = val[0];
5084                         adap->vres.key.size = val[1] - val[0] + 1;
5085                         adap->num_uld += 1;
5086                 }
5087                 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5088         }
5089
5090         /* The MTU/MSS Table is initialized by now, so load their values.  If
5091          * we're initializing the adapter, then we'll make any modifications
5092          * we want to the MTU/MSS Table and also initialize the congestion
5093          * parameters.
5094          */
5095         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5096         if (state != DEV_STATE_INIT) {
5097                 int i;
5098
5099                 /* The default MTU Table contains values 1492 and 1500.
5100                  * However, for TCP, it's better to have two values which are
5101                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5102                  * This allows us to have a TCP Data Payload which is a
5103                  * multiple of 8 regardless of what combination of TCP Options
5104                  * are in use (always a multiple of 4 bytes) which is
5105                  * important for performance reasons.  For instance, if no
5106                  * options are in use, then we have a 20-byte IP header and a
5107                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
5108                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5109                  * which is not a multiple of 8.  So using an MSS of 1488 in
5110                  * this case results in a TCP Data Payload of 1448 bytes which
5111                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5112                  * Stamps have been negotiated, then an MTU of 1500 bytes
5113                  * results in a TCP Data Payload of 1448 bytes which, as
5114                  * above, is a multiple of 8 bytes ...
5115                  */
5116                 for (i = 0; i < NMTUS; i++)
5117                         if (adap->params.mtus[i] == 1492) {
5118                                 adap->params.mtus[i] = 1488;
5119                                 break;
5120                         }
5121
5122                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5123                              adap->params.b_wnd);
5124         }
5125         t4_init_sge_params(adap);
5126         adap->flags |= CXGB4_FW_OK;
5127         t4_init_tp_params(adap, true);
5128         return 0;
5129
5130         /*
5131          * Something bad happened.  If a command timed out or failed with EIO
5132          * FW does not operate within its spec or something catastrophic
5133          * happened to HW/FW, stop issuing commands.
5134          */
5135 bye:
5136         adap_free_hma_mem(adap);
5137         kfree(adap->sge.egr_map);
5138         kfree(adap->sge.ingr_map);
5139         kfree(adap->sge.starving_fl);
5140         kfree(adap->sge.txq_maperr);
5141 #ifdef CONFIG_DEBUG_FS
5142         kfree(adap->sge.blocked_fl);
5143 #endif
5144         if (ret != -ETIMEDOUT && ret != -EIO)
5145                 t4_fw_bye(adap, adap->mbox);
5146         return ret;
5147 }
5148
5149 /* EEH callbacks */
5150
5151 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5152                                          pci_channel_state_t state)
5153 {
5154         int i;
5155         struct adapter *adap = pci_get_drvdata(pdev);
5156
5157         if (!adap)
5158                 goto out;
5159
5160         rtnl_lock();
5161         adap->flags &= ~CXGB4_FW_OK;
5162         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5163         spin_lock(&adap->stats_lock);
5164         for_each_port(adap, i) {
5165                 struct net_device *dev = adap->port[i];
5166                 if (dev) {
5167                         netif_device_detach(dev);
5168                         netif_carrier_off(dev);
5169                 }
5170         }
5171         spin_unlock(&adap->stats_lock);
5172         disable_interrupts(adap);
5173         if (adap->flags & CXGB4_FULL_INIT_DONE)
5174                 cxgb_down(adap);
5175         rtnl_unlock();
5176         if ((adap->flags & CXGB4_DEV_ENABLED)) {
5177                 pci_disable_device(pdev);
5178                 adap->flags &= ~CXGB4_DEV_ENABLED;
5179         }
5180 out:    return state == pci_channel_io_perm_failure ?
5181                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5182 }
5183
5184 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5185 {
5186         int i, ret;
5187         struct fw_caps_config_cmd c;
5188         struct adapter *adap = pci_get_drvdata(pdev);
5189
5190         if (!adap) {
5191                 pci_restore_state(pdev);
5192                 pci_save_state(pdev);
5193                 return PCI_ERS_RESULT_RECOVERED;
5194         }
5195
5196         if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5197                 if (pci_enable_device(pdev)) {
5198                         dev_err(&pdev->dev, "Cannot reenable PCI "
5199                                             "device after reset\n");
5200                         return PCI_ERS_RESULT_DISCONNECT;
5201                 }
5202                 adap->flags |= CXGB4_DEV_ENABLED;
5203         }
5204
5205         pci_set_master(pdev);
5206         pci_restore_state(pdev);
5207         pci_save_state(pdev);
5208
5209         if (t4_wait_dev_ready(adap->regs) < 0)
5210                 return PCI_ERS_RESULT_DISCONNECT;
5211         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5212                 return PCI_ERS_RESULT_DISCONNECT;
5213         adap->flags |= CXGB4_FW_OK;
5214         if (adap_init1(adap, &c))
5215                 return PCI_ERS_RESULT_DISCONNECT;
5216
5217         for_each_port(adap, i) {
5218                 struct port_info *pi = adap2pinfo(adap, i);
5219                 u8 vivld = 0, vin = 0;
5220
5221                 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5222                                   NULL, NULL, &vivld, &vin);
5223                 if (ret < 0)
5224                         return PCI_ERS_RESULT_DISCONNECT;
5225                 pi->viid = ret;
5226                 pi->xact_addr_filt = -1;
5227                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5228                  * save the returned values.
5229                  */
5230                 if (adap->params.viid_smt_extn_support) {
5231                         pi->vivld = vivld;
5232                         pi->vin = vin;
5233                 } else {
5234                         /* Retrieve the values from VIID */
5235                         pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5236                         pi->vin = FW_VIID_VIN_G(pi->viid);
5237                 }
5238         }
5239
5240         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5241                      adap->params.b_wnd);
5242         setup_memwin(adap);
5243         if (cxgb_up(adap))
5244                 return PCI_ERS_RESULT_DISCONNECT;
5245         return PCI_ERS_RESULT_RECOVERED;
5246 }
5247
5248 static void eeh_resume(struct pci_dev *pdev)
5249 {
5250         int i;
5251         struct adapter *adap = pci_get_drvdata(pdev);
5252
5253         if (!adap)
5254                 return;
5255
5256         rtnl_lock();
5257         for_each_port(adap, i) {
5258                 struct net_device *dev = adap->port[i];
5259                 if (dev) {
5260                         if (netif_running(dev)) {
5261                                 link_start(dev);
5262                                 cxgb_set_rxmode(dev);
5263                         }
5264                         netif_device_attach(dev);
5265                 }
5266         }
5267         rtnl_unlock();
5268 }
5269
5270 static void eeh_reset_prepare(struct pci_dev *pdev)
5271 {
5272         struct adapter *adapter = pci_get_drvdata(pdev);
5273         int i;
5274
5275         if (adapter->pf != 4)
5276                 return;
5277
5278         adapter->flags &= ~CXGB4_FW_OK;
5279
5280         notify_ulds(adapter, CXGB4_STATE_DOWN);
5281
5282         for_each_port(adapter, i)
5283                 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5284                         cxgb_close(adapter->port[i]);
5285
5286         disable_interrupts(adapter);
5287         cxgb4_free_mps_ref_entries(adapter);
5288
5289         adap_free_hma_mem(adapter);
5290
5291         if (adapter->flags & CXGB4_FULL_INIT_DONE)
5292                 cxgb_down(adapter);
5293 }
5294
5295 static void eeh_reset_done(struct pci_dev *pdev)
5296 {
5297         struct adapter *adapter = pci_get_drvdata(pdev);
5298         int err, i;
5299
5300         if (adapter->pf != 4)
5301                 return;
5302
5303         err = t4_wait_dev_ready(adapter->regs);
5304         if (err < 0) {
5305                 dev_err(adapter->pdev_dev,
5306                         "Device not ready, err %d", err);
5307                 return;
5308         }
5309
5310         setup_memwin(adapter);
5311
5312         err = adap_init0(adapter, 1);
5313         if (err) {
5314                 dev_err(adapter->pdev_dev,
5315                         "Adapter init failed, err %d", err);
5316                 return;
5317         }
5318
5319         setup_memwin_rdma(adapter);
5320
5321         if (adapter->flags & CXGB4_FW_OK) {
5322                 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5323                 if (err) {
5324                         dev_err(adapter->pdev_dev,
5325                                 "Port init failed, err %d", err);
5326                         return;
5327                 }
5328         }
5329
5330         err = cfg_queues(adapter);
5331         if (err) {
5332                 dev_err(adapter->pdev_dev,
5333                         "Config queues failed, err %d", err);
5334                 return;
5335         }
5336
5337         cxgb4_init_mps_ref_entries(adapter);
5338
5339         err = setup_fw_sge_queues(adapter);
5340         if (err) {
5341                 dev_err(adapter->pdev_dev,
5342                         "FW sge queue allocation failed, err %d", err);
5343                 return;
5344         }
5345
5346         for_each_port(adapter, i)
5347                 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5348                         cxgb_open(adapter->port[i]);
5349 }
5350
5351 static const struct pci_error_handlers cxgb4_eeh = {
5352         .error_detected = eeh_err_detected,
5353         .slot_reset     = eeh_slot_reset,
5354         .resume         = eeh_resume,
5355         .reset_prepare  = eeh_reset_prepare,
5356         .reset_done     = eeh_reset_done,
5357 };
5358
5359 /* Return true if the Link Configuration supports "High Speeds" (those greater
5360  * than 1Gb/s).
5361  */
5362 static inline bool is_x_10g_port(const struct link_config *lc)
5363 {
5364         unsigned int speeds, high_speeds;
5365
5366         speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5367         high_speeds = speeds &
5368                         ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5369
5370         return high_speeds != 0;
5371 }
5372
5373 /* Perform default configuration of DMA queues depending on the number and type
5374  * of ports we found and the number of available CPUs.  Most settings can be
5375  * modified by the admin prior to actual use.
5376  */
5377 static int cfg_queues(struct adapter *adap)
5378 {
5379         u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5380         u32 i, n10g = 0, qidx = 0, n1g = 0;
5381         u32 ncpus = num_online_cpus();
5382         u32 niqflint, neq, num_ulds;
5383         struct sge *s = &adap->sge;
5384         u32 q10g = 0, q1g;
5385
5386         /* Reduce memory usage in kdump environment, disable all offload. */
5387         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5388                 adap->params.offload = 0;
5389                 adap->params.crypto = 0;
5390                 adap->params.ethofld = 0;
5391         }
5392
5393         /* Calculate the number of Ethernet Queue Sets available based on
5394          * resources provisioned for us.  We always have an Asynchronous
5395          * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5396          * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5397          * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5398          * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5399          *
5400          * Note that we should also take into account all of the various
5401          * Offload Queues.  But, in any situation where we're operating in
5402          * a Resource Constrained Provisioning environment, doing any Offload
5403          * at all is problematic ...
5404          */
5405         niqflint = adap->params.pfres.niqflint - 1;
5406         if (!(adap->flags & CXGB4_USING_MSIX))
5407                 niqflint--;
5408         neq = adap->params.pfres.neq / 2;
5409         avail_qsets = min(niqflint, neq);
5410
5411         if (avail_qsets < adap->params.nports) {
5412                 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5413                         avail_qsets, adap->params.nports);
5414                 return -ENOMEM;
5415         }
5416
5417         /* Count the number of 10Gb/s or better ports */
5418         for_each_port(adap, i)
5419                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5420
5421         avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5422
5423         /* We default to 1 queue per non-10G port and up to # of cores queues
5424          * per 10G port.
5425          */
5426         if (n10g)
5427                 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5428
5429         n1g = adap->params.nports - n10g;
5430 #ifdef CONFIG_CHELSIO_T4_DCB
5431         /* For Data Center Bridging support we need to be able to support up
5432          * to 8 Traffic Priorities; each of which will be assigned to its
5433          * own TX Queue in order to prevent Head-Of-Line Blocking.
5434          */
5435         q1g = 8;
5436         if (adap->params.nports * 8 > avail_eth_qsets) {
5437                 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5438                         avail_eth_qsets, adap->params.nports * 8);
5439                 return -ENOMEM;
5440         }
5441
5442         if (adap->params.nports * ncpus < avail_eth_qsets)
5443                 q10g = max(8U, ncpus);
5444         else
5445                 q10g = max(8U, q10g);
5446
5447         while ((q10g * n10g) > (avail_eth_qsets - n1g * q1g))
5448                 q10g--;
5449
5450 #else /* !CONFIG_CHELSIO_T4_DCB */
5451         q1g = 1;
5452         q10g = min(q10g, ncpus);
5453 #endif /* !CONFIG_CHELSIO_T4_DCB */
5454         if (is_kdump_kernel()) {
5455                 q10g = 1;
5456                 q1g = 1;
5457         }
5458
5459         for_each_port(adap, i) {
5460                 struct port_info *pi = adap2pinfo(adap, i);
5461
5462                 pi->first_qset = qidx;
5463                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5464                 qidx += pi->nqsets;
5465         }
5466
5467         s->ethqsets = qidx;
5468         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5469         avail_qsets -= qidx;
5470
5471         if (is_uld(adap)) {
5472                 /* For offload we use 1 queue/channel if all ports are up to 1G,
5473                  * otherwise we divide all available queues amongst the channels
5474                  * capped by the number of available cores.
5475                  */
5476                 num_ulds = adap->num_uld + adap->num_ofld_uld;
5477                 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5478                 avail_uld_qsets = roundup(i, adap->params.nports);
5479                 if (avail_qsets < num_ulds * adap->params.nports) {
5480                         adap->params.offload = 0;
5481                         adap->params.crypto = 0;
5482                         s->ofldqsets = 0;
5483                 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5484                         s->ofldqsets = adap->params.nports;
5485                 } else {
5486                         s->ofldqsets = avail_uld_qsets;
5487                 }
5488
5489                 avail_qsets -= num_ulds * s->ofldqsets;
5490         }
5491
5492         /* ETHOFLD Queues used for QoS offload should follow same
5493          * allocation scheme as normal Ethernet Queues.
5494          */
5495         if (is_ethofld(adap)) {
5496                 if (avail_qsets < s->max_ethqsets) {
5497                         adap->params.ethofld = 0;
5498                         s->eoqsets = 0;
5499                 } else {
5500                         s->eoqsets = s->max_ethqsets;
5501                 }
5502                 avail_qsets -= s->eoqsets;
5503         }
5504
5505         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5506                 struct sge_eth_rxq *r = &s->ethrxq[i];
5507
5508                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5509                 r->fl.size = 72;
5510         }
5511
5512         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5513                 s->ethtxq[i].q.size = 1024;
5514
5515         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5516                 s->ctrlq[i].q.size = 512;
5517
5518         if (!is_t4(adap->params.chip))
5519                 s->ptptxq.q.size = 8;
5520
5521         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5522         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5523
5524         return 0;
5525 }
5526
5527 /*
5528  * Reduce the number of Ethernet queues across all ports to at most n.
5529  * n provides at least one queue per port.
5530  */
5531 static void reduce_ethqs(struct adapter *adap, int n)
5532 {
5533         int i;
5534         struct port_info *pi;
5535
5536         while (n < adap->sge.ethqsets)
5537                 for_each_port(adap, i) {
5538                         pi = adap2pinfo(adap, i);
5539                         if (pi->nqsets > 1) {
5540                                 pi->nqsets--;
5541                                 adap->sge.ethqsets--;
5542                                 if (adap->sge.ethqsets <= n)
5543                                         break;
5544                         }
5545                 }
5546
5547         n = 0;
5548         for_each_port(adap, i) {
5549                 pi = adap2pinfo(adap, i);
5550                 pi->first_qset = n;
5551                 n += pi->nqsets;
5552         }
5553 }
5554
5555 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5556 {
5557         struct msix_info *msix_info;
5558
5559         msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5560         if (!msix_info)
5561                 return -ENOMEM;
5562
5563         adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5564                                             sizeof(long), GFP_KERNEL);
5565         if (!adap->msix_bmap.msix_bmap) {
5566                 kfree(msix_info);
5567                 return -ENOMEM;
5568         }
5569
5570         spin_lock_init(&adap->msix_bmap.lock);
5571         adap->msix_bmap.mapsize = num_vec;
5572
5573         adap->msix_info = msix_info;
5574         return 0;
5575 }
5576
5577 static void free_msix_info(struct adapter *adap)
5578 {
5579         kfree(adap->msix_bmap.msix_bmap);
5580         kfree(adap->msix_info);
5581 }
5582
5583 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5584 {
5585         struct msix_bmap *bmap = &adap->msix_bmap;
5586         unsigned int msix_idx;
5587         unsigned long flags;
5588
5589         spin_lock_irqsave(&bmap->lock, flags);
5590         msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5591         if (msix_idx < bmap->mapsize) {
5592                 __set_bit(msix_idx, bmap->msix_bmap);
5593         } else {
5594                 spin_unlock_irqrestore(&bmap->lock, flags);
5595                 return -ENOSPC;
5596         }
5597
5598         spin_unlock_irqrestore(&bmap->lock, flags);
5599         return msix_idx;
5600 }
5601
5602 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5603                                  unsigned int msix_idx)
5604 {
5605         struct msix_bmap *bmap = &adap->msix_bmap;
5606         unsigned long flags;
5607
5608         spin_lock_irqsave(&bmap->lock, flags);
5609         __clear_bit(msix_idx, bmap->msix_bmap);
5610         spin_unlock_irqrestore(&bmap->lock, flags);
5611 }
5612
5613 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5614 #define EXTRA_VECS 2
5615
5616 static int enable_msix(struct adapter *adap)
5617 {
5618         u32 eth_need, uld_need = 0, ethofld_need = 0;
5619         u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0;
5620         u8 num_uld = 0, nchan = adap->params.nports;
5621         u32 i, want, need, num_vec;
5622         struct sge *s = &adap->sge;
5623         struct msix_entry *entries;
5624         struct port_info *pi;
5625         int allocated, ret;
5626
5627         want = s->max_ethqsets;
5628 #ifdef CONFIG_CHELSIO_T4_DCB
5629         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5630          * each port.
5631          */
5632         need = 8 * nchan;
5633 #else
5634         need = nchan;
5635 #endif
5636         eth_need = need;
5637         if (is_uld(adap)) {
5638                 num_uld = adap->num_ofld_uld + adap->num_uld;
5639                 want += num_uld * s->ofldqsets;
5640                 uld_need = num_uld * nchan;
5641                 need += uld_need;
5642         }
5643
5644         if (is_ethofld(adap)) {
5645                 want += s->eoqsets;
5646                 ethofld_need = eth_need;
5647                 need += ethofld_need;
5648         }
5649
5650         want += EXTRA_VECS;
5651         need += EXTRA_VECS;
5652
5653         entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5654         if (!entries)
5655                 return -ENOMEM;
5656
5657         for (i = 0; i < want; i++)
5658                 entries[i].entry = i;
5659
5660         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5661         if (allocated < 0) {
5662                 /* Disable offload and attempt to get vectors for NIC
5663                  * only mode.
5664                  */
5665                 want = s->max_ethqsets + EXTRA_VECS;
5666                 need = eth_need + EXTRA_VECS;
5667                 allocated = pci_enable_msix_range(adap->pdev, entries,
5668                                                   need, want);
5669                 if (allocated < 0) {
5670                         dev_info(adap->pdev_dev,
5671                                  "Disabling MSI-X due to insufficient MSI-X vectors\n");
5672                         ret = allocated;
5673                         goto out_free;
5674                 }
5675
5676                 dev_info(adap->pdev_dev,
5677                          "Disabling offload due to insufficient MSI-X vectors\n");
5678                 adap->params.offload = 0;
5679                 adap->params.crypto = 0;
5680                 adap->params.ethofld = 0;
5681                 s->ofldqsets = 0;
5682                 s->eoqsets = 0;
5683                 uld_need = 0;
5684                 ethofld_need = 0;
5685         }
5686
5687         num_vec = allocated;
5688         if (num_vec < want) {
5689                 /* Distribute available vectors to the various queue groups.
5690                  * Every group gets its minimum requirement and NIC gets top
5691                  * priority for leftovers.
5692                  */
5693                 ethqsets = eth_need;
5694                 if (is_uld(adap))
5695                         ofldqsets = nchan;
5696                 if (is_ethofld(adap))
5697                         eoqsets = ethofld_need;
5698
5699                 num_vec -= need;
5700                 while (num_vec) {
5701                         if (num_vec < eth_need + ethofld_need ||
5702                             ethqsets > s->max_ethqsets)
5703                                 break;
5704
5705                         for_each_port(adap, i) {
5706                                 pi = adap2pinfo(adap, i);
5707                                 if (pi->nqsets < 2)
5708                                         continue;
5709
5710                                 ethqsets++;
5711                                 num_vec--;
5712                                 if (ethofld_need) {
5713                                         eoqsets++;
5714                                         num_vec--;
5715                                 }
5716                         }
5717                 }
5718
5719                 if (is_uld(adap)) {
5720                         while (num_vec) {
5721                                 if (num_vec < uld_need ||
5722                                     ofldqsets > s->ofldqsets)
5723                                         break;
5724
5725                                 ofldqsets++;
5726                                 num_vec -= uld_need;
5727                         }
5728                 }
5729         } else {
5730                 ethqsets = s->max_ethqsets;
5731                 if (is_uld(adap))
5732                         ofldqsets = s->ofldqsets;
5733                 if (is_ethofld(adap))
5734                         eoqsets = s->eoqsets;
5735         }
5736
5737         if (ethqsets < s->max_ethqsets) {
5738                 s->max_ethqsets = ethqsets;
5739                 reduce_ethqs(adap, ethqsets);
5740         }
5741
5742         if (is_uld(adap)) {
5743                 s->ofldqsets = ofldqsets;
5744                 s->nqs_per_uld = s->ofldqsets;
5745         }
5746
5747         if (is_ethofld(adap))
5748                 s->eoqsets = eoqsets;
5749
5750         /* map for msix */
5751         ret = alloc_msix_info(adap, allocated);
5752         if (ret)
5753                 goto out_disable_msix;
5754
5755         for (i = 0; i < allocated; i++) {
5756                 adap->msix_info[i].vec = entries[i].vector;
5757                 adap->msix_info[i].idx = i;
5758         }
5759
5760         dev_info(adap->pdev_dev,
5761                  "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n",
5762                  allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld);
5763
5764         kfree(entries);
5765         return 0;
5766
5767 out_disable_msix:
5768         pci_disable_msix(adap->pdev);
5769
5770 out_free:
5771         kfree(entries);
5772         return ret;
5773 }
5774
5775 #undef EXTRA_VECS
5776
5777 static int init_rss(struct adapter *adap)
5778 {
5779         unsigned int i;
5780         int err;
5781
5782         err = t4_init_rss_mode(adap, adap->mbox);
5783         if (err)
5784                 return err;
5785
5786         for_each_port(adap, i) {
5787                 struct port_info *pi = adap2pinfo(adap, i);
5788
5789                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5790                 if (!pi->rss)
5791                         return -ENOMEM;
5792         }
5793         return 0;
5794 }
5795
5796 /* Dump basic information about the adapter */
5797 static void print_adapter_info(struct adapter *adapter)
5798 {
5799         /* Hardware/Firmware/etc. Version/Revision IDs */
5800         t4_dump_version_info(adapter);
5801
5802         /* Software/Hardware configuration */
5803         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5804                  is_offload(adapter) ? "R" : "",
5805                  ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5806                   (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5807                  is_offload(adapter) ? "Offload" : "non-Offload");
5808 }
5809
5810 static void print_port_info(const struct net_device *dev)
5811 {
5812         char buf[80];
5813         char *bufp = buf;
5814         const struct port_info *pi = netdev_priv(dev);
5815         const struct adapter *adap = pi->adapter;
5816
5817         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5818                 bufp += sprintf(bufp, "100M/");
5819         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5820                 bufp += sprintf(bufp, "1G/");
5821         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5822                 bufp += sprintf(bufp, "10G/");
5823         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5824                 bufp += sprintf(bufp, "25G/");
5825         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5826                 bufp += sprintf(bufp, "40G/");
5827         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5828                 bufp += sprintf(bufp, "50G/");
5829         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5830                 bufp += sprintf(bufp, "100G/");
5831         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5832                 bufp += sprintf(bufp, "200G/");
5833         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5834                 bufp += sprintf(bufp, "400G/");
5835         if (bufp != buf)
5836                 --bufp;
5837         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5838
5839         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5840                     dev->name, adap->params.vpd.id, adap->name, buf);
5841 }
5842
5843 /*
5844  * Free the following resources:
5845  * - memory used for tables
5846  * - MSI/MSI-X
5847  * - net devices
5848  * - resources FW is holding for us
5849  */
5850 static void free_some_resources(struct adapter *adapter)
5851 {
5852         unsigned int i;
5853
5854         kvfree(adapter->smt);
5855         kvfree(adapter->l2t);
5856         kvfree(adapter->srq);
5857         t4_cleanup_sched(adapter);
5858         kvfree(adapter->tids.tid_tab);
5859         cxgb4_cleanup_tc_matchall(adapter);
5860         cxgb4_cleanup_tc_mqprio(adapter);
5861         cxgb4_cleanup_tc_flower(adapter);
5862         cxgb4_cleanup_tc_u32(adapter);
5863         kfree(adapter->sge.egr_map);
5864         kfree(adapter->sge.ingr_map);
5865         kfree(adapter->sge.starving_fl);
5866         kfree(adapter->sge.txq_maperr);
5867 #ifdef CONFIG_DEBUG_FS
5868         kfree(adapter->sge.blocked_fl);
5869 #endif
5870         disable_msi(adapter);
5871
5872         for_each_port(adapter, i)
5873                 if (adapter->port[i]) {
5874                         struct port_info *pi = adap2pinfo(adapter, i);
5875
5876                         if (pi->viid != 0)
5877                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5878                                            0, pi->viid);
5879                         kfree(adap2pinfo(adapter, i)->rss);
5880                         free_netdev(adapter->port[i]);
5881                 }
5882         if (adapter->flags & CXGB4_FW_OK)
5883                 t4_fw_bye(adapter, adapter->pf);
5884 }
5885
5886 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
5887                    NETIF_F_GSO_UDP_L4)
5888 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5889                    NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5890 #define SEGMENT_SIZE 128
5891
5892 static int t4_get_chip_type(struct adapter *adap, int ver)
5893 {
5894         u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5895
5896         switch (ver) {
5897         case CHELSIO_T4:
5898                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5899         case CHELSIO_T5:
5900                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5901         case CHELSIO_T6:
5902                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5903         default:
5904                 break;
5905         }
5906         return -EINVAL;
5907 }
5908
5909 #ifdef CONFIG_PCI_IOV
5910 static void cxgb4_mgmt_setup(struct net_device *dev)
5911 {
5912         dev->type = ARPHRD_NONE;
5913         dev->mtu = 0;
5914         dev->hard_header_len = 0;
5915         dev->addr_len = 0;
5916         dev->tx_queue_len = 0;
5917         dev->flags |= IFF_NOARP;
5918         dev->priv_flags |= IFF_NO_QUEUE;
5919
5920         /* Initialize the device structure. */
5921         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5922         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5923 }
5924
5925 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5926 {
5927         struct adapter *adap = pci_get_drvdata(pdev);
5928         int err = 0;
5929         int current_vfs = pci_num_vf(pdev);
5930         u32 pcie_fw;
5931
5932         pcie_fw = readl(adap->regs + PCIE_FW_A);
5933         /* Check if fw is initialized */
5934         if (!(pcie_fw & PCIE_FW_INIT_F)) {
5935                 dev_warn(&pdev->dev, "Device not initialized\n");
5936                 return -EOPNOTSUPP;
5937         }
5938
5939         /* If any of the VF's is already assigned to Guest OS, then
5940          * SRIOV for the same cannot be modified
5941          */
5942         if (current_vfs && pci_vfs_assigned(pdev)) {
5943                 dev_err(&pdev->dev,
5944                         "Cannot modify SR-IOV while VFs are assigned\n");
5945                 return current_vfs;
5946         }
5947         /* Note that the upper-level code ensures that we're never called with
5948          * a non-zero "num_vfs" when we already have VFs instantiated.  But
5949          * it never hurts to code defensively.
5950          */
5951         if (num_vfs != 0 && current_vfs != 0)
5952                 return -EBUSY;
5953
5954         /* Nothing to do for no change. */
5955         if (num_vfs == current_vfs)
5956                 return num_vfs;
5957
5958         /* Disable SRIOV when zero is passed. */
5959         if (!num_vfs) {
5960                 pci_disable_sriov(pdev);
5961                 /* free VF Management Interface */
5962                 unregister_netdev(adap->port[0]);
5963                 free_netdev(adap->port[0]);
5964                 adap->port[0] = NULL;
5965
5966                 /* free VF resources */
5967                 adap->num_vfs = 0;
5968                 kfree(adap->vfinfo);
5969                 adap->vfinfo = NULL;
5970                 return 0;
5971         }
5972
5973         if (!current_vfs) {
5974                 struct fw_pfvf_cmd port_cmd, port_rpl;
5975                 struct net_device *netdev;
5976                 unsigned int pmask, port;
5977                 struct pci_dev *pbridge;
5978                 struct port_info *pi;
5979                 char name[IFNAMSIZ];
5980                 u32 devcap2;
5981                 u16 flags;
5982
5983                 /* If we want to instantiate Virtual Functions, then our
5984                  * parent bridge's PCI-E needs to support Alternative Routing
5985                  * ID (ARI) because our VFs will show up at function offset 8
5986                  * and above.
5987                  */
5988                 pbridge = pdev->bus->self;
5989                 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5990                 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5991
5992                 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5993                     !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5994                         /* Our parent bridge does not support ARI so issue a
5995                          * warning and skip instantiating the VFs.  They
5996                          * won't be reachable.
5997                          */
5998                         dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5999                                  pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6000                                  PCI_FUNC(pbridge->devfn));
6001                         return -ENOTSUPP;
6002                 }
6003                 memset(&port_cmd, 0, sizeof(port_cmd));
6004                 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6005                                                  FW_CMD_REQUEST_F |
6006                                                  FW_CMD_READ_F |
6007                                                  FW_PFVF_CMD_PFN_V(adap->pf) |
6008                                                  FW_PFVF_CMD_VFN_V(0));
6009                 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6010                 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6011                                  &port_rpl);
6012                 if (err)
6013                         return err;
6014                 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6015                 port = ffs(pmask) - 1;
6016                 /* Allocate VF Management Interface. */
6017                 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6018                          adap->pf);
6019                 netdev = alloc_netdev(sizeof(struct port_info),
6020                                       name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6021                 if (!netdev)
6022                         return -ENOMEM;
6023
6024                 pi = netdev_priv(netdev);
6025                 pi->adapter = adap;
6026                 pi->lport = port;
6027                 pi->tx_chan = port;
6028                 SET_NETDEV_DEV(netdev, &pdev->dev);
6029
6030                 adap->port[0] = netdev;
6031                 pi->port_id = 0;
6032
6033                 err = register_netdev(adap->port[0]);
6034                 if (err) {
6035                         pr_info("Unable to register VF mgmt netdev %s\n", name);
6036                         free_netdev(adap->port[0]);
6037                         adap->port[0] = NULL;
6038                         return err;
6039                 }
6040                 /* Allocate and set up VF Information. */
6041                 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6042                                        sizeof(struct vf_info), GFP_KERNEL);
6043                 if (!adap->vfinfo) {
6044                         unregister_netdev(adap->port[0]);
6045                         free_netdev(adap->port[0]);
6046                         adap->port[0] = NULL;
6047                         return -ENOMEM;
6048                 }
6049                 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6050         }
6051         /* Instantiate the requested number of VFs. */
6052         err = pci_enable_sriov(pdev, num_vfs);
6053         if (err) {
6054                 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6055                 if (!current_vfs) {
6056                         unregister_netdev(adap->port[0]);
6057                         free_netdev(adap->port[0]);
6058                         adap->port[0] = NULL;
6059                         kfree(adap->vfinfo);
6060                         adap->vfinfo = NULL;
6061                 }
6062                 return err;
6063         }
6064
6065         adap->num_vfs = num_vfs;
6066         return num_vfs;
6067 }
6068 #endif /* CONFIG_PCI_IOV */
6069
6070 #if defined(CONFIG_CHELSIO_TLS_DEVICE)
6071
6072 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6073                               enum tls_offload_ctx_dir direction,
6074                               struct tls_crypto_info *crypto_info,
6075                               u32 tcp_sn)
6076 {
6077         struct adapter *adap = netdev2adap(netdev);
6078         int ret = 0;
6079
6080         mutex_lock(&uld_mutex);
6081         if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
6082                 dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
6083                 ret = -EOPNOTSUPP;
6084                 goto out_unlock;
6085         }
6086
6087         if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
6088                 dev_err(adap->pdev_dev,
6089                         "chcr driver has no registered tlsdev_ops()\n");
6090                 ret = -EOPNOTSUPP;
6091                 goto out_unlock;
6092         }
6093
6094         ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6095         if (ret)
6096                 goto out_unlock;
6097
6098         ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk,
6099                                                                   direction,
6100                                                                   crypto_info,
6101                                                                   tcp_sn);
6102         /* if there is a failure, clear the refcount */
6103         if (ret)
6104                 cxgb4_set_ktls_feature(adap,
6105                                        FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6106 out_unlock:
6107         mutex_unlock(&uld_mutex);
6108         return ret;
6109 }
6110
6111 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6112                                struct tls_context *tls_ctx,
6113                                enum tls_offload_ctx_dir direction)
6114 {
6115         struct adapter *adap = netdev2adap(netdev);
6116
6117         mutex_lock(&uld_mutex);
6118         if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
6119                 dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
6120                 goto out_unlock;
6121         }
6122
6123         if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
6124                 dev_err(adap->pdev_dev,
6125                         "chcr driver has no registered tlsdev_ops\n");
6126                 goto out_unlock;
6127         }
6128
6129         adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6130                                                             direction);
6131         cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6132
6133 out_unlock:
6134         mutex_unlock(&uld_mutex);
6135 }
6136
6137 static const struct tlsdev_ops cxgb4_ktls_ops = {
6138         .tls_dev_add = cxgb4_ktls_dev_add,
6139         .tls_dev_del = cxgb4_ktls_dev_del,
6140 };
6141 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6142
6143 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6144 {
6145         struct net_device *netdev;
6146         struct adapter *adapter;
6147         static int adap_idx = 1;
6148         int s_qpp, qpp, num_seg;
6149         struct port_info *pi;
6150         bool highdma = false;
6151         enum chip_type chip;
6152         void __iomem *regs;
6153         int func, chip_ver;
6154         u16 device_id;
6155         int i, err;
6156         u32 whoami;
6157
6158         err = pci_request_regions(pdev, KBUILD_MODNAME);
6159         if (err) {
6160                 /* Just info, some other driver may have claimed the device. */
6161                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6162                 return err;
6163         }
6164
6165         err = pci_enable_device(pdev);
6166         if (err) {
6167                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6168                 goto out_release_regions;
6169         }
6170
6171         regs = pci_ioremap_bar(pdev, 0);
6172         if (!regs) {
6173                 dev_err(&pdev->dev, "cannot map device registers\n");
6174                 err = -ENOMEM;
6175                 goto out_disable_device;
6176         }
6177
6178         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6179         if (!adapter) {
6180                 err = -ENOMEM;
6181                 goto out_unmap_bar0;
6182         }
6183
6184         adapter->regs = regs;
6185         err = t4_wait_dev_ready(regs);
6186         if (err < 0)
6187                 goto out_free_adapter;
6188
6189         /* We control everything through one PF */
6190         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6191         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6192         chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6193         if ((int)chip < 0) {
6194                 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6195                 err = chip;
6196                 goto out_free_adapter;
6197         }
6198         chip_ver = CHELSIO_CHIP_VERSION(chip);
6199         func = chip_ver <= CHELSIO_T5 ?
6200                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6201
6202         adapter->pdev = pdev;
6203         adapter->pdev_dev = &pdev->dev;
6204         adapter->name = pci_name(pdev);
6205         adapter->mbox = func;
6206         adapter->pf = func;
6207         adapter->params.chip = chip;
6208         adapter->adap_idx = adap_idx;
6209         adapter->msg_enable = DFLT_MSG_ENABLE;
6210         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6211                                     (sizeof(struct mbox_cmd) *
6212                                      T4_OS_LOG_MBOX_CMDS),
6213                                     GFP_KERNEL);
6214         if (!adapter->mbox_log) {
6215                 err = -ENOMEM;
6216                 goto out_free_adapter;
6217         }
6218         spin_lock_init(&adapter->mbox_lock);
6219         INIT_LIST_HEAD(&adapter->mlist.list);
6220         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6221         pci_set_drvdata(pdev, adapter);
6222
6223         if (func != ent->driver_data) {
6224                 pci_disable_device(pdev);
6225                 pci_save_state(pdev);        /* to restore SR-IOV later */
6226                 return 0;
6227         }
6228
6229         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6230                 highdma = true;
6231                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6232                 if (err) {
6233                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6234                                 "coherent allocations\n");
6235                         goto out_free_adapter;
6236                 }
6237         } else {
6238                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6239                 if (err) {
6240                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6241                         goto out_free_adapter;
6242                 }
6243         }
6244
6245         pci_enable_pcie_error_reporting(pdev);
6246         pci_set_master(pdev);
6247         pci_save_state(pdev);
6248         adap_idx++;
6249         adapter->workq = create_singlethread_workqueue("cxgb4");
6250         if (!adapter->workq) {
6251                 err = -ENOMEM;
6252                 goto out_free_adapter;
6253         }
6254
6255         /* PCI device has been enabled */
6256         adapter->flags |= CXGB4_DEV_ENABLED;
6257         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6258
6259         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6260          * Ingress Packet Data to Free List Buffers in order to allow for
6261          * chipset performance optimizations between the Root Complex and
6262          * Memory Controllers.  (Messages to the associated Ingress Queue
6263          * notifying new Packet Placement in the Free Lists Buffers will be
6264          * send without the Relaxed Ordering Attribute thus guaranteeing that
6265          * all preceding PCIe Transaction Layer Packets will be processed
6266          * first.)  But some Root Complexes have various issues with Upstream
6267          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6268          * The PCIe devices which under the Root Complexes will be cleared the
6269          * Relaxed Ordering bit in the configuration space, So we check our
6270          * PCIe configuration space to see if it's flagged with advice against
6271          * using Relaxed Ordering.
6272          */
6273         if (!pcie_relaxed_ordering_enabled(pdev))
6274                 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6275
6276         spin_lock_init(&adapter->stats_lock);
6277         spin_lock_init(&adapter->tid_release_lock);
6278         spin_lock_init(&adapter->win0_lock);
6279
6280         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6281         INIT_WORK(&adapter->db_full_task, process_db_full);
6282         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6283         INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6284
6285         err = t4_prep_adapter(adapter);
6286         if (err)
6287                 goto out_free_adapter;
6288
6289         if (is_kdump_kernel()) {
6290                 /* Collect hardware state and append to /proc/vmcore */
6291                 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6292                 if (err) {
6293                         dev_warn(adapter->pdev_dev,
6294                                  "Fail collecting vmcore device dump, err: %d. Continuing\n",
6295                                  err);
6296                         err = 0;
6297                 }
6298         }
6299
6300         if (!is_t4(adapter->params.chip)) {
6301                 s_qpp = (QUEUESPERPAGEPF0_S +
6302                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6303                         adapter->pf);
6304                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6305                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6306                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6307
6308                 /* Each segment size is 128B. Write coalescing is enabled only
6309                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6310                  * queue is less no of segments that can be accommodated in
6311                  * a page size.
6312                  */
6313                 if (qpp > num_seg) {
6314                         dev_err(&pdev->dev,
6315                                 "Incorrect number of egress queues per page\n");
6316                         err = -EINVAL;
6317                         goto out_free_adapter;
6318                 }
6319                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6320                 pci_resource_len(pdev, 2));
6321                 if (!adapter->bar2) {
6322                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6323                         err = -ENOMEM;
6324                         goto out_free_adapter;
6325                 }
6326         }
6327
6328         setup_memwin(adapter);
6329         err = adap_init0(adapter, 0);
6330 #ifdef CONFIG_DEBUG_FS
6331         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6332 #endif
6333         setup_memwin_rdma(adapter);
6334         if (err)
6335                 goto out_unmap_bar;
6336
6337         /* configure SGE_STAT_CFG_A to read WC stats */
6338         if (!is_t4(adapter->params.chip))
6339                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6340                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6341                               T6_STATMODE_V(0)));
6342
6343         /* Initialize hash mac addr list */
6344         INIT_LIST_HEAD(&adapter->mac_hlist);
6345
6346         for_each_port(adapter, i) {
6347                 /* For supporting MQPRIO Offload, need some extra
6348                  * queues for each ETHOFLD TIDs. Keep it equal to
6349                  * MAX_ATIDs for now. Once we connect to firmware
6350                  * later and query the EOTID params, we'll come to
6351                  * know the actual # of EOTIDs supported.
6352                  */
6353                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6354                                            MAX_ETH_QSETS + MAX_ATIDS);
6355                 if (!netdev) {
6356                         err = -ENOMEM;
6357                         goto out_free_dev;
6358                 }
6359
6360                 SET_NETDEV_DEV(netdev, &pdev->dev);
6361
6362                 adapter->port[i] = netdev;
6363                 pi = netdev_priv(netdev);
6364                 pi->adapter = adapter;
6365                 pi->xact_addr_filt = -1;
6366                 pi->port_id = i;
6367                 netdev->irq = pdev->irq;
6368
6369                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6370                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6371                         NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6372                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6373                         NETIF_F_HW_TC;
6374
6375                 if (chip_ver > CHELSIO_T5) {
6376                         netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6377                                                    NETIF_F_IPV6_CSUM |
6378                                                    NETIF_F_RXCSUM |
6379                                                    NETIF_F_GSO_UDP_TUNNEL |
6380                                                    NETIF_F_GSO_UDP_TUNNEL_CSUM |
6381                                                    NETIF_F_TSO | NETIF_F_TSO6;
6382
6383                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6384                                                NETIF_F_GSO_UDP_TUNNEL_CSUM |
6385                                                NETIF_F_HW_TLS_RECORD;
6386                 }
6387
6388                 if (highdma)
6389                         netdev->hw_features |= NETIF_F_HIGHDMA;
6390                 netdev->features |= netdev->hw_features;
6391                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6392 #if defined(CONFIG_CHELSIO_TLS_DEVICE)
6393                 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6394                         netdev->hw_features |= NETIF_F_HW_TLS_TX;
6395                         netdev->tlsdev_ops = &cxgb4_ktls_ops;
6396                         /* initialize the refcount */
6397                         refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6398                 }
6399 #endif
6400                 netdev->priv_flags |= IFF_UNICAST_FLT;
6401
6402                 /* MTU range: 81 - 9600 */
6403                 netdev->min_mtu = 81;              /* accommodate SACK */
6404                 netdev->max_mtu = MAX_MTU;
6405
6406                 netdev->netdev_ops = &cxgb4_netdev_ops;
6407 #ifdef CONFIG_CHELSIO_T4_DCB
6408                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6409                 cxgb4_dcb_state_init(netdev);
6410                 cxgb4_dcb_version_init(netdev);
6411 #endif
6412                 cxgb4_set_ethtool_ops(netdev);
6413         }
6414
6415         cxgb4_init_ethtool_dump(adapter);
6416
6417         pci_set_drvdata(pdev, adapter);
6418
6419         if (adapter->flags & CXGB4_FW_OK) {
6420                 err = t4_port_init(adapter, func, func, 0);
6421                 if (err)
6422                         goto out_free_dev;
6423         } else if (adapter->params.nports == 1) {
6424                 /* If we don't have a connection to the firmware -- possibly
6425                  * because of an error -- grab the raw VPD parameters so we
6426                  * can set the proper MAC Address on the debug network
6427                  * interface that we've created.
6428                  */
6429                 u8 hw_addr[ETH_ALEN];
6430                 u8 *na = adapter->params.vpd.na;
6431
6432                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6433                 if (!err) {
6434                         for (i = 0; i < ETH_ALEN; i++)
6435                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6436                                               hex2val(na[2 * i + 1]));
6437                         t4_set_hw_addr(adapter, 0, hw_addr);
6438                 }
6439         }
6440
6441         if (!(adapter->flags & CXGB4_FW_OK))
6442                 goto fw_attach_fail;
6443
6444         /* Configure queues and allocate tables now, they can be needed as
6445          * soon as the first register_netdev completes.
6446          */
6447         err = cfg_queues(adapter);
6448         if (err)
6449                 goto out_free_dev;
6450
6451         adapter->smt = t4_init_smt();
6452         if (!adapter->smt) {
6453                 /* We tolerate a lack of SMT, giving up some functionality */
6454                 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6455         }
6456
6457         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6458         if (!adapter->l2t) {
6459                 /* We tolerate a lack of L2T, giving up some functionality */
6460                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6461                 adapter->params.offload = 0;
6462         }
6463
6464 #if IS_ENABLED(CONFIG_IPV6)
6465         if (chip_ver <= CHELSIO_T5 &&
6466             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6467                 /* CLIP functionality is not present in hardware,
6468                  * hence disable all offload features
6469                  */
6470                 dev_warn(&pdev->dev,
6471                          "CLIP not enabled in hardware, continuing\n");
6472                 adapter->params.offload = 0;
6473         } else {
6474                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6475                                                   adapter->clipt_end);
6476                 if (!adapter->clipt) {
6477                         /* We tolerate a lack of clip_table, giving up
6478                          * some functionality
6479                          */
6480                         dev_warn(&pdev->dev,
6481                                  "could not allocate Clip table, continuing\n");
6482                         adapter->params.offload = 0;
6483                 }
6484         }
6485 #endif
6486
6487         for_each_port(adapter, i) {
6488                 pi = adap2pinfo(adapter, i);
6489                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6490                 if (!pi->sched_tbl)
6491                         dev_warn(&pdev->dev,
6492                                  "could not activate scheduling on port %d\n",
6493                                  i);
6494         }
6495
6496         if (tid_init(&adapter->tids) < 0) {
6497                 dev_warn(&pdev->dev, "could not allocate TID table, "
6498                          "continuing\n");
6499                 adapter->params.offload = 0;
6500         } else {
6501                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6502                 if (!adapter->tc_u32)
6503                         dev_warn(&pdev->dev,
6504                                  "could not offload tc u32, continuing\n");
6505
6506                 if (cxgb4_init_tc_flower(adapter))
6507                         dev_warn(&pdev->dev,
6508                                  "could not offload tc flower, continuing\n");
6509
6510                 if (cxgb4_init_tc_mqprio(adapter))
6511                         dev_warn(&pdev->dev,
6512                                  "could not offload tc mqprio, continuing\n");
6513
6514                 if (cxgb4_init_tc_matchall(adapter))
6515                         dev_warn(&pdev->dev,
6516                                  "could not offload tc matchall, continuing\n");
6517         }
6518
6519         if (is_offload(adapter) || is_hashfilter(adapter)) {
6520                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6521                         u32 hash_base, hash_reg;
6522
6523                         if (chip_ver <= CHELSIO_T5) {
6524                                 hash_reg = LE_DB_TID_HASHBASE_A;
6525                                 hash_base = t4_read_reg(adapter, hash_reg);
6526                                 adapter->tids.hash_base = hash_base / 4;
6527                         } else {
6528                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6529                                 hash_base = t4_read_reg(adapter, hash_reg);
6530                                 adapter->tids.hash_base = hash_base;
6531                         }
6532                 }
6533         }
6534
6535         /* See what interrupts we'll be using */
6536         if (msi > 1 && enable_msix(adapter) == 0)
6537                 adapter->flags |= CXGB4_USING_MSIX;
6538         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6539                 adapter->flags |= CXGB4_USING_MSI;
6540                 if (msi > 1)
6541                         free_msix_info(adapter);
6542         }
6543
6544         /* check for PCI Express bandwidth capabiltites */
6545         pcie_print_link_status(pdev);
6546
6547         cxgb4_init_mps_ref_entries(adapter);
6548
6549         err = init_rss(adapter);
6550         if (err)
6551                 goto out_free_dev;
6552
6553         err = setup_non_data_intr(adapter);
6554         if (err) {
6555                 dev_err(adapter->pdev_dev,
6556                         "Non Data interrupt allocation failed, err: %d\n", err);
6557                 goto out_free_dev;
6558         }
6559
6560         err = setup_fw_sge_queues(adapter);
6561         if (err) {
6562                 dev_err(adapter->pdev_dev,
6563                         "FW sge queue allocation failed, err %d", err);
6564                 goto out_free_dev;
6565         }
6566
6567 fw_attach_fail:
6568         /*
6569          * The card is now ready to go.  If any errors occur during device
6570          * registration we do not fail the whole card but rather proceed only
6571          * with the ports we manage to register successfully.  However we must
6572          * register at least one net device.
6573          */
6574         for_each_port(adapter, i) {
6575                 pi = adap2pinfo(adapter, i);
6576                 adapter->port[i]->dev_port = pi->lport;
6577                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6578                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6579
6580                 netif_carrier_off(adapter->port[i]);
6581
6582                 err = register_netdev(adapter->port[i]);
6583                 if (err)
6584                         break;
6585                 adapter->chan_map[pi->tx_chan] = i;
6586                 print_port_info(adapter->port[i]);
6587         }
6588         if (i == 0) {
6589                 dev_err(&pdev->dev, "could not register any net devices\n");
6590                 goto out_free_dev;
6591         }
6592         if (err) {
6593                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6594                 err = 0;
6595         }
6596
6597         if (cxgb4_debugfs_root) {
6598                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6599                                                            cxgb4_debugfs_root);
6600                 setup_debugfs(adapter);
6601         }
6602
6603         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6604         pdev->needs_freset = 1;
6605
6606         if (is_uld(adapter))
6607                 cxgb4_uld_enable(adapter);
6608
6609         if (!is_t4(adapter->params.chip))
6610                 cxgb4_ptp_init(adapter);
6611
6612         if (IS_REACHABLE(CONFIG_THERMAL) &&
6613             !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6614                 cxgb4_thermal_init(adapter);
6615
6616         print_adapter_info(adapter);
6617         return 0;
6618
6619  out_free_dev:
6620         t4_free_sge_resources(adapter);
6621         free_some_resources(adapter);
6622         if (adapter->flags & CXGB4_USING_MSIX)
6623                 free_msix_info(adapter);
6624         if (adapter->num_uld || adapter->num_ofld_uld)
6625                 t4_uld_mem_free(adapter);
6626  out_unmap_bar:
6627         if (!is_t4(adapter->params.chip))
6628                 iounmap(adapter->bar2);
6629  out_free_adapter:
6630         if (adapter->workq)
6631                 destroy_workqueue(adapter->workq);
6632
6633         kfree(adapter->mbox_log);
6634         kfree(adapter);
6635  out_unmap_bar0:
6636         iounmap(regs);
6637  out_disable_device:
6638         pci_disable_pcie_error_reporting(pdev);
6639         pci_disable_device(pdev);
6640  out_release_regions:
6641         pci_release_regions(pdev);
6642         return err;
6643 }
6644
6645 static void remove_one(struct pci_dev *pdev)
6646 {
6647         struct adapter *adapter = pci_get_drvdata(pdev);
6648         struct hash_mac_addr *entry, *tmp;
6649
6650         if (!adapter) {
6651                 pci_release_regions(pdev);
6652                 return;
6653         }
6654
6655         /* If we allocated filters, free up state associated with any
6656          * valid filters ...
6657          */
6658         clear_all_filters(adapter);
6659
6660         adapter->flags |= CXGB4_SHUTTING_DOWN;
6661
6662         if (adapter->pf == 4) {
6663                 int i;
6664
6665                 /* Tear down per-adapter Work Queue first since it can contain
6666                  * references to our adapter data structure.
6667                  */
6668                 destroy_workqueue(adapter->workq);
6669
6670                 if (is_uld(adapter)) {
6671                         detach_ulds(adapter);
6672                         t4_uld_clean_up(adapter);
6673                 }
6674
6675                 adap_free_hma_mem(adapter);
6676
6677                 disable_interrupts(adapter);
6678
6679                 cxgb4_free_mps_ref_entries(adapter);
6680
6681                 for_each_port(adapter, i)
6682                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6683                                 unregister_netdev(adapter->port[i]);
6684
6685                 debugfs_remove_recursive(adapter->debugfs_root);
6686
6687                 if (!is_t4(adapter->params.chip))
6688                         cxgb4_ptp_stop(adapter);
6689                 if (IS_REACHABLE(CONFIG_THERMAL))
6690                         cxgb4_thermal_remove(adapter);
6691
6692                 if (adapter->flags & CXGB4_FULL_INIT_DONE)
6693                         cxgb_down(adapter);
6694
6695                 if (adapter->flags & CXGB4_USING_MSIX)
6696                         free_msix_info(adapter);
6697                 if (adapter->num_uld || adapter->num_ofld_uld)
6698                         t4_uld_mem_free(adapter);
6699                 free_some_resources(adapter);
6700                 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6701                                          list) {
6702                         list_del(&entry->list);
6703                         kfree(entry);
6704                 }
6705
6706 #if IS_ENABLED(CONFIG_IPV6)
6707                 t4_cleanup_clip_tbl(adapter);
6708 #endif
6709                 if (!is_t4(adapter->params.chip))
6710                         iounmap(adapter->bar2);
6711         }
6712 #ifdef CONFIG_PCI_IOV
6713         else {
6714                 cxgb4_iov_configure(adapter->pdev, 0);
6715         }
6716 #endif
6717         iounmap(adapter->regs);
6718         pci_disable_pcie_error_reporting(pdev);
6719         if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6720                 pci_disable_device(pdev);
6721                 adapter->flags &= ~CXGB4_DEV_ENABLED;
6722         }
6723         pci_release_regions(pdev);
6724         kfree(adapter->mbox_log);
6725         synchronize_rcu();
6726         kfree(adapter);
6727 }
6728
6729 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6730  * delivery.  This is essentially a stripped down version of the PCI remove()
6731  * function where we do the minimal amount of work necessary to shutdown any
6732  * further activity.
6733  */
6734 static void shutdown_one(struct pci_dev *pdev)
6735 {
6736         struct adapter *adapter = pci_get_drvdata(pdev);
6737
6738         /* As with remove_one() above (see extended comment), we only want do
6739          * do cleanup on PCI Devices which went all the way through init_one()
6740          * ...
6741          */
6742         if (!adapter) {
6743                 pci_release_regions(pdev);
6744                 return;
6745         }
6746
6747         adapter->flags |= CXGB4_SHUTTING_DOWN;
6748
6749         if (adapter->pf == 4) {
6750                 int i;
6751
6752                 for_each_port(adapter, i)
6753                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6754                                 cxgb_close(adapter->port[i]);
6755
6756                 rtnl_lock();
6757                 cxgb4_mqprio_stop_offload(adapter);
6758                 rtnl_unlock();
6759
6760                 if (is_uld(adapter)) {
6761                         detach_ulds(adapter);
6762                         t4_uld_clean_up(adapter);
6763                 }
6764
6765                 disable_interrupts(adapter);
6766                 disable_msi(adapter);
6767
6768                 t4_sge_stop(adapter);
6769                 if (adapter->flags & CXGB4_FW_OK)
6770                         t4_fw_bye(adapter, adapter->mbox);
6771         }
6772 }
6773
6774 static struct pci_driver cxgb4_driver = {
6775         .name     = KBUILD_MODNAME,
6776         .id_table = cxgb4_pci_tbl,
6777         .probe    = init_one,
6778         .remove   = remove_one,
6779         .shutdown = shutdown_one,
6780 #ifdef CONFIG_PCI_IOV
6781         .sriov_configure = cxgb4_iov_configure,
6782 #endif
6783         .err_handler = &cxgb4_eeh,
6784 };
6785
6786 static int __init cxgb4_init_module(void)
6787 {
6788         int ret;
6789
6790         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6791
6792         ret = pci_register_driver(&cxgb4_driver);
6793         if (ret < 0)
6794                 goto err_pci;
6795
6796 #if IS_ENABLED(CONFIG_IPV6)
6797         if (!inet6addr_registered) {
6798                 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6799                 if (ret)
6800                         pci_unregister_driver(&cxgb4_driver);
6801                 else
6802                         inet6addr_registered = true;
6803         }
6804 #endif
6805
6806         if (ret == 0)
6807                 return ret;
6808
6809 err_pci:
6810         debugfs_remove(cxgb4_debugfs_root);
6811
6812         return ret;
6813 }
6814
6815 static void __exit cxgb4_cleanup_module(void)
6816 {
6817 #if IS_ENABLED(CONFIG_IPV6)
6818         if (inet6addr_registered) {
6819                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6820                 inet6addr_registered = false;
6821         }
6822 #endif
6823         pci_unregister_driver(&cxgb4_driver);
6824         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6825 }
6826
6827 module_init(cxgb4_init_module);
6828 module_exit(cxgb4_cleanup_module);