Merge tag 'pci-v5.18-changes-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/module.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of_address.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 #include <linux/reset.h>
23
24 /* Bad block marker length */
25 #define FMC2_BBM_LEN                    2
26
27 /* ECC step size */
28 #define FMC2_ECC_STEP_SIZE              512
29
30 /* BCHDSRx registers length */
31 #define FMC2_BCHDSRS_LEN                20
32
33 /* HECCR length */
34 #define FMC2_HECCR_LEN                  4
35
36 /* Max requests done for a 8k nand page size */
37 #define FMC2_MAX_SG                     16
38
39 /* Max chip enable */
40 #define FMC2_MAX_CE                     2
41
42 /* Max ECC buffer length */
43 #define FMC2_MAX_ECC_BUF_LEN            (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
44
45 #define FMC2_TIMEOUT_MS                 5000
46
47 /* Timings */
48 #define FMC2_THIZ                       1
49 #define FMC2_TIO                        8000
50 #define FMC2_TSYNC                      3000
51 #define FMC2_PCR_TIMING_MASK            0xf
52 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
53
54 /* FMC2 Controller Registers */
55 #define FMC2_BCR1                       0x0
56 #define FMC2_PCR                        0x80
57 #define FMC2_SR                         0x84
58 #define FMC2_PMEM                       0x88
59 #define FMC2_PATT                       0x8c
60 #define FMC2_HECCR                      0x94
61 #define FMC2_ISR                        0x184
62 #define FMC2_ICR                        0x188
63 #define FMC2_CSQCR                      0x200
64 #define FMC2_CSQCFGR1                   0x204
65 #define FMC2_CSQCFGR2                   0x208
66 #define FMC2_CSQCFGR3                   0x20c
67 #define FMC2_CSQAR1                     0x210
68 #define FMC2_CSQAR2                     0x214
69 #define FMC2_CSQIER                     0x220
70 #define FMC2_CSQISR                     0x224
71 #define FMC2_CSQICR                     0x228
72 #define FMC2_CSQEMSR                    0x230
73 #define FMC2_BCHIER                     0x250
74 #define FMC2_BCHISR                     0x254
75 #define FMC2_BCHICR                     0x258
76 #define FMC2_BCHPBR1                    0x260
77 #define FMC2_BCHPBR2                    0x264
78 #define FMC2_BCHPBR3                    0x268
79 #define FMC2_BCHPBR4                    0x26c
80 #define FMC2_BCHDSR0                    0x27c
81 #define FMC2_BCHDSR1                    0x280
82 #define FMC2_BCHDSR2                    0x284
83 #define FMC2_BCHDSR3                    0x288
84 #define FMC2_BCHDSR4                    0x28c
85
86 /* Register: FMC2_BCR1 */
87 #define FMC2_BCR1_FMC2EN                BIT(31)
88
89 /* Register: FMC2_PCR */
90 #define FMC2_PCR_PWAITEN                BIT(1)
91 #define FMC2_PCR_PBKEN                  BIT(2)
92 #define FMC2_PCR_PWID                   GENMASK(5, 4)
93 #define FMC2_PCR_PWID_BUSWIDTH_8        0
94 #define FMC2_PCR_PWID_BUSWIDTH_16       1
95 #define FMC2_PCR_ECCEN                  BIT(6)
96 #define FMC2_PCR_ECCALG                 BIT(8)
97 #define FMC2_PCR_TCLR                   GENMASK(12, 9)
98 #define FMC2_PCR_TCLR_DEFAULT           0xf
99 #define FMC2_PCR_TAR                    GENMASK(16, 13)
100 #define FMC2_PCR_TAR_DEFAULT            0xf
101 #define FMC2_PCR_ECCSS                  GENMASK(19, 17)
102 #define FMC2_PCR_ECCSS_512              1
103 #define FMC2_PCR_ECCSS_2048             3
104 #define FMC2_PCR_BCHECC                 BIT(24)
105 #define FMC2_PCR_WEN                    BIT(25)
106
107 /* Register: FMC2_SR */
108 #define FMC2_SR_NWRF                    BIT(6)
109
110 /* Register: FMC2_PMEM */
111 #define FMC2_PMEM_MEMSET                GENMASK(7, 0)
112 #define FMC2_PMEM_MEMWAIT               GENMASK(15, 8)
113 #define FMC2_PMEM_MEMHOLD               GENMASK(23, 16)
114 #define FMC2_PMEM_MEMHIZ                GENMASK(31, 24)
115 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
116
117 /* Register: FMC2_PATT */
118 #define FMC2_PATT_ATTSET                GENMASK(7, 0)
119 #define FMC2_PATT_ATTWAIT               GENMASK(15, 8)
120 #define FMC2_PATT_ATTHOLD               GENMASK(23, 16)
121 #define FMC2_PATT_ATTHIZ                GENMASK(31, 24)
122 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
123
124 /* Register: FMC2_ISR */
125 #define FMC2_ISR_IHLF                   BIT(1)
126
127 /* Register: FMC2_ICR */
128 #define FMC2_ICR_CIHLF                  BIT(1)
129
130 /* Register: FMC2_CSQCR */
131 #define FMC2_CSQCR_CSQSTART             BIT(0)
132
133 /* Register: FMC2_CSQCFGR1 */
134 #define FMC2_CSQCFGR1_CMD2EN            BIT(1)
135 #define FMC2_CSQCFGR1_DMADEN            BIT(2)
136 #define FMC2_CSQCFGR1_ACYNBR            GENMASK(6, 4)
137 #define FMC2_CSQCFGR1_CMD1              GENMASK(15, 8)
138 #define FMC2_CSQCFGR1_CMD2              GENMASK(23, 16)
139 #define FMC2_CSQCFGR1_CMD1T             BIT(24)
140 #define FMC2_CSQCFGR1_CMD2T             BIT(25)
141
142 /* Register: FMC2_CSQCFGR2 */
143 #define FMC2_CSQCFGR2_SQSDTEN           BIT(0)
144 #define FMC2_CSQCFGR2_RCMD2EN           BIT(1)
145 #define FMC2_CSQCFGR2_DMASEN            BIT(2)
146 #define FMC2_CSQCFGR2_RCMD1             GENMASK(15, 8)
147 #define FMC2_CSQCFGR2_RCMD2             GENMASK(23, 16)
148 #define FMC2_CSQCFGR2_RCMD1T            BIT(24)
149 #define FMC2_CSQCFGR2_RCMD2T            BIT(25)
150
151 /* Register: FMC2_CSQCFGR3 */
152 #define FMC2_CSQCFGR3_SNBR              GENMASK(13, 8)
153 #define FMC2_CSQCFGR3_AC1T              BIT(16)
154 #define FMC2_CSQCFGR3_AC2T              BIT(17)
155 #define FMC2_CSQCFGR3_AC3T              BIT(18)
156 #define FMC2_CSQCFGR3_AC4T              BIT(19)
157 #define FMC2_CSQCFGR3_AC5T              BIT(20)
158 #define FMC2_CSQCFGR3_SDT               BIT(21)
159 #define FMC2_CSQCFGR3_RAC1T             BIT(22)
160 #define FMC2_CSQCFGR3_RAC2T             BIT(23)
161
162 /* Register: FMC2_CSQCAR1 */
163 #define FMC2_CSQCAR1_ADDC1              GENMASK(7, 0)
164 #define FMC2_CSQCAR1_ADDC2              GENMASK(15, 8)
165 #define FMC2_CSQCAR1_ADDC3              GENMASK(23, 16)
166 #define FMC2_CSQCAR1_ADDC4              GENMASK(31, 24)
167
168 /* Register: FMC2_CSQCAR2 */
169 #define FMC2_CSQCAR2_ADDC5              GENMASK(7, 0)
170 #define FMC2_CSQCAR2_NANDCEN            GENMASK(11, 10)
171 #define FMC2_CSQCAR2_SAO                GENMASK(31, 16)
172
173 /* Register: FMC2_CSQIER */
174 #define FMC2_CSQIER_TCIE                BIT(0)
175
176 /* Register: FMC2_CSQICR */
177 #define FMC2_CSQICR_CLEAR_IRQ           GENMASK(4, 0)
178
179 /* Register: FMC2_CSQEMSR */
180 #define FMC2_CSQEMSR_SEM                GENMASK(15, 0)
181
182 /* Register: FMC2_BCHIER */
183 #define FMC2_BCHIER_DERIE               BIT(1)
184 #define FMC2_BCHIER_EPBRIE              BIT(4)
185
186 /* Register: FMC2_BCHICR */
187 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
188
189 /* Register: FMC2_BCHDSR0 */
190 #define FMC2_BCHDSR0_DUE                BIT(0)
191 #define FMC2_BCHDSR0_DEF                BIT(1)
192 #define FMC2_BCHDSR0_DEN                GENMASK(7, 4)
193
194 /* Register: FMC2_BCHDSR1 */
195 #define FMC2_BCHDSR1_EBP1               GENMASK(12, 0)
196 #define FMC2_BCHDSR1_EBP2               GENMASK(28, 16)
197
198 /* Register: FMC2_BCHDSR2 */
199 #define FMC2_BCHDSR2_EBP3               GENMASK(12, 0)
200 #define FMC2_BCHDSR2_EBP4               GENMASK(28, 16)
201
202 /* Register: FMC2_BCHDSR3 */
203 #define FMC2_BCHDSR3_EBP5               GENMASK(12, 0)
204 #define FMC2_BCHDSR3_EBP6               GENMASK(28, 16)
205
206 /* Register: FMC2_BCHDSR4 */
207 #define FMC2_BCHDSR4_EBP7               GENMASK(12, 0)
208 #define FMC2_BCHDSR4_EBP8               GENMASK(28, 16)
209
210 enum stm32_fmc2_ecc {
211         FMC2_ECC_HAM = 1,
212         FMC2_ECC_BCH4 = 4,
213         FMC2_ECC_BCH8 = 8
214 };
215
216 enum stm32_fmc2_irq_state {
217         FMC2_IRQ_UNKNOWN = 0,
218         FMC2_IRQ_BCH,
219         FMC2_IRQ_SEQ
220 };
221
222 struct stm32_fmc2_timings {
223         u8 tclr;
224         u8 tar;
225         u8 thiz;
226         u8 twait;
227         u8 thold_mem;
228         u8 tset_mem;
229         u8 thold_att;
230         u8 tset_att;
231 };
232
233 struct stm32_fmc2_nand {
234         struct nand_chip chip;
235         struct gpio_desc *wp_gpio;
236         struct stm32_fmc2_timings timings;
237         int ncs;
238         int cs_used[FMC2_MAX_CE];
239 };
240
241 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
242 {
243         return container_of(chip, struct stm32_fmc2_nand, chip);
244 }
245
246 struct stm32_fmc2_nfc {
247         struct nand_controller base;
248         struct stm32_fmc2_nand nand;
249         struct device *dev;
250         struct device *cdev;
251         struct regmap *regmap;
252         void __iomem *data_base[FMC2_MAX_CE];
253         void __iomem *cmd_base[FMC2_MAX_CE];
254         void __iomem *addr_base[FMC2_MAX_CE];
255         phys_addr_t io_phys_addr;
256         phys_addr_t data_phys_addr[FMC2_MAX_CE];
257         struct clk *clk;
258         u8 irq_state;
259
260         struct dma_chan *dma_tx_ch;
261         struct dma_chan *dma_rx_ch;
262         struct dma_chan *dma_ecc_ch;
263         struct sg_table dma_data_sg;
264         struct sg_table dma_ecc_sg;
265         u8 *ecc_buf;
266         int dma_ecc_len;
267
268         struct completion complete;
269         struct completion dma_data_complete;
270         struct completion dma_ecc_complete;
271
272         u8 cs_assigned;
273         int cs_sel;
274 };
275
276 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
277 {
278         return container_of(base, struct stm32_fmc2_nfc, base);
279 }
280
281 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
282 {
283         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
284         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
285         struct stm32_fmc2_timings *timings = &nand->timings;
286         u32 pmem, patt;
287
288         /* Set tclr/tar timings */
289         regmap_update_bits(nfc->regmap, FMC2_PCR,
290                            FMC2_PCR_TCLR | FMC2_PCR_TAR,
291                            FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
292                            FIELD_PREP(FMC2_PCR_TAR, timings->tar));
293
294         /* Set tset/twait/thold/thiz timings in common bank */
295         pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
296         pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
297         pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
298         pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
299         regmap_write(nfc->regmap, FMC2_PMEM, pmem);
300
301         /* Set tset/twait/thold/thiz timings in attribut bank */
302         patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
303         patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
304         patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
305         patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
306         regmap_write(nfc->regmap, FMC2_PATT, patt);
307 }
308
309 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
310 {
311         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
312         u32 pcr = 0, pcr_mask;
313
314         /* Configure ECC algorithm (default configuration is Hamming) */
315         pcr_mask = FMC2_PCR_ECCALG;
316         pcr_mask |= FMC2_PCR_BCHECC;
317         if (chip->ecc.strength == FMC2_ECC_BCH8) {
318                 pcr |= FMC2_PCR_ECCALG;
319                 pcr |= FMC2_PCR_BCHECC;
320         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
321                 pcr |= FMC2_PCR_ECCALG;
322         }
323
324         /* Set buswidth */
325         pcr_mask |= FMC2_PCR_PWID;
326         if (chip->options & NAND_BUSWIDTH_16)
327                 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
328
329         /* Set ECC sector size */
330         pcr_mask |= FMC2_PCR_ECCSS;
331         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
332
333         regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
334 }
335
336 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
337 {
338         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
339         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
340         struct dma_slave_config dma_cfg;
341         int ret;
342
343         if (nand->cs_used[chipnr] == nfc->cs_sel)
344                 return 0;
345
346         nfc->cs_sel = nand->cs_used[chipnr];
347         stm32_fmc2_nfc_setup(chip);
348         stm32_fmc2_nfc_timings_init(chip);
349
350         if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
351                 memset(&dma_cfg, 0, sizeof(dma_cfg));
352                 dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
353                 dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
354                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
355                 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
356                 dma_cfg.src_maxburst = 32;
357                 dma_cfg.dst_maxburst = 32;
358
359                 ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
360                 if (ret) {
361                         dev_err(nfc->dev, "tx DMA engine slave config failed\n");
362                         return ret;
363                 }
364
365                 ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
366                 if (ret) {
367                         dev_err(nfc->dev, "rx DMA engine slave config failed\n");
368                         return ret;
369                 }
370         }
371
372         if (nfc->dma_ecc_ch) {
373                 /*
374                  * Hamming: we read HECCR register
375                  * BCH4/BCH8: we read BCHDSRSx registers
376                  */
377                 memset(&dma_cfg, 0, sizeof(dma_cfg));
378                 dma_cfg.src_addr = nfc->io_phys_addr;
379                 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
380                                     FMC2_HECCR : FMC2_BCHDSR0;
381                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
382
383                 ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
384                 if (ret) {
385                         dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
386                         return ret;
387                 }
388
389                 /* Calculate ECC length needed for one sector */
390                 nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
391                                    FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
392         }
393
394         return 0;
395 }
396
397 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
398 {
399         u32 pcr;
400
401         pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
402                     FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
403
404         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
405 }
406
407 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
408 {
409         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
410                            enable ? FMC2_PCR_ECCEN : 0);
411 }
412
413 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
414 {
415         nfc->irq_state = FMC2_IRQ_SEQ;
416
417         regmap_update_bits(nfc->regmap, FMC2_CSQIER,
418                            FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
419 }
420
421 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
422 {
423         regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
424
425         nfc->irq_state = FMC2_IRQ_UNKNOWN;
426 }
427
428 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
429 {
430         regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
431 }
432
433 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
434 {
435         nfc->irq_state = FMC2_IRQ_BCH;
436
437         if (mode == NAND_ECC_WRITE)
438                 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
439                                    FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
440         else
441                 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
442                                    FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
443 }
444
445 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
446 {
447         regmap_update_bits(nfc->regmap, FMC2_BCHIER,
448                            FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
449
450         nfc->irq_state = FMC2_IRQ_UNKNOWN;
451 }
452
453 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
454 {
455         regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
456 }
457
458 /*
459  * Enable ECC logic and reset syndrome/parity bits previously calculated
460  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
461  */
462 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
463 {
464         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
465
466         stm32_fmc2_nfc_set_ecc(nfc, false);
467
468         if (chip->ecc.strength != FMC2_ECC_HAM) {
469                 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
470                                    mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
471
472                 reinit_completion(&nfc->complete);
473                 stm32_fmc2_nfc_clear_bch_irq(nfc);
474                 stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
475         }
476
477         stm32_fmc2_nfc_set_ecc(nfc, true);
478 }
479
480 /*
481  * ECC Hamming calculation
482  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
483  * max of 1-bit)
484  */
485 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
486 {
487         ecc[0] = ecc_sta;
488         ecc[1] = ecc_sta >> 8;
489         ecc[2] = ecc_sta >> 16;
490 }
491
492 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
493                                         u8 *ecc)
494 {
495         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
496         u32 sr, heccr;
497         int ret;
498
499         ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
500                                        sr & FMC2_SR_NWRF, 1,
501                                        1000 * FMC2_TIMEOUT_MS);
502         if (ret) {
503                 dev_err(nfc->dev, "ham timeout\n");
504                 return ret;
505         }
506
507         regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
508         stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
509         stm32_fmc2_nfc_set_ecc(nfc, false);
510
511         return 0;
512 }
513
514 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
515                                       u8 *read_ecc, u8 *calc_ecc)
516 {
517         u8 bit_position = 0, b0, b1, b2;
518         u32 byte_addr = 0, b;
519         u32 i, shifting = 1;
520
521         /* Indicate which bit and byte is faulty (if any) */
522         b0 = read_ecc[0] ^ calc_ecc[0];
523         b1 = read_ecc[1] ^ calc_ecc[1];
524         b2 = read_ecc[2] ^ calc_ecc[2];
525         b = b0 | (b1 << 8) | (b2 << 16);
526
527         /* No errors */
528         if (likely(!b))
529                 return 0;
530
531         /* Calculate bit position */
532         for (i = 0; i < 3; i++) {
533                 switch (b % 4) {
534                 case 2:
535                         bit_position += shifting;
536                         break;
537                 case 1:
538                         break;
539                 default:
540                         return -EBADMSG;
541                 }
542                 shifting <<= 1;
543                 b >>= 2;
544         }
545
546         /* Calculate byte position */
547         shifting = 1;
548         for (i = 0; i < 9; i++) {
549                 switch (b % 4) {
550                 case 2:
551                         byte_addr += shifting;
552                         break;
553                 case 1:
554                         break;
555                 default:
556                         return -EBADMSG;
557                 }
558                 shifting <<= 1;
559                 b >>= 2;
560         }
561
562         /* Flip the bit */
563         dat[byte_addr] ^= (1 << bit_position);
564
565         return 1;
566 }
567
568 /*
569  * ECC BCH calculation and correction
570  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
571  * max of 4-bit/8-bit)
572  */
573 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
574                                         u8 *ecc)
575 {
576         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
577         u32 bchpbr;
578
579         /* Wait until the BCH code is ready */
580         if (!wait_for_completion_timeout(&nfc->complete,
581                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
582                 dev_err(nfc->dev, "bch timeout\n");
583                 stm32_fmc2_nfc_disable_bch_irq(nfc);
584                 return -ETIMEDOUT;
585         }
586
587         /* Read parity bits */
588         regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
589         ecc[0] = bchpbr;
590         ecc[1] = bchpbr >> 8;
591         ecc[2] = bchpbr >> 16;
592         ecc[3] = bchpbr >> 24;
593
594         regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
595         ecc[4] = bchpbr;
596         ecc[5] = bchpbr >> 8;
597         ecc[6] = bchpbr >> 16;
598
599         if (chip->ecc.strength == FMC2_ECC_BCH8) {
600                 ecc[7] = bchpbr >> 24;
601
602                 regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
603                 ecc[8] = bchpbr;
604                 ecc[9] = bchpbr >> 8;
605                 ecc[10] = bchpbr >> 16;
606                 ecc[11] = bchpbr >> 24;
607
608                 regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
609                 ecc[12] = bchpbr;
610         }
611
612         stm32_fmc2_nfc_set_ecc(nfc, false);
613
614         return 0;
615 }
616
617 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
618 {
619         u32 bchdsr0 = ecc_sta[0];
620         u32 bchdsr1 = ecc_sta[1];
621         u32 bchdsr2 = ecc_sta[2];
622         u32 bchdsr3 = ecc_sta[3];
623         u32 bchdsr4 = ecc_sta[4];
624         u16 pos[8];
625         int i, den;
626         unsigned int nb_errs = 0;
627
628         /* No errors found */
629         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
630                 return 0;
631
632         /* Too many errors detected */
633         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
634                 return -EBADMSG;
635
636         pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
637         pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
638         pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
639         pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
640         pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
641         pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
642         pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
643         pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
644
645         den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
646         for (i = 0; i < den; i++) {
647                 if (pos[i] < eccsize * 8) {
648                         change_bit(pos[i], (unsigned long *)dat);
649                         nb_errs++;
650                 }
651         }
652
653         return nb_errs;
654 }
655
656 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
657                                       u8 *read_ecc, u8 *calc_ecc)
658 {
659         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
660         u32 ecc_sta[5];
661
662         /* Wait until the decoding error is ready */
663         if (!wait_for_completion_timeout(&nfc->complete,
664                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
665                 dev_err(nfc->dev, "bch timeout\n");
666                 stm32_fmc2_nfc_disable_bch_irq(nfc);
667                 return -ETIMEDOUT;
668         }
669
670         regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
671
672         stm32_fmc2_nfc_set_ecc(nfc, false);
673
674         return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
675 }
676
677 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
678                                     int oob_required, int page)
679 {
680         struct mtd_info *mtd = nand_to_mtd(chip);
681         int ret, i, s, stat, eccsize = chip->ecc.size;
682         int eccbytes = chip->ecc.bytes;
683         int eccsteps = chip->ecc.steps;
684         int eccstrength = chip->ecc.strength;
685         u8 *p = buf;
686         u8 *ecc_calc = chip->ecc.calc_buf;
687         u8 *ecc_code = chip->ecc.code_buf;
688         unsigned int max_bitflips = 0;
689
690         ret = nand_read_page_op(chip, page, 0, NULL, 0);
691         if (ret)
692                 return ret;
693
694         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
695              s++, i += eccbytes, p += eccsize) {
696                 chip->ecc.hwctl(chip, NAND_ECC_READ);
697
698                 /* Read the nand page sector (512 bytes) */
699                 ret = nand_change_read_column_op(chip, s * eccsize, p,
700                                                  eccsize, false);
701                 if (ret)
702                         return ret;
703
704                 /* Read the corresponding ECC bytes */
705                 ret = nand_change_read_column_op(chip, i, ecc_code,
706                                                  eccbytes, false);
707                 if (ret)
708                         return ret;
709
710                 /* Correct the data */
711                 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
712                 if (stat == -EBADMSG)
713                         /* Check for empty pages with bitflips */
714                         stat = nand_check_erased_ecc_chunk(p, eccsize,
715                                                            ecc_code, eccbytes,
716                                                            NULL, 0,
717                                                            eccstrength);
718
719                 if (stat < 0) {
720                         mtd->ecc_stats.failed++;
721                 } else {
722                         mtd->ecc_stats.corrected += stat;
723                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
724                 }
725         }
726
727         /* Read oob */
728         if (oob_required) {
729                 ret = nand_change_read_column_op(chip, mtd->writesize,
730                                                  chip->oob_poi, mtd->oobsize,
731                                                  false);
732                 if (ret)
733                         return ret;
734         }
735
736         return max_bitflips;
737 }
738
739 /* Sequencer read/write configuration */
740 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
741                                         int raw, bool write_data)
742 {
743         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
744         struct mtd_info *mtd = nand_to_mtd(chip);
745         u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
746         /*
747          * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
748          * cfg[3] => csqar1, cfg[4] => csqar2
749          */
750         u32 cfg[5];
751
752         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
753                            write_data ? FMC2_PCR_WEN : 0);
754
755         /*
756          * - Set Program Page/Page Read command
757          * - Enable DMA request data
758          * - Set timings
759          */
760         cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
761         if (write_data)
762                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
763         else
764                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
765                           FMC2_CSQCFGR1_CMD2EN |
766                           FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
767                           FMC2_CSQCFGR1_CMD2T;
768
769         /*
770          * - Set Random Data Input/Random Data Read command
771          * - Enable the sequencer to access the Spare data area
772          * - Enable  DMA request status decoding for read
773          * - Set timings
774          */
775         if (write_data)
776                 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
777         else
778                 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
779                          FMC2_CSQCFGR2_RCMD2EN |
780                          FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
781                          FMC2_CSQCFGR2_RCMD1T |
782                          FMC2_CSQCFGR2_RCMD2T;
783         if (!raw) {
784                 cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
785                 cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
786         }
787
788         /*
789          * - Set the number of sectors to be written
790          * - Set timings
791          */
792         cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
793         if (write_data) {
794                 cfg[2] |= FMC2_CSQCFGR3_RAC2T;
795                 if (chip->options & NAND_ROW_ADDR_3)
796                         cfg[2] |= FMC2_CSQCFGR3_AC5T;
797                 else
798                         cfg[2] |= FMC2_CSQCFGR3_AC4T;
799         }
800
801         /*
802          * Set the fourth first address cycles
803          * Byte 1 and byte 2 => column, we start at 0x0
804          * Byte 3 and byte 4 => page
805          */
806         cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
807         cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
808
809         /*
810          * - Set chip enable number
811          * - Set ECC byte offset in the spare area
812          * - Calculate the number of address cycles to be issued
813          * - Set byte 5 of address cycle if needed
814          */
815         cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
816         if (chip->options & NAND_BUSWIDTH_16)
817                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
818         else
819                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
820         if (chip->options & NAND_ROW_ADDR_3) {
821                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
822                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
823         } else {
824                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
825         }
826
827         regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
828 }
829
830 static void stm32_fmc2_nfc_dma_callback(void *arg)
831 {
832         complete((struct completion *)arg);
833 }
834
835 /* Read/write data from/to a page */
836 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
837                                int raw, bool write_data)
838 {
839         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
840         struct dma_async_tx_descriptor *desc_data, *desc_ecc;
841         struct scatterlist *sg;
842         struct dma_chan *dma_ch = nfc->dma_rx_ch;
843         enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
844         enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
845         int eccsteps = chip->ecc.steps;
846         int eccsize = chip->ecc.size;
847         unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
848         const u8 *p = buf;
849         int s, ret;
850
851         /* Configure DMA data */
852         if (write_data) {
853                 dma_data_dir = DMA_TO_DEVICE;
854                 dma_transfer_dir = DMA_MEM_TO_DEV;
855                 dma_ch = nfc->dma_tx_ch;
856         }
857
858         for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
859                 sg_set_buf(sg, p, eccsize);
860                 p += eccsize;
861         }
862
863         ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
864                          eccsteps, dma_data_dir);
865         if (ret < 0)
866                 return ret;
867
868         desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
869                                             eccsteps, dma_transfer_dir,
870                                             DMA_PREP_INTERRUPT);
871         if (!desc_data) {
872                 ret = -ENOMEM;
873                 goto err_unmap_data;
874         }
875
876         reinit_completion(&nfc->dma_data_complete);
877         reinit_completion(&nfc->complete);
878         desc_data->callback = stm32_fmc2_nfc_dma_callback;
879         desc_data->callback_param = &nfc->dma_data_complete;
880         ret = dma_submit_error(dmaengine_submit(desc_data));
881         if (ret)
882                 goto err_unmap_data;
883
884         dma_async_issue_pending(dma_ch);
885
886         if (!write_data && !raw) {
887                 /* Configure DMA ECC status */
888                 p = nfc->ecc_buf;
889                 for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
890                         sg_set_buf(sg, p, nfc->dma_ecc_len);
891                         p += nfc->dma_ecc_len;
892                 }
893
894                 ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
895                                  eccsteps, dma_data_dir);
896                 if (ret < 0)
897                         goto err_unmap_data;
898
899                 desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
900                                                    nfc->dma_ecc_sg.sgl,
901                                                    eccsteps, dma_transfer_dir,
902                                                    DMA_PREP_INTERRUPT);
903                 if (!desc_ecc) {
904                         ret = -ENOMEM;
905                         goto err_unmap_ecc;
906                 }
907
908                 reinit_completion(&nfc->dma_ecc_complete);
909                 desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
910                 desc_ecc->callback_param = &nfc->dma_ecc_complete;
911                 ret = dma_submit_error(dmaengine_submit(desc_ecc));
912                 if (ret)
913                         goto err_unmap_ecc;
914
915                 dma_async_issue_pending(nfc->dma_ecc_ch);
916         }
917
918         stm32_fmc2_nfc_clear_seq_irq(nfc);
919         stm32_fmc2_nfc_enable_seq_irq(nfc);
920
921         /* Start the transfer */
922         regmap_update_bits(nfc->regmap, FMC2_CSQCR,
923                            FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
924
925         /* Wait end of sequencer transfer */
926         if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
927                 dev_err(nfc->dev, "seq timeout\n");
928                 stm32_fmc2_nfc_disable_seq_irq(nfc);
929                 dmaengine_terminate_all(dma_ch);
930                 if (!write_data && !raw)
931                         dmaengine_terminate_all(nfc->dma_ecc_ch);
932                 ret = -ETIMEDOUT;
933                 goto err_unmap_ecc;
934         }
935
936         /* Wait DMA data transfer completion */
937         if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
938                 dev_err(nfc->dev, "data DMA timeout\n");
939                 dmaengine_terminate_all(dma_ch);
940                 ret = -ETIMEDOUT;
941         }
942
943         /* Wait DMA ECC transfer completion */
944         if (!write_data && !raw) {
945                 if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
946                                                  timeout)) {
947                         dev_err(nfc->dev, "ECC DMA timeout\n");
948                         dmaengine_terminate_all(nfc->dma_ecc_ch);
949                         ret = -ETIMEDOUT;
950                 }
951         }
952
953 err_unmap_ecc:
954         if (!write_data && !raw)
955                 dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
956                              eccsteps, dma_data_dir);
957
958 err_unmap_data:
959         dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
960
961         return ret;
962 }
963
964 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
965                                     int oob_required, int page, int raw)
966 {
967         struct mtd_info *mtd = nand_to_mtd(chip);
968         int ret;
969
970         /* Configure the sequencer */
971         stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
972
973         /* Write the page */
974         ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
975         if (ret)
976                 return ret;
977
978         /* Write oob */
979         if (oob_required) {
980                 ret = nand_change_write_column_op(chip, mtd->writesize,
981                                                   chip->oob_poi, mtd->oobsize,
982                                                   false);
983                 if (ret)
984                         return ret;
985         }
986
987         return nand_prog_page_end_op(chip);
988 }
989
990 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
991                                          int oob_required, int page)
992 {
993         int ret;
994
995         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
996         if (ret)
997                 return ret;
998
999         return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
1000 }
1001
1002 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1003                                              const u8 *buf, int oob_required,
1004                                              int page)
1005 {
1006         int ret;
1007
1008         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1009         if (ret)
1010                 return ret;
1011
1012         return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1013 }
1014
1015 /* Get a status indicating which sectors have errors */
1016 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1017 {
1018         u32 csqemsr;
1019
1020         regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1021
1022         return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1023 }
1024
1025 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1026                                       u8 *read_ecc, u8 *calc_ecc)
1027 {
1028         struct mtd_info *mtd = nand_to_mtd(chip);
1029         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1030         int eccbytes = chip->ecc.bytes;
1031         int eccsteps = chip->ecc.steps;
1032         int eccstrength = chip->ecc.strength;
1033         int i, s, eccsize = chip->ecc.size;
1034         u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1035         u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1036         unsigned int max_bitflips = 0;
1037
1038         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1039                 int stat = 0;
1040
1041                 if (eccstrength == FMC2_ECC_HAM) {
1042                         /* Ecc_sta = FMC2_HECCR */
1043                         if (sta_map & BIT(s)) {
1044                                 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1045                                                            &calc_ecc[i]);
1046                                 stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1047                                                                   &read_ecc[i],
1048                                                                   &calc_ecc[i]);
1049                         }
1050                         ecc_sta++;
1051                 } else {
1052                         /*
1053                          * Ecc_sta[0] = FMC2_BCHDSR0
1054                          * Ecc_sta[1] = FMC2_BCHDSR1
1055                          * Ecc_sta[2] = FMC2_BCHDSR2
1056                          * Ecc_sta[3] = FMC2_BCHDSR3
1057                          * Ecc_sta[4] = FMC2_BCHDSR4
1058                          */
1059                         if (sta_map & BIT(s))
1060                                 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1061                                                                  ecc_sta);
1062                         ecc_sta += 5;
1063                 }
1064
1065                 if (stat == -EBADMSG)
1066                         /* Check for empty pages with bitflips */
1067                         stat = nand_check_erased_ecc_chunk(dat, eccsize,
1068                                                            &read_ecc[i],
1069                                                            eccbytes,
1070                                                            NULL, 0,
1071                                                            eccstrength);
1072
1073                 if (stat < 0) {
1074                         mtd->ecc_stats.failed++;
1075                 } else {
1076                         mtd->ecc_stats.corrected += stat;
1077                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1078                 }
1079         }
1080
1081         return max_bitflips;
1082 }
1083
1084 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1085                                         int oob_required, int page)
1086 {
1087         struct mtd_info *mtd = nand_to_mtd(chip);
1088         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1089         u8 *ecc_calc = chip->ecc.calc_buf;
1090         u8 *ecc_code = chip->ecc.code_buf;
1091         u16 sta_map;
1092         int ret;
1093
1094         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1095         if (ret)
1096                 return ret;
1097
1098         /* Configure the sequencer */
1099         stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1100
1101         /* Read the page */
1102         ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1103         if (ret)
1104                 return ret;
1105
1106         sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1107
1108         /* Check if errors happen */
1109         if (likely(!sta_map)) {
1110                 if (oob_required)
1111                         return nand_change_read_column_op(chip, mtd->writesize,
1112                                                           chip->oob_poi,
1113                                                           mtd->oobsize, false);
1114
1115                 return 0;
1116         }
1117
1118         /* Read oob */
1119         ret = nand_change_read_column_op(chip, mtd->writesize,
1120                                          chip->oob_poi, mtd->oobsize, false);
1121         if (ret)
1122                 return ret;
1123
1124         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1125                                          chip->ecc.total);
1126         if (ret)
1127                 return ret;
1128
1129         /* Correct data */
1130         return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1131 }
1132
1133 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1134                                             int oob_required, int page)
1135 {
1136         struct mtd_info *mtd = nand_to_mtd(chip);
1137         int ret;
1138
1139         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1140         if (ret)
1141                 return ret;
1142
1143         /* Configure the sequencer */
1144         stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1145
1146         /* Read the page */
1147         ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1148         if (ret)
1149                 return ret;
1150
1151         /* Read oob */
1152         if (oob_required)
1153                 return nand_change_read_column_op(chip, mtd->writesize,
1154                                                   chip->oob_poi, mtd->oobsize,
1155                                                   false);
1156
1157         return 0;
1158 }
1159
1160 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1161 {
1162         struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1163
1164         if (nfc->irq_state == FMC2_IRQ_SEQ)
1165                 /* Sequencer is used */
1166                 stm32_fmc2_nfc_disable_seq_irq(nfc);
1167         else if (nfc->irq_state == FMC2_IRQ_BCH)
1168                 /* BCH is used */
1169                 stm32_fmc2_nfc_disable_bch_irq(nfc);
1170
1171         complete(&nfc->complete);
1172
1173         return IRQ_HANDLED;
1174 }
1175
1176 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1177                                      unsigned int len, bool force_8bit)
1178 {
1179         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1180         void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1181
1182         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1183                 /* Reconfigure bus width to 8-bit */
1184                 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1185
1186         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1187                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1188                         *(u8 *)buf = readb_relaxed(io_addr_r);
1189                         buf += sizeof(u8);
1190                         len -= sizeof(u8);
1191                 }
1192
1193                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1194                     len >= sizeof(u16)) {
1195                         *(u16 *)buf = readw_relaxed(io_addr_r);
1196                         buf += sizeof(u16);
1197                         len -= sizeof(u16);
1198                 }
1199         }
1200
1201         /* Buf is aligned */
1202         while (len >= sizeof(u32)) {
1203                 *(u32 *)buf = readl_relaxed(io_addr_r);
1204                 buf += sizeof(u32);
1205                 len -= sizeof(u32);
1206         }
1207
1208         /* Read remaining bytes */
1209         if (len >= sizeof(u16)) {
1210                 *(u16 *)buf = readw_relaxed(io_addr_r);
1211                 buf += sizeof(u16);
1212                 len -= sizeof(u16);
1213         }
1214
1215         if (len)
1216                 *(u8 *)buf = readb_relaxed(io_addr_r);
1217
1218         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1219                 /* Reconfigure bus width to 16-bit */
1220                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1221 }
1222
1223 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1224                                       unsigned int len, bool force_8bit)
1225 {
1226         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1227         void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1228
1229         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1230                 /* Reconfigure bus width to 8-bit */
1231                 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1232
1233         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1234                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1235                         writeb_relaxed(*(u8 *)buf, io_addr_w);
1236                         buf += sizeof(u8);
1237                         len -= sizeof(u8);
1238                 }
1239
1240                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1241                     len >= sizeof(u16)) {
1242                         writew_relaxed(*(u16 *)buf, io_addr_w);
1243                         buf += sizeof(u16);
1244                         len -= sizeof(u16);
1245                 }
1246         }
1247
1248         /* Buf is aligned */
1249         while (len >= sizeof(u32)) {
1250                 writel_relaxed(*(u32 *)buf, io_addr_w);
1251                 buf += sizeof(u32);
1252                 len -= sizeof(u32);
1253         }
1254
1255         /* Write remaining bytes */
1256         if (len >= sizeof(u16)) {
1257                 writew_relaxed(*(u16 *)buf, io_addr_w);
1258                 buf += sizeof(u16);
1259                 len -= sizeof(u16);
1260         }
1261
1262         if (len)
1263                 writeb_relaxed(*(u8 *)buf, io_addr_w);
1264
1265         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1266                 /* Reconfigure bus width to 16-bit */
1267                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1268 }
1269
1270 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1271                                   unsigned long timeout_ms)
1272 {
1273         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1274         const struct nand_sdr_timings *timings;
1275         u32 isr, sr;
1276
1277         /* Check if there is no pending requests to the NAND flash */
1278         if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1279                                      sr & FMC2_SR_NWRF, 1,
1280                                      1000 * FMC2_TIMEOUT_MS))
1281                 dev_warn(nfc->dev, "Waitrdy timeout\n");
1282
1283         /* Wait tWB before R/B# signal is low */
1284         timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1285         ndelay(PSEC_TO_NSEC(timings->tWB_max));
1286
1287         /* R/B# signal is low, clear high level flag */
1288         regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1289
1290         /* Wait R/B# signal is high */
1291         return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1292                                         isr & FMC2_ISR_IHLF, 5,
1293                                         1000 * FMC2_TIMEOUT_MS);
1294 }
1295
1296 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1297                                   const struct nand_operation *op,
1298                                   bool check_only)
1299 {
1300         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1301         const struct nand_op_instr *instr = NULL;
1302         unsigned int op_id, i, timeout;
1303         int ret;
1304
1305         if (check_only)
1306                 return 0;
1307
1308         ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1309         if (ret)
1310                 return ret;
1311
1312         for (op_id = 0; op_id < op->ninstrs; op_id++) {
1313                 instr = &op->instrs[op_id];
1314
1315                 switch (instr->type) {
1316                 case NAND_OP_CMD_INSTR:
1317                         writeb_relaxed(instr->ctx.cmd.opcode,
1318                                        nfc->cmd_base[nfc->cs_sel]);
1319                         break;
1320
1321                 case NAND_OP_ADDR_INSTR:
1322                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
1323                                 writeb_relaxed(instr->ctx.addr.addrs[i],
1324                                                nfc->addr_base[nfc->cs_sel]);
1325                         break;
1326
1327                 case NAND_OP_DATA_IN_INSTR:
1328                         stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1329                                                  instr->ctx.data.len,
1330                                                  instr->ctx.data.force_8bit);
1331                         break;
1332
1333                 case NAND_OP_DATA_OUT_INSTR:
1334                         stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1335                                                   instr->ctx.data.len,
1336                                                   instr->ctx.data.force_8bit);
1337                         break;
1338
1339                 case NAND_OP_WAITRDY_INSTR:
1340                         timeout = instr->ctx.waitrdy.timeout_ms;
1341                         ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1342                         break;
1343                 }
1344         }
1345
1346         return ret;
1347 }
1348
1349 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1350 {
1351         u32 pcr;
1352
1353         regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1354
1355         /* Set CS used to undefined */
1356         nfc->cs_sel = -1;
1357
1358         /* Enable wait feature and nand flash memory bank */
1359         pcr |= FMC2_PCR_PWAITEN;
1360         pcr |= FMC2_PCR_PBKEN;
1361
1362         /* Set buswidth to 8 bits mode for identification */
1363         pcr &= ~FMC2_PCR_PWID;
1364
1365         /* ECC logic is disabled */
1366         pcr &= ~FMC2_PCR_ECCEN;
1367
1368         /* Default mode */
1369         pcr &= ~FMC2_PCR_ECCALG;
1370         pcr &= ~FMC2_PCR_BCHECC;
1371         pcr &= ~FMC2_PCR_WEN;
1372
1373         /* Set default ECC sector size */
1374         pcr &= ~FMC2_PCR_ECCSS;
1375         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1376
1377         /* Set default tclr/tar timings */
1378         pcr &= ~FMC2_PCR_TCLR;
1379         pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1380         pcr &= ~FMC2_PCR_TAR;
1381         pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1382
1383         /* Enable FMC2 controller */
1384         if (nfc->dev == nfc->cdev)
1385                 regmap_update_bits(nfc->regmap, FMC2_BCR1,
1386                                    FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1387
1388         regmap_write(nfc->regmap, FMC2_PCR, pcr);
1389         regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1390         regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1391 }
1392
1393 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1394                                         const struct nand_sdr_timings *sdrt)
1395 {
1396         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1397         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1398         struct stm32_fmc2_timings *tims = &nand->timings;
1399         unsigned long hclk = clk_get_rate(nfc->clk);
1400         unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1401         unsigned long timing, tar, tclr, thiz, twait;
1402         unsigned long tset_mem, tset_att, thold_mem, thold_att;
1403
1404         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1405         timing = DIV_ROUND_UP(tar, hclkp) - 1;
1406         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1407
1408         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1409         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1410         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1411
1412         tims->thiz = FMC2_THIZ;
1413         thiz = (tims->thiz + 1) * hclkp;
1414
1415         /*
1416          * tWAIT > tRP
1417          * tWAIT > tWP
1418          * tWAIT > tREA + tIO
1419          */
1420         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1421         twait = max_t(unsigned long, twait, sdrt->tWP_min);
1422         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1423         timing = DIV_ROUND_UP(twait, hclkp);
1424         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1425
1426         /*
1427          * tSETUP_MEM > tCS - tWAIT
1428          * tSETUP_MEM > tALS - tWAIT
1429          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1430          */
1431         tset_mem = hclkp;
1432         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1433                 tset_mem = sdrt->tCS_min - twait;
1434         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1435                 tset_mem = sdrt->tALS_min - twait;
1436         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1437             (tset_mem < sdrt->tDS_min - (twait - thiz)))
1438                 tset_mem = sdrt->tDS_min - (twait - thiz);
1439         timing = DIV_ROUND_UP(tset_mem, hclkp);
1440         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1441
1442         /*
1443          * tHOLD_MEM > tCH
1444          * tHOLD_MEM > tREH - tSETUP_MEM
1445          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1446          */
1447         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1448         if (sdrt->tREH_min > tset_mem &&
1449             (thold_mem < sdrt->tREH_min - tset_mem))
1450                 thold_mem = sdrt->tREH_min - tset_mem;
1451         if ((sdrt->tRC_min > tset_mem + twait) &&
1452             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1453                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
1454         if ((sdrt->tWC_min > tset_mem + twait) &&
1455             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1456                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
1457         timing = DIV_ROUND_UP(thold_mem, hclkp);
1458         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1459
1460         /*
1461          * tSETUP_ATT > tCS - tWAIT
1462          * tSETUP_ATT > tCLS - tWAIT
1463          * tSETUP_ATT > tALS - tWAIT
1464          * tSETUP_ATT > tRHW - tHOLD_MEM
1465          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1466          */
1467         tset_att = hclkp;
1468         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1469                 tset_att = sdrt->tCS_min - twait;
1470         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1471                 tset_att = sdrt->tCLS_min - twait;
1472         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1473                 tset_att = sdrt->tALS_min - twait;
1474         if (sdrt->tRHW_min > thold_mem &&
1475             (tset_att < sdrt->tRHW_min - thold_mem))
1476                 tset_att = sdrt->tRHW_min - thold_mem;
1477         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1478             (tset_att < sdrt->tDS_min - (twait - thiz)))
1479                 tset_att = sdrt->tDS_min - (twait - thiz);
1480         timing = DIV_ROUND_UP(tset_att, hclkp);
1481         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1482
1483         /*
1484          * tHOLD_ATT > tALH
1485          * tHOLD_ATT > tCH
1486          * tHOLD_ATT > tCLH
1487          * tHOLD_ATT > tCOH
1488          * tHOLD_ATT > tDH
1489          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1490          * tHOLD_ATT > tADL - tSETUP_MEM
1491          * tHOLD_ATT > tWH - tSETUP_MEM
1492          * tHOLD_ATT > tWHR - tSETUP_MEM
1493          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1494          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1495          */
1496         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1497         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1498         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1499         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1500         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1501         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1502             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1503                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1504         if (sdrt->tADL_min > tset_mem &&
1505             (thold_att < sdrt->tADL_min - tset_mem))
1506                 thold_att = sdrt->tADL_min - tset_mem;
1507         if (sdrt->tWH_min > tset_mem &&
1508             (thold_att < sdrt->tWH_min - tset_mem))
1509                 thold_att = sdrt->tWH_min - tset_mem;
1510         if (sdrt->tWHR_min > tset_mem &&
1511             (thold_att < sdrt->tWHR_min - tset_mem))
1512                 thold_att = sdrt->tWHR_min - tset_mem;
1513         if ((sdrt->tRC_min > tset_att + twait) &&
1514             (thold_att < sdrt->tRC_min - (tset_att + twait)))
1515                 thold_att = sdrt->tRC_min - (tset_att + twait);
1516         if ((sdrt->tWC_min > tset_att + twait) &&
1517             (thold_att < sdrt->tWC_min - (tset_att + twait)))
1518                 thold_att = sdrt->tWC_min - (tset_att + twait);
1519         timing = DIV_ROUND_UP(thold_att, hclkp);
1520         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1521 }
1522
1523 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1524                                           const struct nand_interface_config *conf)
1525 {
1526         const struct nand_sdr_timings *sdrt;
1527
1528         sdrt = nand_get_sdr_timings(conf);
1529         if (IS_ERR(sdrt))
1530                 return PTR_ERR(sdrt);
1531
1532         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1533                 return 0;
1534
1535         stm32_fmc2_nfc_calc_timings(chip, sdrt);
1536         stm32_fmc2_nfc_timings_init(chip);
1537
1538         return 0;
1539 }
1540
1541 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1542 {
1543         int ret = 0;
1544
1545         nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1546         if (IS_ERR(nfc->dma_tx_ch)) {
1547                 ret = PTR_ERR(nfc->dma_tx_ch);
1548                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1549                         dev_err(nfc->dev,
1550                                 "failed to request tx DMA channel: %d\n", ret);
1551                 nfc->dma_tx_ch = NULL;
1552                 goto err_dma;
1553         }
1554
1555         nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1556         if (IS_ERR(nfc->dma_rx_ch)) {
1557                 ret = PTR_ERR(nfc->dma_rx_ch);
1558                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1559                         dev_err(nfc->dev,
1560                                 "failed to request rx DMA channel: %d\n", ret);
1561                 nfc->dma_rx_ch = NULL;
1562                 goto err_dma;
1563         }
1564
1565         nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1566         if (IS_ERR(nfc->dma_ecc_ch)) {
1567                 ret = PTR_ERR(nfc->dma_ecc_ch);
1568                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1569                         dev_err(nfc->dev,
1570                                 "failed to request ecc DMA channel: %d\n", ret);
1571                 nfc->dma_ecc_ch = NULL;
1572                 goto err_dma;
1573         }
1574
1575         ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1576         if (ret)
1577                 return ret;
1578
1579         /* Allocate a buffer to store ECC status registers */
1580         nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1581         if (!nfc->ecc_buf)
1582                 return -ENOMEM;
1583
1584         ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1585         if (ret)
1586                 return ret;
1587
1588         init_completion(&nfc->dma_data_complete);
1589         init_completion(&nfc->dma_ecc_complete);
1590
1591         return 0;
1592
1593 err_dma:
1594         if (ret == -ENODEV) {
1595                 dev_warn(nfc->dev,
1596                          "DMAs not defined in the DT, polling mode is used\n");
1597                 ret = 0;
1598         }
1599
1600         return ret;
1601 }
1602
1603 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1604 {
1605         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1606
1607         /*
1608          * Specific callbacks to read/write a page depending on
1609          * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1610          */
1611         if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1612                 /* DMA => use sequencer mode callbacks */
1613                 chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1614                 chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1615                 chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1616                 chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1617                 chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1618         } else {
1619                 /* No DMA => use polling mode callbacks */
1620                 chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1621                 if (chip->ecc.strength == FMC2_ECC_HAM) {
1622                         /* Hamming is used */
1623                         chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1624                         chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1625                         chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1626                 } else {
1627                         /* BCH is used */
1628                         chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1629                         chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1630                         chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1631                 }
1632         }
1633
1634         /* Specific configurations depending on the algo used */
1635         if (chip->ecc.strength == FMC2_ECC_HAM)
1636                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1637         else if (chip->ecc.strength == FMC2_ECC_BCH8)
1638                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1639         else
1640                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1641 }
1642
1643 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1644                                         struct mtd_oob_region *oobregion)
1645 {
1646         struct nand_chip *chip = mtd_to_nand(mtd);
1647         struct nand_ecc_ctrl *ecc = &chip->ecc;
1648
1649         if (section)
1650                 return -ERANGE;
1651
1652         oobregion->length = ecc->total;
1653         oobregion->offset = FMC2_BBM_LEN;
1654
1655         return 0;
1656 }
1657
1658 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1659                                          struct mtd_oob_region *oobregion)
1660 {
1661         struct nand_chip *chip = mtd_to_nand(mtd);
1662         struct nand_ecc_ctrl *ecc = &chip->ecc;
1663
1664         if (section)
1665                 return -ERANGE;
1666
1667         oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1668         oobregion->offset = ecc->total + FMC2_BBM_LEN;
1669
1670         return 0;
1671 }
1672
1673 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1674         .ecc = stm32_fmc2_nfc_ooblayout_ecc,
1675         .free = stm32_fmc2_nfc_ooblayout_free,
1676 };
1677
1678 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1679 {
1680         /* Hamming */
1681         if (strength == FMC2_ECC_HAM)
1682                 return 4;
1683
1684         /* BCH8 */
1685         if (strength == FMC2_ECC_BCH8)
1686                 return 14;
1687
1688         /* BCH4 */
1689         return 8;
1690 }
1691
1692 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1693                      FMC2_ECC_STEP_SIZE,
1694                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1695
1696 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1697 {
1698         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1699         struct mtd_info *mtd = nand_to_mtd(chip);
1700         int ret;
1701
1702         /*
1703          * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1704          * Hamming => ecc.strength = 1
1705          * BCH4 => ecc.strength = 4
1706          * BCH8 => ecc.strength = 8
1707          * ECC sector size = 512
1708          */
1709         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1710                 dev_err(nfc->dev,
1711                         "nand_ecc_engine_type is not well defined in the DT\n");
1712                 return -EINVAL;
1713         }
1714
1715         /* Default ECC settings in case they are not set in the device tree */
1716         if (!chip->ecc.size)
1717                 chip->ecc.size = FMC2_ECC_STEP_SIZE;
1718
1719         if (!chip->ecc.strength)
1720                 chip->ecc.strength = FMC2_ECC_BCH8;
1721
1722         ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1723                                    mtd->oobsize - FMC2_BBM_LEN);
1724         if (ret) {
1725                 dev_err(nfc->dev, "no valid ECC settings set\n");
1726                 return ret;
1727         }
1728
1729         if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1730                 dev_err(nfc->dev, "nand page size is not supported\n");
1731                 return -EINVAL;
1732         }
1733
1734         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1735                 chip->bbt_options |= NAND_BBT_NO_OOB;
1736
1737         stm32_fmc2_nfc_nand_callbacks_setup(chip);
1738
1739         mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1740
1741         stm32_fmc2_nfc_setup(chip);
1742
1743         return 0;
1744 }
1745
1746 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1747         .attach_chip = stm32_fmc2_nfc_attach_chip,
1748         .exec_op = stm32_fmc2_nfc_exec_op,
1749         .setup_interface = stm32_fmc2_nfc_setup_interface,
1750 };
1751
1752 static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
1753 {
1754         if (nand->wp_gpio)
1755                 gpiod_set_value(nand->wp_gpio, 1);
1756 }
1757
1758 static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
1759 {
1760         if (nand->wp_gpio)
1761                 gpiod_set_value(nand->wp_gpio, 0);
1762 }
1763
1764 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1765                                       struct device_node *dn)
1766 {
1767         struct stm32_fmc2_nand *nand = &nfc->nand;
1768         u32 cs;
1769         int ret, i;
1770
1771         if (!of_get_property(dn, "reg", &nand->ncs))
1772                 return -EINVAL;
1773
1774         nand->ncs /= sizeof(u32);
1775         if (!nand->ncs) {
1776                 dev_err(nfc->dev, "invalid reg property size\n");
1777                 return -EINVAL;
1778         }
1779
1780         for (i = 0; i < nand->ncs; i++) {
1781                 ret = of_property_read_u32_index(dn, "reg", i, &cs);
1782                 if (ret) {
1783                         dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1784                                 ret);
1785                         return ret;
1786                 }
1787
1788                 if (cs >= FMC2_MAX_CE) {
1789                         dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1790                         return -EINVAL;
1791                 }
1792
1793                 if (nfc->cs_assigned & BIT(cs)) {
1794                         dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1795                         return -EINVAL;
1796                 }
1797
1798                 nfc->cs_assigned |= BIT(cs);
1799                 nand->cs_used[i] = cs;
1800         }
1801
1802         nand->wp_gpio = devm_gpiod_get_from_of_node(nfc->dev, dn,
1803                                                     "wp-gpios", 0,
1804                                                     GPIOD_OUT_HIGH, "wp");
1805         if (IS_ERR(nand->wp_gpio)) {
1806                 ret = PTR_ERR(nand->wp_gpio);
1807                 if (ret != -ENOENT)
1808                         return dev_err_probe(nfc->dev, ret,
1809                                              "failed to request WP GPIO\n");
1810
1811                 nand->wp_gpio = NULL;
1812         }
1813
1814         nand_set_flash_node(&nand->chip, dn);
1815
1816         return 0;
1817 }
1818
1819 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1820 {
1821         struct device_node *dn = nfc->dev->of_node;
1822         struct device_node *child;
1823         int nchips = of_get_child_count(dn);
1824         int ret = 0;
1825
1826         if (!nchips) {
1827                 dev_err(nfc->dev, "NAND chip not defined\n");
1828                 return -EINVAL;
1829         }
1830
1831         if (nchips > 1) {
1832                 dev_err(nfc->dev, "too many NAND chips defined\n");
1833                 return -EINVAL;
1834         }
1835
1836         for_each_child_of_node(dn, child) {
1837                 ret = stm32_fmc2_nfc_parse_child(nfc, child);
1838                 if (ret < 0) {
1839                         of_node_put(child);
1840                         return ret;
1841                 }
1842         }
1843
1844         return ret;
1845 }
1846
1847 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1848 {
1849         struct device *dev = nfc->dev;
1850         bool ebi_found = false;
1851
1852         if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1853                                                    "st,stm32mp1-fmc2-ebi"))
1854                 ebi_found = true;
1855
1856         if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1857                 if (ebi_found) {
1858                         nfc->cdev = dev->parent;
1859
1860                         return 0;
1861                 }
1862
1863                 return -EINVAL;
1864         }
1865
1866         if (ebi_found)
1867                 return -EINVAL;
1868
1869         nfc->cdev = dev;
1870
1871         return 0;
1872 }
1873
1874 static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1875 {
1876         struct device *dev = &pdev->dev;
1877         struct reset_control *rstc;
1878         struct stm32_fmc2_nfc *nfc;
1879         struct stm32_fmc2_nand *nand;
1880         struct resource *res;
1881         struct mtd_info *mtd;
1882         struct nand_chip *chip;
1883         struct resource cres;
1884         int chip_cs, mem_region, ret, irq;
1885         int start_region = 0;
1886
1887         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1888         if (!nfc)
1889                 return -ENOMEM;
1890
1891         nfc->dev = dev;
1892         nand_controller_init(&nfc->base);
1893         nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1894
1895         ret = stm32_fmc2_nfc_set_cdev(nfc);
1896         if (ret)
1897                 return ret;
1898
1899         ret = stm32_fmc2_nfc_parse_dt(nfc);
1900         if (ret)
1901                 return ret;
1902
1903         ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1904         if (ret)
1905                 return ret;
1906
1907         nfc->io_phys_addr = cres.start;
1908
1909         nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1910         if (IS_ERR(nfc->regmap))
1911                 return PTR_ERR(nfc->regmap);
1912
1913         if (nfc->dev == nfc->cdev)
1914                 start_region = 1;
1915
1916         for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
1917              chip_cs++, mem_region += 3) {
1918                 if (!(nfc->cs_assigned & BIT(chip_cs)))
1919                         continue;
1920
1921                 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1922                 nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1923                 if (IS_ERR(nfc->data_base[chip_cs]))
1924                         return PTR_ERR(nfc->data_base[chip_cs]);
1925
1926                 nfc->data_phys_addr[chip_cs] = res->start;
1927
1928                 nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
1929                 if (IS_ERR(nfc->cmd_base[chip_cs]))
1930                         return PTR_ERR(nfc->cmd_base[chip_cs]);
1931
1932                 nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
1933                 if (IS_ERR(nfc->addr_base[chip_cs]))
1934                         return PTR_ERR(nfc->addr_base[chip_cs]);
1935         }
1936
1937         irq = platform_get_irq(pdev, 0);
1938         if (irq < 0)
1939                 return irq;
1940
1941         ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1942                                dev_name(dev), nfc);
1943         if (ret) {
1944                 dev_err(dev, "failed to request irq\n");
1945                 return ret;
1946         }
1947
1948         init_completion(&nfc->complete);
1949
1950         nfc->clk = devm_clk_get(nfc->cdev, NULL);
1951         if (IS_ERR(nfc->clk))
1952                 return PTR_ERR(nfc->clk);
1953
1954         ret = clk_prepare_enable(nfc->clk);
1955         if (ret) {
1956                 dev_err(dev, "can not enable the clock\n");
1957                 return ret;
1958         }
1959
1960         rstc = devm_reset_control_get(dev, NULL);
1961         if (IS_ERR(rstc)) {
1962                 ret = PTR_ERR(rstc);
1963                 if (ret == -EPROBE_DEFER)
1964                         goto err_clk_disable;
1965         } else {
1966                 reset_control_assert(rstc);
1967                 reset_control_deassert(rstc);
1968         }
1969
1970         ret = stm32_fmc2_nfc_dma_setup(nfc);
1971         if (ret)
1972                 goto err_release_dma;
1973
1974         stm32_fmc2_nfc_init(nfc);
1975
1976         nand = &nfc->nand;
1977         chip = &nand->chip;
1978         mtd = nand_to_mtd(chip);
1979         mtd->dev.parent = dev;
1980
1981         chip->controller = &nfc->base;
1982         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1983                          NAND_USES_DMA;
1984
1985         stm32_fmc2_nfc_wp_disable(nand);
1986
1987         /* Scan to find existence of the device */
1988         ret = nand_scan(chip, nand->ncs);
1989         if (ret)
1990                 goto err_wp_enable;
1991
1992         ret = mtd_device_register(mtd, NULL, 0);
1993         if (ret)
1994                 goto err_nand_cleanup;
1995
1996         platform_set_drvdata(pdev, nfc);
1997
1998         return 0;
1999
2000 err_nand_cleanup:
2001         nand_cleanup(chip);
2002
2003 err_wp_enable:
2004         stm32_fmc2_nfc_wp_enable(nand);
2005
2006 err_release_dma:
2007         if (nfc->dma_ecc_ch)
2008                 dma_release_channel(nfc->dma_ecc_ch);
2009         if (nfc->dma_tx_ch)
2010                 dma_release_channel(nfc->dma_tx_ch);
2011         if (nfc->dma_rx_ch)
2012                 dma_release_channel(nfc->dma_rx_ch);
2013
2014         sg_free_table(&nfc->dma_data_sg);
2015         sg_free_table(&nfc->dma_ecc_sg);
2016
2017 err_clk_disable:
2018         clk_disable_unprepare(nfc->clk);
2019
2020         return ret;
2021 }
2022
2023 static int stm32_fmc2_nfc_remove(struct platform_device *pdev)
2024 {
2025         struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
2026         struct stm32_fmc2_nand *nand = &nfc->nand;
2027         struct nand_chip *chip = &nand->chip;
2028         int ret;
2029
2030         ret = mtd_device_unregister(nand_to_mtd(chip));
2031         WARN_ON(ret);
2032         nand_cleanup(chip);
2033
2034         if (nfc->dma_ecc_ch)
2035                 dma_release_channel(nfc->dma_ecc_ch);
2036         if (nfc->dma_tx_ch)
2037                 dma_release_channel(nfc->dma_tx_ch);
2038         if (nfc->dma_rx_ch)
2039                 dma_release_channel(nfc->dma_rx_ch);
2040
2041         sg_free_table(&nfc->dma_data_sg);
2042         sg_free_table(&nfc->dma_ecc_sg);
2043
2044         clk_disable_unprepare(nfc->clk);
2045
2046         stm32_fmc2_nfc_wp_enable(nand);
2047
2048         return 0;
2049 }
2050
2051 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2052 {
2053         struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2054         struct stm32_fmc2_nand *nand = &nfc->nand;
2055
2056         clk_disable_unprepare(nfc->clk);
2057
2058         stm32_fmc2_nfc_wp_enable(nand);
2059
2060         pinctrl_pm_select_sleep_state(dev);
2061
2062         return 0;
2063 }
2064
2065 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2066 {
2067         struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2068         struct stm32_fmc2_nand *nand = &nfc->nand;
2069         int chip_cs, ret;
2070
2071         pinctrl_pm_select_default_state(dev);
2072
2073         ret = clk_prepare_enable(nfc->clk);
2074         if (ret) {
2075                 dev_err(dev, "can not enable the clock\n");
2076                 return ret;
2077         }
2078
2079         stm32_fmc2_nfc_init(nfc);
2080
2081         stm32_fmc2_nfc_wp_disable(nand);
2082
2083         for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2084                 if (!(nfc->cs_assigned & BIT(chip_cs)))
2085                         continue;
2086
2087                 nand_reset(&nand->chip, chip_cs);
2088         }
2089
2090         return 0;
2091 }
2092
2093 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2094                          stm32_fmc2_nfc_resume);
2095
2096 static const struct of_device_id stm32_fmc2_nfc_match[] = {
2097         {.compatible = "st,stm32mp15-fmc2"},
2098         {.compatible = "st,stm32mp1-fmc2-nfc"},
2099         {}
2100 };
2101 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2102
2103 static struct platform_driver stm32_fmc2_nfc_driver = {
2104         .probe  = stm32_fmc2_nfc_probe,
2105         .remove = stm32_fmc2_nfc_remove,
2106         .driver = {
2107                 .name = "stm32_fmc2_nfc",
2108                 .of_match_table = stm32_fmc2_nfc_match,
2109                 .pm = &stm32_fmc2_nfc_pm_ops,
2110         },
2111 };
2112 module_platform_driver(stm32_fmc2_nfc_driver);
2113
2114 MODULE_ALIAS("platform:stm32_fmc2_nfc");
2115 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2116 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2117 MODULE_LICENSE("GPL v2");