Merge tag 'reset-for-v5.3' of git://git.pengutronix.de/git/pza/linux into arm/drivers
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / nand_hynix.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017 Free Electrons
4  * Copyright (C) 2017 NextThing Co
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  */
8
9 #include <linux/sizes.h>
10 #include <linux/slab.h>
11
12 #include "internals.h"
13
14 #define NAND_HYNIX_CMD_SET_PARAMS       0x36
15 #define NAND_HYNIX_CMD_APPLY_PARAMS     0x16
16
17 #define NAND_HYNIX_1XNM_RR_REPEAT       8
18
19 /**
20  * struct hynix_read_retry - read-retry data
21  * @nregs: number of register to set when applying a new read-retry mode
22  * @regs: register offsets (NAND chip dependent)
23  * @values: array of values to set in registers. The array size is equal to
24  *          (nregs * nmodes)
25  */
26 struct hynix_read_retry {
27         int nregs;
28         const u8 *regs;
29         u8 values[0];
30 };
31
32 /**
33  * struct hynix_nand - private Hynix NAND struct
34  * @nand_technology: manufacturing process expressed in picometer
35  * @read_retry: read-retry information
36  */
37 struct hynix_nand {
38         const struct hynix_read_retry *read_retry;
39 };
40
41 /**
42  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
43  *                               area
44  * @nregs: number of hynix private registers to set before reading the reading
45  *         the OTP area
46  * @regs: registers that should be configured
47  * @values: values that should be set in regs
48  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
49  *        chip
50  * @size: size of the read-retry OTP section
51  */
52 struct hynix_read_retry_otp {
53         int nregs;
54         const u8 *regs;
55         const u8 *values;
56         int page;
57         int size;
58 };
59
60 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
61 {
62         u8 jedecid[5] = { };
63         int ret;
64
65         ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
66         if (ret)
67                 return false;
68
69         return !strncmp("JEDEC", jedecid, sizeof(jedecid));
70 }
71
72 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
73 {
74         if (nand_has_exec_op(chip)) {
75                 struct nand_op_instr instrs[] = {
76                         NAND_OP_CMD(cmd, 0),
77                 };
78                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
79
80                 return nand_exec_op(chip, &op);
81         }
82
83         chip->legacy.cmdfunc(chip, cmd, -1, -1);
84
85         return 0;
86 }
87
88 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
89 {
90         u16 column = ((u16)addr << 8) | addr;
91
92         if (nand_has_exec_op(chip)) {
93                 struct nand_op_instr instrs[] = {
94                         NAND_OP_ADDR(1, &addr, 0),
95                         NAND_OP_8BIT_DATA_OUT(1, &val, 0),
96                 };
97                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
98
99                 return nand_exec_op(chip, &op);
100         }
101
102         chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
103         chip->legacy.write_byte(chip, val);
104
105         return 0;
106 }
107
108 static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
109 {
110         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
111         const u8 *values;
112         int i, ret;
113
114         values = hynix->read_retry->values +
115                  (retry_mode * hynix->read_retry->nregs);
116
117         /* Enter 'Set Hynix Parameters' mode */
118         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
119         if (ret)
120                 return ret;
121
122         /*
123          * Configure the NAND in the requested read-retry mode.
124          * This is done by setting pre-defined values in internal NAND
125          * registers.
126          *
127          * The set of registers is NAND specific, and the values are either
128          * predefined or extracted from an OTP area on the NAND (values are
129          * probably tweaked at production in this case).
130          */
131         for (i = 0; i < hynix->read_retry->nregs; i++) {
132                 ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
133                                               values[i]);
134                 if (ret)
135                         return ret;
136         }
137
138         /* Apply the new settings. */
139         return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
140 }
141
142 /**
143  * hynix_get_majority - get the value that is occurring the most in a given
144  *                      set of values
145  * @in: the array of values to test
146  * @repeat: the size of the in array
147  * @out: pointer used to store the output value
148  *
149  * This function implements the 'majority check' logic that is supposed to
150  * overcome the unreliability of MLC NANDs when reading the OTP area storing
151  * the read-retry parameters.
152  *
153  * It's based on a pretty simple assumption: if we repeat the same value
154  * several times and then take the one that is occurring the most, we should
155  * find the correct value.
156  * Let's hope this dummy algorithm prevents us from losing the read-retry
157  * parameters.
158  */
159 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
160 {
161         int i, j, half = repeat / 2;
162
163         /*
164          * We only test the first half of the in array because we must ensure
165          * that the value is at least occurring repeat / 2 times.
166          *
167          * This loop is suboptimal since we may count the occurrences of the
168          * same value several time, but we are doing that on small sets, which
169          * makes it acceptable.
170          */
171         for (i = 0; i < half; i++) {
172                 int cnt = 0;
173                 u8 val = in[i];
174
175                 /* Count all values that are matching the one at index i. */
176                 for (j = i + 1; j < repeat; j++) {
177                         if (in[j] == val)
178                                 cnt++;
179                 }
180
181                 /* We found a value occurring more than repeat / 2. */
182                 if (cnt > half) {
183                         *out = val;
184                         return 0;
185                 }
186         }
187
188         return -EIO;
189 }
190
191 static int hynix_read_rr_otp(struct nand_chip *chip,
192                              const struct hynix_read_retry_otp *info,
193                              void *buf)
194 {
195         int i, ret;
196
197         ret = nand_reset_op(chip);
198         if (ret)
199                 return ret;
200
201         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
202         if (ret)
203                 return ret;
204
205         for (i = 0; i < info->nregs; i++) {
206                 ret = hynix_nand_reg_write_op(chip, info->regs[i],
207                                               info->values[i]);
208                 if (ret)
209                         return ret;
210         }
211
212         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
213         if (ret)
214                 return ret;
215
216         /* Sequence to enter OTP mode? */
217         ret = hynix_nand_cmd_op(chip, 0x17);
218         if (ret)
219                 return ret;
220
221         ret = hynix_nand_cmd_op(chip, 0x4);
222         if (ret)
223                 return ret;
224
225         ret = hynix_nand_cmd_op(chip, 0x19);
226         if (ret)
227                 return ret;
228
229         /* Now read the page */
230         ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
231         if (ret)
232                 return ret;
233
234         /* Put everything back to normal */
235         ret = nand_reset_op(chip);
236         if (ret)
237                 return ret;
238
239         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
240         if (ret)
241                 return ret;
242
243         ret = hynix_nand_reg_write_op(chip, 0x38, 0);
244         if (ret)
245                 return ret;
246
247         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
248         if (ret)
249                 return ret;
250
251         return nand_read_page_op(chip, 0, 0, NULL, 0);
252 }
253
254 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS                           0
255 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS                       8
256 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)            \
257         (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
258
259 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
260                                    int mode, int reg, bool inv, u8 *val)
261 {
262         u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
263         int val_offs = (mode * nregs) + reg;
264         int set_size = nmodes * nregs;
265         int i, ret;
266
267         for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
268                 int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
269
270                 tmp[i] = buf[val_offs + set_offs];
271         }
272
273         ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
274         if (ret)
275                 return ret;
276
277         if (inv)
278                 *val = ~*val;
279
280         return 0;
281 }
282
283 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
284         0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
285 };
286
287 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
288                                   const struct hynix_read_retry_otp *info)
289 {
290         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
291         struct hynix_read_retry *rr = NULL;
292         int ret, i, j;
293         u8 nregs, nmodes;
294         u8 *buf;
295
296         buf = kmalloc(info->size, GFP_KERNEL);
297         if (!buf)
298                 return -ENOMEM;
299
300         ret = hynix_read_rr_otp(chip, info, buf);
301         if (ret)
302                 goto out;
303
304         ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
305                                  &nmodes);
306         if (ret)
307                 goto out;
308
309         ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
310                                  NAND_HYNIX_1XNM_RR_REPEAT,
311                                  &nregs);
312         if (ret)
313                 goto out;
314
315         rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
316         if (!rr) {
317                 ret = -ENOMEM;
318                 goto out;
319         }
320
321         for (i = 0; i < nmodes; i++) {
322                 for (j = 0; j < nregs; j++) {
323                         u8 *val = rr->values + (i * nregs);
324
325                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
326                                                       false, val);
327                         if (!ret)
328                                 continue;
329
330                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
331                                                       true, val);
332                         if (ret)
333                                 goto out;
334                 }
335         }
336
337         rr->nregs = nregs;
338         rr->regs = hynix_1xnm_mlc_read_retry_regs;
339         hynix->read_retry = rr;
340         chip->setup_read_retry = hynix_nand_setup_read_retry;
341         chip->read_retries = nmodes;
342
343 out:
344         kfree(buf);
345
346         if (ret)
347                 kfree(rr);
348
349         return ret;
350 }
351
352 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
353 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
354
355 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
356         {
357                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
358                 .regs = hynix_mlc_1xnm_rr_otp_regs,
359                 .values = hynix_mlc_1xnm_rr_otp_values,
360                 .page = 0x21f,
361                 .size = 784
362         },
363         {
364                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
365                 .regs = hynix_mlc_1xnm_rr_otp_regs,
366                 .values = hynix_mlc_1xnm_rr_otp_values,
367                 .page = 0x200,
368                 .size = 528,
369         },
370 };
371
372 static int hynix_nand_rr_init(struct nand_chip *chip)
373 {
374         int i, ret = 0;
375         bool valid_jedecid;
376
377         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
378
379         /*
380          * We only support read-retry for 1xnm NANDs, and those NANDs all
381          * expose a valid JEDEC ID.
382          */
383         if (valid_jedecid) {
384                 u8 nand_tech = chip->id.data[5] >> 4;
385
386                 /* 1xnm technology */
387                 if (nand_tech == 4) {
388                         for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
389                              i++) {
390                                 /*
391                                  * FIXME: Hynix recommend to copy the
392                                  * read-retry OTP area into a normal page.
393                                  */
394                                 ret = hynix_mlc_1xnm_rr_init(chip,
395                                                 hynix_mlc_1xnm_rr_otps);
396                                 if (!ret)
397                                         break;
398                         }
399                 }
400         }
401
402         if (ret)
403                 pr_warn("failed to initialize read-retry infrastructure");
404
405         return 0;
406 }
407
408 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
409                                        bool valid_jedecid)
410 {
411         struct mtd_info *mtd = nand_to_mtd(chip);
412         struct nand_memory_organization *memorg;
413         u8 oobsize;
414
415         memorg = nanddev_get_memorg(&chip->base);
416
417         oobsize = ((chip->id.data[3] >> 2) & 0x3) |
418                   ((chip->id.data[3] >> 4) & 0x4);
419
420         if (valid_jedecid) {
421                 switch (oobsize) {
422                 case 0:
423                         memorg->oobsize = 2048;
424                         break;
425                 case 1:
426                         memorg->oobsize = 1664;
427                         break;
428                 case 2:
429                         memorg->oobsize = 1024;
430                         break;
431                 case 3:
432                         memorg->oobsize = 640;
433                         break;
434                 default:
435                         /*
436                          * We should never reach this case, but if that
437                          * happens, this probably means Hynix decided to use
438                          * a different extended ID format, and we should find
439                          * a way to support it.
440                          */
441                         WARN(1, "Invalid OOB size");
442                         break;
443                 }
444         } else {
445                 switch (oobsize) {
446                 case 0:
447                         memorg->oobsize = 128;
448                         break;
449                 case 1:
450                         memorg->oobsize = 224;
451                         break;
452                 case 2:
453                         memorg->oobsize = 448;
454                         break;
455                 case 3:
456                         memorg->oobsize = 64;
457                         break;
458                 case 4:
459                         memorg->oobsize = 32;
460                         break;
461                 case 5:
462                         memorg->oobsize = 16;
463                         break;
464                 case 6:
465                         memorg->oobsize = 640;
466                         break;
467                 default:
468                         /*
469                          * We should never reach this case, but if that
470                          * happens, this probably means Hynix decided to use
471                          * a different extended ID format, and we should find
472                          * a way to support it.
473                          */
474                         WARN(1, "Invalid OOB size");
475                         break;
476                 }
477
478                 /*
479                  * The datasheet of H27UCG8T2BTR mentions that the "Redundant
480                  * Area Size" is encoded "per 8KB" (page size). This chip uses
481                  * a page size of 16KiB. The datasheet mentions an OOB size of
482                  * 1.280 bytes, but the OOB size encoded in the ID bytes (using
483                  * the existing logic above) is 640 bytes.
484                  * Update the OOB size for this chip by taking the value
485                  * determined above and scaling it to the actual page size (so
486                  * the actual OOB size for this chip is: 640 * 16k / 8k).
487                  */
488                 if (chip->id.data[1] == 0xde)
489                         memorg->oobsize *= memorg->pagesize / SZ_8K;
490         }
491
492         mtd->oobsize = memorg->oobsize;
493 }
494
495 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
496                                                 bool valid_jedecid)
497 {
498         u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
499
500         if (valid_jedecid) {
501                 /* Reference: H27UCG8T2E datasheet */
502                 chip->base.eccreq.step_size = 1024;
503
504                 switch (ecc_level) {
505                 case 0:
506                         chip->base.eccreq.step_size = 0;
507                         chip->base.eccreq.strength = 0;
508                         break;
509                 case 1:
510                         chip->base.eccreq.strength = 4;
511                         break;
512                 case 2:
513                         chip->base.eccreq.strength = 24;
514                         break;
515                 case 3:
516                         chip->base.eccreq.strength = 32;
517                         break;
518                 case 4:
519                         chip->base.eccreq.strength = 40;
520                         break;
521                 case 5:
522                         chip->base.eccreq.strength = 50;
523                         break;
524                 case 6:
525                         chip->base.eccreq.strength = 60;
526                         break;
527                 default:
528                         /*
529                          * We should never reach this case, but if that
530                          * happens, this probably means Hynix decided to use
531                          * a different extended ID format, and we should find
532                          * a way to support it.
533                          */
534                         WARN(1, "Invalid ECC requirements");
535                 }
536         } else {
537                 /*
538                  * The ECC requirements field meaning depends on the
539                  * NAND technology.
540                  */
541                 u8 nand_tech = chip->id.data[5] & 0x7;
542
543                 if (nand_tech < 3) {
544                         /* > 26nm, reference: H27UBG8T2A datasheet */
545                         if (ecc_level < 5) {
546                                 chip->base.eccreq.step_size = 512;
547                                 chip->base.eccreq.strength = 1 << ecc_level;
548                         } else if (ecc_level < 7) {
549                                 if (ecc_level == 5)
550                                         chip->base.eccreq.step_size = 2048;
551                                 else
552                                         chip->base.eccreq.step_size = 1024;
553                                 chip->base.eccreq.strength = 24;
554                         } else {
555                                 /*
556                                  * We should never reach this case, but if that
557                                  * happens, this probably means Hynix decided
558                                  * to use a different extended ID format, and
559                                  * we should find a way to support it.
560                                  */
561                                 WARN(1, "Invalid ECC requirements");
562                         }
563                 } else {
564                         /* <= 26nm, reference: H27UBG8T2B datasheet */
565                         if (!ecc_level) {
566                                 chip->base.eccreq.step_size = 0;
567                                 chip->base.eccreq.strength = 0;
568                         } else if (ecc_level < 5) {
569                                 chip->base.eccreq.step_size = 512;
570                                 chip->base.eccreq.strength = 1 << (ecc_level - 1);
571                         } else {
572                                 chip->base.eccreq.step_size = 1024;
573                                 chip->base.eccreq.strength = 24 +
574                                                         (8 * (ecc_level - 5));
575                         }
576                 }
577         }
578 }
579
580 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
581                                                        bool valid_jedecid)
582 {
583         u8 nand_tech;
584
585         /* We need scrambling on all TLC NANDs*/
586         if (nanddev_bits_per_cell(&chip->base) > 2)
587                 chip->options |= NAND_NEED_SCRAMBLING;
588
589         /* And on MLC NANDs with sub-3xnm process */
590         if (valid_jedecid) {
591                 nand_tech = chip->id.data[5] >> 4;
592
593                 /* < 3xnm */
594                 if (nand_tech > 0)
595                         chip->options |= NAND_NEED_SCRAMBLING;
596         } else {
597                 nand_tech = chip->id.data[5] & 0x7;
598
599                 /* < 32nm */
600                 if (nand_tech > 2)
601                         chip->options |= NAND_NEED_SCRAMBLING;
602         }
603 }
604
605 static void hynix_nand_decode_id(struct nand_chip *chip)
606 {
607         struct mtd_info *mtd = nand_to_mtd(chip);
608         struct nand_memory_organization *memorg;
609         bool valid_jedecid;
610         u8 tmp;
611
612         memorg = nanddev_get_memorg(&chip->base);
613
614         /*
615          * Exclude all SLC NANDs from this advanced detection scheme.
616          * According to the ranges defined in several datasheets, it might
617          * appear that even SLC NANDs could fall in this extended ID scheme.
618          * If that the case rework the test to let SLC NANDs go through the
619          * detection process.
620          */
621         if (chip->id.len < 6 || nand_is_slc(chip)) {
622                 nand_decode_ext_id(chip);
623                 return;
624         }
625
626         /* Extract pagesize */
627         memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
628         mtd->writesize = memorg->pagesize;
629
630         tmp = (chip->id.data[3] >> 4) & 0x3;
631         /*
632          * When bit7 is set that means we start counting at 1MiB, otherwise
633          * we start counting at 128KiB and shift this value the content of
634          * ID[3][4:5].
635          * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
636          * this case the erasesize is set to 768KiB.
637          */
638         if (chip->id.data[3] & 0x80) {
639                 memorg->pages_per_eraseblock = (SZ_1M << tmp) /
640                                                memorg->pagesize;
641                 mtd->erasesize = SZ_1M << tmp;
642         } else if (tmp == 3) {
643                 memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
644                                                memorg->pagesize;
645                 mtd->erasesize = SZ_512K + SZ_256K;
646         } else {
647                 memorg->pages_per_eraseblock = (SZ_128K << tmp) /
648                                                memorg->pagesize;
649                 mtd->erasesize = SZ_128K << tmp;
650         }
651
652         /*
653          * Modern Toggle DDR NANDs have a valid JEDECID even though they are
654          * not exposing a valid JEDEC parameter table.
655          * These NANDs use a different NAND ID scheme.
656          */
657         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
658
659         hynix_nand_extract_oobsize(chip, valid_jedecid);
660         hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
661         hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
662 }
663
664 static void hynix_nand_cleanup(struct nand_chip *chip)
665 {
666         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
667
668         if (!hynix)
669                 return;
670
671         kfree(hynix->read_retry);
672         kfree(hynix);
673         nand_set_manufacturer_data(chip, NULL);
674 }
675
676 static int hynix_nand_init(struct nand_chip *chip)
677 {
678         struct hynix_nand *hynix;
679         int ret;
680
681         if (!nand_is_slc(chip))
682                 chip->options |= NAND_BBM_LASTPAGE;
683         else
684                 chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
685
686         hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
687         if (!hynix)
688                 return -ENOMEM;
689
690         nand_set_manufacturer_data(chip, hynix);
691
692         ret = hynix_nand_rr_init(chip);
693         if (ret)
694                 hynix_nand_cleanup(chip);
695
696         return ret;
697 }
698
699 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
700         .detect = hynix_nand_decode_id,
701         .init = hynix_nand_init,
702         .cleanup = hynix_nand_cleanup,
703 };