Merge tag '6.6-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / lpc32xx_mlc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for NAND MLC Controller in LPC32xx
4  *
5  * Author: Roland Stigge <stigge@antcom.de>
6  *
7  * Copyright © 2011 WORK Microwave GmbH
8  * Copyright © 2011, 2012 Roland Stigge
9  *
10  * NAND Flash Controller Operation:
11  * - Read: Auto Decode
12  * - Write: Auto Encode
13  * - Tested Page Sizes: 2048, 4096
14  */
15
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/clk.h>
23 #include <linux/err.h>
24 #include <linux/delay.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/of.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/mtd/lpc32xx_mlc.h>
30 #include <linux/io.h>
31 #include <linux/mm.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dmaengine.h>
34
35 #define DRV_NAME "lpc32xx_mlc"
36
37 /**********************************************************************
38 * MLC NAND controller register offsets
39 **********************************************************************/
40
41 #define MLC_BUFF(x)                     (x + 0x00000)
42 #define MLC_DATA(x)                     (x + 0x08000)
43 #define MLC_CMD(x)                      (x + 0x10000)
44 #define MLC_ADDR(x)                     (x + 0x10004)
45 #define MLC_ECC_ENC_REG(x)              (x + 0x10008)
46 #define MLC_ECC_DEC_REG(x)              (x + 0x1000C)
47 #define MLC_ECC_AUTO_ENC_REG(x)         (x + 0x10010)
48 #define MLC_ECC_AUTO_DEC_REG(x)         (x + 0x10014)
49 #define MLC_RPR(x)                      (x + 0x10018)
50 #define MLC_WPR(x)                      (x + 0x1001C)
51 #define MLC_RUBP(x)                     (x + 0x10020)
52 #define MLC_ROBP(x)                     (x + 0x10024)
53 #define MLC_SW_WP_ADD_LOW(x)            (x + 0x10028)
54 #define MLC_SW_WP_ADD_HIG(x)            (x + 0x1002C)
55 #define MLC_ICR(x)                      (x + 0x10030)
56 #define MLC_TIME_REG(x)                 (x + 0x10034)
57 #define MLC_IRQ_MR(x)                   (x + 0x10038)
58 #define MLC_IRQ_SR(x)                   (x + 0x1003C)
59 #define MLC_LOCK_PR(x)                  (x + 0x10044)
60 #define MLC_ISR(x)                      (x + 0x10048)
61 #define MLC_CEH(x)                      (x + 0x1004C)
62
63 /**********************************************************************
64 * MLC_CMD bit definitions
65 **********************************************************************/
66 #define MLCCMD_RESET                    0xFF
67
68 /**********************************************************************
69 * MLC_ICR bit definitions
70 **********************************************************************/
71 #define MLCICR_WPROT                    (1 << 3)
72 #define MLCICR_LARGEBLOCK               (1 << 2)
73 #define MLCICR_LONGADDR                 (1 << 1)
74 #define MLCICR_16BIT                    (1 << 0)  /* unsupported by LPC32x0! */
75
76 /**********************************************************************
77 * MLC_TIME_REG bit definitions
78 **********************************************************************/
79 #define MLCTIMEREG_TCEA_DELAY(n)        (((n) & 0x03) << 24)
80 #define MLCTIMEREG_BUSY_DELAY(n)        (((n) & 0x1F) << 19)
81 #define MLCTIMEREG_NAND_TA(n)           (((n) & 0x07) << 16)
82 #define MLCTIMEREG_RD_HIGH(n)           (((n) & 0x0F) << 12)
83 #define MLCTIMEREG_RD_LOW(n)            (((n) & 0x0F) << 8)
84 #define MLCTIMEREG_WR_HIGH(n)           (((n) & 0x0F) << 4)
85 #define MLCTIMEREG_WR_LOW(n)            (((n) & 0x0F) << 0)
86
87 /**********************************************************************
88 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
89 **********************************************************************/
90 #define MLCIRQ_NAND_READY               (1 << 5)
91 #define MLCIRQ_CONTROLLER_READY         (1 << 4)
92 #define MLCIRQ_DECODE_FAILURE           (1 << 3)
93 #define MLCIRQ_DECODE_ERROR             (1 << 2)
94 #define MLCIRQ_ECC_READY                (1 << 1)
95 #define MLCIRQ_WRPROT_FAULT             (1 << 0)
96
97 /**********************************************************************
98 * MLC_LOCK_PR bit definitions
99 **********************************************************************/
100 #define MLCLOCKPR_MAGIC                 0xA25E
101
102 /**********************************************************************
103 * MLC_ISR bit definitions
104 **********************************************************************/
105 #define MLCISR_DECODER_FAILURE          (1 << 6)
106 #define MLCISR_ERRORS                   ((1 << 4) | (1 << 5))
107 #define MLCISR_ERRORS_DETECTED          (1 << 3)
108 #define MLCISR_ECC_READY                (1 << 2)
109 #define MLCISR_CONTROLLER_READY         (1 << 1)
110 #define MLCISR_NAND_READY               (1 << 0)
111
112 /**********************************************************************
113 * MLC_CEH bit definitions
114 **********************************************************************/
115 #define MLCCEH_NORMAL                   (1 << 0)
116
117 struct lpc32xx_nand_cfg_mlc {
118         uint32_t tcea_delay;
119         uint32_t busy_delay;
120         uint32_t nand_ta;
121         uint32_t rd_high;
122         uint32_t rd_low;
123         uint32_t wr_high;
124         uint32_t wr_low;
125         struct mtd_partition *parts;
126         unsigned num_parts;
127 };
128
129 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
130                                  struct mtd_oob_region *oobregion)
131 {
132         struct nand_chip *nand_chip = mtd_to_nand(mtd);
133
134         if (section >= nand_chip->ecc.steps)
135                 return -ERANGE;
136
137         oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
138         oobregion->length = nand_chip->ecc.bytes;
139
140         return 0;
141 }
142
143 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
144                                   struct mtd_oob_region *oobregion)
145 {
146         struct nand_chip *nand_chip = mtd_to_nand(mtd);
147
148         if (section >= nand_chip->ecc.steps)
149                 return -ERANGE;
150
151         oobregion->offset = 16 * section;
152         oobregion->length = 16 - nand_chip->ecc.bytes;
153
154         return 0;
155 }
156
157 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
158         .ecc = lpc32xx_ooblayout_ecc,
159         .free = lpc32xx_ooblayout_free,
160 };
161
162 static struct nand_bbt_descr lpc32xx_nand_bbt = {
163         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
164                    NAND_BBT_WRITE,
165         .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
166 };
167
168 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
169         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
170                    NAND_BBT_WRITE,
171         .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
172 };
173
174 struct lpc32xx_nand_host {
175         struct platform_device  *pdev;
176         struct nand_chip        nand_chip;
177         struct lpc32xx_mlc_platform_data *pdata;
178         struct clk              *clk;
179         struct gpio_desc        *wp_gpio;
180         void __iomem            *io_base;
181         int                     irq;
182         struct lpc32xx_nand_cfg_mlc     *ncfg;
183         struct completion       comp_nand;
184         struct completion       comp_controller;
185         uint32_t llptr;
186         /*
187          * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
188          */
189         dma_addr_t              oob_buf_phy;
190         /*
191          * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
192          */
193         uint8_t                 *oob_buf;
194         /* Physical address of DMA base address */
195         dma_addr_t              io_base_phy;
196
197         struct completion       comp_dma;
198         struct dma_chan         *dma_chan;
199         struct dma_slave_config dma_slave_config;
200         struct scatterlist      sgl;
201         uint8_t                 *dma_buf;
202         uint8_t                 *dummy_buf;
203         int                     mlcsubpages; /* number of 512bytes-subpages */
204 };
205
206 /*
207  * Activate/Deactivate DMA Operation:
208  *
209  * Using the PL080 DMA Controller for transferring the 512 byte subpages
210  * instead of doing readl() / writel() in a loop slows it down significantly.
211  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
212  *
213  * - readl() of 128 x 32 bits in a loop: ~20us
214  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
215  * - DMA read of 512 bytes (32 bit, no bursts): ~100us
216  *
217  * This applies to the transfer itself. In the DMA case: only the
218  * wait_for_completion() (DMA setup _not_ included).
219  *
220  * Note that the 512 bytes subpage transfer is done directly from/to a
221  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
222  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
223  * controller transferring data between its internal buffer to/from the NAND
224  * chip.)
225  *
226  * Therefore, using the PL080 DMA is disabled by default, for now.
227  *
228  */
229 static int use_dma;
230
231 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
232 {
233         uint32_t clkrate, tmp;
234
235         /* Reset MLC controller */
236         writel(MLCCMD_RESET, MLC_CMD(host->io_base));
237         udelay(1000);
238
239         /* Get base clock for MLC block */
240         clkrate = clk_get_rate(host->clk);
241         if (clkrate == 0)
242                 clkrate = 104000000;
243
244         /* Unlock MLC_ICR
245          * (among others, will be locked again automatically) */
246         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
247
248         /* Configure MLC Controller: Large Block, 5 Byte Address */
249         tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
250         writel(tmp, MLC_ICR(host->io_base));
251
252         /* Unlock MLC_TIME_REG
253          * (among others, will be locked again automatically) */
254         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
255
256         /* Compute clock setup values, see LPC and NAND manual */
257         tmp = 0;
258         tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
259         tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
260         tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
261         tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
262         tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
263         tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
264         tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
265         writel(tmp, MLC_TIME_REG(host->io_base));
266
267         /* Enable IRQ for CONTROLLER_READY and NAND_READY */
268         writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
269                         MLC_IRQ_MR(host->io_base));
270
271         /* Normal nCE operation: nCE controlled by controller */
272         writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
273 }
274
275 /*
276  * Hardware specific access to control lines
277  */
278 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
279                                   unsigned int ctrl)
280 {
281         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
282
283         if (cmd != NAND_CMD_NONE) {
284                 if (ctrl & NAND_CLE)
285                         writel(cmd, MLC_CMD(host->io_base));
286                 else
287                         writel(cmd, MLC_ADDR(host->io_base));
288         }
289 }
290
291 /*
292  * Read Device Ready (NAND device _and_ controller ready)
293  */
294 static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
295 {
296         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
297
298         if ((readb(MLC_ISR(host->io_base)) &
299              (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
300             (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
301                 return  1;
302
303         return 0;
304 }
305
306 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
307 {
308         uint8_t sr;
309
310         /* Clear interrupt flag by reading status */
311         sr = readb(MLC_IRQ_SR(host->io_base));
312         if (sr & MLCIRQ_NAND_READY)
313                 complete(&host->comp_nand);
314         if (sr & MLCIRQ_CONTROLLER_READY)
315                 complete(&host->comp_controller);
316
317         return IRQ_HANDLED;
318 }
319
320 static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
321 {
322         struct mtd_info *mtd = nand_to_mtd(chip);
323         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
324
325         if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
326                 goto exit;
327
328         wait_for_completion(&host->comp_nand);
329
330         while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
331                 /* Seems to be delayed sometimes by controller */
332                 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
333                 cpu_relax();
334         }
335
336 exit:
337         return NAND_STATUS_READY;
338 }
339
340 static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
341 {
342         struct mtd_info *mtd = nand_to_mtd(chip);
343         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
344
345         if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
346                 goto exit;
347
348         wait_for_completion(&host->comp_controller);
349
350         while (!(readb(MLC_ISR(host->io_base)) &
351                  MLCISR_CONTROLLER_READY)) {
352                 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
353                 cpu_relax();
354         }
355
356 exit:
357         return NAND_STATUS_READY;
358 }
359
360 static int lpc32xx_waitfunc(struct nand_chip *chip)
361 {
362         lpc32xx_waitfunc_nand(chip);
363         lpc32xx_waitfunc_controller(chip);
364
365         return NAND_STATUS_READY;
366 }
367
368 /*
369  * Enable NAND write protect
370  */
371 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
372 {
373         if (host->wp_gpio)
374                 gpiod_set_value_cansleep(host->wp_gpio, 1);
375 }
376
377 /*
378  * Disable NAND write protect
379  */
380 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
381 {
382         if (host->wp_gpio)
383                 gpiod_set_value_cansleep(host->wp_gpio, 0);
384 }
385
386 static void lpc32xx_dma_complete_func(void *completion)
387 {
388         complete(completion);
389 }
390
391 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
392                             enum dma_transfer_direction dir)
393 {
394         struct nand_chip *chip = mtd_to_nand(mtd);
395         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
396         struct dma_async_tx_descriptor *desc;
397         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
398         int res;
399
400         sg_init_one(&host->sgl, mem, len);
401
402         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
403                          DMA_BIDIRECTIONAL);
404         if (res != 1) {
405                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
406                 return -ENXIO;
407         }
408         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
409                                        flags);
410         if (!desc) {
411                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
412                 goto out1;
413         }
414
415         init_completion(&host->comp_dma);
416         desc->callback = lpc32xx_dma_complete_func;
417         desc->callback_param = &host->comp_dma;
418
419         dmaengine_submit(desc);
420         dma_async_issue_pending(host->dma_chan);
421
422         wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
423
424         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
425                      DMA_BIDIRECTIONAL);
426         return 0;
427 out1:
428         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
429                      DMA_BIDIRECTIONAL);
430         return -ENXIO;
431 }
432
433 static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
434                              int oob_required, int page)
435 {
436         struct mtd_info *mtd = nand_to_mtd(chip);
437         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
438         int i, j;
439         uint8_t *oobbuf = chip->oob_poi;
440         uint32_t mlc_isr;
441         int res;
442         uint8_t *dma_buf;
443         bool dma_mapped;
444
445         if ((void *)buf <= high_memory) {
446                 dma_buf = buf;
447                 dma_mapped = true;
448         } else {
449                 dma_buf = host->dma_buf;
450                 dma_mapped = false;
451         }
452
453         /* Writing Command and Address */
454         nand_read_page_op(chip, page, 0, NULL, 0);
455
456         /* For all sub-pages */
457         for (i = 0; i < host->mlcsubpages; i++) {
458                 /* Start Auto Decode Command */
459                 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
460
461                 /* Wait for Controller Ready */
462                 lpc32xx_waitfunc_controller(chip);
463
464                 /* Check ECC Error status */
465                 mlc_isr = readl(MLC_ISR(host->io_base));
466                 if (mlc_isr & MLCISR_DECODER_FAILURE) {
467                         mtd->ecc_stats.failed++;
468                         dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
469                 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
470                         mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
471                 }
472
473                 /* Read 512 + 16 Bytes */
474                 if (use_dma) {
475                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
476                                                DMA_DEV_TO_MEM);
477                         if (res)
478                                 return res;
479                 } else {
480                         for (j = 0; j < (512 >> 2); j++) {
481                                 *((uint32_t *)(buf)) =
482                                         readl(MLC_BUFF(host->io_base));
483                                 buf += 4;
484                         }
485                 }
486                 for (j = 0; j < (16 >> 2); j++) {
487                         *((uint32_t *)(oobbuf)) =
488                                 readl(MLC_BUFF(host->io_base));
489                         oobbuf += 4;
490                 }
491         }
492
493         if (use_dma && !dma_mapped)
494                 memcpy(buf, dma_buf, mtd->writesize);
495
496         return 0;
497 }
498
499 static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
500                                        const uint8_t *buf, int oob_required,
501                                        int page)
502 {
503         struct mtd_info *mtd = nand_to_mtd(chip);
504         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
505         const uint8_t *oobbuf = chip->oob_poi;
506         uint8_t *dma_buf = (uint8_t *)buf;
507         int res;
508         int i, j;
509
510         if (use_dma && (void *)buf >= high_memory) {
511                 dma_buf = host->dma_buf;
512                 memcpy(dma_buf, buf, mtd->writesize);
513         }
514
515         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
516
517         for (i = 0; i < host->mlcsubpages; i++) {
518                 /* Start Encode */
519                 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
520
521                 /* Write 512 + 6 Bytes to Buffer */
522                 if (use_dma) {
523                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
524                                                DMA_MEM_TO_DEV);
525                         if (res)
526                                 return res;
527                 } else {
528                         for (j = 0; j < (512 >> 2); j++) {
529                                 writel(*((uint32_t *)(buf)),
530                                        MLC_BUFF(host->io_base));
531                                 buf += 4;
532                         }
533                 }
534                 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
535                 oobbuf += 4;
536                 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
537                 oobbuf += 12;
538
539                 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
540                 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
541
542                 /* Wait for Controller Ready */
543                 lpc32xx_waitfunc_controller(chip);
544         }
545
546         return nand_prog_page_end_op(chip);
547 }
548
549 static int lpc32xx_read_oob(struct nand_chip *chip, int page)
550 {
551         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
552
553         /* Read whole page - necessary with MLC controller! */
554         lpc32xx_read_page(chip, host->dummy_buf, 1, page);
555
556         return 0;
557 }
558
559 static int lpc32xx_write_oob(struct nand_chip *chip, int page)
560 {
561         /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
562         return 0;
563 }
564
565 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
566 static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
567 {
568         /* Always enabled! */
569 }
570
571 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
572 {
573         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
574         dma_cap_mask_t mask;
575
576         if (!host->pdata || !host->pdata->dma_filter) {
577                 dev_err(mtd->dev.parent, "no DMA platform data\n");
578                 return -ENOENT;
579         }
580
581         dma_cap_zero(mask);
582         dma_cap_set(DMA_SLAVE, mask);
583         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
584                                              "nand-mlc");
585         if (!host->dma_chan) {
586                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
587                 return -EBUSY;
588         }
589
590         /*
591          * Set direction to a sensible value even if the dmaengine driver
592          * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
593          * driver criticizes it as "alien transfer direction".
594          */
595         host->dma_slave_config.direction = DMA_DEV_TO_MEM;
596         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
597         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
598         host->dma_slave_config.src_maxburst = 128;
599         host->dma_slave_config.dst_maxburst = 128;
600         /* DMA controller does flow control: */
601         host->dma_slave_config.device_fc = false;
602         host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
603         host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
604         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
605                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
606                 goto out1;
607         }
608
609         return 0;
610 out1:
611         dma_release_channel(host->dma_chan);
612         return -ENXIO;
613 }
614
615 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
616 {
617         struct lpc32xx_nand_cfg_mlc *ncfg;
618         struct device_node *np = dev->of_node;
619
620         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
621         if (!ncfg)
622                 return NULL;
623
624         of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
625         of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
626         of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
627         of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
628         of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
629         of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
630         of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
631
632         if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
633             !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
634             !ncfg->wr_low) {
635                 dev_err(dev, "chip parameters not specified correctly\n");
636                 return NULL;
637         }
638
639         return ncfg;
640 }
641
642 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
643 {
644         struct mtd_info *mtd = nand_to_mtd(chip);
645         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
646         struct device *dev = &host->pdev->dev;
647
648         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
649                 return 0;
650
651         host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
652         if (!host->dma_buf)
653                 return -ENOMEM;
654
655         host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
656         if (!host->dummy_buf)
657                 return -ENOMEM;
658
659         chip->ecc.size = 512;
660         chip->ecc.hwctl = lpc32xx_ecc_enable;
661         chip->ecc.read_page_raw = lpc32xx_read_page;
662         chip->ecc.read_page = lpc32xx_read_page;
663         chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
664         chip->ecc.write_page = lpc32xx_write_page_lowlevel;
665         chip->ecc.write_oob = lpc32xx_write_oob;
666         chip->ecc.read_oob = lpc32xx_read_oob;
667         chip->ecc.strength = 4;
668         chip->ecc.bytes = 10;
669
670         mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
671         host->mlcsubpages = mtd->writesize / 512;
672
673         return 0;
674 }
675
676 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
677         .attach_chip = lpc32xx_nand_attach_chip,
678 };
679
680 /*
681  * Probe for NAND controller
682  */
683 static int lpc32xx_nand_probe(struct platform_device *pdev)
684 {
685         struct lpc32xx_nand_host *host;
686         struct mtd_info *mtd;
687         struct nand_chip *nand_chip;
688         struct resource *rc;
689         int res;
690
691         /* Allocate memory for the device structure (and zero it) */
692         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
693         if (!host)
694                 return -ENOMEM;
695
696         host->pdev = pdev;
697
698         host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc);
699         if (IS_ERR(host->io_base))
700                 return PTR_ERR(host->io_base);
701
702         host->io_base_phy = rc->start;
703
704         nand_chip = &host->nand_chip;
705         mtd = nand_to_mtd(nand_chip);
706         if (pdev->dev.of_node)
707                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
708         if (!host->ncfg) {
709                 dev_err(&pdev->dev,
710                         "Missing or bad NAND config from device tree\n");
711                 return -ENOENT;
712         }
713
714         /* Start with WP disabled, if available */
715         host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW);
716         res = PTR_ERR_OR_ZERO(host->wp_gpio);
717         if (res) {
718                 if (res != -EPROBE_DEFER)
719                         dev_err(&pdev->dev, "WP GPIO is not available: %d\n",
720                                 res);
721                 return res;
722         }
723
724         gpiod_set_consumer_name(host->wp_gpio, "NAND WP");
725
726         host->pdata = dev_get_platdata(&pdev->dev);
727
728         /* link the private data structures */
729         nand_set_controller_data(nand_chip, host);
730         nand_set_flash_node(nand_chip, pdev->dev.of_node);
731         mtd->dev.parent = &pdev->dev;
732
733         /* Get NAND clock */
734         host->clk = clk_get(&pdev->dev, NULL);
735         if (IS_ERR(host->clk)) {
736                 dev_err(&pdev->dev, "Clock initialization failure\n");
737                 res = -ENOENT;
738                 goto free_gpio;
739         }
740         res = clk_prepare_enable(host->clk);
741         if (res)
742                 goto put_clk;
743
744         nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
745         nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
746         nand_chip->legacy.chip_delay = 25; /* us */
747         nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
748         nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
749
750         /* Init NAND controller */
751         lpc32xx_nand_setup(host);
752
753         platform_set_drvdata(pdev, host);
754
755         /* Initialize function pointers */
756         nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
757
758         nand_chip->options = NAND_NO_SUBPAGE_WRITE;
759         nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
760         nand_chip->bbt_td = &lpc32xx_nand_bbt;
761         nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
762
763         if (use_dma) {
764                 res = lpc32xx_dma_setup(host);
765                 if (res) {
766                         res = -EIO;
767                         goto unprepare_clk;
768                 }
769         }
770
771         /* initially clear interrupt status */
772         readb(MLC_IRQ_SR(host->io_base));
773
774         init_completion(&host->comp_nand);
775         init_completion(&host->comp_controller);
776
777         host->irq = platform_get_irq(pdev, 0);
778         if (host->irq < 0) {
779                 res = -EINVAL;
780                 goto release_dma_chan;
781         }
782
783         if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
784                         IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
785                 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
786                 res = -ENXIO;
787                 goto release_dma_chan;
788         }
789
790         /*
791          * Scan to find existence of the device and get the type of NAND device:
792          * SMALL block or LARGE block.
793          */
794         nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
795         res = nand_scan(nand_chip, 1);
796         if (res)
797                 goto free_irq;
798
799         mtd->name = DRV_NAME;
800
801         res = mtd_device_register(mtd, host->ncfg->parts,
802                                   host->ncfg->num_parts);
803         if (res)
804                 goto cleanup_nand;
805
806         return 0;
807
808 cleanup_nand:
809         nand_cleanup(nand_chip);
810 free_irq:
811         free_irq(host->irq, host);
812 release_dma_chan:
813         if (use_dma)
814                 dma_release_channel(host->dma_chan);
815 unprepare_clk:
816         clk_disable_unprepare(host->clk);
817 put_clk:
818         clk_put(host->clk);
819 free_gpio:
820         lpc32xx_wp_enable(host);
821         gpiod_put(host->wp_gpio);
822
823         return res;
824 }
825
826 /*
827  * Remove NAND device
828  */
829 static void lpc32xx_nand_remove(struct platform_device *pdev)
830 {
831         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
832         struct nand_chip *chip = &host->nand_chip;
833         int ret;
834
835         ret = mtd_device_unregister(nand_to_mtd(chip));
836         WARN_ON(ret);
837         nand_cleanup(chip);
838
839         free_irq(host->irq, host);
840         if (use_dma)
841                 dma_release_channel(host->dma_chan);
842
843         clk_disable_unprepare(host->clk);
844         clk_put(host->clk);
845
846         lpc32xx_wp_enable(host);
847         gpiod_put(host->wp_gpio);
848 }
849
850 static int lpc32xx_nand_resume(struct platform_device *pdev)
851 {
852         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
853         int ret;
854
855         /* Re-enable NAND clock */
856         ret = clk_prepare_enable(host->clk);
857         if (ret)
858                 return ret;
859
860         /* Fresh init of NAND controller */
861         lpc32xx_nand_setup(host);
862
863         /* Disable write protect */
864         lpc32xx_wp_disable(host);
865
866         return 0;
867 }
868
869 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
870 {
871         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
872
873         /* Enable write protect for safety */
874         lpc32xx_wp_enable(host);
875
876         /* Disable clock */
877         clk_disable_unprepare(host->clk);
878         return 0;
879 }
880
881 static const struct of_device_id lpc32xx_nand_match[] = {
882         { .compatible = "nxp,lpc3220-mlc" },
883         { /* sentinel */ },
884 };
885 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
886
887 static struct platform_driver lpc32xx_nand_driver = {
888         .probe          = lpc32xx_nand_probe,
889         .remove_new     = lpc32xx_nand_remove,
890         .resume         = pm_ptr(lpc32xx_nand_resume),
891         .suspend        = pm_ptr(lpc32xx_nand_suspend),
892         .driver         = {
893                 .name   = DRV_NAME,
894                 .of_match_table = lpc32xx_nand_match,
895         },
896 };
897
898 module_platform_driver(lpc32xx_nand_driver);
899
900 MODULE_LICENSE("GPL");
901 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
902 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");