]> git.samba.org - sfrench/cifs-2.6.git/blob - drivers/mtd/nand/raw/atmel/pmecc.c
PCI: hv: Remove unused hv_set_msi_entry_from_desc()
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / atmel / pmecc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *      Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *      Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20  *      Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21  *
22  *   Derived from Das U-Boot source code
23  *      (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25  *
26  *   Add Programmable Multibit ECC support for various AT91 SoC
27  *      Copyright 2012 ATMEL, Hong Xu
28  *
29  *   Add Nand Flash Controller support for SAMA5 SoC
30  *      Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31  *
32  * The PMECC is an hardware assisted BCH engine, which means part of the
33  * ECC algorithm is left to the software. The hardware/software repartition
34  * is explained in the "PMECC Controller Functional Description" chapter in
35  * Atmel datasheets, and some of the functions in this file are directly
36  * implementing the algorithms described in the "Software Implementation"
37  * sub-section.
38  *
39  * TODO: it seems that the software BCH implementation in lib/bch.c is already
40  * providing some of the logic we are implementing here. It would be smart
41  * to expose the needed lib/bch.c helpers/functions and re-use them here.
42  */
43
44 #include <linux/genalloc.h>
45 #include <linux/iopoll.h>
46 #include <linux/module.h>
47 #include <linux/mtd/rawnand.h>
48 #include <linux/of_irq.h>
49 #include <linux/of_platform.h>
50 #include <linux/platform_device.h>
51 #include <linux/slab.h>
52
53 #include "pmecc.h"
54
55 /* Galois field dimension */
56 #define PMECC_GF_DIMENSION_13                   13
57 #define PMECC_GF_DIMENSION_14                   14
58
59 /* Primitive Polynomial used by PMECC */
60 #define PMECC_GF_13_PRIMITIVE_POLY              0x201b
61 #define PMECC_GF_14_PRIMITIVE_POLY              0x4443
62
63 #define PMECC_LOOKUP_TABLE_SIZE_512             0x2000
64 #define PMECC_LOOKUP_TABLE_SIZE_1024            0x4000
65
66 /* Time out value for reading PMECC status register */
67 #define PMECC_MAX_TIMEOUT_MS                    100
68
69 /* PMECC Register Definitions */
70 #define ATMEL_PMECC_CFG                         0x0
71 #define PMECC_CFG_BCH_STRENGTH(x)               (x)
72 #define PMECC_CFG_BCH_STRENGTH_MASK             GENMASK(2, 0)
73 #define PMECC_CFG_SECTOR512                     (0 << 4)
74 #define PMECC_CFG_SECTOR1024                    (1 << 4)
75 #define PMECC_CFG_NSECTORS(x)                   ((fls(x) - 1) << 8)
76 #define PMECC_CFG_READ_OP                       (0 << 12)
77 #define PMECC_CFG_WRITE_OP                      (1 << 12)
78 #define PMECC_CFG_SPARE_ENABLE                  BIT(16)
79 #define PMECC_CFG_AUTO_ENABLE                   BIT(20)
80
81 #define ATMEL_PMECC_SAREA                       0x4
82 #define ATMEL_PMECC_SADDR                       0x8
83 #define ATMEL_PMECC_EADDR                       0xc
84
85 #define ATMEL_PMECC_CLK                         0x10
86 #define PMECC_CLK_133MHZ                        (2 << 0)
87
88 #define ATMEL_PMECC_CTRL                        0x14
89 #define PMECC_CTRL_RST                          BIT(0)
90 #define PMECC_CTRL_DATA                         BIT(1)
91 #define PMECC_CTRL_USER                         BIT(2)
92 #define PMECC_CTRL_ENABLE                       BIT(4)
93 #define PMECC_CTRL_DISABLE                      BIT(5)
94
95 #define ATMEL_PMECC_SR                          0x18
96 #define PMECC_SR_BUSY                           BIT(0)
97 #define PMECC_SR_ENABLE                         BIT(4)
98
99 #define ATMEL_PMECC_IER                         0x1c
100 #define ATMEL_PMECC_IDR                         0x20
101 #define ATMEL_PMECC_IMR                         0x24
102 #define ATMEL_PMECC_ISR                         0x28
103 #define PMECC_ERROR_INT                         BIT(0)
104
105 #define ATMEL_PMECC_ECC(sector, n)              \
106         ((((sector) + 1) * 0x40) + (n))
107
108 #define ATMEL_PMECC_REM(sector, n)              \
109         ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
110
111 /* PMERRLOC Register Definitions */
112 #define ATMEL_PMERRLOC_ELCFG                    0x0
113 #define PMERRLOC_ELCFG_SECTOR_512               (0 << 0)
114 #define PMERRLOC_ELCFG_SECTOR_1024              (1 << 0)
115 #define PMERRLOC_ELCFG_NUM_ERRORS(n)            ((n) << 16)
116
117 #define ATMEL_PMERRLOC_ELPRIM                   0x4
118 #define ATMEL_PMERRLOC_ELEN                     0x8
119 #define ATMEL_PMERRLOC_ELDIS                    0xc
120 #define PMERRLOC_DISABLE                        BIT(0)
121
122 #define ATMEL_PMERRLOC_ELSR                     0x10
123 #define PMERRLOC_ELSR_BUSY                      BIT(0)
124
125 #define ATMEL_PMERRLOC_ELIER                    0x14
126 #define ATMEL_PMERRLOC_ELIDR                    0x18
127 #define ATMEL_PMERRLOC_ELIMR                    0x1c
128 #define ATMEL_PMERRLOC_ELISR                    0x20
129 #define PMERRLOC_ERR_NUM_MASK                   GENMASK(12, 8)
130 #define PMERRLOC_CALC_DONE                      BIT(0)
131
132 #define ATMEL_PMERRLOC_SIGMA(x)                 (((x) * 0x4) + 0x28)
133
134 #define ATMEL_PMERRLOC_EL(offs, x)              (((x) * 0x4) + (offs))
135
136 struct atmel_pmecc_gf_tables {
137         u16 *alpha_to;
138         u16 *index_of;
139 };
140
141 struct atmel_pmecc_caps {
142         const int *strengths;
143         int nstrengths;
144         int el_offset;
145         bool correct_erased_chunks;
146 };
147
148 struct atmel_pmecc {
149         struct device *dev;
150         const struct atmel_pmecc_caps *caps;
151
152         struct {
153                 void __iomem *base;
154                 void __iomem *errloc;
155         } regs;
156
157         struct mutex lock;
158 };
159
160 struct atmel_pmecc_user_conf_cache {
161         u32 cfg;
162         u32 sarea;
163         u32 saddr;
164         u32 eaddr;
165 };
166
167 struct atmel_pmecc_user {
168         struct atmel_pmecc_user_conf_cache cache;
169         struct atmel_pmecc *pmecc;
170         const struct atmel_pmecc_gf_tables *gf_tables;
171         int eccbytes;
172         s16 *partial_syn;
173         s16 *si;
174         s16 *lmu;
175         s16 *smu;
176         s32 *mu;
177         s32 *dmu;
178         s32 *delta;
179         u32 isr;
180 };
181
182 static DEFINE_MUTEX(pmecc_gf_tables_lock);
183 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
184 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
185
186 static inline int deg(unsigned int poly)
187 {
188         /* polynomial degree is the most-significant bit index */
189         return fls(poly) - 1;
190 }
191
192 static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
193                                        struct atmel_pmecc_gf_tables *gf_tables)
194 {
195         unsigned int i, x = 1;
196         const unsigned int k = BIT(deg(poly));
197         unsigned int nn = BIT(mm) - 1;
198
199         /* primitive polynomial must be of degree m */
200         if (k != (1u << mm))
201                 return -EINVAL;
202
203         for (i = 0; i < nn; i++) {
204                 gf_tables->alpha_to[i] = x;
205                 gf_tables->index_of[x] = i;
206                 if (i && (x == 1))
207                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
208                         return -EINVAL;
209                 x <<= 1;
210                 if (x & k)
211                         x ^= poly;
212         }
213         gf_tables->alpha_to[nn] = 1;
214         gf_tables->index_of[0] = 0;
215
216         return 0;
217 }
218
219 static const struct atmel_pmecc_gf_tables *
220 atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
221 {
222         struct atmel_pmecc_gf_tables *gf_tables;
223         unsigned int poly, degree, table_size;
224         int ret;
225
226         if (req->ecc.sectorsize == 512) {
227                 degree = PMECC_GF_DIMENSION_13;
228                 poly = PMECC_GF_13_PRIMITIVE_POLY;
229                 table_size = PMECC_LOOKUP_TABLE_SIZE_512;
230         } else {
231                 degree = PMECC_GF_DIMENSION_14;
232                 poly = PMECC_GF_14_PRIMITIVE_POLY;
233                 table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
234         }
235
236         gf_tables = kzalloc(sizeof(*gf_tables) +
237                             (2 * table_size * sizeof(u16)),
238                             GFP_KERNEL);
239         if (!gf_tables)
240                 return ERR_PTR(-ENOMEM);
241
242         gf_tables->alpha_to = (void *)(gf_tables + 1);
243         gf_tables->index_of = gf_tables->alpha_to + table_size;
244
245         ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
246         if (ret) {
247                 kfree(gf_tables);
248                 return ERR_PTR(ret);
249         }
250
251         return gf_tables;
252 }
253
254 static const struct atmel_pmecc_gf_tables *
255 atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
256 {
257         const struct atmel_pmecc_gf_tables **gf_tables, *ret;
258
259         mutex_lock(&pmecc_gf_tables_lock);
260         if (req->ecc.sectorsize == 512)
261                 gf_tables = &pmecc_gf_tables_512;
262         else
263                 gf_tables = &pmecc_gf_tables_1024;
264
265         ret = *gf_tables;
266
267         if (!ret) {
268                 ret = atmel_pmecc_create_gf_tables(req);
269                 if (!IS_ERR(ret))
270                         *gf_tables = ret;
271         }
272         mutex_unlock(&pmecc_gf_tables_lock);
273
274         return ret;
275 }
276
277 static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
278                                         struct atmel_pmecc_user_req *req)
279 {
280         int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
281
282         if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
283                 return -EINVAL;
284
285         if (req->ecc.ooboffset >= 0 &&
286             req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
287                 return -EINVAL;
288
289         if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
290                 if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
291                         return -EINVAL;
292
293                 if (req->pagesize > 512)
294                         req->ecc.sectorsize = 1024;
295                 else
296                         req->ecc.sectorsize = 512;
297         }
298
299         if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
300                 return -EINVAL;
301
302         if (req->pagesize % req->ecc.sectorsize)
303                 return -EINVAL;
304
305         req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
306
307         max_eccbytes = req->ecc.bytes;
308
309         for (i = 0; i < pmecc->caps->nstrengths; i++) {
310                 int nbytes, strength = pmecc->caps->strengths[i];
311
312                 if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
313                     strength < req->ecc.strength)
314                         continue;
315
316                 nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
317                                       8);
318                 nbytes *= req->ecc.nsectors;
319
320                 if (nbytes > max_eccbytes)
321                         break;
322
323                 eccstrength = strength;
324                 eccbytes = nbytes;
325
326                 if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
327                         break;
328         }
329
330         if (!eccstrength)
331                 return -EINVAL;
332
333         req->ecc.bytes = eccbytes;
334         req->ecc.strength = eccstrength;
335
336         if (req->ecc.ooboffset < 0)
337                 req->ecc.ooboffset = req->oobsize - eccbytes;
338
339         return 0;
340 }
341
342 struct atmel_pmecc_user *
343 atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
344                         struct atmel_pmecc_user_req *req)
345 {
346         struct atmel_pmecc_user *user;
347         const struct atmel_pmecc_gf_tables *gf_tables;
348         int strength, size, ret;
349
350         ret = atmel_pmecc_prepare_user_req(pmecc, req);
351         if (ret)
352                 return ERR_PTR(ret);
353
354         size = sizeof(*user);
355         size = ALIGN(size, sizeof(u16));
356         /* Reserve space for partial_syn, si and smu */
357         size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
358                 (2 + req->ecc.strength + 2);
359         /* Reserve space for lmu. */
360         size += (req->ecc.strength + 1) * sizeof(u16);
361         /* Reserve space for mu, dmu and delta. */
362         size = ALIGN(size, sizeof(s32));
363         size += (req->ecc.strength + 1) * sizeof(s32) * 3;
364
365         user = kzalloc(size, GFP_KERNEL);
366         if (!user)
367                 return ERR_PTR(-ENOMEM);
368
369         user->pmecc = pmecc;
370
371         user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
372         user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
373         user->lmu = user->si + ((2 * req->ecc.strength) + 1);
374         user->smu = user->lmu + (req->ecc.strength + 1);
375         user->mu = (s32 *)PTR_ALIGN(user->smu +
376                                     (((2 * req->ecc.strength) + 1) *
377                                      (req->ecc.strength + 2)),
378                                     sizeof(s32));
379         user->dmu = user->mu + req->ecc.strength + 1;
380         user->delta = user->dmu + req->ecc.strength + 1;
381
382         gf_tables = atmel_pmecc_get_gf_tables(req);
383         if (IS_ERR(gf_tables)) {
384                 kfree(user);
385                 return ERR_CAST(gf_tables);
386         }
387
388         user->gf_tables = gf_tables;
389
390         user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
391
392         for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
393                 if (pmecc->caps->strengths[strength] == req->ecc.strength)
394                         break;
395         }
396
397         user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
398                           PMECC_CFG_NSECTORS(req->ecc.nsectors);
399
400         if (req->ecc.sectorsize == 1024)
401                 user->cache.cfg |= PMECC_CFG_SECTOR1024;
402
403         user->cache.sarea = req->oobsize - 1;
404         user->cache.saddr = req->ecc.ooboffset;
405         user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
406
407         return user;
408 }
409 EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
410
411 void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user)
412 {
413         kfree(user);
414 }
415 EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user);
416
417 static int get_strength(struct atmel_pmecc_user *user)
418 {
419         const int *strengths = user->pmecc->caps->strengths;
420
421         return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
422 }
423
424 static int get_sectorsize(struct atmel_pmecc_user *user)
425 {
426         return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512;
427 }
428
429 static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
430 {
431         int strength = get_strength(user);
432         u32 value;
433         int i;
434
435         /* Fill odd syndromes */
436         for (i = 0; i < strength; i++) {
437                 value = readl_relaxed(user->pmecc->regs.base +
438                                       ATMEL_PMECC_REM(sector, i / 2));
439                 if (i & 1)
440                         value >>= 16;
441
442                 user->partial_syn[(2 * i) + 1] = value;
443         }
444 }
445
446 static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
447 {
448         int degree = get_sectorsize(user) == 512 ? 13 : 14;
449         int cw_len = BIT(degree) - 1;
450         int strength = get_strength(user);
451         s16 *alpha_to = user->gf_tables->alpha_to;
452         s16 *index_of = user->gf_tables->index_of;
453         s16 *partial_syn = user->partial_syn;
454         s16 *si;
455         int i, j;
456
457         /*
458          * si[] is a table that holds the current syndrome value,
459          * an element of that table belongs to the field
460          */
461         si = user->si;
462
463         memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
464
465         /* Computation 2t syndromes based on S(x) */
466         /* Odd syndromes */
467         for (i = 1; i < 2 * strength; i += 2) {
468                 for (j = 0; j < degree; j++) {
469                         if (partial_syn[i] & BIT(j))
470                                 si[i] = alpha_to[i * j] ^ si[i];
471                 }
472         }
473         /* Even syndrome = (Odd syndrome) ** 2 */
474         for (i = 2, j = 1; j <= strength; i = ++j << 1) {
475                 if (si[j] == 0) {
476                         si[i] = 0;
477                 } else {
478                         s16 tmp;
479
480                         tmp = index_of[si[j]];
481                         tmp = (tmp * 2) % cw_len;
482                         si[i] = alpha_to[tmp];
483                 }
484         }
485 }
486
487 static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
488 {
489         s16 *lmu = user->lmu;
490         s16 *si = user->si;
491         s32 *mu = user->mu;
492         s32 *dmu = user->dmu;
493         s32 *delta = user->delta;
494         int degree = get_sectorsize(user) == 512 ? 13 : 14;
495         int cw_len = BIT(degree) - 1;
496         int strength = get_strength(user);
497         int num = 2 * strength + 1;
498         s16 *index_of = user->gf_tables->index_of;
499         s16 *alpha_to = user->gf_tables->alpha_to;
500         int i, j, k;
501         u32 dmu_0_count, tmp;
502         s16 *smu = user->smu;
503
504         /* index of largest delta */
505         int ro;
506         int largest;
507         int diff;
508
509         dmu_0_count = 0;
510
511         /* First Row */
512
513         /* Mu */
514         mu[0] = -1;
515
516         memset(smu, 0, sizeof(s16) * num);
517         smu[0] = 1;
518
519         /* discrepancy set to 1 */
520         dmu[0] = 1;
521         /* polynom order set to 0 */
522         lmu[0] = 0;
523         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
524
525         /* Second Row */
526
527         /* Mu */
528         mu[1] = 0;
529         /* Sigma(x) set to 1 */
530         memset(&smu[num], 0, sizeof(s16) * num);
531         smu[num] = 1;
532
533         /* discrepancy set to S1 */
534         dmu[1] = si[1];
535
536         /* polynom order set to 0 */
537         lmu[1] = 0;
538
539         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
540
541         /* Init the Sigma(x) last row */
542         memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
543
544         for (i = 1; i <= strength; i++) {
545                 mu[i + 1] = i << 1;
546                 /* Begin Computing Sigma (Mu+1) and L(mu) */
547                 /* check if discrepancy is set to 0 */
548                 if (dmu[i] == 0) {
549                         dmu_0_count++;
550
551                         tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
552                         if ((strength - (lmu[i] >> 1) - 1) & 0x1)
553                                 tmp += 2;
554                         else
555                                 tmp += 1;
556
557                         if (dmu_0_count == tmp) {
558                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
559                                         smu[(strength + 1) * num + j] =
560                                                         smu[i * num + j];
561
562                                 lmu[strength + 1] = lmu[i];
563                                 return;
564                         }
565
566                         /* copy polynom */
567                         for (j = 0; j <= lmu[i] >> 1; j++)
568                                 smu[(i + 1) * num + j] = smu[i * num + j];
569
570                         /* copy previous polynom order to the next */
571                         lmu[i + 1] = lmu[i];
572                 } else {
573                         ro = 0;
574                         largest = -1;
575                         /* find largest delta with dmu != 0 */
576                         for (j = 0; j < i; j++) {
577                                 if ((dmu[j]) && (delta[j] > largest)) {
578                                         largest = delta[j];
579                                         ro = j;
580                                 }
581                         }
582
583                         /* compute difference */
584                         diff = (mu[i] - mu[ro]);
585
586                         /* Compute degree of the new smu polynomial */
587                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
588                                 lmu[i + 1] = lmu[i];
589                         else
590                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
591
592                         /* Init smu[i+1] with 0 */
593                         for (k = 0; k < num; k++)
594                                 smu[(i + 1) * num + k] = 0;
595
596                         /* Compute smu[i+1] */
597                         for (k = 0; k <= lmu[ro] >> 1; k++) {
598                                 s16 a, b, c;
599
600                                 if (!(smu[ro * num + k] && dmu[i]))
601                                         continue;
602
603                                 a = index_of[dmu[i]];
604                                 b = index_of[dmu[ro]];
605                                 c = index_of[smu[ro * num + k]];
606                                 tmp = a + (cw_len - b) + c;
607                                 a = alpha_to[tmp % cw_len];
608                                 smu[(i + 1) * num + (k + diff)] = a;
609                         }
610
611                         for (k = 0; k <= lmu[i] >> 1; k++)
612                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
613                 }
614
615                 /* End Computing Sigma (Mu+1) and L(mu) */
616                 /* In either case compute delta */
617                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
618
619                 /* Do not compute discrepancy for the last iteration */
620                 if (i >= strength)
621                         continue;
622
623                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
624                         tmp = 2 * (i - 1);
625                         if (k == 0) {
626                                 dmu[i + 1] = si[tmp + 3];
627                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
628                                 s16 a, b, c;
629
630                                 a = index_of[smu[(i + 1) * num + k]];
631                                 b = si[2 * (i - 1) + 3 - k];
632                                 c = index_of[b];
633                                 tmp = a + c;
634                                 tmp %= cw_len;
635                                 dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
636                         }
637                 }
638         }
639 }
640
641 static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
642 {
643         int sector_size = get_sectorsize(user);
644         int degree = sector_size == 512 ? 13 : 14;
645         struct atmel_pmecc *pmecc = user->pmecc;
646         int strength = get_strength(user);
647         int ret, roots_nbr, i, err_nbr = 0;
648         int num = (2 * strength) + 1;
649         s16 *smu = user->smu;
650         u32 val;
651
652         writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
653
654         for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
655                 writel_relaxed(smu[(strength + 1) * num + i],
656                                pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
657                 err_nbr++;
658         }
659
660         val = (err_nbr - 1) << 16;
661         if (sector_size == 1024)
662                 val |= 1;
663
664         writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
665         writel((sector_size * 8) + (degree * strength),
666                pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
667
668         ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
669                                          ATMEL_PMERRLOC_ELISR,
670                                          val, val & PMERRLOC_CALC_DONE, 0,
671                                          PMECC_MAX_TIMEOUT_MS * 1000);
672         if (ret) {
673                 dev_err(pmecc->dev,
674                         "PMECC: Timeout to calculate error location.\n");
675                 return ret;
676         }
677
678         roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
679         /* Number of roots == degree of smu hence <= cap */
680         if (roots_nbr == user->lmu[strength + 1] >> 1)
681                 return err_nbr - 1;
682
683         /*
684          * Number of roots does not match the degree of smu
685          * unable to correct error.
686          */
687         return -EBADMSG;
688 }
689
690 int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
691                                void *data, void *ecc)
692 {
693         struct atmel_pmecc *pmecc = user->pmecc;
694         int sectorsize = get_sectorsize(user);
695         int eccbytes = user->eccbytes;
696         int i, nerrors;
697
698         if (!(user->isr & BIT(sector)))
699                 return 0;
700
701         atmel_pmecc_gen_syndrome(user, sector);
702         atmel_pmecc_substitute(user);
703         atmel_pmecc_get_sigma(user);
704
705         nerrors = atmel_pmecc_err_location(user);
706         if (nerrors < 0)
707                 return nerrors;
708
709         for (i = 0; i < nerrors; i++) {
710                 const char *area;
711                 int byte, bit;
712                 u32 errpos;
713                 u8 *ptr;
714
715                 errpos = readl_relaxed(pmecc->regs.errloc +
716                                 ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
717                 errpos--;
718
719                 byte = errpos / 8;
720                 bit = errpos % 8;
721
722                 if (byte < sectorsize) {
723                         ptr = data + byte;
724                         area = "data";
725                 } else if (byte < sectorsize + eccbytes) {
726                         ptr = ecc + byte - sectorsize;
727                         area = "ECC";
728                 } else {
729                         dev_dbg(pmecc->dev,
730                                 "Invalid errpos value (%d, max is %d)\n",
731                                 errpos, (sectorsize + eccbytes) * 8);
732                         return -EINVAL;
733                 }
734
735                 dev_dbg(pmecc->dev,
736                         "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
737                         area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
738
739                 *ptr ^= BIT(bit);
740         }
741
742         return nerrors;
743 }
744 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
745
746 bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
747 {
748         return user->pmecc->caps->correct_erased_chunks;
749 }
750 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
751
752 void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
753                                         int sector, void *ecc)
754 {
755         struct atmel_pmecc *pmecc = user->pmecc;
756         u8 *ptr = ecc;
757         int i;
758
759         for (i = 0; i < user->eccbytes; i++)
760                 ptr[i] = readb_relaxed(pmecc->regs.base +
761                                        ATMEL_PMECC_ECC(sector, i));
762 }
763 EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
764
765 void atmel_pmecc_reset(struct atmel_pmecc *pmecc)
766 {
767         writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
768         writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
769 }
770 EXPORT_SYMBOL_GPL(atmel_pmecc_reset);
771
772 int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
773 {
774         struct atmel_pmecc *pmecc = user->pmecc;
775         u32 cfg;
776
777         if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
778                 dev_err(pmecc->dev, "Bad ECC operation!");
779                 return -EINVAL;
780         }
781
782         mutex_lock(&user->pmecc->lock);
783
784         cfg = user->cache.cfg;
785         if (op == NAND_ECC_WRITE)
786                 cfg |= PMECC_CFG_WRITE_OP;
787         else
788                 cfg |= PMECC_CFG_AUTO_ENABLE;
789
790         writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
791         writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
792         writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
793         writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
794
795         writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
796         writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
797
798         return 0;
799 }
800 EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
801
802 void atmel_pmecc_disable(struct atmel_pmecc_user *user)
803 {
804         atmel_pmecc_reset(user->pmecc);
805         mutex_unlock(&user->pmecc->lock);
806 }
807 EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
808
809 int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
810 {
811         struct atmel_pmecc *pmecc = user->pmecc;
812         u32 status;
813         int ret;
814
815         ret = readl_relaxed_poll_timeout(pmecc->regs.base +
816                                          ATMEL_PMECC_SR,
817                                          status, !(status & PMECC_SR_BUSY), 0,
818                                          PMECC_MAX_TIMEOUT_MS * 1000);
819         if (ret) {
820                 dev_err(pmecc->dev,
821                         "Timeout while waiting for PMECC ready.\n");
822                 return ret;
823         }
824
825         user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
826
827         return 0;
828 }
829 EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
830
831 static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
832                                         const struct atmel_pmecc_caps *caps,
833                                         int pmecc_res_idx, int errloc_res_idx)
834 {
835         struct device *dev = &pdev->dev;
836         struct atmel_pmecc *pmecc;
837
838         pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
839         if (!pmecc)
840                 return ERR_PTR(-ENOMEM);
841
842         pmecc->caps = caps;
843         pmecc->dev = dev;
844         mutex_init(&pmecc->lock);
845
846         pmecc->regs.base = devm_platform_ioremap_resource(pdev, pmecc_res_idx);
847         if (IS_ERR(pmecc->regs.base))
848                 return ERR_CAST(pmecc->regs.base);
849
850         pmecc->regs.errloc = devm_platform_ioremap_resource(pdev, errloc_res_idx);
851         if (IS_ERR(pmecc->regs.errloc))
852                 return ERR_CAST(pmecc->regs.errloc);
853
854         /* Disable all interrupts before registering the PMECC handler. */
855         writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
856         atmel_pmecc_reset(pmecc);
857
858         return pmecc;
859 }
860
861 static void devm_atmel_pmecc_put(struct device *dev, void *res)
862 {
863         struct atmel_pmecc **pmecc = res;
864
865         put_device((*pmecc)->dev);
866 }
867
868 static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
869                                                    struct device_node *np)
870 {
871         struct platform_device *pdev;
872         struct atmel_pmecc *pmecc, **ptr;
873         int ret;
874
875         pdev = of_find_device_by_node(np);
876         if (!pdev)
877                 return ERR_PTR(-EPROBE_DEFER);
878         pmecc = platform_get_drvdata(pdev);
879         if (!pmecc) {
880                 ret = -EPROBE_DEFER;
881                 goto err_put_device;
882         }
883
884         ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
885         if (!ptr) {
886                 ret = -ENOMEM;
887                 goto err_put_device;
888         }
889
890         *ptr = pmecc;
891
892         devres_add(userdev, ptr);
893
894         return pmecc;
895
896 err_put_device:
897         put_device(&pdev->dev);
898         return ERR_PTR(ret);
899 }
900
901 static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
902
903 static struct atmel_pmecc_caps at91sam9g45_caps = {
904         .strengths = atmel_pmecc_strengths,
905         .nstrengths = 5,
906         .el_offset = 0x8c,
907 };
908
909 static struct atmel_pmecc_caps sama5d4_caps = {
910         .strengths = atmel_pmecc_strengths,
911         .nstrengths = 5,
912         .el_offset = 0x8c,
913         .correct_erased_chunks = true,
914 };
915
916 static struct atmel_pmecc_caps sama5d2_caps = {
917         .strengths = atmel_pmecc_strengths,
918         .nstrengths = 6,
919         .el_offset = 0xac,
920         .correct_erased_chunks = true,
921 };
922
923 static const struct of_device_id atmel_pmecc_legacy_match[] = {
924         { .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
925         { .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
926         { /* sentinel */ }
927 };
928
929 struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
930 {
931         struct atmel_pmecc *pmecc;
932         struct device_node *np;
933
934         if (!userdev)
935                 return ERR_PTR(-EINVAL);
936
937         if (!userdev->of_node)
938                 return NULL;
939
940         np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
941         if (np) {
942                 pmecc = atmel_pmecc_get_by_node(userdev, np);
943                 of_node_put(np);
944         } else {
945                 /*
946                  * Support old DT bindings: in this case the PMECC iomem
947                  * resources are directly defined in the user pdev at position
948                  * 1 and 2. Extract all relevant information from there.
949                  */
950                 struct platform_device *pdev = to_platform_device(userdev);
951                 const struct atmel_pmecc_caps *caps;
952                 const struct of_device_id *match;
953
954                 /* No PMECC engine available. */
955                 if (!of_property_read_bool(userdev->of_node,
956                                            "atmel,has-pmecc"))
957                         return NULL;
958
959                 caps = &at91sam9g45_caps;
960
961                 /* Find the caps associated to the NAND dev node. */
962                 match = of_match_node(atmel_pmecc_legacy_match,
963                                       userdev->of_node);
964                 if (match && match->data)
965                         caps = match->data;
966
967                 pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
968         }
969
970         return pmecc;
971 }
972 EXPORT_SYMBOL(devm_atmel_pmecc_get);
973
974 static const struct of_device_id atmel_pmecc_match[] = {
975         { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
976         { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
977         { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
978         { /* sentinel */ }
979 };
980 MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
981
982 static int atmel_pmecc_probe(struct platform_device *pdev)
983 {
984         struct device *dev = &pdev->dev;
985         const struct atmel_pmecc_caps *caps;
986         struct atmel_pmecc *pmecc;
987
988         caps = of_device_get_match_data(&pdev->dev);
989         if (!caps) {
990                 dev_err(dev, "Invalid caps\n");
991                 return -EINVAL;
992         }
993
994         pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
995         if (IS_ERR(pmecc))
996                 return PTR_ERR(pmecc);
997
998         platform_set_drvdata(pdev, pmecc);
999
1000         return 0;
1001 }
1002
1003 static struct platform_driver atmel_pmecc_driver = {
1004         .driver = {
1005                 .name = "atmel-pmecc",
1006                 .of_match_table = of_match_ptr(atmel_pmecc_match),
1007         },
1008         .probe = atmel_pmecc_probe,
1009 };
1010 module_platform_driver(atmel_pmecc_driver);
1011
1012 MODULE_LICENSE("GPL");
1013 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
1014 MODULE_DESCRIPTION("PMECC engine driver");
1015 MODULE_ALIAS("platform:atmel_pmecc");