Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *      Additional technical information is available on
7  *      http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *      David Woodhouse for adding multichip support
14  *
15  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *      rework for 2K page size chips
17  *
18  *  TODO:
19  *      Enable cached programming for 2k page size chips
20  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *      if we have HW ECC support.
22  *      BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/nmi.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/rawnand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/nand_bch.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of.h>
50
51 static int nand_get_device(struct mtd_info *mtd, int new_state);
52
53 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54                              struct mtd_oob_ops *ops);
55
56 /* Define default oob placement schemes for large and small page devices */
57 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58                                  struct mtd_oob_region *oobregion)
59 {
60         struct nand_chip *chip = mtd_to_nand(mtd);
61         struct nand_ecc_ctrl *ecc = &chip->ecc;
62
63         if (section > 1)
64                 return -ERANGE;
65
66         if (!section) {
67                 oobregion->offset = 0;
68                 if (mtd->oobsize == 16)
69                         oobregion->length = 4;
70                 else
71                         oobregion->length = 3;
72         } else {
73                 if (mtd->oobsize == 8)
74                         return -ERANGE;
75
76                 oobregion->offset = 6;
77                 oobregion->length = ecc->total - 4;
78         }
79
80         return 0;
81 }
82
83 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
84                                   struct mtd_oob_region *oobregion)
85 {
86         if (section > 1)
87                 return -ERANGE;
88
89         if (mtd->oobsize == 16) {
90                 if (section)
91                         return -ERANGE;
92
93                 oobregion->length = 8;
94                 oobregion->offset = 8;
95         } else {
96                 oobregion->length = 2;
97                 if (!section)
98                         oobregion->offset = 3;
99                 else
100                         oobregion->offset = 6;
101         }
102
103         return 0;
104 }
105
106 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
107         .ecc = nand_ooblayout_ecc_sp,
108         .free = nand_ooblayout_free_sp,
109 };
110 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
111
112 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
113                                  struct mtd_oob_region *oobregion)
114 {
115         struct nand_chip *chip = mtd_to_nand(mtd);
116         struct nand_ecc_ctrl *ecc = &chip->ecc;
117
118         if (section)
119                 return -ERANGE;
120
121         oobregion->length = ecc->total;
122         oobregion->offset = mtd->oobsize - oobregion->length;
123
124         return 0;
125 }
126
127 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
128                                   struct mtd_oob_region *oobregion)
129 {
130         struct nand_chip *chip = mtd_to_nand(mtd);
131         struct nand_ecc_ctrl *ecc = &chip->ecc;
132
133         if (section)
134                 return -ERANGE;
135
136         oobregion->length = mtd->oobsize - ecc->total - 2;
137         oobregion->offset = 2;
138
139         return 0;
140 }
141
142 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
143         .ecc = nand_ooblayout_ecc_lp,
144         .free = nand_ooblayout_free_lp,
145 };
146 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
147
148 /*
149  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
150  * are placed at a fixed offset.
151  */
152 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
153                                          struct mtd_oob_region *oobregion)
154 {
155         struct nand_chip *chip = mtd_to_nand(mtd);
156         struct nand_ecc_ctrl *ecc = &chip->ecc;
157
158         if (section)
159                 return -ERANGE;
160
161         switch (mtd->oobsize) {
162         case 64:
163                 oobregion->offset = 40;
164                 break;
165         case 128:
166                 oobregion->offset = 80;
167                 break;
168         default:
169                 return -EINVAL;
170         }
171
172         oobregion->length = ecc->total;
173         if (oobregion->offset + oobregion->length > mtd->oobsize)
174                 return -ERANGE;
175
176         return 0;
177 }
178
179 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
180                                           struct mtd_oob_region *oobregion)
181 {
182         struct nand_chip *chip = mtd_to_nand(mtd);
183         struct nand_ecc_ctrl *ecc = &chip->ecc;
184         int ecc_offset = 0;
185
186         if (section < 0 || section > 1)
187                 return -ERANGE;
188
189         switch (mtd->oobsize) {
190         case 64:
191                 ecc_offset = 40;
192                 break;
193         case 128:
194                 ecc_offset = 80;
195                 break;
196         default:
197                 return -EINVAL;
198         }
199
200         if (section == 0) {
201                 oobregion->offset = 2;
202                 oobregion->length = ecc_offset - 2;
203         } else {
204                 oobregion->offset = ecc_offset + ecc->total;
205                 oobregion->length = mtd->oobsize - oobregion->offset;
206         }
207
208         return 0;
209 }
210
211 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
212         .ecc = nand_ooblayout_ecc_lp_hamming,
213         .free = nand_ooblayout_free_lp_hamming,
214 };
215
216 static int check_offs_len(struct mtd_info *mtd,
217                                         loff_t ofs, uint64_t len)
218 {
219         struct nand_chip *chip = mtd_to_nand(mtd);
220         int ret = 0;
221
222         /* Start address must align on block boundary */
223         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
224                 pr_debug("%s: unaligned address\n", __func__);
225                 ret = -EINVAL;
226         }
227
228         /* Length must align on block boundary */
229         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
230                 pr_debug("%s: length not block aligned\n", __func__);
231                 ret = -EINVAL;
232         }
233
234         return ret;
235 }
236
237 /**
238  * nand_release_device - [GENERIC] release chip
239  * @mtd: MTD device structure
240  *
241  * Release chip lock and wake up anyone waiting on the device.
242  */
243 static void nand_release_device(struct mtd_info *mtd)
244 {
245         struct nand_chip *chip = mtd_to_nand(mtd);
246
247         /* Release the controller and the chip */
248         spin_lock(&chip->controller->lock);
249         chip->controller->active = NULL;
250         chip->state = FL_READY;
251         wake_up(&chip->controller->wq);
252         spin_unlock(&chip->controller->lock);
253 }
254
255 /**
256  * nand_read_byte - [DEFAULT] read one byte from the chip
257  * @mtd: MTD device structure
258  *
259  * Default read function for 8bit buswidth
260  */
261 static uint8_t nand_read_byte(struct mtd_info *mtd)
262 {
263         struct nand_chip *chip = mtd_to_nand(mtd);
264         return readb(chip->IO_ADDR_R);
265 }
266
267 /**
268  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
269  * @mtd: MTD device structure
270  *
271  * Default read function for 16bit buswidth with endianness conversion.
272  *
273  */
274 static uint8_t nand_read_byte16(struct mtd_info *mtd)
275 {
276         struct nand_chip *chip = mtd_to_nand(mtd);
277         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
278 }
279
280 /**
281  * nand_read_word - [DEFAULT] read one word from the chip
282  * @mtd: MTD device structure
283  *
284  * Default read function for 16bit buswidth without endianness conversion.
285  */
286 static u16 nand_read_word(struct mtd_info *mtd)
287 {
288         struct nand_chip *chip = mtd_to_nand(mtd);
289         return readw(chip->IO_ADDR_R);
290 }
291
292 /**
293  * nand_select_chip - [DEFAULT] control CE line
294  * @mtd: MTD device structure
295  * @chipnr: chipnumber to select, -1 for deselect
296  *
297  * Default select function for 1 chip devices.
298  */
299 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
300 {
301         struct nand_chip *chip = mtd_to_nand(mtd);
302
303         switch (chipnr) {
304         case -1:
305                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
306                 break;
307         case 0:
308                 break;
309
310         default:
311                 BUG();
312         }
313 }
314
315 /**
316  * nand_write_byte - [DEFAULT] write single byte to chip
317  * @mtd: MTD device structure
318  * @byte: value to write
319  *
320  * Default function to write a byte to I/O[7:0]
321  */
322 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
323 {
324         struct nand_chip *chip = mtd_to_nand(mtd);
325
326         chip->write_buf(mtd, &byte, 1);
327 }
328
329 /**
330  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
331  * @mtd: MTD device structure
332  * @byte: value to write
333  *
334  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
335  */
336 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
337 {
338         struct nand_chip *chip = mtd_to_nand(mtd);
339         uint16_t word = byte;
340
341         /*
342          * It's not entirely clear what should happen to I/O[15:8] when writing
343          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
344          *
345          *    When the host supports a 16-bit bus width, only data is
346          *    transferred at the 16-bit width. All address and command line
347          *    transfers shall use only the lower 8-bits of the data bus. During
348          *    command transfers, the host may place any value on the upper
349          *    8-bits of the data bus. During address transfers, the host shall
350          *    set the upper 8-bits of the data bus to 00h.
351          *
352          * One user of the write_byte callback is nand_onfi_set_features. The
353          * four parameters are specified to be written to I/O[7:0], but this is
354          * neither an address nor a command transfer. Let's assume a 0 on the
355          * upper I/O lines is OK.
356          */
357         chip->write_buf(mtd, (uint8_t *)&word, 2);
358 }
359
360 /**
361  * nand_write_buf - [DEFAULT] write buffer to chip
362  * @mtd: MTD device structure
363  * @buf: data buffer
364  * @len: number of bytes to write
365  *
366  * Default write function for 8bit buswidth.
367  */
368 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
369 {
370         struct nand_chip *chip = mtd_to_nand(mtd);
371
372         iowrite8_rep(chip->IO_ADDR_W, buf, len);
373 }
374
375 /**
376  * nand_read_buf - [DEFAULT] read chip data into buffer
377  * @mtd: MTD device structure
378  * @buf: buffer to store date
379  * @len: number of bytes to read
380  *
381  * Default read function for 8bit buswidth.
382  */
383 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
384 {
385         struct nand_chip *chip = mtd_to_nand(mtd);
386
387         ioread8_rep(chip->IO_ADDR_R, buf, len);
388 }
389
390 /**
391  * nand_write_buf16 - [DEFAULT] write buffer to chip
392  * @mtd: MTD device structure
393  * @buf: data buffer
394  * @len: number of bytes to write
395  *
396  * Default write function for 16bit buswidth.
397  */
398 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
399 {
400         struct nand_chip *chip = mtd_to_nand(mtd);
401         u16 *p = (u16 *) buf;
402
403         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
404 }
405
406 /**
407  * nand_read_buf16 - [DEFAULT] read chip data into buffer
408  * @mtd: MTD device structure
409  * @buf: buffer to store date
410  * @len: number of bytes to read
411  *
412  * Default read function for 16bit buswidth.
413  */
414 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
415 {
416         struct nand_chip *chip = mtd_to_nand(mtd);
417         u16 *p = (u16 *) buf;
418
419         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
420 }
421
422 /**
423  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
424  * @mtd: MTD device structure
425  * @ofs: offset from device start
426  *
427  * Check, if the block is bad.
428  */
429 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
430 {
431         int page, page_end, res;
432         struct nand_chip *chip = mtd_to_nand(mtd);
433         u8 bad;
434
435         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
436                 ofs += mtd->erasesize - mtd->writesize;
437
438         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
439         page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
440
441         for (; page < page_end; page++) {
442                 res = chip->ecc.read_oob(mtd, chip, page);
443                 if (res)
444                         return res;
445
446                 bad = chip->oob_poi[chip->badblockpos];
447
448                 if (likely(chip->badblockbits == 8))
449                         res = bad != 0xFF;
450                 else
451                         res = hweight8(bad) < chip->badblockbits;
452                 if (res)
453                         return res;
454         }
455
456         return 0;
457 }
458
459 /**
460  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
461  * @mtd: MTD device structure
462  * @ofs: offset from device start
463  *
464  * This is the default implementation, which can be overridden by a hardware
465  * specific driver. It provides the details for writing a bad block marker to a
466  * block.
467  */
468 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
469 {
470         struct nand_chip *chip = mtd_to_nand(mtd);
471         struct mtd_oob_ops ops;
472         uint8_t buf[2] = { 0, 0 };
473         int ret = 0, res, i = 0;
474
475         memset(&ops, 0, sizeof(ops));
476         ops.oobbuf = buf;
477         ops.ooboffs = chip->badblockpos;
478         if (chip->options & NAND_BUSWIDTH_16) {
479                 ops.ooboffs &= ~0x01;
480                 ops.len = ops.ooblen = 2;
481         } else {
482                 ops.len = ops.ooblen = 1;
483         }
484         ops.mode = MTD_OPS_PLACE_OOB;
485
486         /* Write to first/last page(s) if necessary */
487         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
488                 ofs += mtd->erasesize - mtd->writesize;
489         do {
490                 res = nand_do_write_oob(mtd, ofs, &ops);
491                 if (!ret)
492                         ret = res;
493
494                 i++;
495                 ofs += mtd->writesize;
496         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
497
498         return ret;
499 }
500
501 /**
502  * nand_block_markbad_lowlevel - mark a block bad
503  * @mtd: MTD device structure
504  * @ofs: offset from device start
505  *
506  * This function performs the generic NAND bad block marking steps (i.e., bad
507  * block table(s) and/or marker(s)). We only allow the hardware driver to
508  * specify how to write bad block markers to OOB (chip->block_markbad).
509  *
510  * We try operations in the following order:
511  *
512  *  (1) erase the affected block, to allow OOB marker to be written cleanly
513  *  (2) write bad block marker to OOB area of affected block (unless flag
514  *      NAND_BBT_NO_OOB_BBM is present)
515  *  (3) update the BBT
516  *
517  * Note that we retain the first error encountered in (2) or (3), finish the
518  * procedures, and dump the error in the end.
519 */
520 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
521 {
522         struct nand_chip *chip = mtd_to_nand(mtd);
523         int res, ret = 0;
524
525         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
526                 struct erase_info einfo;
527
528                 /* Attempt erase before marking OOB */
529                 memset(&einfo, 0, sizeof(einfo));
530                 einfo.mtd = mtd;
531                 einfo.addr = ofs;
532                 einfo.len = 1ULL << chip->phys_erase_shift;
533                 nand_erase_nand(mtd, &einfo, 0);
534
535                 /* Write bad block marker to OOB */
536                 nand_get_device(mtd, FL_WRITING);
537                 ret = chip->block_markbad(mtd, ofs);
538                 nand_release_device(mtd);
539         }
540
541         /* Mark block bad in BBT */
542         if (chip->bbt) {
543                 res = nand_markbad_bbt(mtd, ofs);
544                 if (!ret)
545                         ret = res;
546         }
547
548         if (!ret)
549                 mtd->ecc_stats.badblocks++;
550
551         return ret;
552 }
553
554 /**
555  * nand_check_wp - [GENERIC] check if the chip is write protected
556  * @mtd: MTD device structure
557  *
558  * Check, if the device is write protected. The function expects, that the
559  * device is already selected.
560  */
561 static int nand_check_wp(struct mtd_info *mtd)
562 {
563         struct nand_chip *chip = mtd_to_nand(mtd);
564
565         /* Broken xD cards report WP despite being writable */
566         if (chip->options & NAND_BROKEN_XD)
567                 return 0;
568
569         /* Check the WP bit */
570         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
571         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
572 }
573
574 /**
575  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
576  * @mtd: MTD device structure
577  * @ofs: offset from device start
578  *
579  * Check if the block is marked as reserved.
580  */
581 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
582 {
583         struct nand_chip *chip = mtd_to_nand(mtd);
584
585         if (!chip->bbt)
586                 return 0;
587         /* Return info from the table */
588         return nand_isreserved_bbt(mtd, ofs);
589 }
590
591 /**
592  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
593  * @mtd: MTD device structure
594  * @ofs: offset from device start
595  * @allowbbt: 1, if its allowed to access the bbt area
596  *
597  * Check, if the block is bad. Either by reading the bad block table or
598  * calling of the scan function.
599  */
600 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
601 {
602         struct nand_chip *chip = mtd_to_nand(mtd);
603
604         if (!chip->bbt)
605                 return chip->block_bad(mtd, ofs);
606
607         /* Return info from the table */
608         return nand_isbad_bbt(mtd, ofs, allowbbt);
609 }
610
611 /**
612  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
613  * @mtd: MTD device structure
614  * @timeo: Timeout
615  *
616  * Helper function for nand_wait_ready used when needing to wait in interrupt
617  * context.
618  */
619 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
620 {
621         struct nand_chip *chip = mtd_to_nand(mtd);
622         int i;
623
624         /* Wait for the device to get ready */
625         for (i = 0; i < timeo; i++) {
626                 if (chip->dev_ready(mtd))
627                         break;
628                 touch_softlockup_watchdog();
629                 mdelay(1);
630         }
631 }
632
633 /**
634  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
635  * @mtd: MTD device structure
636  *
637  * Wait for the ready pin after a command, and warn if a timeout occurs.
638  */
639 void nand_wait_ready(struct mtd_info *mtd)
640 {
641         struct nand_chip *chip = mtd_to_nand(mtd);
642         unsigned long timeo = 400;
643
644         if (in_interrupt() || oops_in_progress)
645                 return panic_nand_wait_ready(mtd, timeo);
646
647         /* Wait until command is processed or timeout occurs */
648         timeo = jiffies + msecs_to_jiffies(timeo);
649         do {
650                 if (chip->dev_ready(mtd))
651                         return;
652                 cond_resched();
653         } while (time_before(jiffies, timeo));
654
655         if (!chip->dev_ready(mtd))
656                 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
657 }
658 EXPORT_SYMBOL_GPL(nand_wait_ready);
659
660 /**
661  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
662  * @mtd: MTD device structure
663  * @timeo: Timeout in ms
664  *
665  * Wait for status ready (i.e. command done) or timeout.
666  */
667 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
668 {
669         register struct nand_chip *chip = mtd_to_nand(mtd);
670
671         timeo = jiffies + msecs_to_jiffies(timeo);
672         do {
673                 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
674                         break;
675                 touch_softlockup_watchdog();
676         } while (time_before(jiffies, timeo));
677 };
678
679 /**
680  * nand_command - [DEFAULT] Send command to NAND device
681  * @mtd: MTD device structure
682  * @command: the command to be sent
683  * @column: the column address for this command, -1 if none
684  * @page_addr: the page address for this command, -1 if none
685  *
686  * Send command to NAND device. This function is used for small page devices
687  * (512 Bytes per page).
688  */
689 static void nand_command(struct mtd_info *mtd, unsigned int command,
690                          int column, int page_addr)
691 {
692         register struct nand_chip *chip = mtd_to_nand(mtd);
693         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
694
695         /* Write out the command to the device */
696         if (command == NAND_CMD_SEQIN) {
697                 int readcmd;
698
699                 if (column >= mtd->writesize) {
700                         /* OOB area */
701                         column -= mtd->writesize;
702                         readcmd = NAND_CMD_READOOB;
703                 } else if (column < 256) {
704                         /* First 256 bytes --> READ0 */
705                         readcmd = NAND_CMD_READ0;
706                 } else {
707                         column -= 256;
708                         readcmd = NAND_CMD_READ1;
709                 }
710                 chip->cmd_ctrl(mtd, readcmd, ctrl);
711                 ctrl &= ~NAND_CTRL_CHANGE;
712         }
713         chip->cmd_ctrl(mtd, command, ctrl);
714
715         /* Address cycle, when necessary */
716         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
717         /* Serially input address */
718         if (column != -1) {
719                 /* Adjust columns for 16 bit buswidth */
720                 if (chip->options & NAND_BUSWIDTH_16 &&
721                                 !nand_opcode_8bits(command))
722                         column >>= 1;
723                 chip->cmd_ctrl(mtd, column, ctrl);
724                 ctrl &= ~NAND_CTRL_CHANGE;
725         }
726         if (page_addr != -1) {
727                 chip->cmd_ctrl(mtd, page_addr, ctrl);
728                 ctrl &= ~NAND_CTRL_CHANGE;
729                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
730                 /* One more address cycle for devices > 32MiB */
731                 if (chip->chipsize > (32 << 20))
732                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
733         }
734         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
735
736         /*
737          * Program and erase have their own busy handlers status and sequential
738          * in needs no delay
739          */
740         switch (command) {
741
742         case NAND_CMD_PAGEPROG:
743         case NAND_CMD_ERASE1:
744         case NAND_CMD_ERASE2:
745         case NAND_CMD_SEQIN:
746         case NAND_CMD_STATUS:
747         case NAND_CMD_READID:
748         case NAND_CMD_SET_FEATURES:
749                 return;
750
751         case NAND_CMD_RESET:
752                 if (chip->dev_ready)
753                         break;
754                 udelay(chip->chip_delay);
755                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
756                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
757                 chip->cmd_ctrl(mtd,
758                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
759                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
760                 nand_wait_status_ready(mtd, 250);
761                 return;
762
763                 /* This applies to read commands */
764         case NAND_CMD_READ0:
765                 /*
766                  * READ0 is sometimes used to exit GET STATUS mode. When this
767                  * is the case no address cycles are requested, and we can use
768                  * this information to detect that we should not wait for the
769                  * device to be ready.
770                  */
771                 if (column == -1 && page_addr == -1)
772                         return;
773
774         default:
775                 /*
776                  * If we don't have access to the busy pin, we apply the given
777                  * command delay
778                  */
779                 if (!chip->dev_ready) {
780                         udelay(chip->chip_delay);
781                         return;
782                 }
783         }
784         /*
785          * Apply this short delay always to ensure that we do wait tWB in
786          * any case on any machine.
787          */
788         ndelay(100);
789
790         nand_wait_ready(mtd);
791 }
792
793 static void nand_ccs_delay(struct nand_chip *chip)
794 {
795         /*
796          * The controller already takes care of waiting for tCCS when the RNDIN
797          * or RNDOUT command is sent, return directly.
798          */
799         if (!(chip->options & NAND_WAIT_TCCS))
800                 return;
801
802         /*
803          * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
804          * (which should be safe for all NANDs).
805          */
806         if (chip->data_interface && chip->data_interface->timings.sdr.tCCS_min)
807                 ndelay(chip->data_interface->timings.sdr.tCCS_min / 1000);
808         else
809                 ndelay(500);
810 }
811
812 /**
813  * nand_command_lp - [DEFAULT] Send command to NAND large page device
814  * @mtd: MTD device structure
815  * @command: the command to be sent
816  * @column: the column address for this command, -1 if none
817  * @page_addr: the page address for this command, -1 if none
818  *
819  * Send command to NAND device. This is the version for the new large page
820  * devices. We don't have the separate regions as we have in the small page
821  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
822  */
823 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
824                             int column, int page_addr)
825 {
826         register struct nand_chip *chip = mtd_to_nand(mtd);
827
828         /* Emulate NAND_CMD_READOOB */
829         if (command == NAND_CMD_READOOB) {
830                 column += mtd->writesize;
831                 command = NAND_CMD_READ0;
832         }
833
834         /* Command latch cycle */
835         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
836
837         if (column != -1 || page_addr != -1) {
838                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
839
840                 /* Serially input address */
841                 if (column != -1) {
842                         /* Adjust columns for 16 bit buswidth */
843                         if (chip->options & NAND_BUSWIDTH_16 &&
844                                         !nand_opcode_8bits(command))
845                                 column >>= 1;
846                         chip->cmd_ctrl(mtd, column, ctrl);
847                         ctrl &= ~NAND_CTRL_CHANGE;
848
849                         /* Only output a single addr cycle for 8bits opcodes. */
850                         if (!nand_opcode_8bits(command))
851                                 chip->cmd_ctrl(mtd, column >> 8, ctrl);
852                 }
853                 if (page_addr != -1) {
854                         chip->cmd_ctrl(mtd, page_addr, ctrl);
855                         chip->cmd_ctrl(mtd, page_addr >> 8,
856                                        NAND_NCE | NAND_ALE);
857                         /* One more address cycle for devices > 128MiB */
858                         if (chip->chipsize > (128 << 20))
859                                 chip->cmd_ctrl(mtd, page_addr >> 16,
860                                                NAND_NCE | NAND_ALE);
861                 }
862         }
863         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
864
865         /*
866          * Program and erase have their own busy handlers status, sequential
867          * in and status need no delay.
868          */
869         switch (command) {
870
871         case NAND_CMD_CACHEDPROG:
872         case NAND_CMD_PAGEPROG:
873         case NAND_CMD_ERASE1:
874         case NAND_CMD_ERASE2:
875         case NAND_CMD_SEQIN:
876         case NAND_CMD_STATUS:
877         case NAND_CMD_READID:
878         case NAND_CMD_SET_FEATURES:
879                 return;
880
881         case NAND_CMD_RNDIN:
882                 nand_ccs_delay(chip);
883                 return;
884
885         case NAND_CMD_RESET:
886                 if (chip->dev_ready)
887                         break;
888                 udelay(chip->chip_delay);
889                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
890                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
891                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
892                                NAND_NCE | NAND_CTRL_CHANGE);
893                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
894                 nand_wait_status_ready(mtd, 250);
895                 return;
896
897         case NAND_CMD_RNDOUT:
898                 /* No ready / busy check necessary */
899                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
900                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
901                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
902                                NAND_NCE | NAND_CTRL_CHANGE);
903
904                 nand_ccs_delay(chip);
905                 return;
906
907         case NAND_CMD_READ0:
908                 /*
909                  * READ0 is sometimes used to exit GET STATUS mode. When this
910                  * is the case no address cycles are requested, and we can use
911                  * this information to detect that READSTART should not be
912                  * issued.
913                  */
914                 if (column == -1 && page_addr == -1)
915                         return;
916
917                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
918                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
919                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
920                                NAND_NCE | NAND_CTRL_CHANGE);
921
922                 /* This applies to read commands */
923         default:
924                 /*
925                  * If we don't have access to the busy pin, we apply the given
926                  * command delay.
927                  */
928                 if (!chip->dev_ready) {
929                         udelay(chip->chip_delay);
930                         return;
931                 }
932         }
933
934         /*
935          * Apply this short delay always to ensure that we do wait tWB in
936          * any case on any machine.
937          */
938         ndelay(100);
939
940         nand_wait_ready(mtd);
941 }
942
943 /**
944  * panic_nand_get_device - [GENERIC] Get chip for selected access
945  * @chip: the nand chip descriptor
946  * @mtd: MTD device structure
947  * @new_state: the state which is requested
948  *
949  * Used when in panic, no locks are taken.
950  */
951 static void panic_nand_get_device(struct nand_chip *chip,
952                       struct mtd_info *mtd, int new_state)
953 {
954         /* Hardware controller shared among independent devices */
955         chip->controller->active = chip;
956         chip->state = new_state;
957 }
958
959 /**
960  * nand_get_device - [GENERIC] Get chip for selected access
961  * @mtd: MTD device structure
962  * @new_state: the state which is requested
963  *
964  * Get the device and lock it for exclusive access
965  */
966 static int
967 nand_get_device(struct mtd_info *mtd, int new_state)
968 {
969         struct nand_chip *chip = mtd_to_nand(mtd);
970         spinlock_t *lock = &chip->controller->lock;
971         wait_queue_head_t *wq = &chip->controller->wq;
972         DECLARE_WAITQUEUE(wait, current);
973 retry:
974         spin_lock(lock);
975
976         /* Hardware controller shared among independent devices */
977         if (!chip->controller->active)
978                 chip->controller->active = chip;
979
980         if (chip->controller->active == chip && chip->state == FL_READY) {
981                 chip->state = new_state;
982                 spin_unlock(lock);
983                 return 0;
984         }
985         if (new_state == FL_PM_SUSPENDED) {
986                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
987                         chip->state = FL_PM_SUSPENDED;
988                         spin_unlock(lock);
989                         return 0;
990                 }
991         }
992         set_current_state(TASK_UNINTERRUPTIBLE);
993         add_wait_queue(wq, &wait);
994         spin_unlock(lock);
995         schedule();
996         remove_wait_queue(wq, &wait);
997         goto retry;
998 }
999
1000 /**
1001  * panic_nand_wait - [GENERIC] wait until the command is done
1002  * @mtd: MTD device structure
1003  * @chip: NAND chip structure
1004  * @timeo: timeout
1005  *
1006  * Wait for command done. This is a helper function for nand_wait used when
1007  * we are in interrupt context. May happen when in panic and trying to write
1008  * an oops through mtdoops.
1009  */
1010 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1011                             unsigned long timeo)
1012 {
1013         int i;
1014         for (i = 0; i < timeo; i++) {
1015                 if (chip->dev_ready) {
1016                         if (chip->dev_ready(mtd))
1017                                 break;
1018                 } else {
1019                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
1020                                 break;
1021                 }
1022                 mdelay(1);
1023         }
1024 }
1025
1026 /**
1027  * nand_wait - [DEFAULT] wait until the command is done
1028  * @mtd: MTD device structure
1029  * @chip: NAND chip structure
1030  *
1031  * Wait for command done. This applies to erase and program only.
1032  */
1033 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1034 {
1035
1036         int status;
1037         unsigned long timeo = 400;
1038
1039         /*
1040          * Apply this short delay always to ensure that we do wait tWB in any
1041          * case on any machine.
1042          */
1043         ndelay(100);
1044
1045         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1046
1047         if (in_interrupt() || oops_in_progress)
1048                 panic_nand_wait(mtd, chip, timeo);
1049         else {
1050                 timeo = jiffies + msecs_to_jiffies(timeo);
1051                 do {
1052                         if (chip->dev_ready) {
1053                                 if (chip->dev_ready(mtd))
1054                                         break;
1055                         } else {
1056                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
1057                                         break;
1058                         }
1059                         cond_resched();
1060                 } while (time_before(jiffies, timeo));
1061         }
1062
1063         status = (int)chip->read_byte(mtd);
1064         /* This can happen if in case of timeout or buggy dev_ready */
1065         WARN_ON(!(status & NAND_STATUS_READY));
1066         return status;
1067 }
1068
1069 /**
1070  * nand_reset_data_interface - Reset data interface and timings
1071  * @chip: The NAND chip
1072  * @chipnr: Internal die id
1073  *
1074  * Reset the Data interface and timings to ONFI mode 0.
1075  *
1076  * Returns 0 for success or negative error code otherwise.
1077  */
1078 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
1079 {
1080         struct mtd_info *mtd = nand_to_mtd(chip);
1081         const struct nand_data_interface *conf;
1082         int ret;
1083
1084         if (!chip->setup_data_interface)
1085                 return 0;
1086
1087         /*
1088          * The ONFI specification says:
1089          * "
1090          * To transition from NV-DDR or NV-DDR2 to the SDR data
1091          * interface, the host shall use the Reset (FFh) command
1092          * using SDR timing mode 0. A device in any timing mode is
1093          * required to recognize Reset (FFh) command issued in SDR
1094          * timing mode 0.
1095          * "
1096          *
1097          * Configure the data interface in SDR mode and set the
1098          * timings to timing mode 0.
1099          */
1100
1101         conf = nand_get_default_data_interface();
1102         ret = chip->setup_data_interface(mtd, chipnr, conf);
1103         if (ret)
1104                 pr_err("Failed to configure data interface to SDR timing mode 0\n");
1105
1106         return ret;
1107 }
1108
1109 /**
1110  * nand_setup_data_interface - Setup the best data interface and timings
1111  * @chip: The NAND chip
1112  * @chipnr: Internal die id
1113  *
1114  * Find and configure the best data interface and NAND timings supported by
1115  * the chip and the driver.
1116  * First tries to retrieve supported timing modes from ONFI information,
1117  * and if the NAND chip does not support ONFI, relies on the
1118  * ->onfi_timing_mode_default specified in the nand_ids table.
1119  *
1120  * Returns 0 for success or negative error code otherwise.
1121  */
1122 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
1123 {
1124         struct mtd_info *mtd = nand_to_mtd(chip);
1125         int ret;
1126
1127         if (!chip->setup_data_interface || !chip->data_interface)
1128                 return 0;
1129
1130         /*
1131          * Ensure the timing mode has been changed on the chip side
1132          * before changing timings on the controller side.
1133          */
1134         if (chip->onfi_version &&
1135             (le16_to_cpu(chip->onfi_params.opt_cmd) &
1136              ONFI_OPT_CMD_SET_GET_FEATURES)) {
1137                 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1138                         chip->onfi_timing_mode_default,
1139                 };
1140
1141                 ret = chip->onfi_set_features(mtd, chip,
1142                                 ONFI_FEATURE_ADDR_TIMING_MODE,
1143                                 tmode_param);
1144                 if (ret)
1145                         goto err;
1146         }
1147
1148         ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
1149 err:
1150         return ret;
1151 }
1152
1153 /**
1154  * nand_init_data_interface - find the best data interface and timings
1155  * @chip: The NAND chip
1156  *
1157  * Find the best data interface and NAND timings supported by the chip
1158  * and the driver.
1159  * First tries to retrieve supported timing modes from ONFI information,
1160  * and if the NAND chip does not support ONFI, relies on the
1161  * ->onfi_timing_mode_default specified in the nand_ids table. After this
1162  * function nand_chip->data_interface is initialized with the best timing mode
1163  * available.
1164  *
1165  * Returns 0 for success or negative error code otherwise.
1166  */
1167 static int nand_init_data_interface(struct nand_chip *chip)
1168 {
1169         struct mtd_info *mtd = nand_to_mtd(chip);
1170         int modes, mode, ret;
1171
1172         if (!chip->setup_data_interface)
1173                 return 0;
1174
1175         /*
1176          * First try to identify the best timings from ONFI parameters and
1177          * if the NAND does not support ONFI, fallback to the default ONFI
1178          * timing mode.
1179          */
1180         modes = onfi_get_async_timing_mode(chip);
1181         if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1182                 if (!chip->onfi_timing_mode_default)
1183                         return 0;
1184
1185                 modes = GENMASK(chip->onfi_timing_mode_default, 0);
1186         }
1187
1188         chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1189                                        GFP_KERNEL);
1190         if (!chip->data_interface)
1191                 return -ENOMEM;
1192
1193         for (mode = fls(modes) - 1; mode >= 0; mode--) {
1194                 ret = onfi_init_data_interface(chip, chip->data_interface,
1195                                                NAND_SDR_IFACE, mode);
1196                 if (ret)
1197                         continue;
1198
1199                 /* Pass -1 to only */
1200                 ret = chip->setup_data_interface(mtd,
1201                                                  NAND_DATA_IFACE_CHECK_ONLY,
1202                                                  chip->data_interface);
1203                 if (!ret) {
1204                         chip->onfi_timing_mode_default = mode;
1205                         break;
1206                 }
1207         }
1208
1209         return 0;
1210 }
1211
1212 static void nand_release_data_interface(struct nand_chip *chip)
1213 {
1214         kfree(chip->data_interface);
1215 }
1216
1217 /**
1218  * nand_reset - Reset and initialize a NAND device
1219  * @chip: The NAND chip
1220  * @chipnr: Internal die id
1221  *
1222  * Returns 0 for success or negative error code otherwise
1223  */
1224 int nand_reset(struct nand_chip *chip, int chipnr)
1225 {
1226         struct mtd_info *mtd = nand_to_mtd(chip);
1227         int ret;
1228
1229         ret = nand_reset_data_interface(chip, chipnr);
1230         if (ret)
1231                 return ret;
1232
1233         /*
1234          * The CS line has to be released before we can apply the new NAND
1235          * interface settings, hence this weird ->select_chip() dance.
1236          */
1237         chip->select_chip(mtd, chipnr);
1238         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1239         chip->select_chip(mtd, -1);
1240
1241         chip->select_chip(mtd, chipnr);
1242         ret = nand_setup_data_interface(chip, chipnr);
1243         chip->select_chip(mtd, -1);
1244         if (ret)
1245                 return ret;
1246
1247         return 0;
1248 }
1249
1250 /**
1251  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1252  * @buf: buffer to test
1253  * @len: buffer length
1254  * @bitflips_threshold: maximum number of bitflips
1255  *
1256  * Check if a buffer contains only 0xff, which means the underlying region
1257  * has been erased and is ready to be programmed.
1258  * The bitflips_threshold specify the maximum number of bitflips before
1259  * considering the region is not erased.
1260  * Note: The logic of this function has been extracted from the memweight
1261  * implementation, except that nand_check_erased_buf function exit before
1262  * testing the whole buffer if the number of bitflips exceed the
1263  * bitflips_threshold value.
1264  *
1265  * Returns a positive number of bitflips less than or equal to
1266  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1267  * threshold.
1268  */
1269 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1270 {
1271         const unsigned char *bitmap = buf;
1272         int bitflips = 0;
1273         int weight;
1274
1275         for (; len && ((uintptr_t)bitmap) % sizeof(long);
1276              len--, bitmap++) {
1277                 weight = hweight8(*bitmap);
1278                 bitflips += BITS_PER_BYTE - weight;
1279                 if (unlikely(bitflips > bitflips_threshold))
1280                         return -EBADMSG;
1281         }
1282
1283         for (; len >= sizeof(long);
1284              len -= sizeof(long), bitmap += sizeof(long)) {
1285                 unsigned long d = *((unsigned long *)bitmap);
1286                 if (d == ~0UL)
1287                         continue;
1288                 weight = hweight_long(d);
1289                 bitflips += BITS_PER_LONG - weight;
1290                 if (unlikely(bitflips > bitflips_threshold))
1291                         return -EBADMSG;
1292         }
1293
1294         for (; len > 0; len--, bitmap++) {
1295                 weight = hweight8(*bitmap);
1296                 bitflips += BITS_PER_BYTE - weight;
1297                 if (unlikely(bitflips > bitflips_threshold))
1298                         return -EBADMSG;
1299         }
1300
1301         return bitflips;
1302 }
1303
1304 /**
1305  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1306  *                               0xff data
1307  * @data: data buffer to test
1308  * @datalen: data length
1309  * @ecc: ECC buffer
1310  * @ecclen: ECC length
1311  * @extraoob: extra OOB buffer
1312  * @extraooblen: extra OOB length
1313  * @bitflips_threshold: maximum number of bitflips
1314  *
1315  * Check if a data buffer and its associated ECC and OOB data contains only
1316  * 0xff pattern, which means the underlying region has been erased and is
1317  * ready to be programmed.
1318  * The bitflips_threshold specify the maximum number of bitflips before
1319  * considering the region as not erased.
1320  *
1321  * Note:
1322  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1323  *    different from the NAND page size. When fixing bitflips, ECC engines will
1324  *    report the number of errors per chunk, and the NAND core infrastructure
1325  *    expect you to return the maximum number of bitflips for the whole page.
1326  *    This is why you should always use this function on a single chunk and
1327  *    not on the whole page. After checking each chunk you should update your
1328  *    max_bitflips value accordingly.
1329  * 2/ When checking for bitflips in erased pages you should not only check
1330  *    the payload data but also their associated ECC data, because a user might
1331  *    have programmed almost all bits to 1 but a few. In this case, we
1332  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1333  *    this case.
1334  * 3/ The extraoob argument is optional, and should be used if some of your OOB
1335  *    data are protected by the ECC engine.
1336  *    It could also be used if you support subpages and want to attach some
1337  *    extra OOB data to an ECC chunk.
1338  *
1339  * Returns a positive number of bitflips less than or equal to
1340  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1341  * threshold. In case of success, the passed buffers are filled with 0xff.
1342  */
1343 int nand_check_erased_ecc_chunk(void *data, int datalen,
1344                                 void *ecc, int ecclen,
1345                                 void *extraoob, int extraooblen,
1346                                 int bitflips_threshold)
1347 {
1348         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1349
1350         data_bitflips = nand_check_erased_buf(data, datalen,
1351                                               bitflips_threshold);
1352         if (data_bitflips < 0)
1353                 return data_bitflips;
1354
1355         bitflips_threshold -= data_bitflips;
1356
1357         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1358         if (ecc_bitflips < 0)
1359                 return ecc_bitflips;
1360
1361         bitflips_threshold -= ecc_bitflips;
1362
1363         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1364                                                   bitflips_threshold);
1365         if (extraoob_bitflips < 0)
1366                 return extraoob_bitflips;
1367
1368         if (data_bitflips)
1369                 memset(data, 0xff, datalen);
1370
1371         if (ecc_bitflips)
1372                 memset(ecc, 0xff, ecclen);
1373
1374         if (extraoob_bitflips)
1375                 memset(extraoob, 0xff, extraooblen);
1376
1377         return data_bitflips + ecc_bitflips + extraoob_bitflips;
1378 }
1379 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1380
1381 /**
1382  * nand_read_page_raw - [INTERN] read raw page data without ecc
1383  * @mtd: mtd info structure
1384  * @chip: nand chip info structure
1385  * @buf: buffer to store read data
1386  * @oob_required: caller requires OOB data read to chip->oob_poi
1387  * @page: page number to read
1388  *
1389  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1390  */
1391 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1392                        uint8_t *buf, int oob_required, int page)
1393 {
1394         chip->read_buf(mtd, buf, mtd->writesize);
1395         if (oob_required)
1396                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1397         return 0;
1398 }
1399 EXPORT_SYMBOL(nand_read_page_raw);
1400
1401 /**
1402  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1403  * @mtd: mtd info structure
1404  * @chip: nand chip info structure
1405  * @buf: buffer to store read data
1406  * @oob_required: caller requires OOB data read to chip->oob_poi
1407  * @page: page number to read
1408  *
1409  * We need a special oob layout and handling even when OOB isn't used.
1410  */
1411 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1412                                        struct nand_chip *chip, uint8_t *buf,
1413                                        int oob_required, int page)
1414 {
1415         int eccsize = chip->ecc.size;
1416         int eccbytes = chip->ecc.bytes;
1417         uint8_t *oob = chip->oob_poi;
1418         int steps, size;
1419
1420         for (steps = chip->ecc.steps; steps > 0; steps--) {
1421                 chip->read_buf(mtd, buf, eccsize);
1422                 buf += eccsize;
1423
1424                 if (chip->ecc.prepad) {
1425                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1426                         oob += chip->ecc.prepad;
1427                 }
1428
1429                 chip->read_buf(mtd, oob, eccbytes);
1430                 oob += eccbytes;
1431
1432                 if (chip->ecc.postpad) {
1433                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1434                         oob += chip->ecc.postpad;
1435                 }
1436         }
1437
1438         size = mtd->oobsize - (oob - chip->oob_poi);
1439         if (size)
1440                 chip->read_buf(mtd, oob, size);
1441
1442         return 0;
1443 }
1444
1445 /**
1446  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1447  * @mtd: mtd info structure
1448  * @chip: nand chip info structure
1449  * @buf: buffer to store read data
1450  * @oob_required: caller requires OOB data read to chip->oob_poi
1451  * @page: page number to read
1452  */
1453 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1454                                 uint8_t *buf, int oob_required, int page)
1455 {
1456         int i, eccsize = chip->ecc.size, ret;
1457         int eccbytes = chip->ecc.bytes;
1458         int eccsteps = chip->ecc.steps;
1459         uint8_t *p = buf;
1460         uint8_t *ecc_calc = chip->buffers->ecccalc;
1461         uint8_t *ecc_code = chip->buffers->ecccode;
1462         unsigned int max_bitflips = 0;
1463
1464         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1465
1466         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1467                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1468
1469         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1470                                          chip->ecc.total);
1471         if (ret)
1472                 return ret;
1473
1474         eccsteps = chip->ecc.steps;
1475         p = buf;
1476
1477         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1478                 int stat;
1479
1480                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1481                 if (stat < 0) {
1482                         mtd->ecc_stats.failed++;
1483                 } else {
1484                         mtd->ecc_stats.corrected += stat;
1485                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1486                 }
1487         }
1488         return max_bitflips;
1489 }
1490
1491 /**
1492  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1493  * @mtd: mtd info structure
1494  * @chip: nand chip info structure
1495  * @data_offs: offset of requested data within the page
1496  * @readlen: data length
1497  * @bufpoi: buffer to store read data
1498  * @page: page number to read
1499  */
1500 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1501                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1502                         int page)
1503 {
1504         int start_step, end_step, num_steps, ret;
1505         uint8_t *p;
1506         int data_col_addr, i, gaps = 0;
1507         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1508         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1509         int index, section = 0;
1510         unsigned int max_bitflips = 0;
1511         struct mtd_oob_region oobregion = { };
1512
1513         /* Column address within the page aligned to ECC size (256bytes) */
1514         start_step = data_offs / chip->ecc.size;
1515         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1516         num_steps = end_step - start_step + 1;
1517         index = start_step * chip->ecc.bytes;
1518
1519         /* Data size aligned to ECC ecc.size */
1520         datafrag_len = num_steps * chip->ecc.size;
1521         eccfrag_len = num_steps * chip->ecc.bytes;
1522
1523         data_col_addr = start_step * chip->ecc.size;
1524         /* If we read not a page aligned data */
1525         if (data_col_addr != 0)
1526                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1527
1528         p = bufpoi + data_col_addr;
1529         chip->read_buf(mtd, p, datafrag_len);
1530
1531         /* Calculate ECC */
1532         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1533                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1534
1535         /*
1536          * The performance is faster if we position offsets according to
1537          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1538          */
1539         ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
1540         if (ret)
1541                 return ret;
1542
1543         if (oobregion.length < eccfrag_len)
1544                 gaps = 1;
1545
1546         if (gaps) {
1547                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1548                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1549         } else {
1550                 /*
1551                  * Send the command to read the particular ECC bytes take care
1552                  * about buswidth alignment in read_buf.
1553                  */
1554                 aligned_pos = oobregion.offset & ~(busw - 1);
1555                 aligned_len = eccfrag_len;
1556                 if (oobregion.offset & (busw - 1))
1557                         aligned_len++;
1558                 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
1559                     (busw - 1))
1560                         aligned_len++;
1561
1562                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1563                               mtd->writesize + aligned_pos, -1);
1564                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1565         }
1566
1567         ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
1568                                          chip->oob_poi, index, eccfrag_len);
1569         if (ret)
1570                 return ret;
1571
1572         p = bufpoi + data_col_addr;
1573         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1574                 int stat;
1575
1576                 stat = chip->ecc.correct(mtd, p,
1577                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1578                 if (stat == -EBADMSG &&
1579                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1580                         /* check for empty pages with bitflips */
1581                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1582                                                 &chip->buffers->ecccode[i],
1583                                                 chip->ecc.bytes,
1584                                                 NULL, 0,
1585                                                 chip->ecc.strength);
1586                 }
1587
1588                 if (stat < 0) {
1589                         mtd->ecc_stats.failed++;
1590                 } else {
1591                         mtd->ecc_stats.corrected += stat;
1592                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1593                 }
1594         }
1595         return max_bitflips;
1596 }
1597
1598 /**
1599  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1600  * @mtd: mtd info structure
1601  * @chip: nand chip info structure
1602  * @buf: buffer to store read data
1603  * @oob_required: caller requires OOB data read to chip->oob_poi
1604  * @page: page number to read
1605  *
1606  * Not for syndrome calculating ECC controllers which need a special oob layout.
1607  */
1608 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1609                                 uint8_t *buf, int oob_required, int page)
1610 {
1611         int i, eccsize = chip->ecc.size, ret;
1612         int eccbytes = chip->ecc.bytes;
1613         int eccsteps = chip->ecc.steps;
1614         uint8_t *p = buf;
1615         uint8_t *ecc_calc = chip->buffers->ecccalc;
1616         uint8_t *ecc_code = chip->buffers->ecccode;
1617         unsigned int max_bitflips = 0;
1618
1619         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1620                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1621                 chip->read_buf(mtd, p, eccsize);
1622                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1623         }
1624         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1625
1626         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1627                                          chip->ecc.total);
1628         if (ret)
1629                 return ret;
1630
1631         eccsteps = chip->ecc.steps;
1632         p = buf;
1633
1634         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1635                 int stat;
1636
1637                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1638                 if (stat == -EBADMSG &&
1639                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1640                         /* check for empty pages with bitflips */
1641                         stat = nand_check_erased_ecc_chunk(p, eccsize,
1642                                                 &ecc_code[i], eccbytes,
1643                                                 NULL, 0,
1644                                                 chip->ecc.strength);
1645                 }
1646
1647                 if (stat < 0) {
1648                         mtd->ecc_stats.failed++;
1649                 } else {
1650                         mtd->ecc_stats.corrected += stat;
1651                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1652                 }
1653         }
1654         return max_bitflips;
1655 }
1656
1657 /**
1658  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1659  * @mtd: mtd info structure
1660  * @chip: nand chip info structure
1661  * @buf: buffer to store read data
1662  * @oob_required: caller requires OOB data read to chip->oob_poi
1663  * @page: page number to read
1664  *
1665  * Hardware ECC for large page chips, require OOB to be read first. For this
1666  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1667  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1668  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1669  * the data area, by overwriting the NAND manufacturer bad block markings.
1670  */
1671 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1672         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1673 {
1674         int i, eccsize = chip->ecc.size, ret;
1675         int eccbytes = chip->ecc.bytes;
1676         int eccsteps = chip->ecc.steps;
1677         uint8_t *p = buf;
1678         uint8_t *ecc_code = chip->buffers->ecccode;
1679         uint8_t *ecc_calc = chip->buffers->ecccalc;
1680         unsigned int max_bitflips = 0;
1681
1682         /* Read the OOB area first */
1683         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1684         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1685         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1686
1687         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1688                                          chip->ecc.total);
1689         if (ret)
1690                 return ret;
1691
1692         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1693                 int stat;
1694
1695                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1696                 chip->read_buf(mtd, p, eccsize);
1697                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1698
1699                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1700                 if (stat == -EBADMSG &&
1701                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1702                         /* check for empty pages with bitflips */
1703                         stat = nand_check_erased_ecc_chunk(p, eccsize,
1704                                                 &ecc_code[i], eccbytes,
1705                                                 NULL, 0,
1706                                                 chip->ecc.strength);
1707                 }
1708
1709                 if (stat < 0) {
1710                         mtd->ecc_stats.failed++;
1711                 } else {
1712                         mtd->ecc_stats.corrected += stat;
1713                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1714                 }
1715         }
1716         return max_bitflips;
1717 }
1718
1719 /**
1720  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1721  * @mtd: mtd info structure
1722  * @chip: nand chip info structure
1723  * @buf: buffer to store read data
1724  * @oob_required: caller requires OOB data read to chip->oob_poi
1725  * @page: page number to read
1726  *
1727  * The hw generator calculates the error syndrome automatically. Therefore we
1728  * need a special oob layout and handling.
1729  */
1730 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1731                                    uint8_t *buf, int oob_required, int page)
1732 {
1733         int i, eccsize = chip->ecc.size;
1734         int eccbytes = chip->ecc.bytes;
1735         int eccsteps = chip->ecc.steps;
1736         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1737         uint8_t *p = buf;
1738         uint8_t *oob = chip->oob_poi;
1739         unsigned int max_bitflips = 0;
1740
1741         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1742                 int stat;
1743
1744                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1745                 chip->read_buf(mtd, p, eccsize);
1746
1747                 if (chip->ecc.prepad) {
1748                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1749                         oob += chip->ecc.prepad;
1750                 }
1751
1752                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1753                 chip->read_buf(mtd, oob, eccbytes);
1754                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1755
1756                 oob += eccbytes;
1757
1758                 if (chip->ecc.postpad) {
1759                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1760                         oob += chip->ecc.postpad;
1761                 }
1762
1763                 if (stat == -EBADMSG &&
1764                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1765                         /* check for empty pages with bitflips */
1766                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1767                                                            oob - eccpadbytes,
1768                                                            eccpadbytes,
1769                                                            NULL, 0,
1770                                                            chip->ecc.strength);
1771                 }
1772
1773                 if (stat < 0) {
1774                         mtd->ecc_stats.failed++;
1775                 } else {
1776                         mtd->ecc_stats.corrected += stat;
1777                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1778                 }
1779         }
1780
1781         /* Calculate remaining oob bytes */
1782         i = mtd->oobsize - (oob - chip->oob_poi);
1783         if (i)
1784                 chip->read_buf(mtd, oob, i);
1785
1786         return max_bitflips;
1787 }
1788
1789 /**
1790  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1791  * @mtd: mtd info structure
1792  * @oob: oob destination address
1793  * @ops: oob ops structure
1794  * @len: size of oob to transfer
1795  */
1796 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1797                                   struct mtd_oob_ops *ops, size_t len)
1798 {
1799         struct nand_chip *chip = mtd_to_nand(mtd);
1800         int ret;
1801
1802         switch (ops->mode) {
1803
1804         case MTD_OPS_PLACE_OOB:
1805         case MTD_OPS_RAW:
1806                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1807                 return oob + len;
1808
1809         case MTD_OPS_AUTO_OOB:
1810                 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
1811                                                   ops->ooboffs, len);
1812                 BUG_ON(ret);
1813                 return oob + len;
1814
1815         default:
1816                 BUG();
1817         }
1818         return NULL;
1819 }
1820
1821 /**
1822  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1823  * @mtd: MTD device structure
1824  * @retry_mode: the retry mode to use
1825  *
1826  * Some vendors supply a special command to shift the Vt threshold, to be used
1827  * when there are too many bitflips in a page (i.e., ECC error). After setting
1828  * a new threshold, the host should retry reading the page.
1829  */
1830 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1831 {
1832         struct nand_chip *chip = mtd_to_nand(mtd);
1833
1834         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1835
1836         if (retry_mode >= chip->read_retries)
1837                 return -EINVAL;
1838
1839         if (!chip->setup_read_retry)
1840                 return -EOPNOTSUPP;
1841
1842         return chip->setup_read_retry(mtd, retry_mode);
1843 }
1844
1845 /**
1846  * nand_do_read_ops - [INTERN] Read data with ECC
1847  * @mtd: MTD device structure
1848  * @from: offset to read from
1849  * @ops: oob ops structure
1850  *
1851  * Internal function. Called with chip held.
1852  */
1853 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1854                             struct mtd_oob_ops *ops)
1855 {
1856         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1857         struct nand_chip *chip = mtd_to_nand(mtd);
1858         int ret = 0;
1859         uint32_t readlen = ops->len;
1860         uint32_t oobreadlen = ops->ooblen;
1861         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1862
1863         uint8_t *bufpoi, *oob, *buf;
1864         int use_bufpoi;
1865         unsigned int max_bitflips = 0;
1866         int retry_mode = 0;
1867         bool ecc_fail = false;
1868
1869         chipnr = (int)(from >> chip->chip_shift);
1870         chip->select_chip(mtd, chipnr);
1871
1872         realpage = (int)(from >> chip->page_shift);
1873         page = realpage & chip->pagemask;
1874
1875         col = (int)(from & (mtd->writesize - 1));
1876
1877         buf = ops->datbuf;
1878         oob = ops->oobbuf;
1879         oob_required = oob ? 1 : 0;
1880
1881         while (1) {
1882                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1883
1884                 bytes = min(mtd->writesize - col, readlen);
1885                 aligned = (bytes == mtd->writesize);
1886
1887                 if (!aligned)
1888                         use_bufpoi = 1;
1889                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1890                         use_bufpoi = !virt_addr_valid(buf) ||
1891                                      !IS_ALIGNED((unsigned long)buf,
1892                                                  chip->buf_align);
1893                 else
1894                         use_bufpoi = 0;
1895
1896                 /* Is the current page in the buffer? */
1897                 if (realpage != chip->pagebuf || oob) {
1898                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1899
1900                         if (use_bufpoi && aligned)
1901                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1902                                                  __func__, buf);
1903
1904 read_retry:
1905                         if (nand_standard_page_accessors(&chip->ecc))
1906                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1907
1908                         /*
1909                          * Now read the page into the buffer.  Absent an error,
1910                          * the read methods return max bitflips per ecc step.
1911                          */
1912                         if (unlikely(ops->mode == MTD_OPS_RAW))
1913                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1914                                                               oob_required,
1915                                                               page);
1916                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1917                                  !oob)
1918                                 ret = chip->ecc.read_subpage(mtd, chip,
1919                                                         col, bytes, bufpoi,
1920                                                         page);
1921                         else
1922                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1923                                                           oob_required, page);
1924                         if (ret < 0) {
1925                                 if (use_bufpoi)
1926                                         /* Invalidate page cache */
1927                                         chip->pagebuf = -1;
1928                                 break;
1929                         }
1930
1931                         /* Transfer not aligned data */
1932                         if (use_bufpoi) {
1933                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1934                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1935                                     (ops->mode != MTD_OPS_RAW)) {
1936                                         chip->pagebuf = realpage;
1937                                         chip->pagebuf_bitflips = ret;
1938                                 } else {
1939                                         /* Invalidate page cache */
1940                                         chip->pagebuf = -1;
1941                                 }
1942                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1943                         }
1944
1945                         if (unlikely(oob)) {
1946                                 int toread = min(oobreadlen, max_oobsize);
1947
1948                                 if (toread) {
1949                                         oob = nand_transfer_oob(mtd,
1950                                                 oob, ops, toread);
1951                                         oobreadlen -= toread;
1952                                 }
1953                         }
1954
1955                         if (chip->options & NAND_NEED_READRDY) {
1956                                 /* Apply delay or wait for ready/busy pin */
1957                                 if (!chip->dev_ready)
1958                                         udelay(chip->chip_delay);
1959                                 else
1960                                         nand_wait_ready(mtd);
1961                         }
1962
1963                         if (mtd->ecc_stats.failed - ecc_failures) {
1964                                 if (retry_mode + 1 < chip->read_retries) {
1965                                         retry_mode++;
1966                                         ret = nand_setup_read_retry(mtd,
1967                                                         retry_mode);
1968                                         if (ret < 0)
1969                                                 break;
1970
1971                                         /* Reset failures; retry */
1972                                         mtd->ecc_stats.failed = ecc_failures;
1973                                         goto read_retry;
1974                                 } else {
1975                                         /* No more retry modes; real failure */
1976                                         ecc_fail = true;
1977                                 }
1978                         }
1979
1980                         buf += bytes;
1981                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1982                 } else {
1983                         memcpy(buf, chip->buffers->databuf + col, bytes);
1984                         buf += bytes;
1985                         max_bitflips = max_t(unsigned int, max_bitflips,
1986                                              chip->pagebuf_bitflips);
1987                 }
1988
1989                 readlen -= bytes;
1990
1991                 /* Reset to retry mode 0 */
1992                 if (retry_mode) {
1993                         ret = nand_setup_read_retry(mtd, 0);
1994                         if (ret < 0)
1995                                 break;
1996                         retry_mode = 0;
1997                 }
1998
1999                 if (!readlen)
2000                         break;
2001
2002                 /* For subsequent reads align to page boundary */
2003                 col = 0;
2004                 /* Increment page address */
2005                 realpage++;
2006
2007                 page = realpage & chip->pagemask;
2008                 /* Check, if we cross a chip boundary */
2009                 if (!page) {
2010                         chipnr++;
2011                         chip->select_chip(mtd, -1);
2012                         chip->select_chip(mtd, chipnr);
2013                 }
2014         }
2015         chip->select_chip(mtd, -1);
2016
2017         ops->retlen = ops->len - (size_t) readlen;
2018         if (oob)
2019                 ops->oobretlen = ops->ooblen - oobreadlen;
2020
2021         if (ret < 0)
2022                 return ret;
2023
2024         if (ecc_fail)
2025                 return -EBADMSG;
2026
2027         return max_bitflips;
2028 }
2029
2030 /**
2031  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2032  * @mtd: MTD device structure
2033  * @from: offset to read from
2034  * @len: number of bytes to read
2035  * @retlen: pointer to variable to store the number of read bytes
2036  * @buf: the databuffer to put data
2037  *
2038  * Get hold of the chip and call nand_do_read.
2039  */
2040 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
2041                      size_t *retlen, uint8_t *buf)
2042 {
2043         struct mtd_oob_ops ops;
2044         int ret;
2045
2046         nand_get_device(mtd, FL_READING);
2047         memset(&ops, 0, sizeof(ops));
2048         ops.len = len;
2049         ops.datbuf = buf;
2050         ops.mode = MTD_OPS_PLACE_OOB;
2051         ret = nand_do_read_ops(mtd, from, &ops);
2052         *retlen = ops.retlen;
2053         nand_release_device(mtd);
2054         return ret;
2055 }
2056
2057 /**
2058  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2059  * @mtd: mtd info structure
2060  * @chip: nand chip info structure
2061  * @page: page number to read
2062  */
2063 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2064 {
2065         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2066         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2067         return 0;
2068 }
2069 EXPORT_SYMBOL(nand_read_oob_std);
2070
2071 /**
2072  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2073  *                          with syndromes
2074  * @mtd: mtd info structure
2075  * @chip: nand chip info structure
2076  * @page: page number to read
2077  */
2078 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2079                            int page)
2080 {
2081         int length = mtd->oobsize;
2082         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2083         int eccsize = chip->ecc.size;
2084         uint8_t *bufpoi = chip->oob_poi;
2085         int i, toread, sndrnd = 0, pos;
2086
2087         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
2088         for (i = 0; i < chip->ecc.steps; i++) {
2089                 if (sndrnd) {
2090                         pos = eccsize + i * (eccsize + chunk);
2091                         if (mtd->writesize > 512)
2092                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
2093                         else
2094                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
2095                 } else
2096                         sndrnd = 1;
2097                 toread = min_t(int, length, chunk);
2098                 chip->read_buf(mtd, bufpoi, toread);
2099                 bufpoi += toread;
2100                 length -= toread;
2101         }
2102         if (length > 0)
2103                 chip->read_buf(mtd, bufpoi, length);
2104
2105         return 0;
2106 }
2107 EXPORT_SYMBOL(nand_read_oob_syndrome);
2108
2109 /**
2110  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2111  * @mtd: mtd info structure
2112  * @chip: nand chip info structure
2113  * @page: page number to write
2114  */
2115 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2116 {
2117         int status = 0;
2118         const uint8_t *buf = chip->oob_poi;
2119         int length = mtd->oobsize;
2120
2121         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
2122         chip->write_buf(mtd, buf, length);
2123         /* Send command to program the OOB data */
2124         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2125
2126         status = chip->waitfunc(mtd, chip);
2127
2128         return status & NAND_STATUS_FAIL ? -EIO : 0;
2129 }
2130 EXPORT_SYMBOL(nand_write_oob_std);
2131
2132 /**
2133  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2134  *                           with syndrome - only for large page flash
2135  * @mtd: mtd info structure
2136  * @chip: nand chip info structure
2137  * @page: page number to write
2138  */
2139 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
2140                             int page)
2141 {
2142         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2143         int eccsize = chip->ecc.size, length = mtd->oobsize;
2144         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2145         const uint8_t *bufpoi = chip->oob_poi;
2146
2147         /*
2148          * data-ecc-data-ecc ... ecc-oob
2149          * or
2150          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2151          */
2152         if (!chip->ecc.prepad && !chip->ecc.postpad) {
2153                 pos = steps * (eccsize + chunk);
2154                 steps = 0;
2155         } else
2156                 pos = eccsize;
2157
2158         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2159         for (i = 0; i < steps; i++) {
2160                 if (sndcmd) {
2161                         if (mtd->writesize <= 512) {
2162                                 uint32_t fill = 0xFFFFFFFF;
2163
2164                                 len = eccsize;
2165                                 while (len > 0) {
2166                                         int num = min_t(int, len, 4);
2167                                         chip->write_buf(mtd, (uint8_t *)&fill,
2168                                                         num);
2169                                         len -= num;
2170                                 }
2171                         } else {
2172                                 pos = eccsize + i * (eccsize + chunk);
2173                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2174                         }
2175                 } else
2176                         sndcmd = 1;
2177                 len = min_t(int, length, chunk);
2178                 chip->write_buf(mtd, bufpoi, len);
2179                 bufpoi += len;
2180                 length -= len;
2181         }
2182         if (length > 0)
2183                 chip->write_buf(mtd, bufpoi, length);
2184
2185         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2186         status = chip->waitfunc(mtd, chip);
2187
2188         return status & NAND_STATUS_FAIL ? -EIO : 0;
2189 }
2190 EXPORT_SYMBOL(nand_write_oob_syndrome);
2191
2192 /**
2193  * nand_do_read_oob - [INTERN] NAND read out-of-band
2194  * @mtd: MTD device structure
2195  * @from: offset to read from
2196  * @ops: oob operations description structure
2197  *
2198  * NAND read out-of-band data from the spare area.
2199  */
2200 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2201                             struct mtd_oob_ops *ops)
2202 {
2203         int page, realpage, chipnr;
2204         struct nand_chip *chip = mtd_to_nand(mtd);
2205         struct mtd_ecc_stats stats;
2206         int readlen = ops->ooblen;
2207         int len;
2208         uint8_t *buf = ops->oobbuf;
2209         int ret = 0;
2210
2211         pr_debug("%s: from = 0x%08Lx, len = %i\n",
2212                         __func__, (unsigned long long)from, readlen);
2213
2214         stats = mtd->ecc_stats;
2215
2216         len = mtd_oobavail(mtd, ops);
2217
2218         if (unlikely(ops->ooboffs >= len)) {
2219                 pr_debug("%s: attempt to start read outside oob\n",
2220                                 __func__);
2221                 return -EINVAL;
2222         }
2223
2224         /* Do not allow reads past end of device */
2225         if (unlikely(from >= mtd->size ||
2226                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2227                                         (from >> chip->page_shift)) * len)) {
2228                 pr_debug("%s: attempt to read beyond end of device\n",
2229                                 __func__);
2230                 return -EINVAL;
2231         }
2232
2233         chipnr = (int)(from >> chip->chip_shift);
2234         chip->select_chip(mtd, chipnr);
2235
2236         /* Shift to get page */
2237         realpage = (int)(from >> chip->page_shift);
2238         page = realpage & chip->pagemask;
2239
2240         while (1) {
2241                 if (ops->mode == MTD_OPS_RAW)
2242                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
2243                 else
2244                         ret = chip->ecc.read_oob(mtd, chip, page);
2245
2246                 if (ret < 0)
2247                         break;
2248
2249                 len = min(len, readlen);
2250                 buf = nand_transfer_oob(mtd, buf, ops, len);
2251
2252                 if (chip->options & NAND_NEED_READRDY) {
2253                         /* Apply delay or wait for ready/busy pin */
2254                         if (!chip->dev_ready)
2255                                 udelay(chip->chip_delay);
2256                         else
2257                                 nand_wait_ready(mtd);
2258                 }
2259
2260                 readlen -= len;
2261                 if (!readlen)
2262                         break;
2263
2264                 /* Increment page address */
2265                 realpage++;
2266
2267                 page = realpage & chip->pagemask;
2268                 /* Check, if we cross a chip boundary */
2269                 if (!page) {
2270                         chipnr++;
2271                         chip->select_chip(mtd, -1);
2272                         chip->select_chip(mtd, chipnr);
2273                 }
2274         }
2275         chip->select_chip(mtd, -1);
2276
2277         ops->oobretlen = ops->ooblen - readlen;
2278
2279         if (ret < 0)
2280                 return ret;
2281
2282         if (mtd->ecc_stats.failed - stats.failed)
2283                 return -EBADMSG;
2284
2285         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2286 }
2287
2288 /**
2289  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2290  * @mtd: MTD device structure
2291  * @from: offset to read from
2292  * @ops: oob operation description structure
2293  *
2294  * NAND read data and/or out-of-band data.
2295  */
2296 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2297                          struct mtd_oob_ops *ops)
2298 {
2299         int ret;
2300
2301         ops->retlen = 0;
2302
2303         /* Do not allow reads past end of device */
2304         if (ops->datbuf && (from + ops->len) > mtd->size) {
2305                 pr_debug("%s: attempt to read beyond end of device\n",
2306                                 __func__);
2307                 return -EINVAL;
2308         }
2309
2310         if (ops->mode != MTD_OPS_PLACE_OOB &&
2311             ops->mode != MTD_OPS_AUTO_OOB &&
2312             ops->mode != MTD_OPS_RAW)
2313                 return -ENOTSUPP;
2314
2315         nand_get_device(mtd, FL_READING);
2316
2317         if (!ops->datbuf)
2318                 ret = nand_do_read_oob(mtd, from, ops);
2319         else
2320                 ret = nand_do_read_ops(mtd, from, ops);
2321
2322         nand_release_device(mtd);
2323         return ret;
2324 }
2325
2326
2327 /**
2328  * nand_write_page_raw - [INTERN] raw page write function
2329  * @mtd: mtd info structure
2330  * @chip: nand chip info structure
2331  * @buf: data buffer
2332  * @oob_required: must write chip->oob_poi to OOB
2333  * @page: page number to write
2334  *
2335  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2336  */
2337 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2338                         const uint8_t *buf, int oob_required, int page)
2339 {
2340         chip->write_buf(mtd, buf, mtd->writesize);
2341         if (oob_required)
2342                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2343
2344         return 0;
2345 }
2346 EXPORT_SYMBOL(nand_write_page_raw);
2347
2348 /**
2349  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2350  * @mtd: mtd info structure
2351  * @chip: nand chip info structure
2352  * @buf: data buffer
2353  * @oob_required: must write chip->oob_poi to OOB
2354  * @page: page number to write
2355  *
2356  * We need a special oob layout and handling even when ECC isn't checked.
2357  */
2358 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2359                                         struct nand_chip *chip,
2360                                         const uint8_t *buf, int oob_required,
2361                                         int page)
2362 {
2363         int eccsize = chip->ecc.size;
2364         int eccbytes = chip->ecc.bytes;
2365         uint8_t *oob = chip->oob_poi;
2366         int steps, size;
2367
2368         for (steps = chip->ecc.steps; steps > 0; steps--) {
2369                 chip->write_buf(mtd, buf, eccsize);
2370                 buf += eccsize;
2371
2372                 if (chip->ecc.prepad) {
2373                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2374                         oob += chip->ecc.prepad;
2375                 }
2376
2377                 chip->write_buf(mtd, oob, eccbytes);
2378                 oob += eccbytes;
2379
2380                 if (chip->ecc.postpad) {
2381                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2382                         oob += chip->ecc.postpad;
2383                 }
2384         }
2385
2386         size = mtd->oobsize - (oob - chip->oob_poi);
2387         if (size)
2388                 chip->write_buf(mtd, oob, size);
2389
2390         return 0;
2391 }
2392 /**
2393  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2394  * @mtd: mtd info structure
2395  * @chip: nand chip info structure
2396  * @buf: data buffer
2397  * @oob_required: must write chip->oob_poi to OOB
2398  * @page: page number to write
2399  */
2400 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2401                                  const uint8_t *buf, int oob_required,
2402                                  int page)
2403 {
2404         int i, eccsize = chip->ecc.size, ret;
2405         int eccbytes = chip->ecc.bytes;
2406         int eccsteps = chip->ecc.steps;
2407         uint8_t *ecc_calc = chip->buffers->ecccalc;
2408         const uint8_t *p = buf;
2409
2410         /* Software ECC calculation */
2411         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2412                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2413
2414         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2415                                          chip->ecc.total);
2416         if (ret)
2417                 return ret;
2418
2419         return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2420 }
2421
2422 /**
2423  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2424  * @mtd: mtd info structure
2425  * @chip: nand chip info structure
2426  * @buf: data buffer
2427  * @oob_required: must write chip->oob_poi to OOB
2428  * @page: page number to write
2429  */
2430 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2431                                   const uint8_t *buf, int oob_required,
2432                                   int page)
2433 {
2434         int i, eccsize = chip->ecc.size, ret;
2435         int eccbytes = chip->ecc.bytes;
2436         int eccsteps = chip->ecc.steps;
2437         uint8_t *ecc_calc = chip->buffers->ecccalc;
2438         const uint8_t *p = buf;
2439
2440         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2441                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2442                 chip->write_buf(mtd, p, eccsize);
2443                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2444         }
2445
2446         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2447                                          chip->ecc.total);
2448         if (ret)
2449                 return ret;
2450
2451         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2452
2453         return 0;
2454 }
2455
2456
2457 /**
2458  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2459  * @mtd:        mtd info structure
2460  * @chip:       nand chip info structure
2461  * @offset:     column address of subpage within the page
2462  * @data_len:   data length
2463  * @buf:        data buffer
2464  * @oob_required: must write chip->oob_poi to OOB
2465  * @page: page number to write
2466  */
2467 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2468                                 struct nand_chip *chip, uint32_t offset,
2469                                 uint32_t data_len, const uint8_t *buf,
2470                                 int oob_required, int page)
2471 {
2472         uint8_t *oob_buf  = chip->oob_poi;
2473         uint8_t *ecc_calc = chip->buffers->ecccalc;
2474         int ecc_size      = chip->ecc.size;
2475         int ecc_bytes     = chip->ecc.bytes;
2476         int ecc_steps     = chip->ecc.steps;
2477         uint32_t start_step = offset / ecc_size;
2478         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2479         int oob_bytes       = mtd->oobsize / ecc_steps;
2480         int step, ret;
2481
2482         for (step = 0; step < ecc_steps; step++) {
2483                 /* configure controller for WRITE access */
2484                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2485
2486                 /* write data (untouched subpages already masked by 0xFF) */
2487                 chip->write_buf(mtd, buf, ecc_size);
2488
2489                 /* mask ECC of un-touched subpages by padding 0xFF */
2490                 if ((step < start_step) || (step > end_step))
2491                         memset(ecc_calc, 0xff, ecc_bytes);
2492                 else
2493                         chip->ecc.calculate(mtd, buf, ecc_calc);
2494
2495                 /* mask OOB of un-touched subpages by padding 0xFF */
2496                 /* if oob_required, preserve OOB metadata of written subpage */
2497                 if (!oob_required || (step < start_step) || (step > end_step))
2498                         memset(oob_buf, 0xff, oob_bytes);
2499
2500                 buf += ecc_size;
2501                 ecc_calc += ecc_bytes;
2502                 oob_buf  += oob_bytes;
2503         }
2504
2505         /* copy calculated ECC for whole page to chip->buffer->oob */
2506         /* this include masked-value(0xFF) for unwritten subpages */
2507         ecc_calc = chip->buffers->ecccalc;
2508         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
2509                                          chip->ecc.total);
2510         if (ret)
2511                 return ret;
2512
2513         /* write OOB buffer to NAND device */
2514         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2515
2516         return 0;
2517 }
2518
2519
2520 /**
2521  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2522  * @mtd: mtd info structure
2523  * @chip: nand chip info structure
2524  * @buf: data buffer
2525  * @oob_required: must write chip->oob_poi to OOB
2526  * @page: page number to write
2527  *
2528  * The hw generator calculates the error syndrome automatically. Therefore we
2529  * need a special oob layout and handling.
2530  */
2531 static int nand_write_page_syndrome(struct mtd_info *mtd,
2532                                     struct nand_chip *chip,
2533                                     const uint8_t *buf, int oob_required,
2534                                     int page)
2535 {
2536         int i, eccsize = chip->ecc.size;
2537         int eccbytes = chip->ecc.bytes;
2538         int eccsteps = chip->ecc.steps;
2539         const uint8_t *p = buf;
2540         uint8_t *oob = chip->oob_poi;
2541
2542         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2543
2544                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2545                 chip->write_buf(mtd, p, eccsize);
2546
2547                 if (chip->ecc.prepad) {
2548                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2549                         oob += chip->ecc.prepad;
2550                 }
2551
2552                 chip->ecc.calculate(mtd, p, oob);
2553                 chip->write_buf(mtd, oob, eccbytes);
2554                 oob += eccbytes;
2555
2556                 if (chip->ecc.postpad) {
2557                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2558                         oob += chip->ecc.postpad;
2559                 }
2560         }
2561
2562         /* Calculate remaining oob bytes */
2563         i = mtd->oobsize - (oob - chip->oob_poi);
2564         if (i)
2565                 chip->write_buf(mtd, oob, i);
2566
2567         return 0;
2568 }
2569
2570 /**
2571  * nand_write_page - write one page
2572  * @mtd: MTD device structure
2573  * @chip: NAND chip descriptor
2574  * @offset: address offset within the page
2575  * @data_len: length of actual data to be written
2576  * @buf: the data to write
2577  * @oob_required: must write chip->oob_poi to OOB
2578  * @page: page number to write
2579  * @raw: use _raw version of write_page
2580  */
2581 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2582                 uint32_t offset, int data_len, const uint8_t *buf,
2583                 int oob_required, int page, int raw)
2584 {
2585         int status, subpage;
2586
2587         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2588                 chip->ecc.write_subpage)
2589                 subpage = offset || (data_len < mtd->writesize);
2590         else
2591                 subpage = 0;
2592
2593         if (nand_standard_page_accessors(&chip->ecc))
2594                 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2595
2596         if (unlikely(raw))
2597                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2598                                                   oob_required, page);
2599         else if (subpage)
2600                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2601                                                  buf, oob_required, page);
2602         else
2603                 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2604                                               page);
2605
2606         if (status < 0)
2607                 return status;
2608
2609         if (nand_standard_page_accessors(&chip->ecc)) {
2610                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2611
2612                 status = chip->waitfunc(mtd, chip);
2613                 if (status & NAND_STATUS_FAIL)
2614                         return -EIO;
2615         }
2616
2617         return 0;
2618 }
2619
2620 /**
2621  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2622  * @mtd: MTD device structure
2623  * @oob: oob data buffer
2624  * @len: oob data write length
2625  * @ops: oob ops structure
2626  */
2627 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2628                               struct mtd_oob_ops *ops)
2629 {
2630         struct nand_chip *chip = mtd_to_nand(mtd);
2631         int ret;
2632
2633         /*
2634          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2635          * data from a previous OOB read.
2636          */
2637         memset(chip->oob_poi, 0xff, mtd->oobsize);
2638
2639         switch (ops->mode) {
2640
2641         case MTD_OPS_PLACE_OOB:
2642         case MTD_OPS_RAW:
2643                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2644                 return oob + len;
2645
2646         case MTD_OPS_AUTO_OOB:
2647                 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
2648                                                   ops->ooboffs, len);
2649                 BUG_ON(ret);
2650                 return oob + len;
2651
2652         default:
2653                 BUG();
2654         }
2655         return NULL;
2656 }
2657
2658 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2659
2660 /**
2661  * nand_do_write_ops - [INTERN] NAND write with ECC
2662  * @mtd: MTD device structure
2663  * @to: offset to write to
2664  * @ops: oob operations description structure
2665  *
2666  * NAND write with ECC.
2667  */
2668 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2669                              struct mtd_oob_ops *ops)
2670 {
2671         int chipnr, realpage, page, column;
2672         struct nand_chip *chip = mtd_to_nand(mtd);
2673         uint32_t writelen = ops->len;
2674
2675         uint32_t oobwritelen = ops->ooblen;
2676         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2677
2678         uint8_t *oob = ops->oobbuf;
2679         uint8_t *buf = ops->datbuf;
2680         int ret;
2681         int oob_required = oob ? 1 : 0;
2682
2683         ops->retlen = 0;
2684         if (!writelen)
2685                 return 0;
2686
2687         /* Reject writes, which are not page aligned */
2688         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2689                 pr_notice("%s: attempt to write non page aligned data\n",
2690                            __func__);
2691                 return -EINVAL;
2692         }
2693
2694         column = to & (mtd->writesize - 1);
2695
2696         chipnr = (int)(to >> chip->chip_shift);
2697         chip->select_chip(mtd, chipnr);
2698
2699         /* Check, if it is write protected */
2700         if (nand_check_wp(mtd)) {
2701                 ret = -EIO;
2702                 goto err_out;
2703         }
2704
2705         realpage = (int)(to >> chip->page_shift);
2706         page = realpage & chip->pagemask;
2707
2708         /* Invalidate the page cache, when we write to the cached page */
2709         if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2710             ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2711                 chip->pagebuf = -1;
2712
2713         /* Don't allow multipage oob writes with offset */
2714         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2715                 ret = -EINVAL;
2716                 goto err_out;
2717         }
2718
2719         while (1) {
2720                 int bytes = mtd->writesize;
2721                 uint8_t *wbuf = buf;
2722                 int use_bufpoi;
2723                 int part_pagewr = (column || writelen < mtd->writesize);
2724
2725                 if (part_pagewr)
2726                         use_bufpoi = 1;
2727                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2728                         use_bufpoi = !virt_addr_valid(buf) ||
2729                                      !IS_ALIGNED((unsigned long)buf,
2730                                                  chip->buf_align);
2731                 else
2732                         use_bufpoi = 0;
2733
2734                 /* Partial page write?, or need to use bounce buffer */
2735                 if (use_bufpoi) {
2736                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2737                                          __func__, buf);
2738                         if (part_pagewr)
2739                                 bytes = min_t(int, bytes - column, writelen);
2740                         chip->pagebuf = -1;
2741                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2742                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2743                         wbuf = chip->buffers->databuf;
2744                 }
2745
2746                 if (unlikely(oob)) {
2747                         size_t len = min(oobwritelen, oobmaxlen);
2748                         oob = nand_fill_oob(mtd, oob, len, ops);
2749                         oobwritelen -= len;
2750                 } else {
2751                         /* We still need to erase leftover OOB data */
2752                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2753                 }
2754
2755                 ret = nand_write_page(mtd, chip, column, bytes, wbuf,
2756                                       oob_required, page,
2757                                       (ops->mode == MTD_OPS_RAW));
2758                 if (ret)
2759                         break;
2760
2761                 writelen -= bytes;
2762                 if (!writelen)
2763                         break;
2764
2765                 column = 0;
2766                 buf += bytes;
2767                 realpage++;
2768
2769                 page = realpage & chip->pagemask;
2770                 /* Check, if we cross a chip boundary */
2771                 if (!page) {
2772                         chipnr++;
2773                         chip->select_chip(mtd, -1);
2774                         chip->select_chip(mtd, chipnr);
2775                 }
2776         }
2777
2778         ops->retlen = ops->len - writelen;
2779         if (unlikely(oob))
2780                 ops->oobretlen = ops->ooblen;
2781
2782 err_out:
2783         chip->select_chip(mtd, -1);
2784         return ret;
2785 }
2786
2787 /**
2788  * panic_nand_write - [MTD Interface] NAND write with ECC
2789  * @mtd: MTD device structure
2790  * @to: offset to write to
2791  * @len: number of bytes to write
2792  * @retlen: pointer to variable to store the number of written bytes
2793  * @buf: the data to write
2794  *
2795  * NAND write with ECC. Used when performing writes in interrupt context, this
2796  * may for example be called by mtdoops when writing an oops while in panic.
2797  */
2798 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2799                             size_t *retlen, const uint8_t *buf)
2800 {
2801         struct nand_chip *chip = mtd_to_nand(mtd);
2802         struct mtd_oob_ops ops;
2803         int ret;
2804
2805         /* Wait for the device to get ready */
2806         panic_nand_wait(mtd, chip, 400);
2807
2808         /* Grab the device */
2809         panic_nand_get_device(chip, mtd, FL_WRITING);
2810
2811         memset(&ops, 0, sizeof(ops));
2812         ops.len = len;
2813         ops.datbuf = (uint8_t *)buf;
2814         ops.mode = MTD_OPS_PLACE_OOB;
2815
2816         ret = nand_do_write_ops(mtd, to, &ops);
2817
2818         *retlen = ops.retlen;
2819         return ret;
2820 }
2821
2822 /**
2823  * nand_write - [MTD Interface] NAND write with ECC
2824  * @mtd: MTD device structure
2825  * @to: offset to write to
2826  * @len: number of bytes to write
2827  * @retlen: pointer to variable to store the number of written bytes
2828  * @buf: the data to write
2829  *
2830  * NAND write with ECC.
2831  */
2832 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2833                           size_t *retlen, const uint8_t *buf)
2834 {
2835         struct mtd_oob_ops ops;
2836         int ret;
2837
2838         nand_get_device(mtd, FL_WRITING);
2839         memset(&ops, 0, sizeof(ops));
2840         ops.len = len;
2841         ops.datbuf = (uint8_t *)buf;
2842         ops.mode = MTD_OPS_PLACE_OOB;
2843         ret = nand_do_write_ops(mtd, to, &ops);
2844         *retlen = ops.retlen;
2845         nand_release_device(mtd);
2846         return ret;
2847 }
2848
2849 /**
2850  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2851  * @mtd: MTD device structure
2852  * @to: offset to write to
2853  * @ops: oob operation description structure
2854  *
2855  * NAND write out-of-band.
2856  */
2857 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2858                              struct mtd_oob_ops *ops)
2859 {
2860         int chipnr, page, status, len;
2861         struct nand_chip *chip = mtd_to_nand(mtd);
2862
2863         pr_debug("%s: to = 0x%08x, len = %i\n",
2864                          __func__, (unsigned int)to, (int)ops->ooblen);
2865
2866         len = mtd_oobavail(mtd, ops);
2867
2868         /* Do not allow write past end of page */
2869         if ((ops->ooboffs + ops->ooblen) > len) {
2870                 pr_debug("%s: attempt to write past end of page\n",
2871                                 __func__);
2872                 return -EINVAL;
2873         }
2874
2875         if (unlikely(ops->ooboffs >= len)) {
2876                 pr_debug("%s: attempt to start write outside oob\n",
2877                                 __func__);
2878                 return -EINVAL;
2879         }
2880
2881         /* Do not allow write past end of device */
2882         if (unlikely(to >= mtd->size ||
2883                      ops->ooboffs + ops->ooblen >
2884                         ((mtd->size >> chip->page_shift) -
2885                          (to >> chip->page_shift)) * len)) {
2886                 pr_debug("%s: attempt to write beyond end of device\n",
2887                                 __func__);
2888                 return -EINVAL;
2889         }
2890
2891         chipnr = (int)(to >> chip->chip_shift);
2892
2893         /*
2894          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2895          * of my DiskOnChip 2000 test units) will clear the whole data page too
2896          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2897          * it in the doc2000 driver in August 1999.  dwmw2.
2898          */
2899         nand_reset(chip, chipnr);
2900
2901         chip->select_chip(mtd, chipnr);
2902
2903         /* Shift to get page */
2904         page = (int)(to >> chip->page_shift);
2905
2906         /* Check, if it is write protected */
2907         if (nand_check_wp(mtd)) {
2908                 chip->select_chip(mtd, -1);
2909                 return -EROFS;
2910         }
2911
2912         /* Invalidate the page cache, if we write to the cached page */
2913         if (page == chip->pagebuf)
2914                 chip->pagebuf = -1;
2915
2916         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2917
2918         if (ops->mode == MTD_OPS_RAW)
2919                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2920         else
2921                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2922
2923         chip->select_chip(mtd, -1);
2924
2925         if (status)
2926                 return status;
2927
2928         ops->oobretlen = ops->ooblen;
2929
2930         return 0;
2931 }
2932
2933 /**
2934  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2935  * @mtd: MTD device structure
2936  * @to: offset to write to
2937  * @ops: oob operation description structure
2938  */
2939 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2940                           struct mtd_oob_ops *ops)
2941 {
2942         int ret = -ENOTSUPP;
2943
2944         ops->retlen = 0;
2945
2946         /* Do not allow writes past end of device */
2947         if (ops->datbuf && (to + ops->len) > mtd->size) {
2948                 pr_debug("%s: attempt to write beyond end of device\n",
2949                                 __func__);
2950                 return -EINVAL;
2951         }
2952
2953         nand_get_device(mtd, FL_WRITING);
2954
2955         switch (ops->mode) {
2956         case MTD_OPS_PLACE_OOB:
2957         case MTD_OPS_AUTO_OOB:
2958         case MTD_OPS_RAW:
2959                 break;
2960
2961         default:
2962                 goto out;
2963         }
2964
2965         if (!ops->datbuf)
2966                 ret = nand_do_write_oob(mtd, to, ops);
2967         else
2968                 ret = nand_do_write_ops(mtd, to, ops);
2969
2970 out:
2971         nand_release_device(mtd);
2972         return ret;
2973 }
2974
2975 /**
2976  * single_erase - [GENERIC] NAND standard block erase command function
2977  * @mtd: MTD device structure
2978  * @page: the page address of the block which will be erased
2979  *
2980  * Standard erase command for NAND chips. Returns NAND status.
2981  */
2982 static int single_erase(struct mtd_info *mtd, int page)
2983 {
2984         struct nand_chip *chip = mtd_to_nand(mtd);
2985         /* Send commands to erase a block */
2986         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2987         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2988
2989         return chip->waitfunc(mtd, chip);
2990 }
2991
2992 /**
2993  * nand_erase - [MTD Interface] erase block(s)
2994  * @mtd: MTD device structure
2995  * @instr: erase instruction
2996  *
2997  * Erase one ore more blocks.
2998  */
2999 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
3000 {
3001         return nand_erase_nand(mtd, instr, 0);
3002 }
3003
3004 /**
3005  * nand_erase_nand - [INTERN] erase block(s)
3006  * @mtd: MTD device structure
3007  * @instr: erase instruction
3008  * @allowbbt: allow erasing the bbt area
3009  *
3010  * Erase one ore more blocks.
3011  */
3012 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
3013                     int allowbbt)
3014 {
3015         int page, status, pages_per_block, ret, chipnr;
3016         struct nand_chip *chip = mtd_to_nand(mtd);
3017         loff_t len;
3018
3019         pr_debug("%s: start = 0x%012llx, len = %llu\n",
3020                         __func__, (unsigned long long)instr->addr,
3021                         (unsigned long long)instr->len);
3022
3023         if (check_offs_len(mtd, instr->addr, instr->len))
3024                 return -EINVAL;
3025
3026         /* Grab the lock and see if the device is available */
3027         nand_get_device(mtd, FL_ERASING);
3028
3029         /* Shift to get first page */
3030         page = (int)(instr->addr >> chip->page_shift);
3031         chipnr = (int)(instr->addr >> chip->chip_shift);
3032
3033         /* Calculate pages in each block */
3034         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
3035
3036         /* Select the NAND device */
3037         chip->select_chip(mtd, chipnr);
3038
3039         /* Check, if it is write protected */
3040         if (nand_check_wp(mtd)) {
3041                 pr_debug("%s: device is write protected!\n",
3042                                 __func__);
3043                 instr->state = MTD_ERASE_FAILED;
3044                 goto erase_exit;
3045         }
3046
3047         /* Loop through the pages */
3048         len = instr->len;
3049
3050         instr->state = MTD_ERASING;
3051
3052         while (len) {
3053                 /* Check if we have a bad block, we do not erase bad blocks! */
3054                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
3055                                         chip->page_shift, allowbbt)) {
3056                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
3057                                     __func__, page);
3058                         instr->state = MTD_ERASE_FAILED;
3059                         goto erase_exit;
3060                 }
3061
3062                 /*
3063                  * Invalidate the page cache, if we erase the block which
3064                  * contains the current cached page.
3065                  */
3066                 if (page <= chip->pagebuf && chip->pagebuf <
3067                     (page + pages_per_block))
3068                         chip->pagebuf = -1;
3069
3070                 status = chip->erase(mtd, page & chip->pagemask);
3071
3072                 /* See if block erase succeeded */
3073                 if (status & NAND_STATUS_FAIL) {
3074                         pr_debug("%s: failed erase, page 0x%08x\n",
3075                                         __func__, page);
3076                         instr->state = MTD_ERASE_FAILED;
3077                         instr->fail_addr =
3078                                 ((loff_t)page << chip->page_shift);
3079                         goto erase_exit;
3080                 }
3081
3082                 /* Increment page address and decrement length */
3083                 len -= (1ULL << chip->phys_erase_shift);
3084                 page += pages_per_block;
3085
3086                 /* Check, if we cross a chip boundary */
3087                 if (len && !(page & chip->pagemask)) {
3088                         chipnr++;
3089                         chip->select_chip(mtd, -1);
3090                         chip->select_chip(mtd, chipnr);
3091                 }
3092         }
3093         instr->state = MTD_ERASE_DONE;
3094
3095 erase_exit:
3096
3097         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
3098
3099         /* Deselect and wake up anyone waiting on the device */
3100         chip->select_chip(mtd, -1);
3101         nand_release_device(mtd);
3102
3103         /* Do call back function */
3104         if (!ret)
3105                 mtd_erase_callback(instr);
3106
3107         /* Return more or less happy */
3108         return ret;
3109 }
3110
3111 /**
3112  * nand_sync - [MTD Interface] sync
3113  * @mtd: MTD device structure
3114  *
3115  * Sync is actually a wait for chip ready function.
3116  */
3117 static void nand_sync(struct mtd_info *mtd)
3118 {
3119         pr_debug("%s: called\n", __func__);
3120
3121         /* Grab the lock and see if the device is available */
3122         nand_get_device(mtd, FL_SYNCING);
3123         /* Release it and go back */
3124         nand_release_device(mtd);
3125 }
3126
3127 /**
3128  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3129  * @mtd: MTD device structure
3130  * @offs: offset relative to mtd start
3131  */
3132 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3133 {
3134         struct nand_chip *chip = mtd_to_nand(mtd);
3135         int chipnr = (int)(offs >> chip->chip_shift);
3136         int ret;
3137
3138         /* Select the NAND device */
3139         nand_get_device(mtd, FL_READING);
3140         chip->select_chip(mtd, chipnr);
3141
3142         ret = nand_block_checkbad(mtd, offs, 0);
3143
3144         chip->select_chip(mtd, -1);
3145         nand_release_device(mtd);
3146
3147         return ret;
3148 }
3149
3150 /**
3151  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3152  * @mtd: MTD device structure
3153  * @ofs: offset relative to mtd start
3154  */
3155 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3156 {
3157         int ret;
3158
3159         ret = nand_block_isbad(mtd, ofs);
3160         if (ret) {
3161                 /* If it was bad already, return success and do nothing */
3162                 if (ret > 0)
3163                         return 0;
3164                 return ret;
3165         }
3166
3167         return nand_block_markbad_lowlevel(mtd, ofs);
3168 }
3169
3170 /**
3171  * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
3172  * @mtd: MTD device structure
3173  * @ofs: offset relative to mtd start
3174  * @len: length of mtd
3175  */
3176 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
3177 {
3178         struct nand_chip *chip = mtd_to_nand(mtd);
3179         u32 part_start_block;
3180         u32 part_end_block;
3181         u32 part_start_die;
3182         u32 part_end_die;
3183
3184         /*
3185          * max_bb_per_die and blocks_per_die used to determine
3186          * the maximum bad block count.
3187          */
3188         if (!chip->max_bb_per_die || !chip->blocks_per_die)
3189                 return -ENOTSUPP;
3190
3191         /* Get the start and end of the partition in erase blocks. */
3192         part_start_block = mtd_div_by_eb(ofs, mtd);
3193         part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
3194
3195         /* Get the start and end LUNs of the partition. */
3196         part_start_die = part_start_block / chip->blocks_per_die;
3197         part_end_die = part_end_block / chip->blocks_per_die;
3198
3199         /*
3200          * Look up the bad blocks per unit and multiply by the number of units
3201          * that the partition spans.
3202          */
3203         return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
3204 }
3205
3206 /**
3207  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3208  * @mtd: MTD device structure
3209  * @chip: nand chip info structure
3210  * @addr: feature address.
3211  * @subfeature_param: the subfeature parameters, a four bytes array.
3212  */
3213 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3214                         int addr, uint8_t *subfeature_param)
3215 {
3216         int status;
3217         int i;
3218
3219         if (!chip->onfi_version ||
3220             !(le16_to_cpu(chip->onfi_params.opt_cmd)
3221               & ONFI_OPT_CMD_SET_GET_FEATURES))
3222                 return -EINVAL;
3223
3224         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3225         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3226                 chip->write_byte(mtd, subfeature_param[i]);
3227
3228         status = chip->waitfunc(mtd, chip);
3229         if (status & NAND_STATUS_FAIL)
3230                 return -EIO;
3231         return 0;
3232 }
3233
3234 /**
3235  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3236  * @mtd: MTD device structure
3237  * @chip: nand chip info structure
3238  * @addr: feature address.
3239  * @subfeature_param: the subfeature parameters, a four bytes array.
3240  */
3241 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3242                         int addr, uint8_t *subfeature_param)
3243 {
3244         int i;
3245
3246         if (!chip->onfi_version ||
3247             !(le16_to_cpu(chip->onfi_params.opt_cmd)
3248               & ONFI_OPT_CMD_SET_GET_FEATURES))
3249                 return -EINVAL;
3250
3251         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3252         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3253                 *subfeature_param++ = chip->read_byte(mtd);
3254         return 0;
3255 }
3256
3257 /**
3258  * nand_onfi_get_set_features_notsupp - set/get features stub returning
3259  *                                      -ENOTSUPP
3260  * @mtd: MTD device structure
3261  * @chip: nand chip info structure
3262  * @addr: feature address.
3263  * @subfeature_param: the subfeature parameters, a four bytes array.
3264  *
3265  * Should be used by NAND controller drivers that do not support the SET/GET
3266  * FEATURES operations.
3267  */
3268 int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
3269                                        struct nand_chip *chip, int addr,
3270                                        u8 *subfeature_param)
3271 {
3272         return -ENOTSUPP;
3273 }
3274 EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
3275
3276 /**
3277  * nand_suspend - [MTD Interface] Suspend the NAND flash
3278  * @mtd: MTD device structure
3279  */
3280 static int nand_suspend(struct mtd_info *mtd)
3281 {
3282         return nand_get_device(mtd, FL_PM_SUSPENDED);
3283 }
3284
3285 /**
3286  * nand_resume - [MTD Interface] Resume the NAND flash
3287  * @mtd: MTD device structure
3288  */
3289 static void nand_resume(struct mtd_info *mtd)
3290 {
3291         struct nand_chip *chip = mtd_to_nand(mtd);
3292
3293         if (chip->state == FL_PM_SUSPENDED)
3294                 nand_release_device(mtd);
3295         else
3296                 pr_err("%s called for a chip which is not in suspended state\n",
3297                         __func__);
3298 }
3299
3300 /**
3301  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3302  *                 prevent further operations
3303  * @mtd: MTD device structure
3304  */
3305 static void nand_shutdown(struct mtd_info *mtd)
3306 {
3307         nand_get_device(mtd, FL_PM_SUSPENDED);
3308 }
3309
3310 /* Set default functions */
3311 static void nand_set_defaults(struct nand_chip *chip)
3312 {
3313         unsigned int busw = chip->options & NAND_BUSWIDTH_16;
3314
3315         /* check for proper chip_delay setup, set 20us if not */
3316         if (!chip->chip_delay)
3317                 chip->chip_delay = 20;
3318
3319         /* check, if a user supplied command function given */
3320         if (chip->cmdfunc == NULL)
3321                 chip->cmdfunc = nand_command;
3322
3323         /* check, if a user supplied wait function given */
3324         if (chip->waitfunc == NULL)
3325                 chip->waitfunc = nand_wait;
3326
3327         if (!chip->select_chip)
3328                 chip->select_chip = nand_select_chip;
3329
3330         /* set for ONFI nand */
3331         if (!chip->onfi_set_features)
3332                 chip->onfi_set_features = nand_onfi_set_features;
3333         if (!chip->onfi_get_features)
3334                 chip->onfi_get_features = nand_onfi_get_features;
3335
3336         /* If called twice, pointers that depend on busw may need to be reset */
3337         if (!chip->read_byte || chip->read_byte == nand_read_byte)
3338                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3339         if (!chip->read_word)
3340                 chip->read_word = nand_read_word;
3341         if (!chip->block_bad)
3342                 chip->block_bad = nand_block_bad;
3343         if (!chip->block_markbad)
3344                 chip->block_markbad = nand_default_block_markbad;
3345         if (!chip->write_buf || chip->write_buf == nand_write_buf)
3346                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3347         if (!chip->write_byte || chip->write_byte == nand_write_byte)
3348                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3349         if (!chip->read_buf || chip->read_buf == nand_read_buf)
3350                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3351         if (!chip->scan_bbt)
3352                 chip->scan_bbt = nand_default_bbt;
3353
3354         if (!chip->controller) {
3355                 chip->controller = &chip->hwcontrol;
3356                 nand_hw_control_init(chip->controller);
3357         }
3358
3359         if (!chip->buf_align)
3360                 chip->buf_align = 1;
3361 }
3362
3363 /* Sanitize ONFI strings so we can safely print them */
3364 static void sanitize_string(uint8_t *s, size_t len)
3365 {
3366         ssize_t i;
3367
3368         /* Null terminate */
3369         s[len - 1] = 0;
3370
3371         /* Remove non printable chars */
3372         for (i = 0; i < len - 1; i++) {
3373                 if (s[i] < ' ' || s[i] > 127)
3374                         s[i] = '?';
3375         }
3376
3377         /* Remove trailing spaces */
3378         strim(s);
3379 }
3380
3381 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3382 {
3383         int i;
3384         while (len--) {
3385                 crc ^= *p++ << 8;
3386                 for (i = 0; i < 8; i++)
3387                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3388         }
3389
3390         return crc;
3391 }
3392
3393 /* Parse the Extended Parameter Page. */
3394 static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
3395                                             struct nand_onfi_params *p)
3396 {
3397         struct mtd_info *mtd = nand_to_mtd(chip);
3398         struct onfi_ext_param_page *ep;
3399         struct onfi_ext_section *s;
3400         struct onfi_ext_ecc_info *ecc;
3401         uint8_t *cursor;
3402         int ret = -EINVAL;
3403         int len;
3404         int i;
3405
3406         len = le16_to_cpu(p->ext_param_page_length) * 16;
3407         ep = kmalloc(len, GFP_KERNEL);
3408         if (!ep)
3409                 return -ENOMEM;
3410
3411         /* Send our own NAND_CMD_PARAM. */
3412         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3413
3414         /* Use the Change Read Column command to skip the ONFI param pages. */
3415         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3416                         sizeof(*p) * p->num_of_param_pages , -1);
3417
3418         /* Read out the Extended Parameter Page. */
3419         chip->read_buf(mtd, (uint8_t *)ep, len);
3420         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3421                 != le16_to_cpu(ep->crc))) {
3422                 pr_debug("fail in the CRC.\n");
3423                 goto ext_out;
3424         }
3425
3426         /*
3427          * Check the signature.
3428          * Do not strictly follow the ONFI spec, maybe changed in future.
3429          */
3430         if (strncmp(ep->sig, "EPPS", 4)) {
3431                 pr_debug("The signature is invalid.\n");
3432                 goto ext_out;
3433         }
3434
3435         /* find the ECC section. */
3436         cursor = (uint8_t *)(ep + 1);
3437         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3438                 s = ep->sections + i;
3439                 if (s->type == ONFI_SECTION_TYPE_2)
3440                         break;
3441                 cursor += s->length * 16;
3442         }
3443         if (i == ONFI_EXT_SECTION_MAX) {
3444                 pr_debug("We can not find the ECC section.\n");
3445                 goto ext_out;
3446         }
3447
3448         /* get the info we want. */
3449         ecc = (struct onfi_ext_ecc_info *)cursor;
3450
3451         if (!ecc->codeword_size) {
3452                 pr_debug("Invalid codeword size\n");
3453                 goto ext_out;
3454         }
3455
3456         chip->ecc_strength_ds = ecc->ecc_bits;
3457         chip->ecc_step_ds = 1 << ecc->codeword_size;
3458         ret = 0;
3459
3460 ext_out:
3461         kfree(ep);
3462         return ret;
3463 }
3464
3465 /*
3466  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3467  */
3468 static int nand_flash_detect_onfi(struct nand_chip *chip)
3469 {
3470         struct mtd_info *mtd = nand_to_mtd(chip);
3471         struct nand_onfi_params *p = &chip->onfi_params;
3472         int i, j;
3473         int val;
3474
3475         /* Try ONFI for unknown chip or LP */
3476         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3477         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3478                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3479                 return 0;
3480
3481         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3482         for (i = 0; i < 3; i++) {
3483                 for (j = 0; j < sizeof(*p); j++)
3484                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3485                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3486                                 le16_to_cpu(p->crc)) {
3487                         break;
3488                 }
3489         }
3490
3491         if (i == 3) {
3492                 pr_err("Could not find valid ONFI parameter page; aborting\n");
3493                 return 0;
3494         }
3495
3496         /* Check version */
3497         val = le16_to_cpu(p->revision);
3498         if (val & (1 << 5))
3499                 chip->onfi_version = 23;
3500         else if (val & (1 << 4))
3501                 chip->onfi_version = 22;
3502         else if (val & (1 << 3))
3503                 chip->onfi_version = 21;
3504         else if (val & (1 << 2))
3505                 chip->onfi_version = 20;
3506         else if (val & (1 << 1))
3507                 chip->onfi_version = 10;
3508
3509         if (!chip->onfi_version) {
3510                 pr_info("unsupported ONFI version: %d\n", val);
3511                 return 0;
3512         }
3513
3514         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3515         sanitize_string(p->model, sizeof(p->model));
3516         if (!mtd->name)
3517                 mtd->name = p->model;
3518
3519         mtd->writesize = le32_to_cpu(p->byte_per_page);
3520
3521         /*
3522          * pages_per_block and blocks_per_lun may not be a power-of-2 size
3523          * (don't ask me who thought of this...). MTD assumes that these
3524          * dimensions will be power-of-2, so just truncate the remaining area.
3525          */
3526         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3527         mtd->erasesize *= mtd->writesize;
3528
3529         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3530
3531         /* See erasesize comment */
3532         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3533         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3534         chip->bits_per_cell = p->bits_per_cell;
3535
3536         chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
3537         chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
3538
3539         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3540                 chip->options |= NAND_BUSWIDTH_16;
3541
3542         if (p->ecc_bits != 0xff) {
3543                 chip->ecc_strength_ds = p->ecc_bits;
3544                 chip->ecc_step_ds = 512;
3545         } else if (chip->onfi_version >= 21 &&
3546                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3547
3548                 /*
3549                  * The nand_flash_detect_ext_param_page() uses the
3550                  * Change Read Column command which maybe not supported
3551                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3552                  * now. We do not replace user supplied command function.
3553                  */
3554                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3555                         chip->cmdfunc = nand_command_lp;
3556
3557                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3558                 if (nand_flash_detect_ext_param_page(chip, p))
3559                         pr_warn("Failed to detect ONFI extended param page\n");
3560         } else {
3561                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3562         }
3563
3564         return 1;
3565 }
3566
3567 /*
3568  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3569  */
3570 static int nand_flash_detect_jedec(struct nand_chip *chip)
3571 {
3572         struct mtd_info *mtd = nand_to_mtd(chip);
3573         struct nand_jedec_params *p = &chip->jedec_params;
3574         struct jedec_ecc_info *ecc;
3575         int val;
3576         int i, j;
3577
3578         /* Try JEDEC for unknown chip or LP */
3579         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3580         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3581                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3582                 chip->read_byte(mtd) != 'C')
3583                 return 0;
3584
3585         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3586         for (i = 0; i < 3; i++) {
3587                 for (j = 0; j < sizeof(*p); j++)
3588                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3589
3590                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3591                                 le16_to_cpu(p->crc))
3592                         break;
3593         }
3594
3595         if (i == 3) {
3596                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3597                 return 0;
3598         }
3599
3600         /* Check version */
3601         val = le16_to_cpu(p->revision);
3602         if (val & (1 << 2))
3603                 chip->jedec_version = 10;
3604         else if (val & (1 << 1))
3605                 chip->jedec_version = 1; /* vendor specific version */
3606
3607         if (!chip->jedec_version) {
3608                 pr_info("unsupported JEDEC version: %d\n", val);
3609                 return 0;
3610         }
3611
3612         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3613         sanitize_string(p->model, sizeof(p->model));
3614         if (!mtd->name)
3615                 mtd->name = p->model;
3616
3617         mtd->writesize = le32_to_cpu(p->byte_per_page);
3618
3619         /* Please reference to the comment for nand_flash_detect_onfi. */
3620         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3621         mtd->erasesize *= mtd->writesize;
3622
3623         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3624
3625         /* Please reference to the comment for nand_flash_detect_onfi. */
3626         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3627         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3628         chip->bits_per_cell = p->bits_per_cell;
3629
3630         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3631                 chip->options |= NAND_BUSWIDTH_16;
3632
3633         /* ECC info */
3634         ecc = &p->ecc_info[0];
3635
3636         if (ecc->codeword_size >= 9) {
3637                 chip->ecc_strength_ds = ecc->ecc_bits;
3638                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3639         } else {
3640                 pr_warn("Invalid codeword size\n");
3641         }
3642
3643         return 1;
3644 }
3645
3646 /*
3647  * nand_id_has_period - Check if an ID string has a given wraparound period
3648  * @id_data: the ID string
3649  * @arrlen: the length of the @id_data array
3650  * @period: the period of repitition
3651  *
3652  * Check if an ID string is repeated within a given sequence of bytes at
3653  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3654  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3655  * if the repetition has a period of @period; otherwise, returns zero.
3656  */
3657 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3658 {
3659         int i, j;
3660         for (i = 0; i < period; i++)
3661                 for (j = i + period; j < arrlen; j += period)
3662                         if (id_data[i] != id_data[j])
3663                                 return 0;
3664         return 1;
3665 }
3666
3667 /*
3668  * nand_id_len - Get the length of an ID string returned by CMD_READID
3669  * @id_data: the ID string
3670  * @arrlen: the length of the @id_data array
3671
3672  * Returns the length of the ID string, according to known wraparound/trailing
3673  * zero patterns. If no pattern exists, returns the length of the array.
3674  */
3675 static int nand_id_len(u8 *id_data, int arrlen)
3676 {
3677         int last_nonzero, period;
3678
3679         /* Find last non-zero byte */
3680         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3681                 if (id_data[last_nonzero])
3682                         break;
3683
3684         /* All zeros */
3685         if (last_nonzero < 0)
3686                 return 0;
3687
3688         /* Calculate wraparound period */
3689         for (period = 1; period < arrlen; period++)
3690                 if (nand_id_has_period(id_data, arrlen, period))
3691                         break;
3692
3693         /* There's a repeated pattern */
3694         if (period < arrlen)
3695                 return period;
3696
3697         /* There are trailing zeros */
3698         if (last_nonzero < arrlen - 1)
3699                 return last_nonzero + 1;
3700
3701         /* No pattern detected */
3702         return arrlen;
3703 }
3704
3705 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3706 static int nand_get_bits_per_cell(u8 cellinfo)
3707 {
3708         int bits;
3709
3710         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3711         bits >>= NAND_CI_CELLTYPE_SHIFT;
3712         return bits + 1;
3713 }
3714
3715 /*
3716  * Many new NAND share similar device ID codes, which represent the size of the
3717  * chip. The rest of the parameters must be decoded according to generic or
3718  * manufacturer-specific "extended ID" decoding patterns.
3719  */
3720 void nand_decode_ext_id(struct nand_chip *chip)
3721 {
3722         struct mtd_info *mtd = nand_to_mtd(chip);
3723         int extid;
3724         u8 *id_data = chip->id.data;
3725         /* The 3rd id byte holds MLC / multichip data */
3726         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3727         /* The 4th id byte is the important one */
3728         extid = id_data[3];
3729
3730         /* Calc pagesize */
3731         mtd->writesize = 1024 << (extid & 0x03);
3732         extid >>= 2;
3733         /* Calc oobsize */
3734         mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
3735         extid >>= 2;
3736         /* Calc blocksize. Blocksize is multiples of 64KiB */
3737         mtd->erasesize = (64 * 1024) << (extid & 0x03);
3738         extid >>= 2;
3739         /* Get buswidth information */
3740         if (extid & 0x1)
3741                 chip->options |= NAND_BUSWIDTH_16;
3742 }
3743 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
3744
3745 /*
3746  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3747  * decodes a matching ID table entry and assigns the MTD size parameters for
3748  * the chip.
3749  */
3750 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
3751 {
3752         struct mtd_info *mtd = nand_to_mtd(chip);
3753
3754         mtd->erasesize = type->erasesize;
3755         mtd->writesize = type->pagesize;
3756         mtd->oobsize = mtd->writesize / 32;
3757
3758         /* All legacy ID NAND are small-page, SLC */
3759         chip->bits_per_cell = 1;
3760 }
3761
3762 /*
3763  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3764  * heuristic patterns using various detected parameters (e.g., manufacturer,
3765  * page size, cell-type information).
3766  */
3767 static void nand_decode_bbm_options(struct nand_chip *chip)
3768 {
3769         struct mtd_info *mtd = nand_to_mtd(chip);
3770
3771         /* Set the bad block position */
3772         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3773                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3774         else
3775                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3776 }
3777
3778 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3779 {
3780         return type->id_len;
3781 }
3782
3783 static bool find_full_id_nand(struct nand_chip *chip,
3784                               struct nand_flash_dev *type)
3785 {
3786         struct mtd_info *mtd = nand_to_mtd(chip);
3787         u8 *id_data = chip->id.data;
3788
3789         if (!strncmp(type->id, id_data, type->id_len)) {
3790                 mtd->writesize = type->pagesize;
3791                 mtd->erasesize = type->erasesize;
3792                 mtd->oobsize = type->oobsize;
3793
3794                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3795                 chip->chipsize = (uint64_t)type->chipsize << 20;
3796                 chip->options |= type->options;
3797                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3798                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3799                 chip->onfi_timing_mode_default =
3800                                         type->onfi_timing_mode_default;
3801
3802                 if (!mtd->name)
3803                         mtd->name = type->name;
3804
3805                 return true;
3806         }
3807         return false;
3808 }
3809
3810 /*
3811  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
3812  * compliant and does not have a full-id or legacy-id entry in the nand_ids
3813  * table.
3814  */
3815 static void nand_manufacturer_detect(struct nand_chip *chip)
3816 {
3817         /*
3818          * Try manufacturer detection if available and use
3819          * nand_decode_ext_id() otherwise.
3820          */
3821         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
3822             chip->manufacturer.desc->ops->detect) {
3823                 /* The 3rd id byte holds MLC / multichip data */
3824                 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
3825                 chip->manufacturer.desc->ops->detect(chip);
3826         } else {
3827                 nand_decode_ext_id(chip);
3828         }
3829 }
3830
3831 /*
3832  * Manufacturer initialization. This function is called for all NANDs including
3833  * ONFI and JEDEC compliant ones.
3834  * Manufacturer drivers should put all their specific initialization code in
3835  * their ->init() hook.
3836  */
3837 static int nand_manufacturer_init(struct nand_chip *chip)
3838 {
3839         if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
3840             !chip->manufacturer.desc->ops->init)
3841                 return 0;
3842
3843         return chip->manufacturer.desc->ops->init(chip);
3844 }
3845
3846 /*
3847  * Manufacturer cleanup. This function is called for all NANDs including
3848  * ONFI and JEDEC compliant ones.
3849  * Manufacturer drivers should put all their specific cleanup code in their
3850  * ->cleanup() hook.
3851  */
3852 static void nand_manufacturer_cleanup(struct nand_chip *chip)
3853 {
3854         /* Release manufacturer private data */
3855         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
3856             chip->manufacturer.desc->ops->cleanup)
3857                 chip->manufacturer.desc->ops->cleanup(chip);
3858 }
3859
3860 /*
3861  * Get the flash and manufacturer id and lookup if the type is supported.
3862  */
3863 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
3864 {
3865         const struct nand_manufacturer *manufacturer;
3866         struct mtd_info *mtd = nand_to_mtd(chip);
3867         int busw;
3868         int i;
3869         u8 *id_data = chip->id.data;
3870         u8 maf_id, dev_id;
3871
3872         /*
3873          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3874          * after power-up.
3875          */
3876         nand_reset(chip, 0);
3877
3878         /* Select the device */
3879         chip->select_chip(mtd, 0);
3880
3881         /* Send the command for reading device ID */
3882         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3883
3884         /* Read manufacturer and device IDs */
3885         maf_id = chip->read_byte(mtd);
3886         dev_id = chip->read_byte(mtd);
3887
3888         /*
3889          * Try again to make sure, as some systems the bus-hold or other
3890          * interface concerns can cause random data which looks like a
3891          * possibly credible NAND flash to appear. If the two results do
3892          * not match, ignore the device completely.
3893          */
3894
3895         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3896
3897         /* Read entire ID string */
3898         for (i = 0; i < ARRAY_SIZE(chip->id.data); i++)
3899                 id_data[i] = chip->read_byte(mtd);
3900
3901         if (id_data[0] != maf_id || id_data[1] != dev_id) {
3902                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3903                         maf_id, dev_id, id_data[0], id_data[1]);
3904                 return -ENODEV;
3905         }
3906
3907         chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
3908
3909         /* Try to identify manufacturer */
3910         manufacturer = nand_get_manufacturer(maf_id);
3911         chip->manufacturer.desc = manufacturer;
3912
3913         if (!type)
3914                 type = nand_flash_ids;
3915
3916         /*
3917          * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
3918          * override it.
3919          * This is required to make sure initial NAND bus width set by the
3920          * NAND controller driver is coherent with the real NAND bus width
3921          * (extracted by auto-detection code).
3922          */
3923         busw = chip->options & NAND_BUSWIDTH_16;
3924
3925         /*
3926          * The flag is only set (never cleared), reset it to its default value
3927          * before starting auto-detection.
3928          */
3929         chip->options &= ~NAND_BUSWIDTH_16;
3930
3931         for (; type->name != NULL; type++) {
3932                 if (is_full_id_nand(type)) {
3933                         if (find_full_id_nand(chip, type))
3934                                 goto ident_done;
3935                 } else if (dev_id == type->dev_id) {
3936                         break;
3937                 }
3938         }
3939
3940         chip->onfi_version = 0;
3941         if (!type->name || !type->pagesize) {
3942                 /* Check if the chip is ONFI compliant */
3943                 if (nand_flash_detect_onfi(chip))
3944                         goto ident_done;
3945
3946                 /* Check if the chip is JEDEC compliant */
3947                 if (nand_flash_detect_jedec(chip))
3948                         goto ident_done;
3949         }
3950
3951         if (!type->name)
3952                 return -ENODEV;
3953
3954         if (!mtd->name)
3955                 mtd->name = type->name;
3956
3957         chip->chipsize = (uint64_t)type->chipsize << 20;
3958
3959         if (!type->pagesize)
3960                 nand_manufacturer_detect(chip);
3961         else
3962                 nand_decode_id(chip, type);
3963
3964         /* Get chip options */
3965         chip->options |= type->options;
3966
3967 ident_done:
3968
3969         if (chip->options & NAND_BUSWIDTH_AUTO) {
3970                 WARN_ON(busw & NAND_BUSWIDTH_16);
3971                 nand_set_defaults(chip);
3972         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3973                 /*
3974                  * Check, if buswidth is correct. Hardware drivers should set
3975                  * chip correct!
3976                  */
3977                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3978                         maf_id, dev_id);
3979                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
3980                         mtd->name);
3981                 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
3982                         (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
3983                 return -EINVAL;
3984         }
3985
3986         nand_decode_bbm_options(chip);
3987
3988         /* Calculate the address shift from the page size */
3989         chip->page_shift = ffs(mtd->writesize) - 1;
3990         /* Convert chipsize to number of pages per chip -1 */
3991         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3992
3993         chip->bbt_erase_shift = chip->phys_erase_shift =
3994                 ffs(mtd->erasesize) - 1;
3995         if (chip->chipsize & 0xffffffff)
3996                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3997         else {
3998                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3999                 chip->chip_shift += 32 - 1;
4000         }
4001
4002         chip->badblockbits = 8;
4003         chip->erase = single_erase;
4004
4005         /* Do not replace user supplied command function! */
4006         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
4007                 chip->cmdfunc = nand_command_lp;
4008
4009         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4010                 maf_id, dev_id);
4011
4012         if (chip->onfi_version)
4013                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4014                         chip->onfi_params.model);
4015         else if (chip->jedec_version)
4016                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4017                         chip->jedec_params.model);
4018         else
4019                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4020                         type->name);
4021
4022         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4023                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4024                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4025         return 0;
4026 }
4027
4028 static const char * const nand_ecc_modes[] = {
4029         [NAND_ECC_NONE]         = "none",
4030         [NAND_ECC_SOFT]         = "soft",
4031         [NAND_ECC_HW]           = "hw",
4032         [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
4033         [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
4034         [NAND_ECC_ON_DIE]       = "on-die",
4035 };
4036
4037 static int of_get_nand_ecc_mode(struct device_node *np)
4038 {
4039         const char *pm;
4040         int err, i;
4041
4042         err = of_property_read_string(np, "nand-ecc-mode", &pm);
4043         if (err < 0)
4044                 return err;
4045
4046         for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4047                 if (!strcasecmp(pm, nand_ecc_modes[i]))
4048                         return i;
4049
4050         /*
4051          * For backward compatibility we support few obsoleted values that don't
4052          * have their mappings into nand_ecc_modes_t anymore (they were merged
4053          * with other enums).
4054          */
4055         if (!strcasecmp(pm, "soft_bch"))
4056                 return NAND_ECC_SOFT;
4057
4058         return -ENODEV;
4059 }
4060
4061 static const char * const nand_ecc_algos[] = {
4062         [NAND_ECC_HAMMING]      = "hamming",
4063         [NAND_ECC_BCH]          = "bch",
4064 };
4065
4066 static int of_get_nand_ecc_algo(struct device_node *np)
4067 {
4068         const char *pm;
4069         int err, i;
4070
4071         err = of_property_read_string(np, "nand-ecc-algo", &pm);
4072         if (!err) {
4073                 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4074                         if (!strcasecmp(pm, nand_ecc_algos[i]))
4075                                 return i;
4076                 return -ENODEV;
4077         }
4078
4079         /*
4080          * For backward compatibility we also read "nand-ecc-mode" checking
4081          * for some obsoleted values that were specifying ECC algorithm.
4082          */
4083         err = of_property_read_string(np, "nand-ecc-mode", &pm);
4084         if (err < 0)
4085                 return err;
4086
4087         if (!strcasecmp(pm, "soft"))
4088                 return NAND_ECC_HAMMING;
4089         else if (!strcasecmp(pm, "soft_bch"))
4090                 return NAND_ECC_BCH;
4091
4092         return -ENODEV;
4093 }
4094
4095 static int of_get_nand_ecc_step_size(struct device_node *np)
4096 {
4097         int ret;
4098         u32 val;
4099
4100         ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4101         return ret ? ret : val;
4102 }
4103
4104 static int of_get_nand_ecc_strength(struct device_node *np)
4105 {
4106         int ret;
4107         u32 val;
4108
4109         ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4110         return ret ? ret : val;
4111 }
4112
4113 static int of_get_nand_bus_width(struct device_node *np)
4114 {
4115         u32 val;
4116
4117         if (of_property_read_u32(np, "nand-bus-width", &val))
4118                 return 8;
4119
4120         switch (val) {
4121         case 8:
4122         case 16:
4123                 return val;
4124         default:
4125                 return -EIO;
4126         }
4127 }
4128
4129 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4130 {
4131         return of_property_read_bool(np, "nand-on-flash-bbt");
4132 }
4133
4134 static int nand_dt_init(struct nand_chip *chip)
4135 {
4136         struct device_node *dn = nand_get_flash_node(chip);
4137         int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4138
4139         if (!dn)
4140                 return 0;
4141
4142         if (of_get_nand_bus_width(dn) == 16)
4143                 chip->options |= NAND_BUSWIDTH_16;
4144
4145         if (of_get_nand_on_flash_bbt(dn))
4146                 chip->bbt_options |= NAND_BBT_USE_FLASH;
4147
4148         ecc_mode = of_get_nand_ecc_mode(dn);
4149         ecc_algo = of_get_nand_ecc_algo(dn);
4150         ecc_strength = of_get_nand_ecc_strength(dn);
4151         ecc_step = of_get_nand_ecc_step_size(dn);
4152
4153         if (ecc_mode >= 0)
4154                 chip->ecc.mode = ecc_mode;
4155
4156         if (ecc_algo >= 0)
4157                 chip->ecc.algo = ecc_algo;
4158
4159         if (ecc_strength >= 0)
4160                 chip->ecc.strength = ecc_strength;
4161
4162         if (ecc_step > 0)
4163                 chip->ecc.size = ecc_step;
4164
4165         if (of_property_read_bool(dn, "nand-ecc-maximize"))
4166                 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4167
4168         return 0;
4169 }
4170
4171 /**
4172  * nand_scan_ident - [NAND Interface] Scan for the NAND device
4173  * @mtd: MTD device structure
4174  * @maxchips: number of chips to scan for
4175  * @table: alternative NAND ID table
4176  *
4177  * This is the first phase of the normal nand_scan() function. It reads the
4178  * flash ID and sets up MTD fields accordingly.
4179  *
4180  */
4181 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4182                     struct nand_flash_dev *table)
4183 {
4184         int i, nand_maf_id, nand_dev_id;
4185         struct nand_chip *chip = mtd_to_nand(mtd);
4186         int ret;
4187
4188         ret = nand_dt_init(chip);
4189         if (ret)
4190                 return ret;
4191
4192         if (!mtd->name && mtd->dev.parent)
4193                 mtd->name = dev_name(mtd->dev.parent);
4194
4195         if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
4196                 /*
4197                  * Default functions assigned for chip_select() and
4198                  * cmdfunc() both expect cmd_ctrl() to be populated,
4199                  * so we need to check that that's the case
4200                  */
4201                 pr_err("chip.cmd_ctrl() callback is not provided");
4202                 return -EINVAL;
4203         }
4204         /* Set the default functions */
4205         nand_set_defaults(chip);
4206
4207         /* Read the flash type */
4208         ret = nand_detect(chip, table);
4209         if (ret) {
4210                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4211                         pr_warn("No NAND device found\n");
4212                 chip->select_chip(mtd, -1);
4213                 return ret;
4214         }
4215
4216         nand_maf_id = chip->id.data[0];
4217         nand_dev_id = chip->id.data[1];
4218
4219         chip->select_chip(mtd, -1);
4220
4221         /* Check for a chip array */
4222         for (i = 1; i < maxchips; i++) {
4223                 /* See comment in nand_get_flash_type for reset */
4224                 nand_reset(chip, i);
4225
4226                 chip->select_chip(mtd, i);
4227                 /* Send the command for reading device ID */
4228                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4229                 /* Read manufacturer and device IDs */
4230                 if (nand_maf_id != chip->read_byte(mtd) ||
4231                     nand_dev_id != chip->read_byte(mtd)) {
4232                         chip->select_chip(mtd, -1);
4233                         break;
4234                 }
4235                 chip->select_chip(mtd, -1);
4236         }
4237         if (i > 1)
4238                 pr_info("%d chips detected\n", i);
4239
4240         /* Store the number of chips and calc total size for mtd */
4241         chip->numchips = i;
4242         mtd->size = i * chip->chipsize;
4243
4244         return 0;
4245 }
4246 EXPORT_SYMBOL(nand_scan_ident);
4247
4248 static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
4249 {
4250         struct nand_chip *chip = mtd_to_nand(mtd);
4251         struct nand_ecc_ctrl *ecc = &chip->ecc;
4252
4253         if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4254                 return -EINVAL;
4255
4256         switch (ecc->algo) {
4257         case NAND_ECC_HAMMING:
4258                 ecc->calculate = nand_calculate_ecc;
4259                 ecc->correct = nand_correct_data;
4260                 ecc->read_page = nand_read_page_swecc;
4261                 ecc->read_subpage = nand_read_subpage;
4262                 ecc->write_page = nand_write_page_swecc;
4263                 ecc->read_page_raw = nand_read_page_raw;
4264                 ecc->write_page_raw = nand_write_page_raw;
4265                 ecc->read_oob = nand_read_oob_std;
4266                 ecc->write_oob = nand_write_oob_std;
4267                 if (!ecc->size)
4268                         ecc->size = 256;
4269                 ecc->bytes = 3;
4270                 ecc->strength = 1;
4271                 return 0;
4272         case NAND_ECC_BCH:
4273                 if (!mtd_nand_has_bch()) {
4274                         WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4275                         return -EINVAL;
4276                 }
4277                 ecc->calculate = nand_bch_calculate_ecc;
4278                 ecc->correct = nand_bch_correct_data;
4279                 ecc->read_page = nand_read_page_swecc;
4280                 ecc->read_subpage = nand_read_subpage;
4281                 ecc->write_page = nand_write_page_swecc;
4282                 ecc->read_page_raw = nand_read_page_raw;
4283                 ecc->write_page_raw = nand_write_page_raw;
4284                 ecc->read_oob = nand_read_oob_std;
4285                 ecc->write_oob = nand_write_oob_std;
4286
4287                 /*
4288                 * Board driver should supply ecc.size and ecc.strength
4289                 * values to select how many bits are correctable.
4290                 * Otherwise, default to 4 bits for large page devices.
4291                 */
4292                 if (!ecc->size && (mtd->oobsize >= 64)) {
4293                         ecc->size = 512;
4294                         ecc->strength = 4;
4295                 }
4296
4297                 /*
4298                  * if no ecc placement scheme was provided pickup the default
4299                  * large page one.
4300                  */
4301                 if (!mtd->ooblayout) {
4302                         /* handle large page devices only */
4303                         if (mtd->oobsize < 64) {
4304                                 WARN(1, "OOB layout is required when using software BCH on small pages\n");
4305                                 return -EINVAL;
4306                         }
4307
4308                         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4309
4310                 }
4311
4312                 /*
4313                  * We can only maximize ECC config when the default layout is
4314                  * used, otherwise we don't know how many bytes can really be
4315                  * used.
4316                  */
4317                 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
4318                     ecc->options & NAND_ECC_MAXIMIZE) {
4319                         int steps, bytes;
4320
4321                         /* Always prefer 1k blocks over 512bytes ones */
4322                         ecc->size = 1024;
4323                         steps = mtd->writesize / ecc->size;
4324
4325                         /* Reserve 2 bytes for the BBM */
4326                         bytes = (mtd->oobsize - 2) / steps;
4327                         ecc->strength = bytes * 8 / fls(8 * ecc->size);
4328                 }
4329
4330                 /* See nand_bch_init() for details. */
4331                 ecc->bytes = 0;
4332                 ecc->priv = nand_bch_init(mtd);
4333                 if (!ecc->priv) {
4334                         WARN(1, "BCH ECC initialization failed!\n");
4335                         return -EINVAL;
4336                 }
4337                 return 0;
4338         default:
4339                 WARN(1, "Unsupported ECC algorithm!\n");
4340                 return -EINVAL;
4341         }
4342 }
4343
4344 /**
4345  * nand_check_ecc_caps - check the sanity of preset ECC settings
4346  * @chip: nand chip info structure
4347  * @caps: ECC caps info structure
4348  * @oobavail: OOB size that the ECC engine can use
4349  *
4350  * When ECC step size and strength are already set, check if they are supported
4351  * by the controller and the calculated ECC bytes fit within the chip's OOB.
4352  * On success, the calculated ECC bytes is set.
4353  */
4354 int nand_check_ecc_caps(struct nand_chip *chip,
4355                         const struct nand_ecc_caps *caps, int oobavail)
4356 {
4357         struct mtd_info *mtd = nand_to_mtd(chip);
4358         const struct nand_ecc_step_info *stepinfo;
4359         int preset_step = chip->ecc.size;
4360         int preset_strength = chip->ecc.strength;
4361         int nsteps, ecc_bytes;
4362         int i, j;
4363
4364         if (WARN_ON(oobavail < 0))
4365                 return -EINVAL;
4366
4367         if (!preset_step || !preset_strength)
4368                 return -ENODATA;
4369
4370         nsteps = mtd->writesize / preset_step;
4371
4372         for (i = 0; i < caps->nstepinfos; i++) {
4373                 stepinfo = &caps->stepinfos[i];
4374
4375                 if (stepinfo->stepsize != preset_step)
4376                         continue;
4377
4378                 for (j = 0; j < stepinfo->nstrengths; j++) {
4379                         if (stepinfo->strengths[j] != preset_strength)
4380                                 continue;
4381
4382                         ecc_bytes = caps->calc_ecc_bytes(preset_step,
4383                                                          preset_strength);
4384                         if (WARN_ON_ONCE(ecc_bytes < 0))
4385                                 return ecc_bytes;
4386
4387                         if (ecc_bytes * nsteps > oobavail) {
4388                                 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4389                                        preset_step, preset_strength);
4390                                 return -ENOSPC;
4391                         }
4392
4393                         chip->ecc.bytes = ecc_bytes;
4394
4395                         return 0;
4396                 }
4397         }
4398
4399         pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4400                preset_step, preset_strength);
4401
4402         return -ENOTSUPP;
4403 }
4404 EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4405
4406 /**
4407  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4408  * @chip: nand chip info structure
4409  * @caps: ECC engine caps info structure
4410  * @oobavail: OOB size that the ECC engine can use
4411  *
4412  * If a chip's ECC requirement is provided, try to meet it with the least
4413  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4414  * On success, the chosen ECC settings are set.
4415  */
4416 int nand_match_ecc_req(struct nand_chip *chip,
4417                        const struct nand_ecc_caps *caps, int oobavail)
4418 {
4419         struct mtd_info *mtd = nand_to_mtd(chip);
4420         const struct nand_ecc_step_info *stepinfo;
4421         int req_step = chip->ecc_step_ds;
4422         int req_strength = chip->ecc_strength_ds;
4423         int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4424         int best_step, best_strength, best_ecc_bytes;
4425         int best_ecc_bytes_total = INT_MAX;
4426         int i, j;
4427
4428         if (WARN_ON(oobavail < 0))
4429                 return -EINVAL;
4430
4431         /* No information provided by the NAND chip */
4432         if (!req_step || !req_strength)
4433                 return -ENOTSUPP;
4434
4435         /* number of correctable bits the chip requires in a page */
4436         req_corr = mtd->writesize / req_step * req_strength;
4437
4438         for (i = 0; i < caps->nstepinfos; i++) {
4439                 stepinfo = &caps->stepinfos[i];
4440                 step_size = stepinfo->stepsize;
4441
4442                 for (j = 0; j < stepinfo->nstrengths; j++) {
4443                         strength = stepinfo->strengths[j];
4444
4445                         /*
4446                          * If both step size and strength are smaller than the
4447                          * chip's requirement, it is not easy to compare the
4448                          * resulted reliability.
4449                          */
4450                         if (step_size < req_step && strength < req_strength)
4451                                 continue;
4452
4453                         if (mtd->writesize % step_size)
4454                                 continue;
4455
4456                         nsteps = mtd->writesize / step_size;
4457
4458                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4459                         if (WARN_ON_ONCE(ecc_bytes < 0))
4460                                 continue;
4461                         ecc_bytes_total = ecc_bytes * nsteps;
4462
4463                         if (ecc_bytes_total > oobavail ||
4464                             strength * nsteps < req_corr)
4465                                 continue;
4466
4467                         /*
4468                          * We assume the best is to meet the chip's requrement
4469                          * with the least number of ECC bytes.
4470                          */
4471                         if (ecc_bytes_total < best_ecc_bytes_total) {
4472                                 best_ecc_bytes_total = ecc_bytes_total;
4473                                 best_step = step_size;
4474                                 best_strength = strength;
4475                                 best_ecc_bytes = ecc_bytes;
4476                         }
4477                 }
4478         }
4479
4480         if (best_ecc_bytes_total == INT_MAX)
4481                 return -ENOTSUPP;
4482
4483         chip->ecc.size = best_step;
4484         chip->ecc.strength = best_strength;
4485         chip->ecc.bytes = best_ecc_bytes;
4486
4487         return 0;
4488 }
4489 EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4490
4491 /**
4492  * nand_maximize_ecc - choose the max ECC strength available
4493  * @chip: nand chip info structure
4494  * @caps: ECC engine caps info structure
4495  * @oobavail: OOB size that the ECC engine can use
4496  *
4497  * Choose the max ECC strength that is supported on the controller, and can fit
4498  * within the chip's OOB.  On success, the chosen ECC settings are set.
4499  */
4500 int nand_maximize_ecc(struct nand_chip *chip,
4501                       const struct nand_ecc_caps *caps, int oobavail)
4502 {
4503         struct mtd_info *mtd = nand_to_mtd(chip);
4504         const struct nand_ecc_step_info *stepinfo;
4505         int step_size, strength, nsteps, ecc_bytes, corr;
4506         int best_corr = 0;
4507         int best_step = 0;
4508         int best_strength, best_ecc_bytes;
4509         int i, j;
4510
4511         if (WARN_ON(oobavail < 0))
4512                 return -EINVAL;
4513
4514         for (i = 0; i < caps->nstepinfos; i++) {
4515                 stepinfo = &caps->stepinfos[i];
4516                 step_size = stepinfo->stepsize;
4517
4518                 /* If chip->ecc.size is already set, respect it */
4519                 if (chip->ecc.size && step_size != chip->ecc.size)
4520                         continue;
4521
4522                 for (j = 0; j < stepinfo->nstrengths; j++) {
4523                         strength = stepinfo->strengths[j];
4524
4525                         if (mtd->writesize % step_size)
4526                                 continue;
4527
4528                         nsteps = mtd->writesize / step_size;
4529
4530                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4531                         if (WARN_ON_ONCE(ecc_bytes < 0))
4532                                 continue;
4533
4534                         if (ecc_bytes * nsteps > oobavail)
4535                                 continue;
4536
4537                         corr = strength * nsteps;
4538
4539                         /*
4540                          * If the number of correctable bits is the same,
4541                          * bigger step_size has more reliability.
4542                          */
4543                         if (corr > best_corr ||
4544                             (corr == best_corr && step_size > best_step)) {
4545                                 best_corr = corr;
4546                                 best_step = step_size;
4547                                 best_strength = strength;
4548                                 best_ecc_bytes = ecc_bytes;
4549                         }
4550                 }
4551         }
4552
4553         if (!best_corr)
4554                 return -ENOTSUPP;
4555
4556         chip->ecc.size = best_step;
4557         chip->ecc.strength = best_strength;
4558         chip->ecc.bytes = best_ecc_bytes;
4559
4560         return 0;
4561 }
4562 EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4563
4564 /*
4565  * Check if the chip configuration meet the datasheet requirements.
4566
4567  * If our configuration corrects A bits per B bytes and the minimum
4568  * required correction level is X bits per Y bytes, then we must ensure
4569  * both of the following are true:
4570  *
4571  * (1) A / B >= X / Y
4572  * (2) A >= X
4573  *
4574  * Requirement (1) ensures we can correct for the required bitflip density.
4575  * Requirement (2) ensures we can correct even when all bitflips are clumped
4576  * in the same sector.
4577  */
4578 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4579 {
4580         struct nand_chip *chip = mtd_to_nand(mtd);
4581         struct nand_ecc_ctrl *ecc = &chip->ecc;
4582         int corr, ds_corr;
4583
4584         if (ecc->size == 0 || chip->ecc_step_ds == 0)
4585                 /* Not enough information */
4586                 return true;
4587
4588         /*
4589          * We get the number of corrected bits per page to compare
4590          * the correction density.
4591          */
4592         corr = (mtd->writesize * ecc->strength) / ecc->size;
4593         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4594
4595         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4596 }
4597
4598 static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4599 {
4600         struct nand_ecc_ctrl *ecc = &chip->ecc;
4601
4602         if (nand_standard_page_accessors(ecc))
4603                 return false;
4604
4605         /*
4606          * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4607          * controller driver implements all the page accessors because
4608          * default helpers are not suitable when the core does not
4609          * send the READ0/PAGEPROG commands.
4610          */
4611         return (!ecc->read_page || !ecc->write_page ||
4612                 !ecc->read_page_raw || !ecc->write_page_raw ||
4613                 (NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4614                 (NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4615                  ecc->hwctl && ecc->calculate));
4616 }
4617
4618 /**
4619  * nand_scan_tail - [NAND Interface] Scan for the NAND device
4620  * @mtd: MTD device structure
4621  *
4622  * This is the second phase of the normal nand_scan() function. It fills out
4623  * all the uninitialized function pointers with the defaults and scans for a
4624  * bad block table if appropriate.
4625  */
4626 int nand_scan_tail(struct mtd_info *mtd)
4627 {
4628         struct nand_chip *chip = mtd_to_nand(mtd);
4629         struct nand_ecc_ctrl *ecc = &chip->ecc;
4630         struct nand_buffers *nbuf = NULL;
4631         int ret, i;
4632
4633         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4634         if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4635                    !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
4636                 return -EINVAL;
4637         }
4638
4639         if (invalid_ecc_page_accessors(chip)) {
4640                 pr_err("Invalid ECC page accessors setup\n");
4641                 return -EINVAL;
4642         }
4643
4644         if (!(chip->options & NAND_OWN_BUFFERS)) {
4645                 nbuf = kzalloc(sizeof(*nbuf), GFP_KERNEL);
4646                 if (!nbuf)
4647                         return -ENOMEM;
4648
4649                 nbuf->ecccalc = kmalloc(mtd->oobsize, GFP_KERNEL);
4650                 if (!nbuf->ecccalc) {
4651                         ret = -ENOMEM;
4652                         goto err_free_nbuf;
4653                 }
4654
4655                 nbuf->ecccode = kmalloc(mtd->oobsize, GFP_KERNEL);
4656                 if (!nbuf->ecccode) {
4657                         ret = -ENOMEM;
4658                         goto err_free_nbuf;
4659                 }
4660
4661                 nbuf->databuf = kmalloc(mtd->writesize + mtd->oobsize,
4662                                         GFP_KERNEL);
4663                 if (!nbuf->databuf) {
4664                         ret = -ENOMEM;
4665                         goto err_free_nbuf;
4666                 }
4667
4668                 chip->buffers = nbuf;
4669         } else if (!chip->buffers) {
4670                 return -ENOMEM;
4671         }
4672
4673         /*
4674          * FIXME: some NAND manufacturer drivers expect the first die to be
4675          * selected when manufacturer->init() is called. They should be fixed
4676          * to explictly select the relevant die when interacting with the NAND
4677          * chip.
4678          */
4679         chip->select_chip(mtd, 0);
4680         ret = nand_manufacturer_init(chip);
4681         chip->select_chip(mtd, -1);
4682         if (ret)
4683                 goto err_free_nbuf;
4684
4685         /* Set the internal oob buffer location, just after the page data */
4686         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4687
4688         /*
4689          * If no default placement scheme is given, select an appropriate one.
4690          */
4691         if (!mtd->ooblayout &&
4692             !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4693                 switch (mtd->oobsize) {
4694                 case 8:
4695                 case 16:
4696                         mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
4697                         break;
4698                 case 64:
4699                 case 128:
4700                         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
4701                         break;
4702                 default:
4703                         WARN(1, "No oob scheme defined for oobsize %d\n",
4704                                 mtd->oobsize);
4705                         ret = -EINVAL;
4706                         goto err_nand_manuf_cleanup;
4707                 }
4708         }
4709
4710         /*
4711          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4712          * selected and we have 256 byte pagesize fallback to software ECC
4713          */
4714
4715         switch (ecc->mode) {
4716         case NAND_ECC_HW_OOB_FIRST:
4717                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4718                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4719                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4720                         ret = -EINVAL;
4721                         goto err_nand_manuf_cleanup;
4722                 }
4723                 if (!ecc->read_page)
4724                         ecc->read_page = nand_read_page_hwecc_oob_first;
4725
4726         case NAND_ECC_HW:
4727                 /* Use standard hwecc read page function? */
4728                 if (!ecc->read_page)
4729                         ecc->read_page = nand_read_page_hwecc;
4730                 if (!ecc->write_page)
4731                         ecc->write_page = nand_write_page_hwecc;
4732                 if (!ecc->read_page_raw)
4733                         ecc->read_page_raw = nand_read_page_raw;
4734                 if (!ecc->write_page_raw)
4735                         ecc->write_page_raw = nand_write_page_raw;
4736                 if (!ecc->read_oob)
4737                         ecc->read_oob = nand_read_oob_std;
4738                 if (!ecc->write_oob)
4739                         ecc->write_oob = nand_write_oob_std;
4740                 if (!ecc->read_subpage)
4741                         ecc->read_subpage = nand_read_subpage;
4742                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4743                         ecc->write_subpage = nand_write_subpage_hwecc;
4744
4745         case NAND_ECC_HW_SYNDROME:
4746                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4747                     (!ecc->read_page ||
4748                      ecc->read_page == nand_read_page_hwecc ||
4749                      !ecc->write_page ||
4750                      ecc->write_page == nand_write_page_hwecc)) {
4751                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4752                         ret = -EINVAL;
4753                         goto err_nand_manuf_cleanup;
4754                 }
4755                 /* Use standard syndrome read/write page function? */
4756                 if (!ecc->read_page)
4757                         ecc->read_page = nand_read_page_syndrome;
4758                 if (!ecc->write_page)
4759                         ecc->write_page = nand_write_page_syndrome;
4760                 if (!ecc->read_page_raw)
4761                         ecc->read_page_raw = nand_read_page_raw_syndrome;
4762                 if (!ecc->write_page_raw)
4763                         ecc->write_page_raw = nand_write_page_raw_syndrome;
4764                 if (!ecc->read_oob)
4765                         ecc->read_oob = nand_read_oob_syndrome;
4766                 if (!ecc->write_oob)
4767                         ecc->write_oob = nand_write_oob_syndrome;
4768
4769                 if (mtd->writesize >= ecc->size) {
4770                         if (!ecc->strength) {
4771                                 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4772                                 ret = -EINVAL;
4773                                 goto err_nand_manuf_cleanup;
4774                         }
4775                         break;
4776                 }
4777                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4778                         ecc->size, mtd->writesize);
4779                 ecc->mode = NAND_ECC_SOFT;
4780                 ecc->algo = NAND_ECC_HAMMING;
4781
4782         case NAND_ECC_SOFT:
4783                 ret = nand_set_ecc_soft_ops(mtd);
4784                 if (ret) {
4785                         ret = -EINVAL;
4786                         goto err_nand_manuf_cleanup;
4787                 }
4788                 break;
4789
4790         case NAND_ECC_ON_DIE:
4791                 if (!ecc->read_page || !ecc->write_page) {
4792                         WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
4793                         ret = -EINVAL;
4794                         goto err_nand_manuf_cleanup;
4795                 }
4796                 if (!ecc->read_oob)
4797                         ecc->read_oob = nand_read_oob_std;
4798                 if (!ecc->write_oob)
4799                         ecc->write_oob = nand_write_oob_std;
4800                 break;
4801
4802         case NAND_ECC_NONE:
4803                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4804                 ecc->read_page = nand_read_page_raw;
4805                 ecc->write_page = nand_write_page_raw;
4806                 ecc->read_oob = nand_read_oob_std;
4807                 ecc->read_page_raw = nand_read_page_raw;
4808                 ecc->write_page_raw = nand_write_page_raw;
4809                 ecc->write_oob = nand_write_oob_std;
4810                 ecc->size = mtd->writesize;
4811                 ecc->bytes = 0;
4812                 ecc->strength = 0;
4813                 break;
4814
4815         default:
4816                 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
4817                 ret = -EINVAL;
4818                 goto err_nand_manuf_cleanup;
4819         }
4820
4821         /* For many systems, the standard OOB write also works for raw */
4822         if (!ecc->read_oob_raw)
4823                 ecc->read_oob_raw = ecc->read_oob;
4824         if (!ecc->write_oob_raw)
4825                 ecc->write_oob_raw = ecc->write_oob;
4826
4827         /* propagate ecc info to mtd_info */
4828         mtd->ecc_strength = ecc->strength;
4829         mtd->ecc_step_size = ecc->size;
4830
4831         /*
4832          * Set the number of read / write steps for one page depending on ECC
4833          * mode.
4834          */
4835         ecc->steps = mtd->writesize / ecc->size;
4836         if (ecc->steps * ecc->size != mtd->writesize) {
4837                 WARN(1, "Invalid ECC parameters\n");
4838                 ret = -EINVAL;
4839                 goto err_nand_manuf_cleanup;
4840         }
4841         ecc->total = ecc->steps * ecc->bytes;
4842         if (ecc->total > mtd->oobsize) {
4843                 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
4844                 ret = -EINVAL;
4845                 goto err_nand_manuf_cleanup;
4846         }
4847
4848         /*
4849          * The number of bytes available for a client to place data into
4850          * the out of band area.
4851          */
4852         ret = mtd_ooblayout_count_freebytes(mtd);
4853         if (ret < 0)
4854                 ret = 0;
4855
4856         mtd->oobavail = ret;
4857
4858         /* ECC sanity check: warn if it's too weak */
4859         if (!nand_ecc_strength_good(mtd))
4860                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4861                         mtd->name);
4862
4863         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4864         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4865                 switch (ecc->steps) {
4866                 case 2:
4867                         mtd->subpage_sft = 1;
4868                         break;
4869                 case 4:
4870                 case 8:
4871                 case 16:
4872                         mtd->subpage_sft = 2;
4873                         break;
4874                 }
4875         }
4876         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4877
4878         /* Initialize state */
4879         chip->state = FL_READY;
4880
4881         /* Invalidate the pagebuffer reference */
4882         chip->pagebuf = -1;
4883
4884         /* Large page NAND with SOFT_ECC should support subpage reads */
4885         switch (ecc->mode) {
4886         case NAND_ECC_SOFT:
4887                 if (chip->page_shift > 9)
4888                         chip->options |= NAND_SUBPAGE_READ;
4889                 break;
4890
4891         default:
4892                 break;
4893         }
4894
4895         /* Fill in remaining MTD driver data */
4896         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4897         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4898                                                 MTD_CAP_NANDFLASH;
4899         mtd->_erase = nand_erase;
4900         mtd->_point = NULL;
4901         mtd->_unpoint = NULL;
4902         mtd->_read = nand_read;
4903         mtd->_write = nand_write;
4904         mtd->_panic_write = panic_nand_write;
4905         mtd->_read_oob = nand_read_oob;
4906         mtd->_write_oob = nand_write_oob;
4907         mtd->_sync = nand_sync;
4908         mtd->_lock = NULL;
4909         mtd->_unlock = NULL;
4910         mtd->_suspend = nand_suspend;
4911         mtd->_resume = nand_resume;
4912         mtd->_reboot = nand_shutdown;
4913         mtd->_block_isreserved = nand_block_isreserved;
4914         mtd->_block_isbad = nand_block_isbad;
4915         mtd->_block_markbad = nand_block_markbad;
4916         mtd->_max_bad_blocks = nand_max_bad_blocks;
4917         mtd->writebufsize = mtd->writesize;
4918
4919         /*
4920          * Initialize bitflip_threshold to its default prior scan_bbt() call.
4921          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4922          * properly set.
4923          */
4924         if (!mtd->bitflip_threshold)
4925                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4926
4927         /* Initialize the ->data_interface field. */
4928         ret = nand_init_data_interface(chip);
4929         if (ret)
4930                 goto err_nand_manuf_cleanup;
4931
4932         /* Enter fastest possible mode on all dies. */
4933         for (i = 0; i < chip->numchips; i++) {
4934                 chip->select_chip(mtd, i);
4935                 ret = nand_setup_data_interface(chip, i);
4936                 chip->select_chip(mtd, -1);
4937
4938                 if (ret)
4939                         goto err_nand_data_iface_cleanup;
4940         }
4941
4942         /* Check, if we should skip the bad block table scan */
4943         if (chip->options & NAND_SKIP_BBTSCAN)
4944                 return 0;
4945
4946         /* Build bad block table */
4947         ret = chip->scan_bbt(mtd);
4948         if (ret)
4949                 goto err_nand_data_iface_cleanup;
4950
4951         return 0;
4952
4953 err_nand_data_iface_cleanup:
4954         nand_release_data_interface(chip);
4955
4956 err_nand_manuf_cleanup:
4957         nand_manufacturer_cleanup(chip);
4958
4959 err_free_nbuf:
4960         if (nbuf) {
4961                 kfree(nbuf->databuf);
4962                 kfree(nbuf->ecccode);
4963                 kfree(nbuf->ecccalc);
4964                 kfree(nbuf);
4965         }
4966
4967         return ret;
4968 }
4969 EXPORT_SYMBOL(nand_scan_tail);
4970
4971 /*
4972  * is_module_text_address() isn't exported, and it's mostly a pointless
4973  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4974  * to call us from in-kernel code if the core NAND support is modular.
4975  */
4976 #ifdef MODULE
4977 #define caller_is_module() (1)
4978 #else
4979 #define caller_is_module() \
4980         is_module_text_address((unsigned long)__builtin_return_address(0))
4981 #endif
4982
4983 /**
4984  * nand_scan - [NAND Interface] Scan for the NAND device
4985  * @mtd: MTD device structure
4986  * @maxchips: number of chips to scan for
4987  *
4988  * This fills out all the uninitialized function pointers with the defaults.
4989  * The flash ID is read and the mtd/chip structures are filled with the
4990  * appropriate values.
4991  */
4992 int nand_scan(struct mtd_info *mtd, int maxchips)
4993 {
4994         int ret;
4995
4996         ret = nand_scan_ident(mtd, maxchips, NULL);
4997         if (!ret)
4998                 ret = nand_scan_tail(mtd);
4999         return ret;
5000 }
5001 EXPORT_SYMBOL(nand_scan);
5002
5003 /**
5004  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5005  * @chip: NAND chip object
5006  */
5007 void nand_cleanup(struct nand_chip *chip)
5008 {
5009         if (chip->ecc.mode == NAND_ECC_SOFT &&
5010             chip->ecc.algo == NAND_ECC_BCH)
5011                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5012
5013         nand_release_data_interface(chip);
5014
5015         /* Free bad block table memory */
5016         kfree(chip->bbt);
5017         if (!(chip->options & NAND_OWN_BUFFERS) && chip->buffers) {
5018                 kfree(chip->buffers->databuf);
5019                 kfree(chip->buffers->ecccode);
5020                 kfree(chip->buffers->ecccalc);
5021                 kfree(chip->buffers);
5022         }
5023
5024         /* Free bad block descriptor memory */
5025         if (chip->badblock_pattern && chip->badblock_pattern->options
5026                         & NAND_BBT_DYNAMICSTRUCT)
5027                 kfree(chip->badblock_pattern);
5028
5029         /* Free manufacturer priv data. */
5030         nand_manufacturer_cleanup(chip);
5031 }
5032 EXPORT_SYMBOL_GPL(nand_cleanup);
5033
5034 /**
5035  * nand_release - [NAND Interface] Unregister the MTD device and free resources
5036  *                held by the NAND device
5037  * @mtd: MTD device structure
5038  */
5039 void nand_release(struct mtd_info *mtd)
5040 {
5041         mtd_device_unregister(mtd);
5042         nand_cleanup(mtd_to_nand(mtd));
5043 }
5044 EXPORT_SYMBOL_GPL(nand_release);
5045
5046 MODULE_LICENSE("GPL");
5047 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5048 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5049 MODULE_DESCRIPTION("Generic NAND flash driver code");