Merge branches 'acpi-battery', 'acpi-video' and 'acpi-misc'
[sfrench/cifs-2.6.git] / drivers / mmc / host / sh_mmcif.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/of_device.h>
50 #include <linux/pagemap.h>
51 #include <linux/platform_data/sh_mmcif.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
58
59 #define DRIVER_NAME     "sh_mmcif"
60
61 /* CE_CMD_SET */
62 #define CMD_MASK                0x3f000000
63 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY            (1 << 21) /* R1b */
67 #define CMD_SET_CCSEN           (1 << 20)
68 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH            (1 << 5)
83 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
87
88 /* CE_CMD_CTRL */
89 #define CMD_CTRL_BREAK          (1 << 0)
90
91 /* CE_BLOCK_SET */
92 #define BLOCK_SIZE_MASK         0x0000ffff
93
94 /* CE_INT */
95 #define INT_CCSDE               (1 << 29)
96 #define INT_CMD12DRE            (1 << 26)
97 #define INT_CMD12RBE            (1 << 25)
98 #define INT_CMD12CRE            (1 << 24)
99 #define INT_DTRANE              (1 << 23)
100 #define INT_BUFRE               (1 << 22)
101 #define INT_BUFWEN              (1 << 21)
102 #define INT_BUFREN              (1 << 20)
103 #define INT_CCSRCV              (1 << 19)
104 #define INT_RBSYE               (1 << 17)
105 #define INT_CRSPE               (1 << 16)
106 #define INT_CMDVIO              (1 << 15)
107 #define INT_BUFVIO              (1 << 14)
108 #define INT_WDATERR             (1 << 11)
109 #define INT_RDATERR             (1 << 10)
110 #define INT_RIDXERR             (1 << 9)
111 #define INT_RSPERR              (1 << 8)
112 #define INT_CCSTO               (1 << 5)
113 #define INT_CRCSTO              (1 << 4)
114 #define INT_WDATTO              (1 << 3)
115 #define INT_RDATTO              (1 << 2)
116 #define INT_RBSYTO              (1 << 1)
117 #define INT_RSPTO               (1 << 0)
118 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
119                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
121                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
124                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129 /* CE_INT_MASK */
130 #define MASK_ALL                0x00000000
131 #define MASK_MCCSDE             (1 << 29)
132 #define MASK_MCMD12DRE          (1 << 26)
133 #define MASK_MCMD12RBE          (1 << 25)
134 #define MASK_MCMD12CRE          (1 << 24)
135 #define MASK_MDTRANE            (1 << 23)
136 #define MASK_MBUFRE             (1 << 22)
137 #define MASK_MBUFWEN            (1 << 21)
138 #define MASK_MBUFREN            (1 << 20)
139 #define MASK_MCCSRCV            (1 << 19)
140 #define MASK_MRBSYE             (1 << 17)
141 #define MASK_MCRSPE             (1 << 16)
142 #define MASK_MCMDVIO            (1 << 15)
143 #define MASK_MBUFVIO            (1 << 14)
144 #define MASK_MWDATERR           (1 << 11)
145 #define MASK_MRDATERR           (1 << 10)
146 #define MASK_MRIDXERR           (1 << 9)
147 #define MASK_MRSPERR            (1 << 8)
148 #define MASK_MCCSTO             (1 << 5)
149 #define MASK_MCRCSTO            (1 << 4)
150 #define MASK_MWDATTO            (1 << 3)
151 #define MASK_MRDATTO            (1 << 2)
152 #define MASK_MRBSYTO            (1 << 1)
153 #define MASK_MRSPTO             (1 << 0)
154
155 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157                                  MASK_MCRCSTO | MASK_MWDATTO | \
158                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
161                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
162                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
163                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165 /* CE_HOST_STS1 */
166 #define STS1_CMDSEQ             (1 << 31)
167
168 /* CE_HOST_STS2 */
169 #define STS2_CRCSTE             (1 << 31)
170 #define STS2_CRC16E             (1 << 30)
171 #define STS2_AC12CRCE           (1 << 29)
172 #define STS2_RSPCRC7E           (1 << 28)
173 #define STS2_CRCSTEBE           (1 << 27)
174 #define STS2_RDATEBE            (1 << 26)
175 #define STS2_AC12REBE           (1 << 25)
176 #define STS2_RSPEBE             (1 << 24)
177 #define STS2_AC12IDXE           (1 << 23)
178 #define STS2_RSPIDXE            (1 << 22)
179 #define STS2_CCSTO              (1 << 15)
180 #define STS2_RDATTO             (1 << 14)
181 #define STS2_DATBSYTO           (1 << 13)
182 #define STS2_CRCSTTO            (1 << 12)
183 #define STS2_AC12BSYTO          (1 << 11)
184 #define STS2_RSPBSYTO           (1 << 10)
185 #define STS2_AC12RSPTO          (1 << 9)
186 #define STS2_RSPTO              (1 << 8)
187 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
188                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
190                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
191                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
192                                  STS2_AC12RSPTO | STS2_RSPTO)
193
194 #define CLKDEV_EMMC_DATA        52000000 /* 52 MHz */
195 #define CLKDEV_MMC_DATA         20000000 /* 20 MHz */
196 #define CLKDEV_INIT             400000   /* 400 kHz */
197
198 enum sh_mmcif_state {
199         STATE_IDLE,
200         STATE_REQUEST,
201         STATE_IOS,
202         STATE_TIMEOUT,
203 };
204
205 enum sh_mmcif_wait_for {
206         MMCIF_WAIT_FOR_REQUEST,
207         MMCIF_WAIT_FOR_CMD,
208         MMCIF_WAIT_FOR_MREAD,
209         MMCIF_WAIT_FOR_MWRITE,
210         MMCIF_WAIT_FOR_READ,
211         MMCIF_WAIT_FOR_WRITE,
212         MMCIF_WAIT_FOR_READ_END,
213         MMCIF_WAIT_FOR_WRITE_END,
214         MMCIF_WAIT_FOR_STOP,
215 };
216
217 /*
218  * difference for each SoC
219  */
220 struct sh_mmcif_host {
221         struct mmc_host *mmc;
222         struct mmc_request *mrq;
223         struct platform_device *pd;
224         struct clk *clk;
225         int bus_width;
226         unsigned char timing;
227         bool sd_error;
228         bool dying;
229         long timeout;
230         void __iomem *addr;
231         u32 *pio_ptr;
232         spinlock_t lock;                /* protect sh_mmcif_host::state */
233         enum sh_mmcif_state state;
234         enum sh_mmcif_wait_for wait_for;
235         struct delayed_work timeout_work;
236         size_t blocksize;
237         int sg_idx;
238         int sg_blkidx;
239         bool power;
240         bool ccs_enable;                /* Command Completion Signal support */
241         bool clk_ctrl2_enable;
242         struct mutex thread_lock;
243         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
244
245         /* DMA support */
246         struct dma_chan         *chan_rx;
247         struct dma_chan         *chan_tx;
248         struct completion       dma_complete;
249         bool                    dma_active;
250 };
251
252 static const struct of_device_id sh_mmcif_of_match[] = {
253         { .compatible = "renesas,sh-mmcif" },
254         { }
255 };
256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261                                         unsigned int reg, u32 val)
262 {
263         writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267                                         unsigned int reg, u32 val)
268 {
269         writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
272 static void sh_mmcif_dma_complete(void *arg)
273 {
274         struct sh_mmcif_host *host = arg;
275         struct mmc_request *mrq = host->mrq;
276         struct device *dev = sh_mmcif_host_to_dev(host);
277
278         dev_dbg(dev, "Command completed\n");
279
280         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281                  dev_name(dev)))
282                 return;
283
284         complete(&host->dma_complete);
285 }
286
287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 {
289         struct mmc_data *data = host->mrq->data;
290         struct scatterlist *sg = data->sg;
291         struct dma_async_tx_descriptor *desc = NULL;
292         struct dma_chan *chan = host->chan_rx;
293         struct device *dev = sh_mmcif_host_to_dev(host);
294         dma_cookie_t cookie = -EINVAL;
295         int ret;
296
297         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298                          DMA_FROM_DEVICE);
299         if (ret > 0) {
300                 host->dma_active = true;
301                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303         }
304
305         if (desc) {
306                 desc->callback = sh_mmcif_dma_complete;
307                 desc->callback_param = host;
308                 cookie = dmaengine_submit(desc);
309                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310                 dma_async_issue_pending(chan);
311         }
312         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313                 __func__, data->sg_len, ret, cookie);
314
315         if (!desc) {
316                 /* DMA failed, fall back to PIO */
317                 if (ret >= 0)
318                         ret = -EIO;
319                 host->chan_rx = NULL;
320                 host->dma_active = false;
321                 dma_release_channel(chan);
322                 /* Free the Tx channel too */
323                 chan = host->chan_tx;
324                 if (chan) {
325                         host->chan_tx = NULL;
326                         dma_release_channel(chan);
327                 }
328                 dev_warn(dev,
329                          "DMA failed: %d, falling back to PIO\n", ret);
330                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331         }
332
333         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334                 desc, cookie, data->sg_len);
335 }
336
337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338 {
339         struct mmc_data *data = host->mrq->data;
340         struct scatterlist *sg = data->sg;
341         struct dma_async_tx_descriptor *desc = NULL;
342         struct dma_chan *chan = host->chan_tx;
343         struct device *dev = sh_mmcif_host_to_dev(host);
344         dma_cookie_t cookie = -EINVAL;
345         int ret;
346
347         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348                          DMA_TO_DEVICE);
349         if (ret > 0) {
350                 host->dma_active = true;
351                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353         }
354
355         if (desc) {
356                 desc->callback = sh_mmcif_dma_complete;
357                 desc->callback_param = host;
358                 cookie = dmaengine_submit(desc);
359                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360                 dma_async_issue_pending(chan);
361         }
362         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363                 __func__, data->sg_len, ret, cookie);
364
365         if (!desc) {
366                 /* DMA failed, fall back to PIO */
367                 if (ret >= 0)
368                         ret = -EIO;
369                 host->chan_tx = NULL;
370                 host->dma_active = false;
371                 dma_release_channel(chan);
372                 /* Free the Rx channel too */
373                 chan = host->chan_rx;
374                 if (chan) {
375                         host->chan_rx = NULL;
376                         dma_release_channel(chan);
377                 }
378                 dev_warn(dev,
379                          "DMA failed: %d, falling back to PIO\n", ret);
380                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381         }
382
383         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384                 desc, cookie);
385 }
386
387 static struct dma_chan *
388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389 {
390         dma_cap_mask_t mask;
391
392         dma_cap_zero(mask);
393         dma_cap_set(DMA_SLAVE, mask);
394         if (slave_id <= 0)
395                 return NULL;
396
397         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398 }
399
400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401                                      struct dma_chan *chan,
402                                      enum dma_transfer_direction direction)
403 {
404         struct resource *res;
405         struct dma_slave_config cfg = { 0, };
406
407         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408         if (!res)
409                 return -EINVAL;
410
411         cfg.direction = direction;
412
413         if (direction == DMA_DEV_TO_MEM) {
414                 cfg.src_addr = res->start + MMCIF_CE_DATA;
415                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416         } else {
417                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
418                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
419         }
420
421         return dmaengine_slave_config(chan, &cfg);
422 }
423
424 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
425 {
426         struct device *dev = sh_mmcif_host_to_dev(host);
427         host->dma_active = false;
428
429         /* We can only either use DMA for both Tx and Rx or not use it at all */
430         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
431                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
432
433                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
434                                                         pdata->slave_id_tx);
435                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
436                                                         pdata->slave_id_rx);
437         } else {
438                 host->chan_tx = dma_request_chan(dev, "tx");
439                 if (IS_ERR(host->chan_tx))
440                         host->chan_tx = NULL;
441                 host->chan_rx = dma_request_chan(dev, "rx");
442                 if (IS_ERR(host->chan_rx))
443                         host->chan_rx = NULL;
444         }
445         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
446                 host->chan_rx);
447
448         if (!host->chan_tx || !host->chan_rx ||
449             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
450             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
451                 goto error;
452
453         return;
454
455 error:
456         if (host->chan_tx)
457                 dma_release_channel(host->chan_tx);
458         if (host->chan_rx)
459                 dma_release_channel(host->chan_rx);
460         host->chan_tx = host->chan_rx = NULL;
461 }
462
463 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
464 {
465         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
466         /* Descriptors are freed automatically */
467         if (host->chan_tx) {
468                 struct dma_chan *chan = host->chan_tx;
469                 host->chan_tx = NULL;
470                 dma_release_channel(chan);
471         }
472         if (host->chan_rx) {
473                 struct dma_chan *chan = host->chan_rx;
474                 host->chan_rx = NULL;
475                 dma_release_channel(chan);
476         }
477
478         host->dma_active = false;
479 }
480
481 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
482 {
483         struct device *dev = sh_mmcif_host_to_dev(host);
484         struct sh_mmcif_plat_data *p = dev->platform_data;
485         bool sup_pclk = p ? p->sup_pclk : false;
486         unsigned int current_clk = clk_get_rate(host->clk);
487         unsigned int clkdiv;
488
489         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
490         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
491
492         if (!clk)
493                 return;
494
495         if (host->clkdiv_map) {
496                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
497                 int i;
498
499                 clkdiv = 0;
500                 diff_min = ~0;
501                 best_freq = 0;
502                 for (i = 31; i >= 0; i--) {
503                         if (!((1 << i) & host->clkdiv_map))
504                                 continue;
505
506                         /*
507                          * clk = parent_freq / div
508                          * -> parent_freq = clk x div
509                          */
510
511                         div = 1 << (i + 1);
512                         freq = clk_round_rate(host->clk, clk * div);
513                         myclk = freq / div;
514                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
515
516                         if (diff <= diff_min) {
517                                 best_freq = freq;
518                                 clkdiv = i;
519                                 diff_min = diff;
520                         }
521                 }
522
523                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
524                         (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
525
526                 clk_set_rate(host->clk, best_freq);
527                 clkdiv = clkdiv << 16;
528         } else if (sup_pclk && clk == current_clk) {
529                 clkdiv = CLK_SUP_PCLK;
530         } else {
531                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
532         }
533
534         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
535         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
536 }
537
538 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
539 {
540         u32 tmp;
541
542         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
543
544         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
545         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
546         if (host->ccs_enable)
547                 tmp |= SCCSTO_29;
548         if (host->clk_ctrl2_enable)
549                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
550         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
551                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
552         /* byte swap on */
553         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
554 }
555
556 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
557 {
558         struct device *dev = sh_mmcif_host_to_dev(host);
559         u32 state1, state2;
560         int ret, timeout;
561
562         host->sd_error = false;
563
564         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
565         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
566         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
567         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
568
569         if (state1 & STS1_CMDSEQ) {
570                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
571                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
572                 for (timeout = 10000; timeout; timeout--) {
573                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
574                               & STS1_CMDSEQ))
575                                 break;
576                         mdelay(1);
577                 }
578                 if (!timeout) {
579                         dev_err(dev,
580                                 "Forced end of command sequence timeout err\n");
581                         return -EIO;
582                 }
583                 sh_mmcif_sync_reset(host);
584                 dev_dbg(dev, "Forced end of command sequence\n");
585                 return -EIO;
586         }
587
588         if (state2 & STS2_CRC_ERR) {
589                 dev_err(dev, " CRC error: state %u, wait %u\n",
590                         host->state, host->wait_for);
591                 ret = -EIO;
592         } else if (state2 & STS2_TIMEOUT_ERR) {
593                 dev_err(dev, " Timeout: state %u, wait %u\n",
594                         host->state, host->wait_for);
595                 ret = -ETIMEDOUT;
596         } else {
597                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
598                         host->state, host->wait_for);
599                 ret = -EIO;
600         }
601         return ret;
602 }
603
604 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
605 {
606         struct mmc_data *data = host->mrq->data;
607
608         host->sg_blkidx += host->blocksize;
609
610         /* data->sg->length must be a multiple of host->blocksize? */
611         BUG_ON(host->sg_blkidx > data->sg->length);
612
613         if (host->sg_blkidx == data->sg->length) {
614                 host->sg_blkidx = 0;
615                 if (++host->sg_idx < data->sg_len)
616                         host->pio_ptr = sg_virt(++data->sg);
617         } else {
618                 host->pio_ptr = p;
619         }
620
621         return host->sg_idx != data->sg_len;
622 }
623
624 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
625                                  struct mmc_request *mrq)
626 {
627         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
628                            BLOCK_SIZE_MASK) + 3;
629
630         host->wait_for = MMCIF_WAIT_FOR_READ;
631
632         /* buf read enable */
633         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
634 }
635
636 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
637 {
638         struct device *dev = sh_mmcif_host_to_dev(host);
639         struct mmc_data *data = host->mrq->data;
640         u32 *p = sg_virt(data->sg);
641         int i;
642
643         if (host->sd_error) {
644                 data->error = sh_mmcif_error_manage(host);
645                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
646                 return false;
647         }
648
649         for (i = 0; i < host->blocksize / 4; i++)
650                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
651
652         /* buffer read end */
653         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
654         host->wait_for = MMCIF_WAIT_FOR_READ_END;
655
656         return true;
657 }
658
659 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
660                                 struct mmc_request *mrq)
661 {
662         struct mmc_data *data = mrq->data;
663
664         if (!data->sg_len || !data->sg->length)
665                 return;
666
667         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
668                 BLOCK_SIZE_MASK;
669
670         host->wait_for = MMCIF_WAIT_FOR_MREAD;
671         host->sg_idx = 0;
672         host->sg_blkidx = 0;
673         host->pio_ptr = sg_virt(data->sg);
674
675         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
676 }
677
678 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
679 {
680         struct device *dev = sh_mmcif_host_to_dev(host);
681         struct mmc_data *data = host->mrq->data;
682         u32 *p = host->pio_ptr;
683         int i;
684
685         if (host->sd_error) {
686                 data->error = sh_mmcif_error_manage(host);
687                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
688                 return false;
689         }
690
691         BUG_ON(!data->sg->length);
692
693         for (i = 0; i < host->blocksize / 4; i++)
694                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
695
696         if (!sh_mmcif_next_block(host, p))
697                 return false;
698
699         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
700
701         return true;
702 }
703
704 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
705                                         struct mmc_request *mrq)
706 {
707         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
708                            BLOCK_SIZE_MASK) + 3;
709
710         host->wait_for = MMCIF_WAIT_FOR_WRITE;
711
712         /* buf write enable */
713         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
714 }
715
716 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
717 {
718         struct device *dev = sh_mmcif_host_to_dev(host);
719         struct mmc_data *data = host->mrq->data;
720         u32 *p = sg_virt(data->sg);
721         int i;
722
723         if (host->sd_error) {
724                 data->error = sh_mmcif_error_manage(host);
725                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
726                 return false;
727         }
728
729         for (i = 0; i < host->blocksize / 4; i++)
730                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
731
732         /* buffer write end */
733         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
734         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
735
736         return true;
737 }
738
739 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
740                                 struct mmc_request *mrq)
741 {
742         struct mmc_data *data = mrq->data;
743
744         if (!data->sg_len || !data->sg->length)
745                 return;
746
747         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
748                 BLOCK_SIZE_MASK;
749
750         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
751         host->sg_idx = 0;
752         host->sg_blkidx = 0;
753         host->pio_ptr = sg_virt(data->sg);
754
755         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
756 }
757
758 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
759 {
760         struct device *dev = sh_mmcif_host_to_dev(host);
761         struct mmc_data *data = host->mrq->data;
762         u32 *p = host->pio_ptr;
763         int i;
764
765         if (host->sd_error) {
766                 data->error = sh_mmcif_error_manage(host);
767                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
768                 return false;
769         }
770
771         BUG_ON(!data->sg->length);
772
773         for (i = 0; i < host->blocksize / 4; i++)
774                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
775
776         if (!sh_mmcif_next_block(host, p))
777                 return false;
778
779         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
780
781         return true;
782 }
783
784 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
785                                                 struct mmc_command *cmd)
786 {
787         if (cmd->flags & MMC_RSP_136) {
788                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
789                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
790                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
791                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
792         } else
793                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
794 }
795
796 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
797                                                 struct mmc_command *cmd)
798 {
799         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
800 }
801
802 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
803                             struct mmc_request *mrq)
804 {
805         struct device *dev = sh_mmcif_host_to_dev(host);
806         struct mmc_data *data = mrq->data;
807         struct mmc_command *cmd = mrq->cmd;
808         u32 opc = cmd->opcode;
809         u32 tmp = 0;
810
811         /* Response Type check */
812         switch (mmc_resp_type(cmd)) {
813         case MMC_RSP_NONE:
814                 tmp |= CMD_SET_RTYP_NO;
815                 break;
816         case MMC_RSP_R1:
817         case MMC_RSP_R3:
818                 tmp |= CMD_SET_RTYP_6B;
819                 break;
820         case MMC_RSP_R1B:
821                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
822                 break;
823         case MMC_RSP_R2:
824                 tmp |= CMD_SET_RTYP_17B;
825                 break;
826         default:
827                 dev_err(dev, "Unsupported response type.\n");
828                 break;
829         }
830
831         /* WDAT / DATW */
832         if (data) {
833                 tmp |= CMD_SET_WDAT;
834                 switch (host->bus_width) {
835                 case MMC_BUS_WIDTH_1:
836                         tmp |= CMD_SET_DATW_1;
837                         break;
838                 case MMC_BUS_WIDTH_4:
839                         tmp |= CMD_SET_DATW_4;
840                         break;
841                 case MMC_BUS_WIDTH_8:
842                         tmp |= CMD_SET_DATW_8;
843                         break;
844                 default:
845                         dev_err(dev, "Unsupported bus width.\n");
846                         break;
847                 }
848                 switch (host->timing) {
849                 case MMC_TIMING_MMC_DDR52:
850                         /*
851                          * MMC core will only set this timing, if the host
852                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
853                          * capability. MMCIF implementations with this
854                          * capability, e.g. sh73a0, will have to set it
855                          * in their platform data.
856                          */
857                         tmp |= CMD_SET_DARS;
858                         break;
859                 }
860         }
861         /* DWEN */
862         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
863                 tmp |= CMD_SET_DWEN;
864         /* CMLTE/CMD12EN */
865         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
866                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
867                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
868                                 data->blocks << 16);
869         }
870         /* RIDXC[1:0] check bits */
871         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
872             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
873                 tmp |= CMD_SET_RIDXC_BITS;
874         /* RCRC7C[1:0] check bits */
875         if (opc == MMC_SEND_OP_COND)
876                 tmp |= CMD_SET_CRC7C_BITS;
877         /* RCRC7C[1:0] internal CRC7 */
878         if (opc == MMC_ALL_SEND_CID ||
879                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
880                 tmp |= CMD_SET_CRC7C_INTERNAL;
881
882         return (opc << 24) | tmp;
883 }
884
885 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
886                                struct mmc_request *mrq, u32 opc)
887 {
888         struct device *dev = sh_mmcif_host_to_dev(host);
889
890         switch (opc) {
891         case MMC_READ_MULTIPLE_BLOCK:
892                 sh_mmcif_multi_read(host, mrq);
893                 return 0;
894         case MMC_WRITE_MULTIPLE_BLOCK:
895                 sh_mmcif_multi_write(host, mrq);
896                 return 0;
897         case MMC_WRITE_BLOCK:
898                 sh_mmcif_single_write(host, mrq);
899                 return 0;
900         case MMC_READ_SINGLE_BLOCK:
901         case MMC_SEND_EXT_CSD:
902                 sh_mmcif_single_read(host, mrq);
903                 return 0;
904         default:
905                 dev_err(dev, "Unsupported CMD%d\n", opc);
906                 return -EINVAL;
907         }
908 }
909
910 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
911                                struct mmc_request *mrq)
912 {
913         struct mmc_command *cmd = mrq->cmd;
914         u32 opc;
915         u32 mask = 0;
916         unsigned long flags;
917
918         if (cmd->flags & MMC_RSP_BUSY)
919                 mask = MASK_START_CMD | MASK_MRBSYE;
920         else
921                 mask = MASK_START_CMD | MASK_MCRSPE;
922
923         if (host->ccs_enable)
924                 mask |= MASK_MCCSTO;
925
926         if (mrq->data) {
927                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
928                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
929                                 mrq->data->blksz);
930         }
931         opc = sh_mmcif_set_cmd(host, mrq);
932
933         if (host->ccs_enable)
934                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
935         else
936                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
937         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
938         /* set arg */
939         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
940         /* set cmd */
941         spin_lock_irqsave(&host->lock, flags);
942         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
943
944         host->wait_for = MMCIF_WAIT_FOR_CMD;
945         schedule_delayed_work(&host->timeout_work, host->timeout);
946         spin_unlock_irqrestore(&host->lock, flags);
947 }
948
949 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
950                               struct mmc_request *mrq)
951 {
952         struct device *dev = sh_mmcif_host_to_dev(host);
953
954         switch (mrq->cmd->opcode) {
955         case MMC_READ_MULTIPLE_BLOCK:
956                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
957                 break;
958         case MMC_WRITE_MULTIPLE_BLOCK:
959                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
960                 break;
961         default:
962                 dev_err(dev, "unsupported stop cmd\n");
963                 mrq->stop->error = sh_mmcif_error_manage(host);
964                 return;
965         }
966
967         host->wait_for = MMCIF_WAIT_FOR_STOP;
968 }
969
970 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
971 {
972         struct sh_mmcif_host *host = mmc_priv(mmc);
973         struct device *dev = sh_mmcif_host_to_dev(host);
974         unsigned long flags;
975
976         spin_lock_irqsave(&host->lock, flags);
977         if (host->state != STATE_IDLE) {
978                 dev_dbg(dev, "%s() rejected, state %u\n",
979                         __func__, host->state);
980                 spin_unlock_irqrestore(&host->lock, flags);
981                 mrq->cmd->error = -EAGAIN;
982                 mmc_request_done(mmc, mrq);
983                 return;
984         }
985
986         host->state = STATE_REQUEST;
987         spin_unlock_irqrestore(&host->lock, flags);
988
989         host->mrq = mrq;
990
991         sh_mmcif_start_cmd(host, mrq);
992 }
993
994 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
995 {
996         struct device *dev = sh_mmcif_host_to_dev(host);
997
998         if (host->mmc->f_max) {
999                 unsigned int f_max, f_min = 0, f_min_old;
1000
1001                 f_max = host->mmc->f_max;
1002                 for (f_min_old = f_max; f_min_old > 2;) {
1003                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1004                         if (f_min == f_min_old)
1005                                 break;
1006                         f_min_old = f_min;
1007                 }
1008
1009                 /*
1010                  * This driver assumes this SoC is R-Car Gen2 or later
1011                  */
1012                 host->clkdiv_map = 0x3ff;
1013
1014                 host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1015                 host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1016         } else {
1017                 unsigned int clk = clk_get_rate(host->clk);
1018
1019                 host->mmc->f_max = clk / 2;
1020                 host->mmc->f_min = clk / 512;
1021         }
1022
1023         dev_dbg(dev, "clk max/min = %d/%d\n",
1024                 host->mmc->f_max, host->mmc->f_min);
1025 }
1026
1027 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1028 {
1029         struct sh_mmcif_host *host = mmc_priv(mmc);
1030         struct device *dev = sh_mmcif_host_to_dev(host);
1031         unsigned long flags;
1032
1033         spin_lock_irqsave(&host->lock, flags);
1034         if (host->state != STATE_IDLE) {
1035                 dev_dbg(dev, "%s() rejected, state %u\n",
1036                         __func__, host->state);
1037                 spin_unlock_irqrestore(&host->lock, flags);
1038                 return;
1039         }
1040
1041         host->state = STATE_IOS;
1042         spin_unlock_irqrestore(&host->lock, flags);
1043
1044         switch (ios->power_mode) {
1045         case MMC_POWER_UP:
1046                 if (!IS_ERR(mmc->supply.vmmc))
1047                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1048                 if (!host->power) {
1049                         clk_prepare_enable(host->clk);
1050                         pm_runtime_get_sync(dev);
1051                         sh_mmcif_sync_reset(host);
1052                         sh_mmcif_request_dma(host);
1053                         host->power = true;
1054                 }
1055                 break;
1056         case MMC_POWER_OFF:
1057                 if (!IS_ERR(mmc->supply.vmmc))
1058                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1059                 if (host->power) {
1060                         sh_mmcif_clock_control(host, 0);
1061                         sh_mmcif_release_dma(host);
1062                         pm_runtime_put(dev);
1063                         clk_disable_unprepare(host->clk);
1064                         host->power = false;
1065                 }
1066                 break;
1067         case MMC_POWER_ON:
1068                 sh_mmcif_clock_control(host, ios->clock);
1069                 break;
1070         }
1071
1072         host->timing = ios->timing;
1073         host->bus_width = ios->bus_width;
1074         host->state = STATE_IDLE;
1075 }
1076
1077 static const struct mmc_host_ops sh_mmcif_ops = {
1078         .request        = sh_mmcif_request,
1079         .set_ios        = sh_mmcif_set_ios,
1080         .get_cd         = mmc_gpio_get_cd,
1081 };
1082
1083 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1084 {
1085         struct mmc_command *cmd = host->mrq->cmd;
1086         struct mmc_data *data = host->mrq->data;
1087         struct device *dev = sh_mmcif_host_to_dev(host);
1088         long time;
1089
1090         if (host->sd_error) {
1091                 switch (cmd->opcode) {
1092                 case MMC_ALL_SEND_CID:
1093                 case MMC_SELECT_CARD:
1094                 case MMC_APP_CMD:
1095                         cmd->error = -ETIMEDOUT;
1096                         break;
1097                 default:
1098                         cmd->error = sh_mmcif_error_manage(host);
1099                         break;
1100                 }
1101                 dev_dbg(dev, "CMD%d error %d\n",
1102                         cmd->opcode, cmd->error);
1103                 host->sd_error = false;
1104                 return false;
1105         }
1106         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1107                 cmd->error = 0;
1108                 return false;
1109         }
1110
1111         sh_mmcif_get_response(host, cmd);
1112
1113         if (!data)
1114                 return false;
1115
1116         /*
1117          * Completion can be signalled from DMA callback and error, so, have to
1118          * reset here, before setting .dma_active
1119          */
1120         init_completion(&host->dma_complete);
1121
1122         if (data->flags & MMC_DATA_READ) {
1123                 if (host->chan_rx)
1124                         sh_mmcif_start_dma_rx(host);
1125         } else {
1126                 if (host->chan_tx)
1127                         sh_mmcif_start_dma_tx(host);
1128         }
1129
1130         if (!host->dma_active) {
1131                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1132                 return !data->error;
1133         }
1134
1135         /* Running in the IRQ thread, can sleep */
1136         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1137                                                          host->timeout);
1138
1139         if (data->flags & MMC_DATA_READ)
1140                 dma_unmap_sg(host->chan_rx->device->dev,
1141                              data->sg, data->sg_len,
1142                              DMA_FROM_DEVICE);
1143         else
1144                 dma_unmap_sg(host->chan_tx->device->dev,
1145                              data->sg, data->sg_len,
1146                              DMA_TO_DEVICE);
1147
1148         if (host->sd_error) {
1149                 dev_err(host->mmc->parent,
1150                         "Error IRQ while waiting for DMA completion!\n");
1151                 /* Woken up by an error IRQ: abort DMA */
1152                 data->error = sh_mmcif_error_manage(host);
1153         } else if (!time) {
1154                 dev_err(host->mmc->parent, "DMA timeout!\n");
1155                 data->error = -ETIMEDOUT;
1156         } else if (time < 0) {
1157                 dev_err(host->mmc->parent,
1158                         "wait_for_completion_...() error %ld!\n", time);
1159                 data->error = time;
1160         }
1161         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1162                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1163         host->dma_active = false;
1164
1165         if (data->error) {
1166                 data->bytes_xfered = 0;
1167                 /* Abort DMA */
1168                 if (data->flags & MMC_DATA_READ)
1169                         dmaengine_terminate_sync(host->chan_rx);
1170                 else
1171                         dmaengine_terminate_sync(host->chan_tx);
1172         }
1173
1174         return false;
1175 }
1176
1177 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1178 {
1179         struct sh_mmcif_host *host = dev_id;
1180         struct mmc_request *mrq;
1181         struct device *dev = sh_mmcif_host_to_dev(host);
1182         bool wait = false;
1183         unsigned long flags;
1184         int wait_work;
1185
1186         spin_lock_irqsave(&host->lock, flags);
1187         wait_work = host->wait_for;
1188         spin_unlock_irqrestore(&host->lock, flags);
1189
1190         cancel_delayed_work_sync(&host->timeout_work);
1191
1192         mutex_lock(&host->thread_lock);
1193
1194         mrq = host->mrq;
1195         if (!mrq) {
1196                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1197                         host->state, host->wait_for);
1198                 mutex_unlock(&host->thread_lock);
1199                 return IRQ_HANDLED;
1200         }
1201
1202         /*
1203          * All handlers return true, if processing continues, and false, if the
1204          * request has to be completed - successfully or not
1205          */
1206         switch (wait_work) {
1207         case MMCIF_WAIT_FOR_REQUEST:
1208                 /* We're too late, the timeout has already kicked in */
1209                 mutex_unlock(&host->thread_lock);
1210                 return IRQ_HANDLED;
1211         case MMCIF_WAIT_FOR_CMD:
1212                 /* Wait for data? */
1213                 wait = sh_mmcif_end_cmd(host);
1214                 break;
1215         case MMCIF_WAIT_FOR_MREAD:
1216                 /* Wait for more data? */
1217                 wait = sh_mmcif_mread_block(host);
1218                 break;
1219         case MMCIF_WAIT_FOR_READ:
1220                 /* Wait for data end? */
1221                 wait = sh_mmcif_read_block(host);
1222                 break;
1223         case MMCIF_WAIT_FOR_MWRITE:
1224                 /* Wait data to write? */
1225                 wait = sh_mmcif_mwrite_block(host);
1226                 break;
1227         case MMCIF_WAIT_FOR_WRITE:
1228                 /* Wait for data end? */
1229                 wait = sh_mmcif_write_block(host);
1230                 break;
1231         case MMCIF_WAIT_FOR_STOP:
1232                 if (host->sd_error) {
1233                         mrq->stop->error = sh_mmcif_error_manage(host);
1234                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1235                         break;
1236                 }
1237                 sh_mmcif_get_cmd12response(host, mrq->stop);
1238                 mrq->stop->error = 0;
1239                 break;
1240         case MMCIF_WAIT_FOR_READ_END:
1241         case MMCIF_WAIT_FOR_WRITE_END:
1242                 if (host->sd_error) {
1243                         mrq->data->error = sh_mmcif_error_manage(host);
1244                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1245                 }
1246                 break;
1247         default:
1248                 BUG();
1249         }
1250
1251         if (wait) {
1252                 schedule_delayed_work(&host->timeout_work, host->timeout);
1253                 /* Wait for more data */
1254                 mutex_unlock(&host->thread_lock);
1255                 return IRQ_HANDLED;
1256         }
1257
1258         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1259                 struct mmc_data *data = mrq->data;
1260                 if (!mrq->cmd->error && data && !data->error)
1261                         data->bytes_xfered =
1262                                 data->blocks * data->blksz;
1263
1264                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1265                         sh_mmcif_stop_cmd(host, mrq);
1266                         if (!mrq->stop->error) {
1267                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1268                                 mutex_unlock(&host->thread_lock);
1269                                 return IRQ_HANDLED;
1270                         }
1271                 }
1272         }
1273
1274         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1275         host->state = STATE_IDLE;
1276         host->mrq = NULL;
1277         mmc_request_done(host->mmc, mrq);
1278
1279         mutex_unlock(&host->thread_lock);
1280
1281         return IRQ_HANDLED;
1282 }
1283
1284 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1285 {
1286         struct sh_mmcif_host *host = dev_id;
1287         struct device *dev = sh_mmcif_host_to_dev(host);
1288         u32 state, mask;
1289
1290         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1291         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1292         if (host->ccs_enable)
1293                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1294         else
1295                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1296         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1297
1298         if (state & ~MASK_CLEAN)
1299                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1300                         state);
1301
1302         if (state & INT_ERR_STS || state & ~INT_ALL) {
1303                 host->sd_error = true;
1304                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1305         }
1306         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1307                 if (!host->mrq)
1308                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1309                 if (!host->dma_active)
1310                         return IRQ_WAKE_THREAD;
1311                 else if (host->sd_error)
1312                         sh_mmcif_dma_complete(host);
1313         } else {
1314                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1315         }
1316
1317         return IRQ_HANDLED;
1318 }
1319
1320 static void sh_mmcif_timeout_work(struct work_struct *work)
1321 {
1322         struct delayed_work *d = to_delayed_work(work);
1323         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1324         struct mmc_request *mrq = host->mrq;
1325         struct device *dev = sh_mmcif_host_to_dev(host);
1326         unsigned long flags;
1327
1328         if (host->dying)
1329                 /* Don't run after mmc_remove_host() */
1330                 return;
1331
1332         spin_lock_irqsave(&host->lock, flags);
1333         if (host->state == STATE_IDLE) {
1334                 spin_unlock_irqrestore(&host->lock, flags);
1335                 return;
1336         }
1337
1338         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1339                 host->wait_for, mrq->cmd->opcode);
1340
1341         host->state = STATE_TIMEOUT;
1342         spin_unlock_irqrestore(&host->lock, flags);
1343
1344         /*
1345          * Handle races with cancel_delayed_work(), unless
1346          * cancel_delayed_work_sync() is used
1347          */
1348         switch (host->wait_for) {
1349         case MMCIF_WAIT_FOR_CMD:
1350                 mrq->cmd->error = sh_mmcif_error_manage(host);
1351                 break;
1352         case MMCIF_WAIT_FOR_STOP:
1353                 mrq->stop->error = sh_mmcif_error_manage(host);
1354                 break;
1355         case MMCIF_WAIT_FOR_MREAD:
1356         case MMCIF_WAIT_FOR_MWRITE:
1357         case MMCIF_WAIT_FOR_READ:
1358         case MMCIF_WAIT_FOR_WRITE:
1359         case MMCIF_WAIT_FOR_READ_END:
1360         case MMCIF_WAIT_FOR_WRITE_END:
1361                 mrq->data->error = sh_mmcif_error_manage(host);
1362                 break;
1363         default:
1364                 BUG();
1365         }
1366
1367         host->state = STATE_IDLE;
1368         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1369         host->mrq = NULL;
1370         mmc_request_done(host->mmc, mrq);
1371 }
1372
1373 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1374 {
1375         struct device *dev = sh_mmcif_host_to_dev(host);
1376         struct sh_mmcif_plat_data *pd = dev->platform_data;
1377         struct mmc_host *mmc = host->mmc;
1378
1379         mmc_regulator_get_supply(mmc);
1380
1381         if (!pd)
1382                 return;
1383
1384         if (!mmc->ocr_avail)
1385                 mmc->ocr_avail = pd->ocr;
1386         else if (pd->ocr)
1387                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1388 }
1389
1390 static int sh_mmcif_probe(struct platform_device *pdev)
1391 {
1392         int ret = 0, irq[2];
1393         struct mmc_host *mmc;
1394         struct sh_mmcif_host *host;
1395         struct device *dev = &pdev->dev;
1396         struct sh_mmcif_plat_data *pd = dev->platform_data;
1397         void __iomem *reg;
1398         const char *name;
1399
1400         irq[0] = platform_get_irq(pdev, 0);
1401         irq[1] = platform_get_irq_optional(pdev, 1);
1402         if (irq[0] < 0)
1403                 return -ENXIO;
1404
1405         reg = devm_platform_ioremap_resource(pdev, 0);
1406         if (IS_ERR(reg))
1407                 return PTR_ERR(reg);
1408
1409         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1410         if (!mmc)
1411                 return -ENOMEM;
1412
1413         ret = mmc_of_parse(mmc);
1414         if (ret < 0)
1415                 goto err_host;
1416
1417         host            = mmc_priv(mmc);
1418         host->mmc       = mmc;
1419         host->addr      = reg;
1420         host->timeout   = msecs_to_jiffies(10000);
1421         host->ccs_enable = true;
1422         host->clk_ctrl2_enable = false;
1423
1424         host->pd = pdev;
1425
1426         spin_lock_init(&host->lock);
1427
1428         mmc->ops = &sh_mmcif_ops;
1429         sh_mmcif_init_ocr(host);
1430
1431         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1432         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1433         mmc->max_busy_timeout = 10000;
1434
1435         if (pd && pd->caps)
1436                 mmc->caps |= pd->caps;
1437         mmc->max_segs = 32;
1438         mmc->max_blk_size = 512;
1439         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1440         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1441         mmc->max_seg_size = mmc->max_req_size;
1442
1443         platform_set_drvdata(pdev, host);
1444
1445         host->clk = devm_clk_get(dev, NULL);
1446         if (IS_ERR(host->clk)) {
1447                 ret = PTR_ERR(host->clk);
1448                 dev_err(dev, "cannot get clock: %d\n", ret);
1449                 goto err_host;
1450         }
1451
1452         ret = clk_prepare_enable(host->clk);
1453         if (ret < 0)
1454                 goto err_host;
1455
1456         sh_mmcif_clk_setup(host);
1457
1458         pm_runtime_enable(dev);
1459         host->power = false;
1460
1461         ret = pm_runtime_get_sync(dev);
1462         if (ret < 0)
1463                 goto err_clk;
1464
1465         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1466
1467         sh_mmcif_sync_reset(host);
1468         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1469
1470         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1471         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1472                                         sh_mmcif_irqt, 0, name, host);
1473         if (ret) {
1474                 dev_err(dev, "request_irq error (%s)\n", name);
1475                 goto err_clk;
1476         }
1477         if (irq[1] >= 0) {
1478                 ret = devm_request_threaded_irq(dev, irq[1],
1479                                                 sh_mmcif_intr, sh_mmcif_irqt,
1480                                                 0, "sh_mmc:int", host);
1481                 if (ret) {
1482                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1483                         goto err_clk;
1484                 }
1485         }
1486
1487         mutex_init(&host->thread_lock);
1488
1489         ret = mmc_add_host(mmc);
1490         if (ret < 0)
1491                 goto err_clk;
1492
1493         dev_pm_qos_expose_latency_limit(dev, 100);
1494
1495         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1496                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1497                  clk_get_rate(host->clk) / 1000000UL);
1498
1499         pm_runtime_put(dev);
1500         clk_disable_unprepare(host->clk);
1501         return ret;
1502
1503 err_clk:
1504         clk_disable_unprepare(host->clk);
1505         pm_runtime_put_sync(dev);
1506         pm_runtime_disable(dev);
1507 err_host:
1508         mmc_free_host(mmc);
1509         return ret;
1510 }
1511
1512 static int sh_mmcif_remove(struct platform_device *pdev)
1513 {
1514         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1515
1516         host->dying = true;
1517         clk_prepare_enable(host->clk);
1518         pm_runtime_get_sync(&pdev->dev);
1519
1520         dev_pm_qos_hide_latency_limit(&pdev->dev);
1521
1522         mmc_remove_host(host->mmc);
1523         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1524
1525         /*
1526          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1527          * mmc_remove_host() call above. But swapping order doesn't help either
1528          * (a query on the linux-mmc mailing list didn't bring any replies).
1529          */
1530         cancel_delayed_work_sync(&host->timeout_work);
1531
1532         clk_disable_unprepare(host->clk);
1533         mmc_free_host(host->mmc);
1534         pm_runtime_put_sync(&pdev->dev);
1535         pm_runtime_disable(&pdev->dev);
1536
1537         return 0;
1538 }
1539
1540 #ifdef CONFIG_PM_SLEEP
1541 static int sh_mmcif_suspend(struct device *dev)
1542 {
1543         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1544
1545         pm_runtime_get_sync(dev);
1546         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1547         pm_runtime_put(dev);
1548
1549         return 0;
1550 }
1551
1552 static int sh_mmcif_resume(struct device *dev)
1553 {
1554         return 0;
1555 }
1556 #endif
1557
1558 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1559         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1560 };
1561
1562 static struct platform_driver sh_mmcif_driver = {
1563         .probe          = sh_mmcif_probe,
1564         .remove         = sh_mmcif_remove,
1565         .driver         = {
1566                 .name   = DRIVER_NAME,
1567                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1568                 .pm     = &sh_mmcif_dev_pm_ops,
1569                 .of_match_table = sh_mmcif_of_match,
1570         },
1571 };
1572
1573 module_platform_driver(sh_mmcif_driver);
1574
1575 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576 MODULE_LICENSE("GPL v2");
1577 MODULE_ALIAS("platform:" DRIVER_NAME);
1578 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");