]> git.samba.org - sfrench/cifs-2.6.git/blob - drivers/misc/vmw_vmci/vmci_guest.c
Merge tag 'pci-v5.18-changes-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / misc / vmw_vmci / vmci_guest.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/moduleparam.h>
11 #include <linux/interrupt.h>
12 #include <linux/highmem.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/processor.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/vmalloc.h>
24
25 #include "vmci_datagram.h"
26 #include "vmci_doorbell.h"
27 #include "vmci_context.h"
28 #include "vmci_driver.h"
29 #include "vmci_event.h"
30
31 #define PCI_DEVICE_ID_VMWARE_VMCI       0x0740
32
33 #define VMCI_UTIL_NUM_RESOURCES 1
34
35 /*
36  * Datagram buffers for DMA send/receive must accommodate at least
37  * a maximum sized datagram and the header.
38  */
39 #define VMCI_DMA_DG_BUFFER_SIZE (VMCI_MAX_DG_SIZE + PAGE_SIZE)
40
41 static bool vmci_disable_msi;
42 module_param_named(disable_msi, vmci_disable_msi, bool, 0);
43 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
44
45 static bool vmci_disable_msix;
46 module_param_named(disable_msix, vmci_disable_msix, bool, 0);
47 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
48
49 static u32 ctx_update_sub_id = VMCI_INVALID_ID;
50 static u32 vm_context_id = VMCI_INVALID_ID;
51
52 struct vmci_guest_device {
53         struct device *dev;     /* PCI device we are attached to */
54         void __iomem *iobase;
55         void __iomem *mmio_base;
56
57         bool exclusive_vectors;
58
59         struct tasklet_struct datagram_tasklet;
60         struct tasklet_struct bm_tasklet;
61         struct wait_queue_head inout_wq;
62
63         void *data_buffer;
64         dma_addr_t data_buffer_base;
65         void *tx_buffer;
66         dma_addr_t tx_buffer_base;
67         void *notification_bitmap;
68         dma_addr_t notification_base;
69 };
70
71 static bool use_ppn64;
72
73 bool vmci_use_ppn64(void)
74 {
75         return use_ppn64;
76 }
77
78 /* vmci_dev singleton device and supporting data*/
79 struct pci_dev *vmci_pdev;
80 static struct vmci_guest_device *vmci_dev_g;
81 static DEFINE_SPINLOCK(vmci_dev_spinlock);
82
83 static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
84
85 bool vmci_guest_code_active(void)
86 {
87         return atomic_read(&vmci_num_guest_devices) != 0;
88 }
89
90 u32 vmci_get_vm_context_id(void)
91 {
92         if (vm_context_id == VMCI_INVALID_ID) {
93                 struct vmci_datagram get_cid_msg;
94                 get_cid_msg.dst =
95                     vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
96                                      VMCI_GET_CONTEXT_ID);
97                 get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
98                 get_cid_msg.payload_size = 0;
99                 vm_context_id = vmci_send_datagram(&get_cid_msg);
100         }
101         return vm_context_id;
102 }
103
104 static unsigned int vmci_read_reg(struct vmci_guest_device *dev, u32 reg)
105 {
106         if (dev->mmio_base != NULL)
107                 return readl(dev->mmio_base + reg);
108         return ioread32(dev->iobase + reg);
109 }
110
111 static void vmci_write_reg(struct vmci_guest_device *dev, u32 val, u32 reg)
112 {
113         if (dev->mmio_base != NULL)
114                 writel(val, dev->mmio_base + reg);
115         else
116                 iowrite32(val, dev->iobase + reg);
117 }
118
119 static void vmci_read_data(struct vmci_guest_device *vmci_dev,
120                            void *dest, size_t size)
121 {
122         if (vmci_dev->mmio_base == NULL)
123                 ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
124                             dest, size);
125         else {
126                 /*
127                  * For DMA datagrams, the data_buffer will contain the header on the
128                  * first page, followed by the incoming datagram(s) on the following
129                  * pages. The header uses an S/G element immediately following the
130                  * header on the first page to point to the data area.
131                  */
132                 struct vmci_data_in_out_header *buffer_header = vmci_dev->data_buffer;
133                 struct vmci_sg_elem *sg_array = (struct vmci_sg_elem *)(buffer_header + 1);
134                 size_t buffer_offset = dest - vmci_dev->data_buffer;
135
136                 buffer_header->opcode = 1;
137                 buffer_header->size = 1;
138                 buffer_header->busy = 0;
139                 sg_array[0].addr = vmci_dev->data_buffer_base + buffer_offset;
140                 sg_array[0].size = size;
141
142                 vmci_write_reg(vmci_dev, lower_32_bits(vmci_dev->data_buffer_base),
143                                VMCI_DATA_IN_LOW_ADDR);
144
145                 wait_event(vmci_dev->inout_wq, buffer_header->busy == 1);
146         }
147 }
148
149 static int vmci_write_data(struct vmci_guest_device *dev,
150                            struct vmci_datagram *dg)
151 {
152         int result;
153
154         if (dev->mmio_base != NULL) {
155                 struct vmci_data_in_out_header *buffer_header = dev->tx_buffer;
156                 u8 *dg_out_buffer = (u8 *)(buffer_header + 1);
157
158                 if (VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE)
159                         return VMCI_ERROR_INVALID_ARGS;
160
161                 /*
162                  * Initialize send buffer with outgoing datagram
163                  * and set up header for inline data. Device will
164                  * not access buffer asynchronously - only after
165                  * the write to VMCI_DATA_OUT_LOW_ADDR.
166                  */
167                 memcpy(dg_out_buffer, dg, VMCI_DG_SIZE(dg));
168                 buffer_header->opcode = 0;
169                 buffer_header->size = VMCI_DG_SIZE(dg);
170                 buffer_header->busy = 1;
171
172                 vmci_write_reg(dev, lower_32_bits(dev->tx_buffer_base),
173                                VMCI_DATA_OUT_LOW_ADDR);
174
175                 /* Caller holds a spinlock, so cannot block. */
176                 spin_until_cond(buffer_header->busy == 0);
177
178                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
179                 if (result == VMCI_SUCCESS)
180                         result = (int)buffer_header->result;
181         } else {
182                 iowrite8_rep(dev->iobase + VMCI_DATA_OUT_ADDR,
183                              dg, VMCI_DG_SIZE(dg));
184                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
185         }
186
187         return result;
188 }
189
190 /*
191  * VM to hypervisor call mechanism. We use the standard VMware naming
192  * convention since shared code is calling this function as well.
193  */
194 int vmci_send_datagram(struct vmci_datagram *dg)
195 {
196         unsigned long flags;
197         int result;
198
199         /* Check args. */
200         if (dg == NULL)
201                 return VMCI_ERROR_INVALID_ARGS;
202
203         /*
204          * Need to acquire spinlock on the device because the datagram
205          * data may be spread over multiple pages and the monitor may
206          * interleave device user rpc calls from multiple
207          * VCPUs. Acquiring the spinlock precludes that
208          * possibility. Disabling interrupts to avoid incoming
209          * datagrams during a "rep out" and possibly landing up in
210          * this function.
211          */
212         spin_lock_irqsave(&vmci_dev_spinlock, flags);
213
214         if (vmci_dev_g) {
215                 vmci_write_data(vmci_dev_g, dg);
216                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
217         } else {
218                 result = VMCI_ERROR_UNAVAILABLE;
219         }
220
221         spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
222
223         return result;
224 }
225 EXPORT_SYMBOL_GPL(vmci_send_datagram);
226
227 /*
228  * Gets called with the new context id if updated or resumed.
229  * Context id.
230  */
231 static void vmci_guest_cid_update(u32 sub_id,
232                                   const struct vmci_event_data *event_data,
233                                   void *client_data)
234 {
235         const struct vmci_event_payld_ctx *ev_payload =
236                                 vmci_event_data_const_payload(event_data);
237
238         if (sub_id != ctx_update_sub_id) {
239                 pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
240                 return;
241         }
242
243         if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
244                 pr_devel("Invalid event data\n");
245                 return;
246         }
247
248         pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
249                  vm_context_id, ev_payload->context_id, event_data->event);
250
251         vm_context_id = ev_payload->context_id;
252 }
253
254 /*
255  * Verify that the host supports the hypercalls we need. If it does not,
256  * try to find fallback hypercalls and use those instead.  Returns 0 if
257  * required hypercalls (or fallback hypercalls) are supported by the host,
258  * an error code otherwise.
259  */
260 static int vmci_check_host_caps(struct pci_dev *pdev)
261 {
262         bool result;
263         struct vmci_resource_query_msg *msg;
264         u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
265                                 VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
266         struct vmci_datagram *check_msg;
267
268         check_msg = kzalloc(msg_size, GFP_KERNEL);
269         if (!check_msg) {
270                 dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
271                 return -ENOMEM;
272         }
273
274         check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
275                                           VMCI_RESOURCES_QUERY);
276         check_msg->src = VMCI_ANON_SRC_HANDLE;
277         check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
278         msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
279
280         msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
281         msg->resources[0] = VMCI_GET_CONTEXT_ID;
282
283         /* Checks that hyper calls are supported */
284         result = vmci_send_datagram(check_msg) == 0x01;
285         kfree(check_msg);
286
287         dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
288                 __func__, result ? "PASSED" : "FAILED");
289
290         /* We need the vector. There are no fallbacks. */
291         return result ? 0 : -ENXIO;
292 }
293
294 /*
295  * Reads datagrams from the device and dispatches them. For IO port
296  * based access to the device, we always start reading datagrams into
297  * only the first page of the datagram buffer. If the datagrams don't
298  * fit into one page, we use the maximum datagram buffer size for the
299  * remainder of the invocation. This is a simple heuristic for not
300  * penalizing small datagrams. For DMA-based datagrams, we always
301  * use the maximum datagram buffer size, since there is no performance
302  * penalty for doing so.
303  *
304  * This function assumes that it has exclusive access to the data
305  * in register(s) for the duration of the call.
306  */
307 static void vmci_dispatch_dgs(unsigned long data)
308 {
309         struct vmci_guest_device *vmci_dev = (struct vmci_guest_device *)data;
310         u8 *dg_in_buffer = vmci_dev->data_buffer;
311         struct vmci_datagram *dg;
312         size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
313         size_t current_dg_in_buffer_size;
314         size_t remaining_bytes;
315         bool is_io_port = vmci_dev->mmio_base == NULL;
316
317         BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
318
319         if (!is_io_port) {
320                 /* For mmio, the first page is used for the header. */
321                 dg_in_buffer += PAGE_SIZE;
322
323                 /*
324                  * For DMA-based datagram operations, there is no performance
325                  * penalty for reading the maximum buffer size.
326                  */
327                 current_dg_in_buffer_size = VMCI_MAX_DG_SIZE;
328         } else {
329                 current_dg_in_buffer_size = PAGE_SIZE;
330         }
331         vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size);
332         dg = (struct vmci_datagram *)dg_in_buffer;
333         remaining_bytes = current_dg_in_buffer_size;
334
335         /*
336          * Read through the buffer until an invalid datagram header is
337          * encountered. The exit condition for datagrams read through
338          * VMCI_DATA_IN_ADDR is a bit more complicated, since a datagram
339          * can start on any page boundary in the buffer.
340          */
341         while (dg->dst.resource != VMCI_INVALID_ID ||
342                (is_io_port && remaining_bytes > PAGE_SIZE)) {
343                 unsigned dg_in_size;
344
345                 /*
346                  * If using VMCI_DATA_IN_ADDR, skip to the next page
347                  * as a datagram can start on any page boundary.
348                  */
349                 if (dg->dst.resource == VMCI_INVALID_ID) {
350                         dg = (struct vmci_datagram *)roundup(
351                                 (uintptr_t)dg + 1, PAGE_SIZE);
352                         remaining_bytes =
353                                 (size_t)(dg_in_buffer +
354                                          current_dg_in_buffer_size -
355                                          (u8 *)dg);
356                         continue;
357                 }
358
359                 dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
360
361                 if (dg_in_size <= dg_in_buffer_size) {
362                         int result;
363
364                         /*
365                          * If the remaining bytes in the datagram
366                          * buffer doesn't contain the complete
367                          * datagram, we first make sure we have enough
368                          * room for it and then we read the reminder
369                          * of the datagram and possibly any following
370                          * datagrams.
371                          */
372                         if (dg_in_size > remaining_bytes) {
373                                 if (remaining_bytes !=
374                                     current_dg_in_buffer_size) {
375
376                                         /*
377                                          * We move the partial
378                                          * datagram to the front and
379                                          * read the reminder of the
380                                          * datagram and possibly
381                                          * following calls into the
382                                          * following bytes.
383                                          */
384                                         memmove(dg_in_buffer, dg_in_buffer +
385                                                 current_dg_in_buffer_size -
386                                                 remaining_bytes,
387                                                 remaining_bytes);
388                                         dg = (struct vmci_datagram *)
389                                             dg_in_buffer;
390                                 }
391
392                                 if (current_dg_in_buffer_size !=
393                                     dg_in_buffer_size)
394                                         current_dg_in_buffer_size =
395                                             dg_in_buffer_size;
396
397                                 vmci_read_data(vmci_dev,
398                                                dg_in_buffer +
399                                                 remaining_bytes,
400                                                current_dg_in_buffer_size -
401                                                 remaining_bytes);
402                         }
403
404                         /*
405                          * We special case event datagrams from the
406                          * hypervisor.
407                          */
408                         if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
409                             dg->dst.resource == VMCI_EVENT_HANDLER) {
410                                 result = vmci_event_dispatch(dg);
411                         } else {
412                                 result = vmci_datagram_invoke_guest_handler(dg);
413                         }
414                         if (result < VMCI_SUCCESS)
415                                 dev_dbg(vmci_dev->dev,
416                                         "Datagram with resource (ID=0x%x) failed (err=%d)\n",
417                                          dg->dst.resource, result);
418
419                         /* On to the next datagram. */
420                         dg = (struct vmci_datagram *)((u8 *)dg +
421                                                       dg_in_size);
422                 } else {
423                         size_t bytes_to_skip;
424
425                         /*
426                          * Datagram doesn't fit in datagram buffer of maximal
427                          * size. We drop it.
428                          */
429                         dev_dbg(vmci_dev->dev,
430                                 "Failed to receive datagram (size=%u bytes)\n",
431                                  dg_in_size);
432
433                         bytes_to_skip = dg_in_size - remaining_bytes;
434                         if (current_dg_in_buffer_size != dg_in_buffer_size)
435                                 current_dg_in_buffer_size = dg_in_buffer_size;
436
437                         for (;;) {
438                                 vmci_read_data(vmci_dev, dg_in_buffer,
439                                                current_dg_in_buffer_size);
440                                 if (bytes_to_skip <= current_dg_in_buffer_size)
441                                         break;
442
443                                 bytes_to_skip -= current_dg_in_buffer_size;
444                         }
445                         dg = (struct vmci_datagram *)(dg_in_buffer +
446                                                       bytes_to_skip);
447                 }
448
449                 remaining_bytes =
450                     (size_t) (dg_in_buffer + current_dg_in_buffer_size -
451                               (u8 *)dg);
452
453                 if (remaining_bytes < VMCI_DG_HEADERSIZE) {
454                         /* Get the next batch of datagrams. */
455
456                         vmci_read_data(vmci_dev, dg_in_buffer,
457                                     current_dg_in_buffer_size);
458                         dg = (struct vmci_datagram *)dg_in_buffer;
459                         remaining_bytes = current_dg_in_buffer_size;
460                 }
461         }
462 }
463
464 /*
465  * Scans the notification bitmap for raised flags, clears them
466  * and handles the notifications.
467  */
468 static void vmci_process_bitmap(unsigned long data)
469 {
470         struct vmci_guest_device *dev = (struct vmci_guest_device *)data;
471
472         if (!dev->notification_bitmap) {
473                 dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
474                 return;
475         }
476
477         vmci_dbell_scan_notification_entries(dev->notification_bitmap);
478 }
479
480 /*
481  * Interrupt handler for legacy or MSI interrupt, or for first MSI-X
482  * interrupt (vector VMCI_INTR_DATAGRAM).
483  */
484 static irqreturn_t vmci_interrupt(int irq, void *_dev)
485 {
486         struct vmci_guest_device *dev = _dev;
487
488         /*
489          * If we are using MSI-X with exclusive vectors then we simply schedule
490          * the datagram tasklet, since we know the interrupt was meant for us.
491          * Otherwise we must read the ICR to determine what to do.
492          */
493
494         if (dev->exclusive_vectors) {
495                 tasklet_schedule(&dev->datagram_tasklet);
496         } else {
497                 unsigned int icr;
498
499                 /* Acknowledge interrupt and determine what needs doing. */
500                 icr = vmci_read_reg(dev, VMCI_ICR_ADDR);
501                 if (icr == 0 || icr == ~0)
502                         return IRQ_NONE;
503
504                 if (icr & VMCI_ICR_DATAGRAM) {
505                         tasklet_schedule(&dev->datagram_tasklet);
506                         icr &= ~VMCI_ICR_DATAGRAM;
507                 }
508
509                 if (icr & VMCI_ICR_NOTIFICATION) {
510                         tasklet_schedule(&dev->bm_tasklet);
511                         icr &= ~VMCI_ICR_NOTIFICATION;
512                 }
513
514
515                 if (icr & VMCI_ICR_DMA_DATAGRAM) {
516                         wake_up_all(&dev->inout_wq);
517                         icr &= ~VMCI_ICR_DMA_DATAGRAM;
518                 }
519
520                 if (icr != 0)
521                         dev_warn(dev->dev,
522                                  "Ignoring unknown interrupt cause (%d)\n",
523                                  icr);
524         }
525
526         return IRQ_HANDLED;
527 }
528
529 /*
530  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
531  * which is for the notification bitmap.  Will only get called if we are
532  * using MSI-X with exclusive vectors.
533  */
534 static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
535 {
536         struct vmci_guest_device *dev = _dev;
537
538         /* For MSI-X we can just assume it was meant for us. */
539         tasklet_schedule(&dev->bm_tasklet);
540
541         return IRQ_HANDLED;
542 }
543
544 /*
545  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_DMA_DATAGRAM,
546  * which is for the completion of a DMA datagram send or receive operation.
547  * Will only get called if we are using MSI-X with exclusive vectors.
548  */
549 static irqreturn_t vmci_interrupt_dma_datagram(int irq, void *_dev)
550 {
551         struct vmci_guest_device *dev = _dev;
552
553         wake_up_all(&dev->inout_wq);
554
555         return IRQ_HANDLED;
556 }
557
558 static void vmci_free_dg_buffers(struct vmci_guest_device *vmci_dev)
559 {
560         if (vmci_dev->mmio_base != NULL) {
561                 if (vmci_dev->tx_buffer != NULL)
562                         dma_free_coherent(vmci_dev->dev,
563                                           VMCI_DMA_DG_BUFFER_SIZE,
564                                           vmci_dev->tx_buffer,
565                                           vmci_dev->tx_buffer_base);
566                 if (vmci_dev->data_buffer != NULL)
567                         dma_free_coherent(vmci_dev->dev,
568                                           VMCI_DMA_DG_BUFFER_SIZE,
569                                           vmci_dev->data_buffer,
570                                           vmci_dev->data_buffer_base);
571         } else {
572                 vfree(vmci_dev->data_buffer);
573         }
574 }
575
576 /*
577  * Most of the initialization at module load time is done here.
578  */
579 static int vmci_guest_probe_device(struct pci_dev *pdev,
580                                    const struct pci_device_id *id)
581 {
582         struct vmci_guest_device *vmci_dev;
583         void __iomem *iobase = NULL;
584         void __iomem *mmio_base = NULL;
585         unsigned int num_irq_vectors;
586         unsigned int capabilities;
587         unsigned int caps_in_use;
588         unsigned long cmd;
589         int vmci_err;
590         int error;
591
592         dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
593
594         error = pcim_enable_device(pdev);
595         if (error) {
596                 dev_err(&pdev->dev,
597                         "Failed to enable VMCI device: %d\n", error);
598                 return error;
599         }
600
601         /*
602          * The VMCI device with mmio access to registers requests 256KB
603          * for BAR1. If present, driver will use new VMCI device
604          * functionality for register access and datagram send/recv.
605          */
606
607         if (pci_resource_len(pdev, 1) == VMCI_WITH_MMIO_ACCESS_BAR_SIZE) {
608                 dev_info(&pdev->dev, "MMIO register access is available\n");
609                 mmio_base = pci_iomap_range(pdev, 1, VMCI_MMIO_ACCESS_OFFSET,
610                                             VMCI_MMIO_ACCESS_SIZE);
611                 /* If the map fails, we fall back to IOIO access. */
612                 if (!mmio_base)
613                         dev_warn(&pdev->dev, "Failed to map MMIO register access\n");
614         }
615
616         if (!mmio_base) {
617                 error = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
618                 if (error) {
619                         dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
620                         return error;
621                 }
622                 iobase = pcim_iomap_table(pdev)[0];
623         }
624
625         vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
626         if (!vmci_dev) {
627                 dev_err(&pdev->dev,
628                         "Can't allocate memory for VMCI device\n");
629                 return -ENOMEM;
630         }
631
632         vmci_dev->dev = &pdev->dev;
633         vmci_dev->exclusive_vectors = false;
634         vmci_dev->iobase = iobase;
635         vmci_dev->mmio_base = mmio_base;
636
637         tasklet_init(&vmci_dev->datagram_tasklet,
638                      vmci_dispatch_dgs, (unsigned long)vmci_dev);
639         tasklet_init(&vmci_dev->bm_tasklet,
640                      vmci_process_bitmap, (unsigned long)vmci_dev);
641         init_waitqueue_head(&vmci_dev->inout_wq);
642
643         if (mmio_base != NULL) {
644                 vmci_dev->tx_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
645                                                          &vmci_dev->tx_buffer_base,
646                                                          GFP_KERNEL);
647                 if (!vmci_dev->tx_buffer) {
648                         dev_err(&pdev->dev,
649                                 "Can't allocate memory for datagram tx buffer\n");
650                         return -ENOMEM;
651                 }
652
653                 vmci_dev->data_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
654                                                            &vmci_dev->data_buffer_base,
655                                                            GFP_KERNEL);
656         } else {
657                 vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
658         }
659         if (!vmci_dev->data_buffer) {
660                 dev_err(&pdev->dev,
661                         "Can't allocate memory for datagram buffer\n");
662                 error = -ENOMEM;
663                 goto err_free_data_buffers;
664         }
665
666         pci_set_master(pdev);   /* To enable queue_pair functionality. */
667
668         /*
669          * Verify that the VMCI Device supports the capabilities that
670          * we need. If the device is missing capabilities that we would
671          * like to use, check for fallback capabilities and use those
672          * instead (so we can run a new VM on old hosts). Fail the load if
673          * a required capability is missing and there is no fallback.
674          *
675          * Right now, we need datagrams. There are no fallbacks.
676          */
677         capabilities = vmci_read_reg(vmci_dev, VMCI_CAPS_ADDR);
678         if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
679                 dev_err(&pdev->dev, "Device does not support datagrams\n");
680                 error = -ENXIO;
681                 goto err_free_data_buffers;
682         }
683         caps_in_use = VMCI_CAPS_DATAGRAM;
684
685         /*
686          * Use 64-bit PPNs if the device supports.
687          *
688          * There is no check for the return value of dma_set_mask_and_coherent
689          * since this driver can handle the default mask values if
690          * dma_set_mask_and_coherent fails.
691          */
692         if (capabilities & VMCI_CAPS_PPN64) {
693                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
694                 use_ppn64 = true;
695                 caps_in_use |= VMCI_CAPS_PPN64;
696         } else {
697                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
698                 use_ppn64 = false;
699         }
700
701         /*
702          * If the hardware supports notifications, we will use that as
703          * well.
704          */
705         if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
706                 vmci_dev->notification_bitmap = dma_alloc_coherent(
707                         &pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
708                         GFP_KERNEL);
709                 if (!vmci_dev->notification_bitmap)
710                         dev_warn(&pdev->dev,
711                                  "Unable to allocate notification bitmap\n");
712                 else
713                         caps_in_use |= VMCI_CAPS_NOTIFICATIONS;
714         }
715
716         if (mmio_base != NULL) {
717                 if (capabilities & VMCI_CAPS_DMA_DATAGRAM) {
718                         caps_in_use |= VMCI_CAPS_DMA_DATAGRAM;
719                 } else {
720                         dev_err(&pdev->dev,
721                                 "Missing capability: VMCI_CAPS_DMA_DATAGRAM\n");
722                         error = -ENXIO;
723                         goto err_free_notification_bitmap;
724                 }
725         }
726
727         dev_info(&pdev->dev, "Using capabilities 0x%x\n", caps_in_use);
728
729         /* Let the host know which capabilities we intend to use. */
730         vmci_write_reg(vmci_dev, caps_in_use, VMCI_CAPS_ADDR);
731
732         if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
733                 /* Let the device know the size for pages passed down. */
734                 vmci_write_reg(vmci_dev, PAGE_SHIFT, VMCI_GUEST_PAGE_SHIFT);
735
736                 /* Configure the high order parts of the data in/out buffers. */
737                 vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->data_buffer_base),
738                                VMCI_DATA_IN_HIGH_ADDR);
739                 vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->tx_buffer_base),
740                                VMCI_DATA_OUT_HIGH_ADDR);
741         }
742
743         /* Set up global device so that we can start sending datagrams */
744         spin_lock_irq(&vmci_dev_spinlock);
745         vmci_dev_g = vmci_dev;
746         vmci_pdev = pdev;
747         spin_unlock_irq(&vmci_dev_spinlock);
748
749         /*
750          * Register notification bitmap with device if that capability is
751          * used.
752          */
753         if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) {
754                 unsigned long bitmap_ppn =
755                         vmci_dev->notification_base >> PAGE_SHIFT;
756                 if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
757                         dev_warn(&pdev->dev,
758                                  "VMCI device unable to register notification bitmap with PPN 0x%lx\n",
759                                  bitmap_ppn);
760                         error = -ENXIO;
761                         goto err_remove_vmci_dev_g;
762                 }
763         }
764
765         /* Check host capabilities. */
766         error = vmci_check_host_caps(pdev);
767         if (error)
768                 goto err_remove_vmci_dev_g;
769
770         /* Enable device. */
771
772         /*
773          * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
774          * update the internal context id when needed.
775          */
776         vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
777                                         vmci_guest_cid_update, NULL,
778                                         &ctx_update_sub_id);
779         if (vmci_err < VMCI_SUCCESS)
780                 dev_warn(&pdev->dev,
781                          "Failed to subscribe to event (type=%d): %d\n",
782                          VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
783
784         /*
785          * Enable interrupts.  Try MSI-X first, then MSI, and then fallback on
786          * legacy interrupts.
787          */
788         if (vmci_dev->mmio_base != NULL)
789                 num_irq_vectors = VMCI_MAX_INTRS;
790         else
791                 num_irq_vectors = VMCI_MAX_INTRS_NOTIFICATION;
792         error = pci_alloc_irq_vectors(pdev, num_irq_vectors, num_irq_vectors,
793                                       PCI_IRQ_MSIX);
794         if (error < 0) {
795                 error = pci_alloc_irq_vectors(pdev, 1, 1,
796                                 PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY);
797                 if (error < 0)
798                         goto err_unsubscribe_event;
799         } else {
800                 vmci_dev->exclusive_vectors = true;
801         }
802
803         /*
804          * Request IRQ for legacy or MSI interrupts, or for first
805          * MSI-X vector.
806          */
807         error = request_irq(pci_irq_vector(pdev, 0), vmci_interrupt,
808                             IRQF_SHARED, KBUILD_MODNAME, vmci_dev);
809         if (error) {
810                 dev_err(&pdev->dev, "Irq %u in use: %d\n",
811                         pci_irq_vector(pdev, 0), error);
812                 goto err_disable_msi;
813         }
814
815         /*
816          * For MSI-X with exclusive vectors we need to request an
817          * interrupt for each vector so that we get a separate
818          * interrupt handler routine.  This allows us to distinguish
819          * between the vectors.
820          */
821         if (vmci_dev->exclusive_vectors) {
822                 error = request_irq(pci_irq_vector(pdev, 1),
823                                     vmci_interrupt_bm, 0, KBUILD_MODNAME,
824                                     vmci_dev);
825                 if (error) {
826                         dev_err(&pdev->dev,
827                                 "Failed to allocate irq %u: %d\n",
828                                 pci_irq_vector(pdev, 1), error);
829                         goto err_free_irq;
830                 }
831                 if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
832                         error = request_irq(pci_irq_vector(pdev, 2),
833                                             vmci_interrupt_dma_datagram,
834                                             0, KBUILD_MODNAME, vmci_dev);
835                         if (error) {
836                                 dev_err(&pdev->dev,
837                                         "Failed to allocate irq %u: %d\n",
838                                         pci_irq_vector(pdev, 2), error);
839                                 goto err_free_bm_irq;
840                         }
841                 }
842         }
843
844         dev_dbg(&pdev->dev, "Registered device\n");
845
846         atomic_inc(&vmci_num_guest_devices);
847
848         /* Enable specific interrupt bits. */
849         cmd = VMCI_IMR_DATAGRAM;
850         if (caps_in_use & VMCI_CAPS_NOTIFICATIONS)
851                 cmd |= VMCI_IMR_NOTIFICATION;
852         if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM)
853                 cmd |= VMCI_IMR_DMA_DATAGRAM;
854         vmci_write_reg(vmci_dev, cmd, VMCI_IMR_ADDR);
855
856         /* Enable interrupts. */
857         vmci_write_reg(vmci_dev, VMCI_CONTROL_INT_ENABLE, VMCI_CONTROL_ADDR);
858
859         pci_set_drvdata(pdev, vmci_dev);
860
861         vmci_call_vsock_callback(false);
862         return 0;
863
864 err_free_bm_irq:
865         if (vmci_dev->exclusive_vectors)
866                 free_irq(pci_irq_vector(pdev, 1), vmci_dev);
867
868 err_free_irq:
869         free_irq(pci_irq_vector(pdev, 0), vmci_dev);
870         tasklet_kill(&vmci_dev->datagram_tasklet);
871         tasklet_kill(&vmci_dev->bm_tasklet);
872
873 err_disable_msi:
874         pci_free_irq_vectors(pdev);
875
876 err_unsubscribe_event:
877         vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
878         if (vmci_err < VMCI_SUCCESS)
879                 dev_warn(&pdev->dev,
880                          "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
881                          VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
882
883 err_remove_vmci_dev_g:
884         spin_lock_irq(&vmci_dev_spinlock);
885         vmci_pdev = NULL;
886         vmci_dev_g = NULL;
887         spin_unlock_irq(&vmci_dev_spinlock);
888
889 err_free_notification_bitmap:
890         if (vmci_dev->notification_bitmap) {
891                 vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
892                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
893                                   vmci_dev->notification_bitmap,
894                                   vmci_dev->notification_base);
895         }
896
897 err_free_data_buffers:
898         vmci_free_dg_buffers(vmci_dev);
899
900         /* The rest are managed resources and will be freed by PCI core */
901         return error;
902 }
903
904 static void vmci_guest_remove_device(struct pci_dev *pdev)
905 {
906         struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
907         int vmci_err;
908
909         dev_dbg(&pdev->dev, "Removing device\n");
910
911         atomic_dec(&vmci_num_guest_devices);
912
913         vmci_qp_guest_endpoints_exit();
914
915         vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
916         if (vmci_err < VMCI_SUCCESS)
917                 dev_warn(&pdev->dev,
918                          "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
919                          VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
920
921         spin_lock_irq(&vmci_dev_spinlock);
922         vmci_dev_g = NULL;
923         vmci_pdev = NULL;
924         spin_unlock_irq(&vmci_dev_spinlock);
925
926         dev_dbg(&pdev->dev, "Resetting vmci device\n");
927         vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
928
929         /*
930          * Free IRQ and then disable MSI/MSI-X as appropriate.  For
931          * MSI-X, we might have multiple vectors, each with their own
932          * IRQ, which we must free too.
933          */
934         if (vmci_dev->exclusive_vectors) {
935                 free_irq(pci_irq_vector(pdev, 1), vmci_dev);
936                 if (vmci_dev->mmio_base != NULL)
937                         free_irq(pci_irq_vector(pdev, 2), vmci_dev);
938         }
939         free_irq(pci_irq_vector(pdev, 0), vmci_dev);
940         pci_free_irq_vectors(pdev);
941
942         tasklet_kill(&vmci_dev->datagram_tasklet);
943         tasklet_kill(&vmci_dev->bm_tasklet);
944
945         if (vmci_dev->notification_bitmap) {
946                 /*
947                  * The device reset above cleared the bitmap state of the
948                  * device, so we can safely free it here.
949                  */
950
951                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
952                                   vmci_dev->notification_bitmap,
953                                   vmci_dev->notification_base);
954         }
955
956         vmci_free_dg_buffers(vmci_dev);
957
958         if (vmci_dev->mmio_base != NULL)
959                 pci_iounmap(pdev, vmci_dev->mmio_base);
960
961         /* The rest are managed resources and will be freed by PCI core */
962 }
963
964 static const struct pci_device_id vmci_ids[] = {
965         { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
966         { 0 },
967 };
968 MODULE_DEVICE_TABLE(pci, vmci_ids);
969
970 static struct pci_driver vmci_guest_driver = {
971         .name           = KBUILD_MODNAME,
972         .id_table       = vmci_ids,
973         .probe          = vmci_guest_probe_device,
974         .remove         = vmci_guest_remove_device,
975 };
976
977 int __init vmci_guest_init(void)
978 {
979         return pci_register_driver(&vmci_guest_driver);
980 }
981
982 void __exit vmci_guest_exit(void)
983 {
984         pci_unregister_driver(&vmci_guest_driver);
985 }