spnego: add missing OID to oid registry
[sfrench/cifs-2.6.git] / drivers / media / dvb-frontends / drxd_hard.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4  *
5  * Copyright (C) 2003-2007 Micronas
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/firmware.h>
14 #include <linux/i2c.h>
15 #include <asm/div64.h>
16
17 #include <media/dvb_frontend.h>
18 #include "drxd.h"
19 #include "drxd_firm.h"
20
21 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
22 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
23
24 #define CHUNK_SIZE 48
25
26 #define DRX_I2C_RMW           0x10
27 #define DRX_I2C_BROADCAST     0x20
28 #define DRX_I2C_CLEARCRC      0x80
29 #define DRX_I2C_SINGLE_MASTER 0xC0
30 #define DRX_I2C_MODEFLAGS     0xC0
31 #define DRX_I2C_FLAGS         0xF0
32
33 #define DEFAULT_LOCK_TIMEOUT    1100
34
35 #define DRX_CHANNEL_AUTO 0
36 #define DRX_CHANNEL_HIGH 1
37 #define DRX_CHANNEL_LOW  2
38
39 #define DRX_LOCK_MPEG  1
40 #define DRX_LOCK_FEC   2
41 #define DRX_LOCK_DEMOD 4
42
43 /****************************************************************************/
44
45 enum CSCDState {
46         CSCD_INIT = 0,
47         CSCD_SET,
48         CSCD_SAVED
49 };
50
51 enum CDrxdState {
52         DRXD_UNINITIALIZED = 0,
53         DRXD_STOPPED,
54         DRXD_STARTED
55 };
56
57 enum AGC_CTRL_MODE {
58         AGC_CTRL_AUTO = 0,
59         AGC_CTRL_USER,
60         AGC_CTRL_OFF
61 };
62
63 enum OperationMode {
64         OM_Default,
65         OM_DVBT_Diversity_Front,
66         OM_DVBT_Diversity_End
67 };
68
69 struct SCfgAgc {
70         enum AGC_CTRL_MODE ctrlMode;
71         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
72         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
73         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
74         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
75         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
76
77         u16 R1;
78         u16 R2;
79         u16 R3;
80 };
81
82 struct SNoiseCal {
83         int cpOpt;
84         short cpNexpOfs;
85         short tdCal2k;
86         short tdCal8k;
87 };
88
89 enum app_env {
90         APPENV_STATIC = 0,
91         APPENV_PORTABLE = 1,
92         APPENV_MOBILE = 2
93 };
94
95 enum EIFFilter {
96         IFFILTER_SAW = 0,
97         IFFILTER_DISCRETE = 1
98 };
99
100 struct drxd_state {
101         struct dvb_frontend frontend;
102         struct dvb_frontend_ops ops;
103         struct dtv_frontend_properties props;
104
105         const struct firmware *fw;
106         struct device *dev;
107
108         struct i2c_adapter *i2c;
109         void *priv;
110         struct drxd_config config;
111
112         int i2c_access;
113         int init_done;
114         struct mutex mutex;
115
116         u8 chip_adr;
117         u16 hi_cfg_timing_div;
118         u16 hi_cfg_bridge_delay;
119         u16 hi_cfg_wakeup_key;
120         u16 hi_cfg_ctrl;
121
122         u16 intermediate_freq;
123         u16 osc_clock_freq;
124
125         enum CSCDState cscd_state;
126         enum CDrxdState drxd_state;
127
128         u16 sys_clock_freq;
129         s16 osc_clock_deviation;
130         u16 expected_sys_clock_freq;
131
132         u16 insert_rs_byte;
133         u16 enable_parallel;
134
135         int operation_mode;
136
137         struct SCfgAgc if_agc_cfg;
138         struct SCfgAgc rf_agc_cfg;
139
140         struct SNoiseCal noise_cal;
141
142         u32 fe_fs_add_incr;
143         u32 org_fe_fs_add_incr;
144         u16 current_fe_if_incr;
145
146         u16 m_FeAgRegAgPwd;
147         u16 m_FeAgRegAgAgcSio;
148
149         u16 m_EcOcRegOcModeLop;
150         u16 m_EcOcRegSncSncLvl;
151         u8 *m_InitAtomicRead;
152         u8 *m_HiI2cPatch;
153
154         u8 *m_ResetCEFR;
155         u8 *m_InitFE_1;
156         u8 *m_InitFE_2;
157         u8 *m_InitCP;
158         u8 *m_InitCE;
159         u8 *m_InitEQ;
160         u8 *m_InitSC;
161         u8 *m_InitEC;
162         u8 *m_ResetECRAM;
163         u8 *m_InitDiversityFront;
164         u8 *m_InitDiversityEnd;
165         u8 *m_DisableDiversity;
166         u8 *m_StartDiversityFront;
167         u8 *m_StartDiversityEnd;
168
169         u8 *m_DiversityDelay8MHZ;
170         u8 *m_DiversityDelay6MHZ;
171
172         u8 *microcode;
173         u32 microcode_length;
174
175         int type_A;
176         int PGA;
177         int diversity;
178         int tuner_mirrors;
179
180         enum app_env app_env_default;
181         enum app_env app_env_diversity;
182
183 };
184
185 /****************************************************************************/
186 /* I2C **********************************************************************/
187 /****************************************************************************/
188
189 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
190 {
191         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
192
193         if (i2c_transfer(adap, &msg, 1) != 1)
194                 return -1;
195         return 0;
196 }
197
198 static int i2c_read(struct i2c_adapter *adap,
199                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
200 {
201         struct i2c_msg msgs[2] = {
202                 {
203                         .addr = adr, .flags = 0,
204                         .buf = msg, .len = len
205                 }, {
206                         .addr = adr, .flags = I2C_M_RD,
207                         .buf = answ, .len = alen
208                 }
209         };
210         if (i2c_transfer(adap, msgs, 2) != 2)
211                 return -1;
212         return 0;
213 }
214
215 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
216 {
217         u64 tmp64;
218
219         tmp64 = (u64)a * (u64)b;
220         do_div(tmp64, c);
221
222         return (u32) tmp64;
223 }
224
225 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
226 {
227         u8 adr = state->config.demod_address;
228         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
229                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
230         };
231         u8 mm2[2];
232         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
233                 return -1;
234         if (data)
235                 *data = mm2[0] | (mm2[1] << 8);
236         return mm2[0] | (mm2[1] << 8);
237 }
238
239 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
240 {
241         u8 adr = state->config.demod_address;
242         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
243                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
244         };
245         u8 mm2[4];
246
247         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
248                 return -1;
249         if (data)
250                 *data =
251                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
252         return 0;
253 }
254
255 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
256 {
257         u8 adr = state->config.demod_address;
258         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
259                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
260                 data & 0xff, (data >> 8) & 0xff
261         };
262
263         if (i2c_write(state->i2c, adr, mm, 6) < 0)
264                 return -1;
265         return 0;
266 }
267
268 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
269 {
270         u8 adr = state->config.demod_address;
271         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
272                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
273                 data & 0xff, (data >> 8) & 0xff,
274                 (data >> 16) & 0xff, (data >> 24) & 0xff
275         };
276
277         if (i2c_write(state->i2c, adr, mm, 8) < 0)
278                 return -1;
279         return 0;
280 }
281
282 static int write_chunk(struct drxd_state *state,
283                        u32 reg, u8 *data, u32 len, u8 flags)
284 {
285         u8 adr = state->config.demod_address;
286         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
287                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
288         };
289         int i;
290
291         for (i = 0; i < len; i++)
292                 mm[4 + i] = data[i];
293         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
294                 printk(KERN_ERR "error in write_chunk\n");
295                 return -1;
296         }
297         return 0;
298 }
299
300 static int WriteBlock(struct drxd_state *state,
301                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
302 {
303         while (BlockSize > 0) {
304                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
305
306                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
307                         return -1;
308                 pBlock += Chunk;
309                 Address += (Chunk >> 1);
310                 BlockSize -= Chunk;
311         }
312         return 0;
313 }
314
315 static int WriteTable(struct drxd_state *state, u8 * pTable)
316 {
317         int status = 0;
318
319         if (!pTable)
320                 return 0;
321
322         while (!status) {
323                 u16 Length;
324                 u32 Address = pTable[0] | (pTable[1] << 8) |
325                     (pTable[2] << 16) | (pTable[3] << 24);
326
327                 if (Address == 0xFFFFFFFF)
328                         break;
329                 pTable += sizeof(u32);
330
331                 Length = pTable[0] | (pTable[1] << 8);
332                 pTable += sizeof(u16);
333                 if (!Length)
334                         break;
335                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
336                 pTable += (Length * 2);
337         }
338         return status;
339 }
340
341 /****************************************************************************/
342 /****************************************************************************/
343 /****************************************************************************/
344
345 static int ResetCEFR(struct drxd_state *state)
346 {
347         return WriteTable(state, state->m_ResetCEFR);
348 }
349
350 static int InitCP(struct drxd_state *state)
351 {
352         return WriteTable(state, state->m_InitCP);
353 }
354
355 static int InitCE(struct drxd_state *state)
356 {
357         int status;
358         enum app_env AppEnv = state->app_env_default;
359
360         do {
361                 status = WriteTable(state, state->m_InitCE);
362                 if (status < 0)
363                         break;
364
365                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
366                     state->operation_mode == OM_DVBT_Diversity_End) {
367                         AppEnv = state->app_env_diversity;
368                 }
369                 if (AppEnv == APPENV_STATIC) {
370                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
371                         if (status < 0)
372                                 break;
373                 } else if (AppEnv == APPENV_PORTABLE) {
374                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
375                         if (status < 0)
376                                 break;
377                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
378                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
379                         if (status < 0)
380                                 break;
381                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
382                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
383                         if (status < 0)
384                                 break;
385                 }
386
387                 /* start ce */
388                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
389                 if (status < 0)
390                         break;
391         } while (0);
392         return status;
393 }
394
395 static int StopOC(struct drxd_state *state)
396 {
397         int status = 0;
398         u16 ocSyncLvl = 0;
399         u16 ocModeLop = state->m_EcOcRegOcModeLop;
400         u16 dtoIncLop = 0;
401         u16 dtoIncHip = 0;
402
403         do {
404                 /* Store output configuration */
405                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
406                 if (status < 0)
407                         break;
408                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
409                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
410                 /* m_EcOcRegOcModeLop = ocModeLop; */
411
412                 /* Flush FIFO (byte-boundary) at fixed rate */
413                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
414                 if (status < 0)
415                         break;
416                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
417                 if (status < 0)
418                         break;
419                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
420                 if (status < 0)
421                         break;
422                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
423                 if (status < 0)
424                         break;
425                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
426                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
427                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
428                 if (status < 0)
429                         break;
430                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
431                 if (status < 0)
432                         break;
433
434                 msleep(1);
435                 /* Output pins to '0' */
436                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
437                 if (status < 0)
438                         break;
439
440                 /* Force the OC out of sync */
441                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
442                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
443                 if (status < 0)
444                         break;
445                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
446                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
447                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
448                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
449                 if (status < 0)
450                         break;
451                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
452                 if (status < 0)
453                         break;
454                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
455                 if (status < 0)
456                         break;
457         } while (0);
458
459         return status;
460 }
461
462 static int StartOC(struct drxd_state *state)
463 {
464         int status = 0;
465
466         do {
467                 /* Stop OC */
468                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
469                 if (status < 0)
470                         break;
471
472                 /* Restore output configuration */
473                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
474                 if (status < 0)
475                         break;
476                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
477                 if (status < 0)
478                         break;
479
480                 /* Output pins active again */
481                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
482                 if (status < 0)
483                         break;
484
485                 /* Start OC */
486                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
487                 if (status < 0)
488                         break;
489         } while (0);
490         return status;
491 }
492
493 static int InitEQ(struct drxd_state *state)
494 {
495         return WriteTable(state, state->m_InitEQ);
496 }
497
498 static int InitEC(struct drxd_state *state)
499 {
500         return WriteTable(state, state->m_InitEC);
501 }
502
503 static int InitSC(struct drxd_state *state)
504 {
505         return WriteTable(state, state->m_InitSC);
506 }
507
508 static int InitAtomicRead(struct drxd_state *state)
509 {
510         return WriteTable(state, state->m_InitAtomicRead);
511 }
512
513 static int CorrectSysClockDeviation(struct drxd_state *state);
514
515 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
516 {
517         u16 ScRaRamLock = 0;
518         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
519                                     SC_RA_RAM_LOCK_FEC__M |
520                                     SC_RA_RAM_LOCK_DEMOD__M);
521         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
522                                    SC_RA_RAM_LOCK_DEMOD__M);
523         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
524
525         int status;
526
527         *pLockStatus = 0;
528
529         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
530         if (status < 0) {
531                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
532                 return status;
533         }
534
535         if (state->drxd_state != DRXD_STARTED)
536                 return 0;
537
538         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
539                 *pLockStatus |= DRX_LOCK_MPEG;
540                 CorrectSysClockDeviation(state);
541         }
542
543         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
544                 *pLockStatus |= DRX_LOCK_FEC;
545
546         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
547                 *pLockStatus |= DRX_LOCK_DEMOD;
548         return 0;
549 }
550
551 /****************************************************************************/
552
553 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
554 {
555         int status;
556
557         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
558                 return -1;
559
560         if (cfg->ctrlMode == AGC_CTRL_USER) {
561                 do {
562                         u16 FeAgRegPm1AgcWri;
563                         u16 FeAgRegAgModeLop;
564
565                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
566                         if (status < 0)
567                                 break;
568                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
569                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
570                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
571                         if (status < 0)
572                                 break;
573
574                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
575                                                   FE_AG_REG_PM1_AGC_WRI__M);
576                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
577                         if (status < 0)
578                                 break;
579                 } while (0);
580         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
581                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
582                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
583                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
584                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
585                     )
586                         return -1;
587                 do {
588                         u16 FeAgRegAgModeLop;
589                         u16 FeAgRegEgcSetLvl;
590                         u16 slope, offset;
591
592                         /* == Mode == */
593
594                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
595                         if (status < 0)
596                                 break;
597                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
598                         FeAgRegAgModeLop |=
599                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
600                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
601                         if (status < 0)
602                                 break;
603
604                         /* == Settle level == */
605
606                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
607                                                   FE_AG_REG_EGC_SET_LVL__M);
608                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
609                         if (status < 0)
610                                 break;
611
612                         /* == Min/Max == */
613
614                         slope = (u16) ((cfg->maxOutputLevel -
615                                         cfg->minOutputLevel) / 2);
616                         offset = (u16) ((cfg->maxOutputLevel +
617                                          cfg->minOutputLevel) / 2 - 511);
618
619                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
620                         if (status < 0)
621                                 break;
622                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
623                         if (status < 0)
624                                 break;
625
626                         /* == Speed == */
627                         {
628                                 const u16 maxRur = 8;
629                                 static const u16 slowIncrDecLUT[] = {
630                                         3, 4, 4, 5, 6 };
631                                 static const u16 fastIncrDecLUT[] = {
632                                         14, 15, 15, 16,
633                                         17, 18, 18, 19,
634                                         20, 21, 22, 23,
635                                         24, 26, 27, 28,
636                                         29, 31
637                                 };
638
639                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
640                                     (maxRur + 1);
641                                 u16 fineSpeed = (u16) (cfg->speed -
642                                                        ((cfg->speed /
643                                                          fineSteps) *
644                                                         fineSteps));
645                                 u16 invRurCount = (u16) (cfg->speed /
646                                                          fineSteps);
647                                 u16 rurCount;
648                                 if (invRurCount > maxRur) {
649                                         rurCount = 0;
650                                         fineSpeed += fineSteps;
651                                 } else {
652                                         rurCount = maxRur - invRurCount;
653                                 }
654
655                                 /*
656                                    fastInc = default *
657                                    (2^(fineSpeed/fineSteps))
658                                    => range[default...2*default>
659                                    slowInc = default *
660                                    (2^(fineSpeed/fineSteps))
661                                  */
662                                 {
663                                         u16 fastIncrDec =
664                                             fastIncrDecLUT[fineSpeed /
665                                                            ((fineSteps /
666                                                              (14 + 1)) + 1)];
667                                         u16 slowIncrDec =
668                                             slowIncrDecLUT[fineSpeed /
669                                                            (fineSteps /
670                                                             (3 + 1))];
671
672                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
673                                         if (status < 0)
674                                                 break;
675                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
676                                         if (status < 0)
677                                                 break;
678                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
679                                         if (status < 0)
680                                                 break;
681                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
682                                         if (status < 0)
683                                                 break;
684                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
685                                         if (status < 0)
686                                                 break;
687                                 }
688                         }
689                 } while (0);
690
691         } else {
692                 /* No OFF mode for IF control */
693                 return -1;
694         }
695         return status;
696 }
697
698 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
699 {
700         int status = 0;
701
702         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
703                 return -1;
704
705         if (cfg->ctrlMode == AGC_CTRL_USER) {
706                 do {
707                         u16 AgModeLop = 0;
708                         u16 level = (cfg->outputLevel);
709
710                         if (level == DRXD_FE_CTRL_MAX)
711                                 level++;
712
713                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
714                         if (status < 0)
715                                 break;
716
717                         /*==== Mode ====*/
718
719                         /* Powerdown PD2, WRI source */
720                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
721                         state->m_FeAgRegAgPwd |=
722                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
723                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
724                         if (status < 0)
725                                 break;
726
727                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
728                         if (status < 0)
729                                 break;
730                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
731                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
732                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
733                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
734                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
735                         if (status < 0)
736                                 break;
737
738                         /* enable AGC2 pin */
739                         {
740                                 u16 FeAgRegAgAgcSio = 0;
741                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
742                                 if (status < 0)
743                                         break;
744                                 FeAgRegAgAgcSio &=
745                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
746                                 FeAgRegAgAgcSio |=
747                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
748                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
749                                 if (status < 0)
750                                         break;
751                         }
752
753                 } while (0);
754         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
755                 u16 AgModeLop = 0;
756
757                 do {
758                         u16 level;
759                         /* Automatic control */
760                         /* Powerup PD2, AGC2 as output, TGC source */
761                         (state->m_FeAgRegAgPwd) &=
762                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
763                         (state->m_FeAgRegAgPwd) |=
764                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
765                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
766                         if (status < 0)
767                                 break;
768
769                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
770                         if (status < 0)
771                                 break;
772                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
773                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
774                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
775                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
776                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
777                         if (status < 0)
778                                 break;
779                         /* Settle level */
780                         level = (((cfg->settleLevel) >> 4) &
781                                  FE_AG_REG_TGC_SET_LVL__M);
782                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
783                         if (status < 0)
784                                 break;
785
786                         /* Min/max: don't care */
787
788                         /* Speed: TODO */
789
790                         /* enable AGC2 pin */
791                         {
792                                 u16 FeAgRegAgAgcSio = 0;
793                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
794                                 if (status < 0)
795                                         break;
796                                 FeAgRegAgAgcSio &=
797                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
798                                 FeAgRegAgAgcSio |=
799                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
800                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
801                                 if (status < 0)
802                                         break;
803                         }
804
805                 } while (0);
806         } else {
807                 u16 AgModeLop = 0;
808
809                 do {
810                         /* No RF AGC control */
811                         /* Powerdown PD2, AGC2 as output, WRI source */
812                         (state->m_FeAgRegAgPwd) &=
813                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
814                         (state->m_FeAgRegAgPwd) |=
815                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
816                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
817                         if (status < 0)
818                                 break;
819
820                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
821                         if (status < 0)
822                                 break;
823                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
824                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
825                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
826                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
827                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
828                         if (status < 0)
829                                 break;
830
831                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
832                         {
833                                 u16 FeAgRegAgAgcSio = 0;
834                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
835                                 if (status < 0)
836                                         break;
837                                 FeAgRegAgAgcSio &=
838                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
839                                 FeAgRegAgAgcSio |=
840                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
841                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
842                                 if (status < 0)
843                                         break;
844                         }
845                 } while (0);
846         }
847         return status;
848 }
849
850 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
851 {
852         int status = 0;
853
854         *pValue = 0;
855         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
856                 u16 Value;
857                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
858                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
859                 if (status >= 0) {
860                         /*           3.3V
861                            |
862                            R1
863                            |
864                            Vin - R3 - * -- Vout
865                            |
866                            R2
867                            |
868                            GND
869                          */
870                         u32 R1 = state->if_agc_cfg.R1;
871                         u32 R2 = state->if_agc_cfg.R2;
872                         u32 R3 = state->if_agc_cfg.R3;
873
874                         u32 Vmax, Rpar, Vmin, Vout;
875
876                         if (R2 == 0 && (R1 == 0 || R3 == 0))
877                                 return 0;
878
879                         Vmax = (3300 * R2) / (R1 + R2);
880                         Rpar = (R2 * R3) / (R3 + R2);
881                         Vmin = (3300 * Rpar) / (R1 + Rpar);
882                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
883
884                         *pValue = Vout;
885                 }
886         }
887         return status;
888 }
889
890 static int load_firmware(struct drxd_state *state, const char *fw_name)
891 {
892         const struct firmware *fw;
893
894         if (request_firmware(&fw, fw_name, state->dev) < 0) {
895                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
896                 return -EIO;
897         }
898
899         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
900         if (!state->microcode) {
901                 release_firmware(fw);
902                 return -ENOMEM;
903         }
904
905         state->microcode_length = fw->size;
906         release_firmware(fw);
907         return 0;
908 }
909
910 static int DownloadMicrocode(struct drxd_state *state,
911                              const u8 *pMCImage, u32 Length)
912 {
913         u8 *pSrc;
914         u32 Address;
915         u16 nBlocks;
916         u16 BlockSize;
917         int i, status = 0;
918
919         pSrc = (u8 *) pMCImage;
920         /* We're not using Flags */
921         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
922         pSrc += sizeof(u16);
923         nBlocks = (pSrc[0] << 8) | pSrc[1];
924         pSrc += sizeof(u16);
925
926         for (i = 0; i < nBlocks; i++) {
927                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
928                     (pSrc[2] << 8) | pSrc[3];
929                 pSrc += sizeof(u32);
930
931                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
932                 pSrc += sizeof(u16);
933
934                 /* We're not using Flags */
935                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
936                 pSrc += sizeof(u16);
937
938                 /* We're not using BlockCRC */
939                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
940                 pSrc += sizeof(u16);
941
942                 status = WriteBlock(state, Address, BlockSize,
943                                     pSrc, DRX_I2C_CLEARCRC);
944                 if (status < 0)
945                         break;
946                 pSrc += BlockSize;
947         }
948
949         return status;
950 }
951
952 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
953 {
954         u32 nrRetries = 0;
955         int status;
956
957         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
958         if (status < 0)
959                 return status;
960
961         do {
962                 nrRetries += 1;
963                 if (nrRetries > DRXD_MAX_RETRIES) {
964                         status = -1;
965                         break;
966                 }
967                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
968         } while (status != 0);
969
970         if (status >= 0)
971                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
972         return status;
973 }
974
975 static int HI_CfgCommand(struct drxd_state *state)
976 {
977         int status = 0;
978
979         mutex_lock(&state->mutex);
980         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
981         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
982         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
983         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
984         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
985
986         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
987
988         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
989             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
990                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
991                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
992         else
993                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
994         mutex_unlock(&state->mutex);
995         return status;
996 }
997
998 static int InitHI(struct drxd_state *state)
999 {
1000         state->hi_cfg_wakeup_key = (state->chip_adr);
1001         /* port/bridge/power down ctrl */
1002         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1003         return HI_CfgCommand(state);
1004 }
1005
1006 static int HI_ResetCommand(struct drxd_state *state)
1007 {
1008         int status;
1009
1010         mutex_lock(&state->mutex);
1011         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1012                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1013         if (status == 0)
1014                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1015         mutex_unlock(&state->mutex);
1016         msleep(1);
1017         return status;
1018 }
1019
1020 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1021 {
1022         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1023         if (bEnableBridge)
1024                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1025         else
1026                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1027
1028         return HI_CfgCommand(state);
1029 }
1030
1031 #define HI_TR_WRITE      0x9
1032 #define HI_TR_READ       0xA
1033 #define HI_TR_READ_WRITE 0xB
1034 #define HI_TR_BROADCAST  0x4
1035
1036 #if 0
1037 static int AtomicReadBlock(struct drxd_state *state,
1038                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1039 {
1040         int status;
1041         int i = 0;
1042
1043         /* Parameter check */
1044         if ((!pData) || ((DataSize & 1) != 0))
1045                 return -1;
1046
1047         mutex_lock(&state->mutex);
1048
1049         do {
1050                 /* Instruct HI to read n bytes */
1051                 /* TODO use proper names forthese egisters */
1052                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1053                 if (status < 0)
1054                         break;
1055                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1056                 if (status < 0)
1057                         break;
1058                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1059                 if (status < 0)
1060                         break;
1061                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1062                 if (status < 0)
1063                         break;
1064                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1065                 if (status < 0)
1066                         break;
1067
1068                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1069                 if (status < 0)
1070                         break;
1071
1072         } while (0);
1073
1074         if (status >= 0) {
1075                 for (i = 0; i < (DataSize / 2); i += 1) {
1076                         u16 word;
1077
1078                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1079                                         &word, 0);
1080                         if (status < 0)
1081                                 break;
1082                         pData[2 * i] = (u8) (word & 0xFF);
1083                         pData[(2 * i) + 1] = (u8) (word >> 8);
1084                 }
1085         }
1086         mutex_unlock(&state->mutex);
1087         return status;
1088 }
1089
1090 static int AtomicReadReg32(struct drxd_state *state,
1091                            u32 Addr, u32 *pData, u8 Flags)
1092 {
1093         u8 buf[sizeof(u32)];
1094         int status;
1095
1096         if (!pData)
1097                 return -1;
1098         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1099         *pData = (((u32) buf[0]) << 0) +
1100             (((u32) buf[1]) << 8) +
1101             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1102         return status;
1103 }
1104 #endif
1105
1106 static int StopAllProcessors(struct drxd_state *state)
1107 {
1108         return Write16(state, HI_COMM_EXEC__A,
1109                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1110 }
1111
1112 static int EnableAndResetMB(struct drxd_state *state)
1113 {
1114         if (state->type_A) {
1115                 /* disable? monitor bus observe @ EC_OC */
1116                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1117         }
1118
1119         /* do inverse broadcast, followed by explicit write to HI */
1120         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1121         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1122         return 0;
1123 }
1124
1125 static int InitCC(struct drxd_state *state)
1126 {
1127         int status = 0;
1128
1129         if (state->osc_clock_freq == 0 ||
1130             state->osc_clock_freq > 20000 ||
1131             (state->osc_clock_freq % 4000) != 0) {
1132                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1133                 return -1;
1134         }
1135
1136         status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1137         status |= Write16(state, CC_REG_PLL_MODE__A,
1138                                 CC_REG_PLL_MODE_BYPASS_PLL |
1139                                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1140         status |= Write16(state, CC_REG_REF_DIVIDE__A,
1141                                 state->osc_clock_freq / 4000, 0);
1142         status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1143                                 0);
1144         status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1145
1146         return status;
1147 }
1148
1149 static int ResetECOD(struct drxd_state *state)
1150 {
1151         int status = 0;
1152
1153         if (state->type_A)
1154                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1155         else
1156                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1157
1158         if (!(status < 0))
1159                 status = WriteTable(state, state->m_ResetECRAM);
1160         if (!(status < 0))
1161                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1162         return status;
1163 }
1164
1165 /* Configure PGA switch */
1166
1167 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1168 {
1169         int status;
1170         u16 AgModeLop = 0;
1171         u16 AgModeHip = 0;
1172         do {
1173                 if (pgaSwitch) {
1174                         /* PGA on */
1175                         /* fine gain */
1176                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1177                         if (status < 0)
1178                                 break;
1179                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1180                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1181                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1182                         if (status < 0)
1183                                 break;
1184
1185                         /* coarse gain */
1186                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1187                         if (status < 0)
1188                                 break;
1189                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1190                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1191                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1192                         if (status < 0)
1193                                 break;
1194
1195                         /* enable fine and coarse gain, enable AAF,
1196                            no ext resistor */
1197                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1198                         if (status < 0)
1199                                 break;
1200                 } else {
1201                         /* PGA off, bypass */
1202
1203                         /* fine gain */
1204                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1205                         if (status < 0)
1206                                 break;
1207                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1208                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1209                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1210                         if (status < 0)
1211                                 break;
1212
1213                         /* coarse gain */
1214                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1215                         if (status < 0)
1216                                 break;
1217                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1218                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1219                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1220                         if (status < 0)
1221                                 break;
1222
1223                         /* disable fine and coarse gain, enable AAF,
1224                            no ext resistor */
1225                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1226                         if (status < 0)
1227                                 break;
1228                 }
1229         } while (0);
1230         return status;
1231 }
1232
1233 static int InitFE(struct drxd_state *state)
1234 {
1235         int status;
1236
1237         do {
1238                 status = WriteTable(state, state->m_InitFE_1);
1239                 if (status < 0)
1240                         break;
1241
1242                 if (state->type_A) {
1243                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1244                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1245                                          0);
1246                 } else {
1247                         if (state->PGA)
1248                                 status = SetCfgPga(state, 0);
1249                         else
1250                                 status =
1251                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1252                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253                                             0);
1254                 }
1255
1256                 if (status < 0)
1257                         break;
1258                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1259                 if (status < 0)
1260                         break;
1261                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1262                 if (status < 0)
1263                         break;
1264
1265                 status = WriteTable(state, state->m_InitFE_2);
1266                 if (status < 0)
1267                         break;
1268
1269         } while (0);
1270
1271         return status;
1272 }
1273
1274 static int InitFT(struct drxd_state *state)
1275 {
1276         /*
1277            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1278            SC stuff
1279          */
1280         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1281 }
1282
1283 static int SC_WaitForReady(struct drxd_state *state)
1284 {
1285         int i;
1286
1287         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1288                 int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1289                 if (status == 0)
1290                         return status;
1291         }
1292         return -1;
1293 }
1294
1295 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1296 {
1297         int status = 0, ret;
1298         u16 errCode;
1299
1300         status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1301         if (status < 0)
1302                 return status;
1303
1304         SC_WaitForReady(state);
1305
1306         ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1307
1308         if (ret < 0 || errCode == 0xFFFF) {
1309                 printk(KERN_ERR "Command Error\n");
1310                 status = -1;
1311         }
1312
1313         return status;
1314 }
1315
1316 static int SC_ProcStartCommand(struct drxd_state *state,
1317                                u16 subCmd, u16 param0, u16 param1)
1318 {
1319         int ret, status = 0;
1320         u16 scExec;
1321
1322         mutex_lock(&state->mutex);
1323         do {
1324                 ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1325                 if (ret < 0 || scExec != 1) {
1326                         status = -1;
1327                         break;
1328                 }
1329                 SC_WaitForReady(state);
1330                 status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1331                 status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1332                 status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1333
1334                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1335         } while (0);
1336         mutex_unlock(&state->mutex);
1337         return status;
1338 }
1339
1340 static int SC_SetPrefParamCommand(struct drxd_state *state,
1341                                   u16 subCmd, u16 param0, u16 param1)
1342 {
1343         int status;
1344
1345         mutex_lock(&state->mutex);
1346         do {
1347                 status = SC_WaitForReady(state);
1348                 if (status < 0)
1349                         break;
1350                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1351                 if (status < 0)
1352                         break;
1353                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1354                 if (status < 0)
1355                         break;
1356                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1357                 if (status < 0)
1358                         break;
1359
1360                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1361                 if (status < 0)
1362                         break;
1363         } while (0);
1364         mutex_unlock(&state->mutex);
1365         return status;
1366 }
1367
1368 #if 0
1369 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1370 {
1371         int status = 0;
1372
1373         mutex_lock(&state->mutex);
1374         do {
1375                 status = SC_WaitForReady(state);
1376                 if (status < 0)
1377                         break;
1378                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1379                 if (status < 0)
1380                         break;
1381                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1382                 if (status < 0)
1383                         break;
1384         } while (0);
1385         mutex_unlock(&state->mutex);
1386         return status;
1387 }
1388 #endif
1389
1390 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1391 {
1392         int status;
1393
1394         do {
1395                 u16 EcOcRegIprInvMpg = 0;
1396                 u16 EcOcRegOcModeLop = 0;
1397                 u16 EcOcRegOcModeHip = 0;
1398                 u16 EcOcRegOcMpgSio = 0;
1399
1400                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1401
1402                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1403                         if (bEnableOutput) {
1404                                 EcOcRegOcModeHip |=
1405                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1406                         } else
1407                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1408                         EcOcRegOcModeLop |=
1409                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1410                 } else {
1411                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1412
1413                         if (bEnableOutput)
1414                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1415                         else
1416                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1417
1418                         /* Don't Insert RS Byte */
1419                         if (state->insert_rs_byte) {
1420                                 EcOcRegOcModeLop &=
1421                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1422                                 EcOcRegOcModeHip &=
1423                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1424                                 EcOcRegOcModeHip |=
1425                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1426                         } else {
1427                                 EcOcRegOcModeLop |=
1428                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1429                                 EcOcRegOcModeHip &=
1430                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1431                                 EcOcRegOcModeHip |=
1432                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1433                         }
1434
1435                         /* Mode = Parallel */
1436                         if (state->enable_parallel)
1437                                 EcOcRegOcModeLop &=
1438                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1439                         else
1440                                 EcOcRegOcModeLop |=
1441                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1442                 }
1443                 /* Invert Data */
1444                 /* EcOcRegIprInvMpg |= 0x00FF; */
1445                 EcOcRegIprInvMpg &= (~(0x00FF));
1446
1447                 /* Invert Error ( we don't use the pin ) */
1448                 /*  EcOcRegIprInvMpg |= 0x0100; */
1449                 EcOcRegIprInvMpg &= (~(0x0100));
1450
1451                 /* Invert Start ( we don't use the pin ) */
1452                 /* EcOcRegIprInvMpg |= 0x0200; */
1453                 EcOcRegIprInvMpg &= (~(0x0200));
1454
1455                 /* Invert Valid ( we don't use the pin ) */
1456                 /* EcOcRegIprInvMpg |= 0x0400; */
1457                 EcOcRegIprInvMpg &= (~(0x0400));
1458
1459                 /* Invert Clock */
1460                 /* EcOcRegIprInvMpg |= 0x0800; */
1461                 EcOcRegIprInvMpg &= (~(0x0800));
1462
1463                 /* EcOcRegOcModeLop =0x05; */
1464                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1465                 if (status < 0)
1466                         break;
1467                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1468                 if (status < 0)
1469                         break;
1470                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1471                 if (status < 0)
1472                         break;
1473                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1474                 if (status < 0)
1475                         break;
1476         } while (0);
1477         return status;
1478 }
1479
1480 static int SetDeviceTypeId(struct drxd_state *state)
1481 {
1482         int status = 0;
1483         u16 deviceId = 0;
1484
1485         do {
1486                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1487                 if (status < 0)
1488                         break;
1489                 /* TODO: why twice? */
1490                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1491                 if (status < 0)
1492                         break;
1493                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1494
1495                 state->type_A = 0;
1496                 state->PGA = 0;
1497                 state->diversity = 0;
1498                 if (deviceId == 0) {    /* on A2 only 3975 available */
1499                         state->type_A = 1;
1500                         printk(KERN_INFO "DRX3975D-A2\n");
1501                 } else {
1502                         deviceId >>= 12;
1503                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1504                         switch (deviceId) {
1505                         case 4:
1506                                 state->diversity = 1;
1507                                 fallthrough;
1508                         case 3:
1509                         case 7:
1510                                 state->PGA = 1;
1511                                 break;
1512                         case 6:
1513                                 state->diversity = 1;
1514                                 fallthrough;
1515                         case 5:
1516                         case 8:
1517                                 break;
1518                         default:
1519                                 status = -1;
1520                                 break;
1521                         }
1522                 }
1523         } while (0);
1524
1525         if (status < 0)
1526                 return status;
1527
1528         /* Init Table selection */
1529         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1530         state->m_InitSC = DRXD_InitSC;
1531         state->m_ResetECRAM = DRXD_ResetECRAM;
1532         if (state->type_A) {
1533                 state->m_ResetCEFR = DRXD_ResetCEFR;
1534                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1535                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1536                 state->m_InitCP = DRXD_InitCPA2;
1537                 state->m_InitCE = DRXD_InitCEA2;
1538                 state->m_InitEQ = DRXD_InitEQA2;
1539                 state->m_InitEC = DRXD_InitECA2;
1540                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1541                         return -EIO;
1542         } else {
1543                 state->m_ResetCEFR = NULL;
1544                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1545                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1546                 state->m_InitCP = DRXD_InitCPB1;
1547                 state->m_InitCE = DRXD_InitCEB1;
1548                 state->m_InitEQ = DRXD_InitEQB1;
1549                 state->m_InitEC = DRXD_InitECB1;
1550                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1551                         return -EIO;
1552         }
1553         if (state->diversity) {
1554                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1555                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1556                 state->m_DisableDiversity = DRXD_DisableDiversity;
1557                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1558                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1559                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1560                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1561         } else {
1562                 state->m_InitDiversityFront = NULL;
1563                 state->m_InitDiversityEnd = NULL;
1564                 state->m_DisableDiversity = NULL;
1565                 state->m_StartDiversityFront = NULL;
1566                 state->m_StartDiversityEnd = NULL;
1567                 state->m_DiversityDelay8MHZ = NULL;
1568                 state->m_DiversityDelay6MHZ = NULL;
1569         }
1570
1571         return status;
1572 }
1573
1574 static int CorrectSysClockDeviation(struct drxd_state *state)
1575 {
1576         int status;
1577         s32 incr = 0;
1578         s32 nomincr = 0;
1579         u32 bandwidth = 0;
1580         u32 sysClockInHz = 0;
1581         u32 sysClockFreq = 0;   /* in kHz */
1582         s16 oscClockDeviation;
1583         s16 Diff;
1584
1585         do {
1586                 /* Retrieve bandwidth and incr, sanity check */
1587
1588                 /* These accesses should be AtomicReadReg32, but that
1589                    causes trouble (at least for diversity */
1590                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1591                 if (status < 0)
1592                         break;
1593                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1594                 if (status < 0)
1595                         break;
1596
1597                 if (state->type_A) {
1598                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1599                                 break;
1600                 } else {
1601                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1602                                 break;
1603                 }
1604
1605                 switch (state->props.bandwidth_hz) {
1606                 case 8000000:
1607                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1608                         break;
1609                 case 7000000:
1610                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1611                         break;
1612                 case 6000000:
1613                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1614                         break;
1615                 default:
1616                         return -1;
1617                 }
1618
1619                 /* Compute new sysclock value
1620                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1621                 incr += (1 << 23);
1622                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1623                 sysClockFreq = (u32) (sysClockInHz / 1000);
1624                 /* rounding */
1625                 if ((sysClockInHz % 1000) > 500)
1626                         sysClockFreq++;
1627
1628                 /* Compute clock deviation in ppm */
1629                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1630                                              (s32)
1631                                              (state->expected_sys_clock_freq)) *
1632                                             1000000L) /
1633                                            (s32)
1634                                            (state->expected_sys_clock_freq));
1635
1636                 Diff = oscClockDeviation - state->osc_clock_deviation;
1637                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1638                 if (Diff >= -200 && Diff <= 200) {
1639                         state->sys_clock_freq = (u16) sysClockFreq;
1640                         if (oscClockDeviation != state->osc_clock_deviation) {
1641                                 if (state->config.osc_deviation) {
1642                                         state->config.osc_deviation(state->priv,
1643                                                                     oscClockDeviation,
1644                                                                     1);
1645                                         state->osc_clock_deviation =
1646                                             oscClockDeviation;
1647                                 }
1648                         }
1649                         /* switch OFF SRMM scan in SC */
1650                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1651                         if (status < 0)
1652                                 break;
1653                         /* overrule FE_IF internal value for
1654                            proper re-locking */
1655                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1656                         if (status < 0)
1657                                 break;
1658                         state->cscd_state = CSCD_SAVED;
1659                 }
1660         } while (0);
1661
1662         return status;
1663 }
1664
1665 static int DRX_Stop(struct drxd_state *state)
1666 {
1667         int status;
1668
1669         if (state->drxd_state != DRXD_STARTED)
1670                 return 0;
1671
1672         do {
1673                 if (state->cscd_state != CSCD_SAVED) {
1674                         u32 lock;
1675                         status = DRX_GetLockStatus(state, &lock);
1676                         if (status < 0)
1677                                 break;
1678                 }
1679
1680                 status = StopOC(state);
1681                 if (status < 0)
1682                         break;
1683
1684                 state->drxd_state = DRXD_STOPPED;
1685
1686                 status = ConfigureMPEGOutput(state, 0);
1687                 if (status < 0)
1688                         break;
1689
1690                 if (state->type_A) {
1691                         /* Stop relevant processors off the device */
1692                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1693                         if (status < 0)
1694                                 break;
1695
1696                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1697                         if (status < 0)
1698                                 break;
1699                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1700                         if (status < 0)
1701                                 break;
1702                 } else {
1703                         /* Stop all processors except HI & CC & FE */
1704                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1705                         if (status < 0)
1706                                 break;
1707                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1708                         if (status < 0)
1709                                 break;
1710                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1711                         if (status < 0)
1712                                 break;
1713                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1714                         if (status < 0)
1715                                 break;
1716                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717                         if (status < 0)
1718                                 break;
1719                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720                         if (status < 0)
1721                                 break;
1722                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1723                         if (status < 0)
1724                                 break;
1725                 }
1726
1727         } while (0);
1728         return status;
1729 }
1730
1731 #if 0   /* Currently unused */
1732 static int SetOperationMode(struct drxd_state *state, int oMode)
1733 {
1734         int status;
1735
1736         do {
1737                 if (state->drxd_state != DRXD_STOPPED) {
1738                         status = -1;
1739                         break;
1740                 }
1741
1742                 if (oMode == state->operation_mode) {
1743                         status = 0;
1744                         break;
1745                 }
1746
1747                 if (oMode != OM_Default && !state->diversity) {
1748                         status = -1;
1749                         break;
1750                 }
1751
1752                 switch (oMode) {
1753                 case OM_DVBT_Diversity_Front:
1754                         status = WriteTable(state, state->m_InitDiversityFront);
1755                         break;
1756                 case OM_DVBT_Diversity_End:
1757                         status = WriteTable(state, state->m_InitDiversityEnd);
1758                         break;
1759                 case OM_Default:
1760                         /* We need to check how to
1761                            get DRXD out of diversity */
1762                 default:
1763                         status = WriteTable(state, state->m_DisableDiversity);
1764                         break;
1765                 }
1766         } while (0);
1767
1768         if (!status)
1769                 state->operation_mode = oMode;
1770         return status;
1771 }
1772 #endif
1773
1774 static int StartDiversity(struct drxd_state *state)
1775 {
1776         int status = 0;
1777         u16 rcControl;
1778
1779         do {
1780                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1781                         status = WriteTable(state, state->m_StartDiversityFront);
1782                         if (status < 0)
1783                                 break;
1784                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1785                         status = WriteTable(state, state->m_StartDiversityEnd);
1786                         if (status < 0)
1787                                 break;
1788                         if (state->props.bandwidth_hz == 8000000) {
1789                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1790                                 if (status < 0)
1791                                         break;
1792                         } else {
1793                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1794                                 if (status < 0)
1795                                         break;
1796                         }
1797
1798                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1799                         if (status < 0)
1800                                 break;
1801                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1802                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1803                             /*  combining enabled */
1804                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1805                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1806                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1807                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1808                         if (status < 0)
1809                                 break;
1810                 }
1811         } while (0);
1812         return status;
1813 }
1814
1815 static int SetFrequencyShift(struct drxd_state *state,
1816                              u32 offsetFreq, int channelMirrored)
1817 {
1818         int negativeShift = (state->tuner_mirrors == channelMirrored);
1819
1820         /* Handle all mirroring
1821          *
1822          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1823          * feFsRegAddInc to 28 bits below
1824          * (if the result before masking is more than 28 bits, this means
1825          *  that the ADC is mirroring.
1826          * The masking is in fact the aliasing of the ADC)
1827          *
1828          */
1829
1830         /* Compute register value, unsigned computation */
1831         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1832                                          offsetFreq,
1833                                          1 << 28, state->sys_clock_freq);
1834         /* Remove integer part */
1835         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1836         if (negativeShift)
1837                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1838
1839         /* Save the frequency shift without tunerOffset compensation
1840            for CtrlGetChannel. */
1841         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1842                                              1 << 28, state->sys_clock_freq);
1843         /* Remove integer part */
1844         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1845         if (negativeShift)
1846                 state->org_fe_fs_add_incr = ((1L << 28) -
1847                                              state->org_fe_fs_add_incr);
1848
1849         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1850                        state->fe_fs_add_incr, 0);
1851 }
1852
1853 static int SetCfgNoiseCalibration(struct drxd_state *state,
1854                                   struct SNoiseCal *noiseCal)
1855 {
1856         u16 beOptEna;
1857         int status = 0;
1858
1859         do {
1860                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1861                 if (status < 0)
1862                         break;
1863                 if (noiseCal->cpOpt) {
1864                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1865                 } else {
1866                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1867                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1868                         if (status < 0)
1869                                 break;
1870                 }
1871                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1872                 if (status < 0)
1873                         break;
1874
1875                 if (!state->type_A) {
1876                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1877                         if (status < 0)
1878                                 break;
1879                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1880                         if (status < 0)
1881                                 break;
1882                 }
1883         } while (0);
1884
1885         return status;
1886 }
1887
1888 static int DRX_Start(struct drxd_state *state, s32 off)
1889 {
1890         struct dtv_frontend_properties *p = &state->props;
1891         int status;
1892
1893         u16 transmissionParams = 0;
1894         u16 operationMode = 0;
1895         u16 qpskTdTpsPwr = 0;
1896         u16 qam16TdTpsPwr = 0;
1897         u16 qam64TdTpsPwr = 0;
1898         u32 feIfIncr = 0;
1899         u32 bandwidth = 0;
1900         int mirrorFreqSpect;
1901
1902         u16 qpskSnCeGain = 0;
1903         u16 qam16SnCeGain = 0;
1904         u16 qam64SnCeGain = 0;
1905         u16 qpskIsGainMan = 0;
1906         u16 qam16IsGainMan = 0;
1907         u16 qam64IsGainMan = 0;
1908         u16 qpskIsGainExp = 0;
1909         u16 qam16IsGainExp = 0;
1910         u16 qam64IsGainExp = 0;
1911         u16 bandwidthParam = 0;
1912
1913         if (off < 0)
1914                 off = (off - 500) / 1000;
1915         else
1916                 off = (off + 500) / 1000;
1917
1918         do {
1919                 if (state->drxd_state != DRXD_STOPPED)
1920                         return -1;
1921                 status = ResetECOD(state);
1922                 if (status < 0)
1923                         break;
1924                 if (state->type_A) {
1925                         status = InitSC(state);
1926                         if (status < 0)
1927                                 break;
1928                 } else {
1929                         status = InitFT(state);
1930                         if (status < 0)
1931                                 break;
1932                         status = InitCP(state);
1933                         if (status < 0)
1934                                 break;
1935                         status = InitCE(state);
1936                         if (status < 0)
1937                                 break;
1938                         status = InitEQ(state);
1939                         if (status < 0)
1940                                 break;
1941                         status = InitSC(state);
1942                         if (status < 0)
1943                                 break;
1944                 }
1945
1946                 /* Restore current IF & RF AGC settings */
1947
1948                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1949                 if (status < 0)
1950                         break;
1951                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1952                 if (status < 0)
1953                         break;
1954
1955                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1956
1957                 switch (p->transmission_mode) {
1958                 default:        /* Not set, detect it automatically */
1959                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1960                         fallthrough;    /* try first guess DRX_FFTMODE_8K */
1961                 case TRANSMISSION_MODE_8K:
1962                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1963                         if (state->type_A) {
1964                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1965                                 if (status < 0)
1966                                         break;
1967                                 qpskSnCeGain = 99;
1968                                 qam16SnCeGain = 83;
1969                                 qam64SnCeGain = 67;
1970                         }
1971                         break;
1972                 case TRANSMISSION_MODE_2K:
1973                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1974                         if (state->type_A) {
1975                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1976                                 if (status < 0)
1977                                         break;
1978                                 qpskSnCeGain = 97;
1979                                 qam16SnCeGain = 71;
1980                                 qam64SnCeGain = 65;
1981                         }
1982                         break;
1983                 }
1984
1985                 switch (p->guard_interval) {
1986                 case GUARD_INTERVAL_1_4:
1987                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1988                         break;
1989                 case GUARD_INTERVAL_1_8:
1990                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
1991                         break;
1992                 case GUARD_INTERVAL_1_16:
1993                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
1994                         break;
1995                 case GUARD_INTERVAL_1_32:
1996                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
1997                         break;
1998                 default:        /* Not set, detect it automatically */
1999                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2000                         /* try first guess 1/4 */
2001                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2002                         break;
2003                 }
2004
2005                 switch (p->hierarchy) {
2006                 case HIERARCHY_1:
2007                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2008                         if (state->type_A) {
2009                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2010                                 if (status < 0)
2011                                         break;
2012                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2013                                 if (status < 0)
2014                                         break;
2015
2016                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2017                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2018                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2019
2020                                 qpskIsGainMan =
2021                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2022                                 qam16IsGainMan =
2023                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2024                                 qam64IsGainMan =
2025                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2026
2027                                 qpskIsGainExp =
2028                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2029                                 qam16IsGainExp =
2030                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2031                                 qam64IsGainExp =
2032                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2033                         }
2034                         break;
2035
2036                 case HIERARCHY_2:
2037                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2038                         if (state->type_A) {
2039                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2040                                 if (status < 0)
2041                                         break;
2042                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2043                                 if (status < 0)
2044                                         break;
2045
2046                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2047                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2048                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2049
2050                                 qpskIsGainMan =
2051                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2052                                 qam16IsGainMan =
2053                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2054                                 qam64IsGainMan =
2055                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2056
2057                                 qpskIsGainExp =
2058                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2059                                 qam16IsGainExp =
2060                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2061                                 qam64IsGainExp =
2062                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2063                         }
2064                         break;
2065                 case HIERARCHY_4:
2066                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2067                         if (state->type_A) {
2068                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2069                                 if (status < 0)
2070                                         break;
2071                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2072                                 if (status < 0)
2073                                         break;
2074
2075                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2076                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2077                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2078
2079                                 qpskIsGainMan =
2080                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2081                                 qam16IsGainMan =
2082                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2083                                 qam64IsGainMan =
2084                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2085
2086                                 qpskIsGainExp =
2087                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2088                                 qam16IsGainExp =
2089                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2090                                 qam64IsGainExp =
2091                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2092                         }
2093                         break;
2094                 case HIERARCHY_AUTO:
2095                 default:
2096                         /* Not set, detect it automatically, start with none */
2097                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2098                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2099                         if (state->type_A) {
2100                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2101                                 if (status < 0)
2102                                         break;
2103                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2104                                 if (status < 0)
2105                                         break;
2106
2107                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2108                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2109                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2110
2111                                 qpskIsGainMan =
2112                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2113                                 qam16IsGainMan =
2114                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2115                                 qam64IsGainMan =
2116                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2117
2118                                 qpskIsGainExp =
2119                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2120                                 qam16IsGainExp =
2121                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2122                                 qam64IsGainExp =
2123                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2124                         }
2125                         break;
2126                 }
2127                 if (status < 0)
2128                         break;
2129
2130                 switch (p->modulation) {
2131                 default:
2132                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2133                         fallthrough;    /* try first guess DRX_CONSTELLATION_QAM64 */
2134                 case QAM_64:
2135                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2136                         if (state->type_A) {
2137                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2138                                 if (status < 0)
2139                                         break;
2140                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2141                                 if (status < 0)
2142                                         break;
2143                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2144                                 if (status < 0)
2145                                         break;
2146                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2147                                 if (status < 0)
2148                                         break;
2149                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2150                                 if (status < 0)
2151                                         break;
2152
2153                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2154                                 if (status < 0)
2155                                         break;
2156                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2157                                 if (status < 0)
2158                                         break;
2159                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2160                                 if (status < 0)
2161                                         break;
2162                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2163                                 if (status < 0)
2164                                         break;
2165                         }
2166                         break;
2167                 case QPSK:
2168                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2169                         if (state->type_A) {
2170                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2171                                 if (status < 0)
2172                                         break;
2173                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2174                                 if (status < 0)
2175                                         break;
2176                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2177                                 if (status < 0)
2178                                         break;
2179                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2180                                 if (status < 0)
2181                                         break;
2182                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2183                                 if (status < 0)
2184                                         break;
2185
2186                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2187                                 if (status < 0)
2188                                         break;
2189                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2190                                 if (status < 0)
2191                                         break;
2192                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2193                                 if (status < 0)
2194                                         break;
2195                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2196                                 if (status < 0)
2197                                         break;
2198                         }
2199                         break;
2200
2201                 case QAM_16:
2202                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2203                         if (state->type_A) {
2204                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2205                                 if (status < 0)
2206                                         break;
2207                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2208                                 if (status < 0)
2209                                         break;
2210                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2211                                 if (status < 0)
2212                                         break;
2213                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2214                                 if (status < 0)
2215                                         break;
2216                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2217                                 if (status < 0)
2218                                         break;
2219
2220                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2221                                 if (status < 0)
2222                                         break;
2223                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2224                                 if (status < 0)
2225                                         break;
2226                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2227                                 if (status < 0)
2228                                         break;
2229                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2230                                 if (status < 0)
2231                                         break;
2232                         }
2233                         break;
2234
2235                 }
2236                 if (status < 0)
2237                         break;
2238
2239                 switch (DRX_CHANNEL_HIGH) {
2240                 default:
2241                 case DRX_CHANNEL_AUTO:
2242                 case DRX_CHANNEL_LOW:
2243                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2244                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2245                         break;
2246                 case DRX_CHANNEL_HIGH:
2247                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2248                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2249                         break;
2250                 }
2251
2252                 switch (p->code_rate_HP) {
2253                 case FEC_1_2:
2254                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2255                         if (state->type_A)
2256                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2257                         break;
2258                 default:
2259                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2260                         fallthrough;
2261                 case FEC_2_3:
2262                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2263                         if (state->type_A)
2264                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2265                         break;
2266                 case FEC_3_4:
2267                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2268                         if (state->type_A)
2269                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2270                         break;
2271                 case FEC_5_6:
2272                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2273                         if (state->type_A)
2274                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2275                         break;
2276                 case FEC_7_8:
2277                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2278                         if (state->type_A)
2279                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2280                         break;
2281                 }
2282                 if (status < 0)
2283                         break;
2284
2285                 /* First determine real bandwidth (Hz) */
2286                 /* Also set delay for impulse noise cruncher (only A2) */
2287                 /* Also set parameters for EC_OC fix, note
2288                    EC_OC_REG_TMD_HIL_MAR is changed
2289                    by SC for fix for some 8K,1/8 guard but is restored by
2290                    InitEC and ResetEC
2291                    functions */
2292                 switch (p->bandwidth_hz) {
2293                 case 0:
2294                         p->bandwidth_hz = 8000000;
2295                         fallthrough;
2296                 case 8000000:
2297                         /* (64/7)*(8/8)*1000000 */
2298                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2299
2300                         bandwidthParam = 0;
2301                         status = Write16(state,
2302                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2303                         break;
2304                 case 7000000:
2305                         /* (64/7)*(7/8)*1000000 */
2306                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2307                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2308                         status = Write16(state,
2309                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2310                         break;
2311                 case 6000000:
2312                         /* (64/7)*(6/8)*1000000 */
2313                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2314                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2315                         status = Write16(state,
2316                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2317                         break;
2318                 default:
2319                         status = -EINVAL;
2320                 }
2321                 if (status < 0)
2322                         break;
2323
2324                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2325                 if (status < 0)
2326                         break;
2327
2328                 {
2329                         u16 sc_config;
2330                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2331                         if (status < 0)
2332                                 break;
2333
2334                         /* enable SLAVE mode in 2k 1/32 to
2335                            prevent timing change glitches */
2336                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2337                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2338                                 /* enable slave */
2339                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2340                         } else {
2341                                 /* disable slave */
2342                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2343                         }
2344                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2345                         if (status < 0)
2346                                 break;
2347                 }
2348
2349                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2350                 if (status < 0)
2351                         break;
2352
2353                 if (state->cscd_state == CSCD_INIT) {
2354                         /* switch on SRMM scan in SC */
2355                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2356                         if (status < 0)
2357                                 break;
2358 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2359                         state->cscd_state = CSCD_SET;
2360                 }
2361
2362                 /* Now compute FE_IF_REG_INCR */
2363                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2364                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2365                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2366                                     (1ULL << 21), bandwidth) - (1 << 23);
2367                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2368                 if (status < 0)
2369                         break;
2370                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2371                 if (status < 0)
2372                         break;
2373                 /* Bandwidth setting done */
2374
2375                 /* Mirror & frequency offset */
2376                 SetFrequencyShift(state, off, mirrorFreqSpect);
2377
2378                 /* Start SC, write channel settings to SC */
2379
2380                 /* Enable SC after setting all other parameters */
2381                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2382                 if (status < 0)
2383                         break;
2384                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2385                 if (status < 0)
2386                         break;
2387
2388                 /* Write SC parameter registers, operation mode */
2389 #if 1
2390                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2391                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2392                                  SC_RA_RAM_OP_AUTO_CONST__M |
2393                                  SC_RA_RAM_OP_AUTO_HIER__M |
2394                                  SC_RA_RAM_OP_AUTO_RATE__M);
2395 #endif
2396                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2397                 if (status < 0)
2398                         break;
2399
2400                 /* Start correct processes to get in lock */
2401                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2402                 if (status < 0)
2403                         break;
2404
2405                 status = StartOC(state);
2406                 if (status < 0)
2407                         break;
2408
2409                 if (state->operation_mode != OM_Default) {
2410                         status = StartDiversity(state);
2411                         if (status < 0)
2412                                 break;
2413                 }
2414
2415                 state->drxd_state = DRXD_STARTED;
2416         } while (0);
2417
2418         return status;
2419 }
2420
2421 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2422 {
2423         u32 ulRfAgcOutputLevel = 0xffffffff;
2424         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2425         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2426         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2427         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2428         u32 ulRfAgcMode = 0;    /*2;   Off */
2429         u32 ulRfAgcR1 = 820;
2430         u32 ulRfAgcR2 = 2200;
2431         u32 ulRfAgcR3 = 150;
2432         u32 ulIfAgcMode = 0;    /* Auto */
2433         u32 ulIfAgcOutputLevel = 0xffffffff;
2434         u32 ulIfAgcSettleLevel = 0xffffffff;
2435         u32 ulIfAgcMinLevel = 0xffffffff;
2436         u32 ulIfAgcMaxLevel = 0xffffffff;
2437         u32 ulIfAgcSpeed = 0xffffffff;
2438         u32 ulIfAgcR1 = 820;
2439         u32 ulIfAgcR2 = 2200;
2440         u32 ulIfAgcR3 = 150;
2441         u32 ulClock = state->config.clock;
2442         u32 ulSerialMode = 0;
2443         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2444         u32 ulHiI2cDelay = HI_I2C_DELAY;
2445         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2446         u32 ulHiI2cPatch = 0;
2447         u32 ulEnvironment = APPENV_PORTABLE;
2448         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2449         u32 ulIFFilter = IFFILTER_SAW;
2450
2451         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2452         state->if_agc_cfg.outputLevel = 0;
2453         state->if_agc_cfg.settleLevel = 140;
2454         state->if_agc_cfg.minOutputLevel = 0;
2455         state->if_agc_cfg.maxOutputLevel = 1023;
2456         state->if_agc_cfg.speed = 904;
2457
2458         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2459                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2460                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2461         }
2462
2463         if (ulIfAgcMode == 0 &&
2464             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2465             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2466             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2467             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2468                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2469                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2470                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2471                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2472                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2473         }
2474
2475         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2476         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2477         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2478
2479         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2480         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2481         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2482
2483         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2484         /* rest of the RFAgcCfg structure currently unused */
2485         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2486                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2487                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2488         }
2489
2490         if (ulRfAgcMode == 0 &&
2491             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2492             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2493             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2494             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2495                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2496                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2497                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2498                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2499                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2500         }
2501
2502         if (ulRfAgcMode == 2)
2503                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2504
2505         if (ulEnvironment <= 2)
2506                 state->app_env_default = (enum app_env)
2507                     (ulEnvironment);
2508         if (ulEnvironmentDiversity <= 2)
2509                 state->app_env_diversity = (enum app_env)
2510                     (ulEnvironmentDiversity);
2511
2512         if (ulIFFilter == IFFILTER_DISCRETE) {
2513                 /* discrete filter */
2514                 state->noise_cal.cpOpt = 0;
2515                 state->noise_cal.cpNexpOfs = 40;
2516                 state->noise_cal.tdCal2k = -40;
2517                 state->noise_cal.tdCal8k = -24;
2518         } else {
2519                 /* SAW filter */
2520                 state->noise_cal.cpOpt = 1;
2521                 state->noise_cal.cpNexpOfs = 0;
2522                 state->noise_cal.tdCal2k = -21;
2523                 state->noise_cal.tdCal8k = -24;
2524         }
2525         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2526
2527         state->chip_adr = (state->config.demod_address << 1) | 1;
2528         switch (ulHiI2cPatch) {
2529         case 1:
2530                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2531                 break;
2532         case 3:
2533                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2534                 break;
2535         default:
2536                 state->m_HiI2cPatch = NULL;
2537         }
2538
2539         /* modify tuner and clock attributes */
2540         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2541         /* expected system clock frequency in kHz */
2542         state->expected_sys_clock_freq = 48000;
2543         /* real system clock frequency in kHz */
2544         state->sys_clock_freq = 48000;
2545         state->osc_clock_freq = (u16) ulClock;
2546         state->osc_clock_deviation = 0;
2547         state->cscd_state = CSCD_INIT;
2548         state->drxd_state = DRXD_UNINITIALIZED;
2549
2550         state->PGA = 0;
2551         state->type_A = 0;
2552         state->tuner_mirrors = 0;
2553
2554         /* modify MPEG output attributes */
2555         state->insert_rs_byte = state->config.insert_rs_byte;
2556         state->enable_parallel = (ulSerialMode != 1);
2557
2558         /* Timing div, 250ns/Psys */
2559         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2560
2561         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2562                                           ulHiI2cDelay) / 1000;
2563         /* Bridge delay, uses oscilator clock */
2564         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2565         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2566                                             ulHiI2cBridgeDelay) / 1000;
2567
2568         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2569         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2570         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2571         return 0;
2572 }
2573
2574 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2575 {
2576         int status = 0;
2577         u32 driverVersion;
2578
2579         if (state->init_done)
2580                 return 0;
2581
2582         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2583
2584         do {
2585                 state->operation_mode = OM_Default;
2586
2587                 status = SetDeviceTypeId(state);
2588                 if (status < 0)
2589                         break;
2590
2591                 /* Apply I2c address patch to B1 */
2592                 if (!state->type_A && state->m_HiI2cPatch) {
2593                         status = WriteTable(state, state->m_HiI2cPatch);
2594                         if (status < 0)
2595                                 break;
2596                 }
2597
2598                 if (state->type_A) {
2599                         /* HI firmware patch for UIO readout,
2600                            avoid clearing of result register */
2601                         status = Write16(state, 0x43012D, 0x047f, 0);
2602                         if (status < 0)
2603                                 break;
2604                 }
2605
2606                 status = HI_ResetCommand(state);
2607                 if (status < 0)
2608                         break;
2609
2610                 status = StopAllProcessors(state);
2611                 if (status < 0)
2612                         break;
2613                 status = InitCC(state);
2614                 if (status < 0)
2615                         break;
2616
2617                 state->osc_clock_deviation = 0;
2618
2619                 if (state->config.osc_deviation)
2620                         state->osc_clock_deviation =
2621                             state->config.osc_deviation(state->priv, 0, 0);
2622                 {
2623                         /* Handle clock deviation */
2624                         s32 devB;
2625                         s32 devA = (s32) (state->osc_clock_deviation) *
2626                             (s32) (state->expected_sys_clock_freq);
2627                         /* deviation in kHz */
2628                         s32 deviation = (devA / (1000000L));
2629                         /* rounding, signed */
2630                         if (devA > 0)
2631                                 devB = (2);
2632                         else
2633                                 devB = (-2);
2634                         if ((devB * (devA % 1000000L) > 1000000L)) {
2635                                 /* add +1 or -1 */
2636                                 deviation += (devB / 2);
2637                         }
2638
2639                         state->sys_clock_freq =
2640                             (u16) ((state->expected_sys_clock_freq) +
2641                                    deviation);
2642                 }
2643                 status = InitHI(state);
2644                 if (status < 0)
2645                         break;
2646                 status = InitAtomicRead(state);
2647                 if (status < 0)
2648                         break;
2649
2650                 status = EnableAndResetMB(state);
2651                 if (status < 0)
2652                         break;
2653                 if (state->type_A) {
2654                         status = ResetCEFR(state);
2655                         if (status < 0)
2656                                 break;
2657                 }
2658                 if (fw) {
2659                         status = DownloadMicrocode(state, fw, fw_size);
2660                         if (status < 0)
2661                                 break;
2662                 } else {
2663                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2664                         if (status < 0)
2665                                 break;
2666                 }
2667
2668                 if (state->PGA) {
2669                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2670                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2671                 } else {
2672                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2673                 }
2674
2675                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2676
2677                 status = InitFE(state);
2678                 if (status < 0)
2679                         break;
2680                 status = InitFT(state);
2681                 if (status < 0)
2682                         break;
2683                 status = InitCP(state);
2684                 if (status < 0)
2685                         break;
2686                 status = InitCE(state);
2687                 if (status < 0)
2688                         break;
2689                 status = InitEQ(state);
2690                 if (status < 0)
2691                         break;
2692                 status = InitEC(state);
2693                 if (status < 0)
2694                         break;
2695                 status = InitSC(state);
2696                 if (status < 0)
2697                         break;
2698
2699                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2700                 if (status < 0)
2701                         break;
2702                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2703                 if (status < 0)
2704                         break;
2705
2706                 state->cscd_state = CSCD_INIT;
2707                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2708                 if (status < 0)
2709                         break;
2710                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2711                 if (status < 0)
2712                         break;
2713
2714                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2715                                  (VERSION_MAJOR % 10)) << 24;
2716                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2717                                   (VERSION_MINOR % 10)) << 16;
2718                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2719                     ((VERSION_PATCH / 100) << 8) +
2720                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2721
2722                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2723                 if (status < 0)
2724                         break;
2725
2726                 status = StopOC(state);
2727                 if (status < 0)
2728                         break;
2729
2730                 state->drxd_state = DRXD_STOPPED;
2731                 state->init_done = 1;
2732                 status = 0;
2733         } while (0);
2734         return status;
2735 }
2736
2737 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2738 {
2739         DRX_GetLockStatus(state, pLockStatus);
2740
2741         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2742         if (*pLockStatus & DRX_LOCK_FEC) {
2743                 ConfigureMPEGOutput(state, 1);
2744                 /* Get status again, in case we have MPEG lock now */
2745                 /*DRX_GetLockStatus(state, pLockStatus); */
2746         }
2747
2748         return 0;
2749 }
2750
2751 /****************************************************************************/
2752 /****************************************************************************/
2753 /****************************************************************************/
2754
2755 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2756 {
2757         struct drxd_state *state = fe->demodulator_priv;
2758         u32 value;
2759         int res;
2760
2761         res = ReadIFAgc(state, &value);
2762         if (res < 0)
2763                 *strength = 0;
2764         else
2765                 *strength = 0xffff - (value << 4);
2766         return 0;
2767 }
2768
2769 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2770 {
2771         struct drxd_state *state = fe->demodulator_priv;
2772         u32 lock;
2773
2774         DRXD_status(state, &lock);
2775         *status = 0;
2776         /* No MPEG lock in V255 firmware, bug ? */
2777 #if 1
2778         if (lock & DRX_LOCK_MPEG)
2779                 *status |= FE_HAS_LOCK;
2780 #else
2781         if (lock & DRX_LOCK_FEC)
2782                 *status |= FE_HAS_LOCK;
2783 #endif
2784         if (lock & DRX_LOCK_FEC)
2785                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2786         if (lock & DRX_LOCK_DEMOD)
2787                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2788
2789         return 0;
2790 }
2791
2792 static int drxd_init(struct dvb_frontend *fe)
2793 {
2794         struct drxd_state *state = fe->demodulator_priv;
2795
2796         return DRXD_init(state, NULL, 0);
2797 }
2798
2799 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2800 {
2801         struct drxd_state *state = fe->demodulator_priv;
2802
2803         if (state->config.disable_i2c_gate_ctrl == 1)
2804                 return 0;
2805
2806         return DRX_ConfigureI2CBridge(state, onoff);
2807 }
2808
2809 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2810                                   struct dvb_frontend_tune_settings *sets)
2811 {
2812         sets->min_delay_ms = 10000;
2813         sets->max_drift = 0;
2814         sets->step_size = 0;
2815         return 0;
2816 }
2817
2818 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2819 {
2820         *ber = 0;
2821         return 0;
2822 }
2823
2824 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2825 {
2826         *snr = 0;
2827         return 0;
2828 }
2829
2830 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2831 {
2832         *ucblocks = 0;
2833         return 0;
2834 }
2835
2836 static int drxd_sleep(struct dvb_frontend *fe)
2837 {
2838         struct drxd_state *state = fe->demodulator_priv;
2839
2840         ConfigureMPEGOutput(state, 0);
2841         return 0;
2842 }
2843
2844 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2845 {
2846         return drxd_config_i2c(fe, enable);
2847 }
2848
2849 static int drxd_set_frontend(struct dvb_frontend *fe)
2850 {
2851         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2852         struct drxd_state *state = fe->demodulator_priv;
2853         s32 off = 0;
2854
2855         state->props = *p;
2856         DRX_Stop(state);
2857
2858         if (fe->ops.tuner_ops.set_params) {
2859                 fe->ops.tuner_ops.set_params(fe);
2860                 if (fe->ops.i2c_gate_ctrl)
2861                         fe->ops.i2c_gate_ctrl(fe, 0);
2862         }
2863
2864         msleep(200);
2865
2866         return DRX_Start(state, off);
2867 }
2868
2869 static void drxd_release(struct dvb_frontend *fe)
2870 {
2871         struct drxd_state *state = fe->demodulator_priv;
2872
2873         kfree(state);
2874 }
2875
2876 static const struct dvb_frontend_ops drxd_ops = {
2877         .delsys = { SYS_DVBT},
2878         .info = {
2879                  .name = "Micronas DRXD DVB-T",
2880                  .frequency_min_hz =  47125 * kHz,
2881                  .frequency_max_hz = 855250 * kHz,
2882                  .frequency_stepsize_hz = 166667,
2883                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2884                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2885                  FE_CAN_FEC_AUTO |
2886                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2887                  FE_CAN_QAM_AUTO |
2888                  FE_CAN_TRANSMISSION_MODE_AUTO |
2889                  FE_CAN_GUARD_INTERVAL_AUTO |
2890                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2891
2892         .release = drxd_release,
2893         .init = drxd_init,
2894         .sleep = drxd_sleep,
2895         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2896
2897         .set_frontend = drxd_set_frontend,
2898         .get_tune_settings = drxd_get_tune_settings,
2899
2900         .read_status = drxd_read_status,
2901         .read_ber = drxd_read_ber,
2902         .read_signal_strength = drxd_read_signal_strength,
2903         .read_snr = drxd_read_snr,
2904         .read_ucblocks = drxd_read_ucblocks,
2905 };
2906
2907 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2908                                  void *priv, struct i2c_adapter *i2c,
2909                                  struct device *dev)
2910 {
2911         struct drxd_state *state = NULL;
2912
2913         state = kzalloc(sizeof(*state), GFP_KERNEL);
2914         if (!state)
2915                 return NULL;
2916
2917         state->ops = drxd_ops;
2918         state->dev = dev;
2919         state->config = *config;
2920         state->i2c = i2c;
2921         state->priv = priv;
2922
2923         mutex_init(&state->mutex);
2924
2925         if (Read16(state, 0, NULL, 0) < 0)
2926                 goto error;
2927
2928         state->frontend.ops = drxd_ops;
2929         state->frontend.demodulator_priv = state;
2930         ConfigureMPEGOutput(state, 0);
2931         /* add few initialization to allow gate control */
2932         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2933         InitHI(state);
2934
2935         return &state->frontend;
2936
2937 error:
2938         printk(KERN_ERR "drxd: not found\n");
2939         kfree(state);
2940         return NULL;
2941 }
2942 EXPORT_SYMBOL(drxd_attach);
2943
2944 MODULE_DESCRIPTION("DRXD driver");
2945 MODULE_AUTHOR("Micronas");
2946 MODULE_LICENSE("GPL");