Merge tag 'sound-5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / drivers / md / dm-writecache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 #include <linux/delay.h>
19 #include "dm-io-tracker.h"
20
21 #define DM_MSG_PREFIX "writecache"
22
23 #define HIGH_WATERMARK                  50
24 #define LOW_WATERMARK                   45
25 #define MAX_WRITEBACK_JOBS              0
26 #define ENDIO_LATENCY                   16
27 #define WRITEBACK_LATENCY               64
28 #define AUTOCOMMIT_BLOCKS_SSD           65536
29 #define AUTOCOMMIT_BLOCKS_PMEM          64
30 #define AUTOCOMMIT_MSEC                 1000
31 #define MAX_AGE_DIV                     16
32 #define MAX_AGE_UNSPECIFIED             -1UL
33 #define PAUSE_WRITEBACK                 (HZ * 3)
34
35 #define BITMAP_GRANULARITY      65536
36 #if BITMAP_GRANULARITY < PAGE_SIZE
37 #undef BITMAP_GRANULARITY
38 #define BITMAP_GRANULARITY      PAGE_SIZE
39 #endif
40
41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
42 #define DM_WRITECACHE_HAS_PMEM
43 #endif
44
45 #ifdef DM_WRITECACHE_HAS_PMEM
46 #define pmem_assign(dest, src)                                  \
47 do {                                                            \
48         typeof(dest) uniq = (src);                              \
49         memcpy_flushcache(&(dest), &uniq, sizeof(dest));        \
50 } while (0)
51 #else
52 #define pmem_assign(dest, src)  ((dest) = (src))
53 #endif
54
55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
57 #endif
58
59 #define MEMORY_SUPERBLOCK_MAGIC         0x23489321
60 #define MEMORY_SUPERBLOCK_VERSION       1
61
62 struct wc_memory_entry {
63         __le64 original_sector;
64         __le64 seq_count;
65 };
66
67 struct wc_memory_superblock {
68         union {
69                 struct {
70                         __le32 magic;
71                         __le32 version;
72                         __le32 block_size;
73                         __le32 pad;
74                         __le64 n_blocks;
75                         __le64 seq_count;
76                 };
77                 __le64 padding[8];
78         };
79         struct wc_memory_entry entries[];
80 };
81
82 struct wc_entry {
83         struct rb_node rb_node;
84         struct list_head lru;
85         unsigned short wc_list_contiguous;
86         bool write_in_progress
87 #if BITS_PER_LONG == 64
88                 :1
89 #endif
90         ;
91         unsigned long index
92 #if BITS_PER_LONG == 64
93                 :47
94 #endif
95         ;
96         unsigned long age;
97 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
98         uint64_t original_sector;
99         uint64_t seq_count;
100 #endif
101 };
102
103 #ifdef DM_WRITECACHE_HAS_PMEM
104 #define WC_MODE_PMEM(wc)                        ((wc)->pmem_mode)
105 #define WC_MODE_FUA(wc)                         ((wc)->writeback_fua)
106 #else
107 #define WC_MODE_PMEM(wc)                        false
108 #define WC_MODE_FUA(wc)                         false
109 #endif
110 #define WC_MODE_SORT_FREELIST(wc)               (!WC_MODE_PMEM(wc))
111
112 struct dm_writecache {
113         struct mutex lock;
114         struct list_head lru;
115         union {
116                 struct list_head freelist;
117                 struct {
118                         struct rb_root freetree;
119                         struct wc_entry *current_free;
120                 };
121         };
122         struct rb_root tree;
123
124         size_t freelist_size;
125         size_t writeback_size;
126         size_t freelist_high_watermark;
127         size_t freelist_low_watermark;
128         unsigned long max_age;
129         unsigned long pause;
130
131         unsigned uncommitted_blocks;
132         unsigned autocommit_blocks;
133         unsigned max_writeback_jobs;
134
135         int error;
136
137         unsigned long autocommit_jiffies;
138         struct timer_list autocommit_timer;
139         struct wait_queue_head freelist_wait;
140
141         struct timer_list max_age_timer;
142
143         atomic_t bio_in_progress[2];
144         struct wait_queue_head bio_in_progress_wait[2];
145
146         struct dm_target *ti;
147         struct dm_dev *dev;
148         struct dm_dev *ssd_dev;
149         sector_t start_sector;
150         void *memory_map;
151         uint64_t memory_map_size;
152         size_t metadata_sectors;
153         size_t n_blocks;
154         uint64_t seq_count;
155         sector_t data_device_sectors;
156         void *block_start;
157         struct wc_entry *entries;
158         unsigned block_size;
159         unsigned char block_size_bits;
160
161         bool pmem_mode:1;
162         bool writeback_fua:1;
163
164         bool overwrote_committed:1;
165         bool memory_vmapped:1;
166
167         bool start_sector_set:1;
168         bool high_wm_percent_set:1;
169         bool low_wm_percent_set:1;
170         bool max_writeback_jobs_set:1;
171         bool autocommit_blocks_set:1;
172         bool autocommit_time_set:1;
173         bool max_age_set:1;
174         bool writeback_fua_set:1;
175         bool flush_on_suspend:1;
176         bool cleaner:1;
177         bool cleaner_set:1;
178         bool metadata_only:1;
179         bool pause_set:1;
180
181         unsigned high_wm_percent_value;
182         unsigned low_wm_percent_value;
183         unsigned autocommit_time_value;
184         unsigned max_age_value;
185         unsigned pause_value;
186
187         unsigned writeback_all;
188         struct workqueue_struct *writeback_wq;
189         struct work_struct writeback_work;
190         struct work_struct flush_work;
191
192         struct dm_io_tracker iot;
193
194         struct dm_io_client *dm_io;
195
196         raw_spinlock_t endio_list_lock;
197         struct list_head endio_list;
198         struct task_struct *endio_thread;
199
200         struct task_struct *flush_thread;
201         struct bio_list flush_list;
202
203         struct dm_kcopyd_client *dm_kcopyd;
204         unsigned long *dirty_bitmap;
205         unsigned dirty_bitmap_size;
206
207         struct bio_set bio_set;
208         mempool_t copy_pool;
209
210         struct {
211                 unsigned long long reads;
212                 unsigned long long read_hits;
213                 unsigned long long writes;
214                 unsigned long long write_hits_uncommitted;
215                 unsigned long long write_hits_committed;
216                 unsigned long long writes_around;
217                 unsigned long long writes_allocate;
218                 unsigned long long writes_blocked_on_freelist;
219                 unsigned long long flushes;
220                 unsigned long long discards;
221         } stats;
222 };
223
224 #define WB_LIST_INLINE          16
225
226 struct writeback_struct {
227         struct list_head endio_entry;
228         struct dm_writecache *wc;
229         struct wc_entry **wc_list;
230         unsigned wc_list_n;
231         struct wc_entry *wc_list_inline[WB_LIST_INLINE];
232         struct bio bio;
233 };
234
235 struct copy_struct {
236         struct list_head endio_entry;
237         struct dm_writecache *wc;
238         struct wc_entry *e;
239         unsigned n_entries;
240         int error;
241 };
242
243 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
244                                             "A percentage of time allocated for data copying");
245
246 static void wc_lock(struct dm_writecache *wc)
247 {
248         mutex_lock(&wc->lock);
249 }
250
251 static void wc_unlock(struct dm_writecache *wc)
252 {
253         mutex_unlock(&wc->lock);
254 }
255
256 #ifdef DM_WRITECACHE_HAS_PMEM
257 static int persistent_memory_claim(struct dm_writecache *wc)
258 {
259         int r;
260         loff_t s;
261         long p, da;
262         pfn_t pfn;
263         int id;
264         struct page **pages;
265         sector_t offset;
266
267         wc->memory_vmapped = false;
268
269         s = wc->memory_map_size;
270         p = s >> PAGE_SHIFT;
271         if (!p) {
272                 r = -EINVAL;
273                 goto err1;
274         }
275         if (p != s >> PAGE_SHIFT) {
276                 r = -EOVERFLOW;
277                 goto err1;
278         }
279
280         offset = get_start_sect(wc->ssd_dev->bdev);
281         if (offset & (PAGE_SIZE / 512 - 1)) {
282                 r = -EINVAL;
283                 goto err1;
284         }
285         offset >>= PAGE_SHIFT - 9;
286
287         id = dax_read_lock();
288
289         da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
290         if (da < 0) {
291                 wc->memory_map = NULL;
292                 r = da;
293                 goto err2;
294         }
295         if (!pfn_t_has_page(pfn)) {
296                 wc->memory_map = NULL;
297                 r = -EOPNOTSUPP;
298                 goto err2;
299         }
300         if (da != p) {
301                 long i;
302                 wc->memory_map = NULL;
303                 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
304                 if (!pages) {
305                         r = -ENOMEM;
306                         goto err2;
307                 }
308                 i = 0;
309                 do {
310                         long daa;
311                         daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
312                                                 NULL, &pfn);
313                         if (daa <= 0) {
314                                 r = daa ? daa : -EINVAL;
315                                 goto err3;
316                         }
317                         if (!pfn_t_has_page(pfn)) {
318                                 r = -EOPNOTSUPP;
319                                 goto err3;
320                         }
321                         while (daa-- && i < p) {
322                                 pages[i++] = pfn_t_to_page(pfn);
323                                 pfn.val++;
324                                 if (!(i & 15))
325                                         cond_resched();
326                         }
327                 } while (i < p);
328                 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
329                 if (!wc->memory_map) {
330                         r = -ENOMEM;
331                         goto err3;
332                 }
333                 kvfree(pages);
334                 wc->memory_vmapped = true;
335         }
336
337         dax_read_unlock(id);
338
339         wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
340         wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
341
342         return 0;
343 err3:
344         kvfree(pages);
345 err2:
346         dax_read_unlock(id);
347 err1:
348         return r;
349 }
350 #else
351 static int persistent_memory_claim(struct dm_writecache *wc)
352 {
353         return -EOPNOTSUPP;
354 }
355 #endif
356
357 static void persistent_memory_release(struct dm_writecache *wc)
358 {
359         if (wc->memory_vmapped)
360                 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
361 }
362
363 static struct page *persistent_memory_page(void *addr)
364 {
365         if (is_vmalloc_addr(addr))
366                 return vmalloc_to_page(addr);
367         else
368                 return virt_to_page(addr);
369 }
370
371 static unsigned persistent_memory_page_offset(void *addr)
372 {
373         return (unsigned long)addr & (PAGE_SIZE - 1);
374 }
375
376 static void persistent_memory_flush_cache(void *ptr, size_t size)
377 {
378         if (is_vmalloc_addr(ptr))
379                 flush_kernel_vmap_range(ptr, size);
380 }
381
382 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
383 {
384         if (is_vmalloc_addr(ptr))
385                 invalidate_kernel_vmap_range(ptr, size);
386 }
387
388 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
389 {
390         return wc->memory_map;
391 }
392
393 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
394 {
395         return &sb(wc)->entries[e->index];
396 }
397
398 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
399 {
400         return (char *)wc->block_start + (e->index << wc->block_size_bits);
401 }
402
403 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
404 {
405         return wc->start_sector + wc->metadata_sectors +
406                 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
407 }
408
409 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
410 {
411 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
412         return e->original_sector;
413 #else
414         return le64_to_cpu(memory_entry(wc, e)->original_sector);
415 #endif
416 }
417
418 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
419 {
420 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
421         return e->seq_count;
422 #else
423         return le64_to_cpu(memory_entry(wc, e)->seq_count);
424 #endif
425 }
426
427 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
428 {
429 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
430         e->seq_count = -1;
431 #endif
432         pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
433 }
434
435 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
436                                             uint64_t original_sector, uint64_t seq_count)
437 {
438         struct wc_memory_entry me;
439 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
440         e->original_sector = original_sector;
441         e->seq_count = seq_count;
442 #endif
443         me.original_sector = cpu_to_le64(original_sector);
444         me.seq_count = cpu_to_le64(seq_count);
445         pmem_assign(*memory_entry(wc, e), me);
446 }
447
448 #define writecache_error(wc, err, msg, arg...)                          \
449 do {                                                                    \
450         if (!cmpxchg(&(wc)->error, 0, err))                             \
451                 DMERR(msg, ##arg);                                      \
452         wake_up(&(wc)->freelist_wait);                                  \
453 } while (0)
454
455 #define writecache_has_error(wc)        (unlikely(READ_ONCE((wc)->error)))
456
457 static void writecache_flush_all_metadata(struct dm_writecache *wc)
458 {
459         if (!WC_MODE_PMEM(wc))
460                 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
461 }
462
463 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
464 {
465         if (!WC_MODE_PMEM(wc))
466                 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
467                           wc->dirty_bitmap);
468 }
469
470 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
471
472 struct io_notify {
473         struct dm_writecache *wc;
474         struct completion c;
475         atomic_t count;
476 };
477
478 static void writecache_notify_io(unsigned long error, void *context)
479 {
480         struct io_notify *endio = context;
481
482         if (unlikely(error != 0))
483                 writecache_error(endio->wc, -EIO, "error writing metadata");
484         BUG_ON(atomic_read(&endio->count) <= 0);
485         if (atomic_dec_and_test(&endio->count))
486                 complete(&endio->c);
487 }
488
489 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
490 {
491         wait_event(wc->bio_in_progress_wait[direction],
492                    !atomic_read(&wc->bio_in_progress[direction]));
493 }
494
495 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
496 {
497         struct dm_io_region region;
498         struct dm_io_request req;
499         struct io_notify endio = {
500                 wc,
501                 COMPLETION_INITIALIZER_ONSTACK(endio.c),
502                 ATOMIC_INIT(1),
503         };
504         unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
505         unsigned i = 0;
506
507         while (1) {
508                 unsigned j;
509                 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
510                 if (unlikely(i == bitmap_bits))
511                         break;
512                 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
513
514                 region.bdev = wc->ssd_dev->bdev;
515                 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
516                 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
517
518                 if (unlikely(region.sector >= wc->metadata_sectors))
519                         break;
520                 if (unlikely(region.sector + region.count > wc->metadata_sectors))
521                         region.count = wc->metadata_sectors - region.sector;
522
523                 region.sector += wc->start_sector;
524                 atomic_inc(&endio.count);
525                 req.bi_op = REQ_OP_WRITE;
526                 req.bi_op_flags = REQ_SYNC;
527                 req.mem.type = DM_IO_VMA;
528                 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
529                 req.client = wc->dm_io;
530                 req.notify.fn = writecache_notify_io;
531                 req.notify.context = &endio;
532
533                 /* writing via async dm-io (implied by notify.fn above) won't return an error */
534                 (void) dm_io(&req, 1, &region, NULL);
535                 i = j;
536         }
537
538         writecache_notify_io(0, &endio);
539         wait_for_completion_io(&endio.c);
540
541         if (wait_for_ios)
542                 writecache_wait_for_ios(wc, WRITE);
543
544         writecache_disk_flush(wc, wc->ssd_dev);
545
546         memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
547 }
548
549 static void ssd_commit_superblock(struct dm_writecache *wc)
550 {
551         int r;
552         struct dm_io_region region;
553         struct dm_io_request req;
554
555         region.bdev = wc->ssd_dev->bdev;
556         region.sector = 0;
557         region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
558
559         if (unlikely(region.sector + region.count > wc->metadata_sectors))
560                 region.count = wc->metadata_sectors - region.sector;
561
562         region.sector += wc->start_sector;
563
564         req.bi_op = REQ_OP_WRITE;
565         req.bi_op_flags = REQ_SYNC | REQ_FUA;
566         req.mem.type = DM_IO_VMA;
567         req.mem.ptr.vma = (char *)wc->memory_map;
568         req.client = wc->dm_io;
569         req.notify.fn = NULL;
570         req.notify.context = NULL;
571
572         r = dm_io(&req, 1, &region, NULL);
573         if (unlikely(r))
574                 writecache_error(wc, r, "error writing superblock");
575 }
576
577 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
578 {
579         if (WC_MODE_PMEM(wc))
580                 pmem_wmb();
581         else
582                 ssd_commit_flushed(wc, wait_for_ios);
583 }
584
585 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
586 {
587         int r;
588         struct dm_io_region region;
589         struct dm_io_request req;
590
591         region.bdev = dev->bdev;
592         region.sector = 0;
593         region.count = 0;
594         req.bi_op = REQ_OP_WRITE;
595         req.bi_op_flags = REQ_PREFLUSH;
596         req.mem.type = DM_IO_KMEM;
597         req.mem.ptr.addr = NULL;
598         req.client = wc->dm_io;
599         req.notify.fn = NULL;
600
601         r = dm_io(&req, 1, &region, NULL);
602         if (unlikely(r))
603                 writecache_error(wc, r, "error flushing metadata: %d", r);
604 }
605
606 #define WFE_RETURN_FOLLOWING    1
607 #define WFE_LOWEST_SEQ          2
608
609 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
610                                               uint64_t block, int flags)
611 {
612         struct wc_entry *e;
613         struct rb_node *node = wc->tree.rb_node;
614
615         if (unlikely(!node))
616                 return NULL;
617
618         while (1) {
619                 e = container_of(node, struct wc_entry, rb_node);
620                 if (read_original_sector(wc, e) == block)
621                         break;
622
623                 node = (read_original_sector(wc, e) >= block ?
624                         e->rb_node.rb_left : e->rb_node.rb_right);
625                 if (unlikely(!node)) {
626                         if (!(flags & WFE_RETURN_FOLLOWING))
627                                 return NULL;
628                         if (read_original_sector(wc, e) >= block) {
629                                 return e;
630                         } else {
631                                 node = rb_next(&e->rb_node);
632                                 if (unlikely(!node))
633                                         return NULL;
634                                 e = container_of(node, struct wc_entry, rb_node);
635                                 return e;
636                         }
637                 }
638         }
639
640         while (1) {
641                 struct wc_entry *e2;
642                 if (flags & WFE_LOWEST_SEQ)
643                         node = rb_prev(&e->rb_node);
644                 else
645                         node = rb_next(&e->rb_node);
646                 if (unlikely(!node))
647                         return e;
648                 e2 = container_of(node, struct wc_entry, rb_node);
649                 if (read_original_sector(wc, e2) != block)
650                         return e;
651                 e = e2;
652         }
653 }
654
655 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
656 {
657         struct wc_entry *e;
658         struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
659
660         while (*node) {
661                 e = container_of(*node, struct wc_entry, rb_node);
662                 parent = &e->rb_node;
663                 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
664                         node = &parent->rb_left;
665                 else
666                         node = &parent->rb_right;
667         }
668         rb_link_node(&ins->rb_node, parent, node);
669         rb_insert_color(&ins->rb_node, &wc->tree);
670         list_add(&ins->lru, &wc->lru);
671         ins->age = jiffies;
672 }
673
674 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
675 {
676         list_del(&e->lru);
677         rb_erase(&e->rb_node, &wc->tree);
678 }
679
680 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
681 {
682         if (WC_MODE_SORT_FREELIST(wc)) {
683                 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
684                 if (unlikely(!*node))
685                         wc->current_free = e;
686                 while (*node) {
687                         parent = *node;
688                         if (&e->rb_node < *node)
689                                 node = &parent->rb_left;
690                         else
691                                 node = &parent->rb_right;
692                 }
693                 rb_link_node(&e->rb_node, parent, node);
694                 rb_insert_color(&e->rb_node, &wc->freetree);
695         } else {
696                 list_add_tail(&e->lru, &wc->freelist);
697         }
698         wc->freelist_size++;
699 }
700
701 static inline void writecache_verify_watermark(struct dm_writecache *wc)
702 {
703         if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
704                 queue_work(wc->writeback_wq, &wc->writeback_work);
705 }
706
707 static void writecache_max_age_timer(struct timer_list *t)
708 {
709         struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
710
711         if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
712                 queue_work(wc->writeback_wq, &wc->writeback_work);
713                 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
714         }
715 }
716
717 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
718 {
719         struct wc_entry *e;
720
721         if (WC_MODE_SORT_FREELIST(wc)) {
722                 struct rb_node *next;
723                 if (unlikely(!wc->current_free))
724                         return NULL;
725                 e = wc->current_free;
726                 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
727                         return NULL;
728                 next = rb_next(&e->rb_node);
729                 rb_erase(&e->rb_node, &wc->freetree);
730                 if (unlikely(!next))
731                         next = rb_first(&wc->freetree);
732                 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
733         } else {
734                 if (unlikely(list_empty(&wc->freelist)))
735                         return NULL;
736                 e = container_of(wc->freelist.next, struct wc_entry, lru);
737                 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
738                         return NULL;
739                 list_del(&e->lru);
740         }
741         wc->freelist_size--;
742
743         writecache_verify_watermark(wc);
744
745         return e;
746 }
747
748 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
749 {
750         writecache_unlink(wc, e);
751         writecache_add_to_freelist(wc, e);
752         clear_seq_count(wc, e);
753         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
754         if (unlikely(waitqueue_active(&wc->freelist_wait)))
755                 wake_up(&wc->freelist_wait);
756 }
757
758 static void writecache_wait_on_freelist(struct dm_writecache *wc)
759 {
760         DEFINE_WAIT(wait);
761
762         prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
763         wc_unlock(wc);
764         io_schedule();
765         finish_wait(&wc->freelist_wait, &wait);
766         wc_lock(wc);
767 }
768
769 static void writecache_poison_lists(struct dm_writecache *wc)
770 {
771         /*
772          * Catch incorrect access to these values while the device is suspended.
773          */
774         memset(&wc->tree, -1, sizeof wc->tree);
775         wc->lru.next = LIST_POISON1;
776         wc->lru.prev = LIST_POISON2;
777         wc->freelist.next = LIST_POISON1;
778         wc->freelist.prev = LIST_POISON2;
779 }
780
781 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
782 {
783         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
784         if (WC_MODE_PMEM(wc))
785                 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
786 }
787
788 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
789 {
790         return read_seq_count(wc, e) < wc->seq_count;
791 }
792
793 static void writecache_flush(struct dm_writecache *wc)
794 {
795         struct wc_entry *e, *e2;
796         bool need_flush_after_free;
797
798         wc->uncommitted_blocks = 0;
799         del_timer(&wc->autocommit_timer);
800
801         if (list_empty(&wc->lru))
802                 return;
803
804         e = container_of(wc->lru.next, struct wc_entry, lru);
805         if (writecache_entry_is_committed(wc, e)) {
806                 if (wc->overwrote_committed) {
807                         writecache_wait_for_ios(wc, WRITE);
808                         writecache_disk_flush(wc, wc->ssd_dev);
809                         wc->overwrote_committed = false;
810                 }
811                 return;
812         }
813         while (1) {
814                 writecache_flush_entry(wc, e);
815                 if (unlikely(e->lru.next == &wc->lru))
816                         break;
817                 e2 = container_of(e->lru.next, struct wc_entry, lru);
818                 if (writecache_entry_is_committed(wc, e2))
819                         break;
820                 e = e2;
821                 cond_resched();
822         }
823         writecache_commit_flushed(wc, true);
824
825         wc->seq_count++;
826         pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
827         if (WC_MODE_PMEM(wc))
828                 writecache_commit_flushed(wc, false);
829         else
830                 ssd_commit_superblock(wc);
831
832         wc->overwrote_committed = false;
833
834         need_flush_after_free = false;
835         while (1) {
836                 /* Free another committed entry with lower seq-count */
837                 struct rb_node *rb_node = rb_prev(&e->rb_node);
838
839                 if (rb_node) {
840                         e2 = container_of(rb_node, struct wc_entry, rb_node);
841                         if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
842                             likely(!e2->write_in_progress)) {
843                                 writecache_free_entry(wc, e2);
844                                 need_flush_after_free = true;
845                         }
846                 }
847                 if (unlikely(e->lru.prev == &wc->lru))
848                         break;
849                 e = container_of(e->lru.prev, struct wc_entry, lru);
850                 cond_resched();
851         }
852
853         if (need_flush_after_free)
854                 writecache_commit_flushed(wc, false);
855 }
856
857 static void writecache_flush_work(struct work_struct *work)
858 {
859         struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
860
861         wc_lock(wc);
862         writecache_flush(wc);
863         wc_unlock(wc);
864 }
865
866 static void writecache_autocommit_timer(struct timer_list *t)
867 {
868         struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
869         if (!writecache_has_error(wc))
870                 queue_work(wc->writeback_wq, &wc->flush_work);
871 }
872
873 static void writecache_schedule_autocommit(struct dm_writecache *wc)
874 {
875         if (!timer_pending(&wc->autocommit_timer))
876                 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
877 }
878
879 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
880 {
881         struct wc_entry *e;
882         bool discarded_something = false;
883
884         e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
885         if (unlikely(!e))
886                 return;
887
888         while (read_original_sector(wc, e) < end) {
889                 struct rb_node *node = rb_next(&e->rb_node);
890
891                 if (likely(!e->write_in_progress)) {
892                         if (!discarded_something) {
893                                 if (!WC_MODE_PMEM(wc)) {
894                                         writecache_wait_for_ios(wc, READ);
895                                         writecache_wait_for_ios(wc, WRITE);
896                                 }
897                                 discarded_something = true;
898                         }
899                         if (!writecache_entry_is_committed(wc, e))
900                                 wc->uncommitted_blocks--;
901                         writecache_free_entry(wc, e);
902                 }
903
904                 if (unlikely(!node))
905                         break;
906
907                 e = container_of(node, struct wc_entry, rb_node);
908         }
909
910         if (discarded_something)
911                 writecache_commit_flushed(wc, false);
912 }
913
914 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
915 {
916         if (wc->writeback_size) {
917                 writecache_wait_on_freelist(wc);
918                 return true;
919         }
920         return false;
921 }
922
923 static void writecache_suspend(struct dm_target *ti)
924 {
925         struct dm_writecache *wc = ti->private;
926         bool flush_on_suspend;
927
928         del_timer_sync(&wc->autocommit_timer);
929         del_timer_sync(&wc->max_age_timer);
930
931         wc_lock(wc);
932         writecache_flush(wc);
933         flush_on_suspend = wc->flush_on_suspend;
934         if (flush_on_suspend) {
935                 wc->flush_on_suspend = false;
936                 wc->writeback_all++;
937                 queue_work(wc->writeback_wq, &wc->writeback_work);
938         }
939         wc_unlock(wc);
940
941         drain_workqueue(wc->writeback_wq);
942
943         wc_lock(wc);
944         if (flush_on_suspend)
945                 wc->writeback_all--;
946         while (writecache_wait_for_writeback(wc));
947
948         if (WC_MODE_PMEM(wc))
949                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
950
951         writecache_poison_lists(wc);
952
953         wc_unlock(wc);
954 }
955
956 static int writecache_alloc_entries(struct dm_writecache *wc)
957 {
958         size_t b;
959
960         if (wc->entries)
961                 return 0;
962         wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
963         if (!wc->entries)
964                 return -ENOMEM;
965         for (b = 0; b < wc->n_blocks; b++) {
966                 struct wc_entry *e = &wc->entries[b];
967                 e->index = b;
968                 e->write_in_progress = false;
969                 cond_resched();
970         }
971
972         return 0;
973 }
974
975 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
976 {
977         struct dm_io_region region;
978         struct dm_io_request req;
979
980         region.bdev = wc->ssd_dev->bdev;
981         region.sector = wc->start_sector;
982         region.count = n_sectors;
983         req.bi_op = REQ_OP_READ;
984         req.bi_op_flags = REQ_SYNC;
985         req.mem.type = DM_IO_VMA;
986         req.mem.ptr.vma = (char *)wc->memory_map;
987         req.client = wc->dm_io;
988         req.notify.fn = NULL;
989
990         return dm_io(&req, 1, &region, NULL);
991 }
992
993 static void writecache_resume(struct dm_target *ti)
994 {
995         struct dm_writecache *wc = ti->private;
996         size_t b;
997         bool need_flush = false;
998         __le64 sb_seq_count;
999         int r;
1000
1001         wc_lock(wc);
1002
1003         wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1004
1005         if (WC_MODE_PMEM(wc)) {
1006                 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1007         } else {
1008                 r = writecache_read_metadata(wc, wc->metadata_sectors);
1009                 if (r) {
1010                         size_t sb_entries_offset;
1011                         writecache_error(wc, r, "unable to read metadata: %d", r);
1012                         sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1013                         memset((char *)wc->memory_map + sb_entries_offset, -1,
1014                                (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1015                 }
1016         }
1017
1018         wc->tree = RB_ROOT;
1019         INIT_LIST_HEAD(&wc->lru);
1020         if (WC_MODE_SORT_FREELIST(wc)) {
1021                 wc->freetree = RB_ROOT;
1022                 wc->current_free = NULL;
1023         } else {
1024                 INIT_LIST_HEAD(&wc->freelist);
1025         }
1026         wc->freelist_size = 0;
1027
1028         r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1029                               sizeof(uint64_t));
1030         if (r) {
1031                 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1032                 sb_seq_count = cpu_to_le64(0);
1033         }
1034         wc->seq_count = le64_to_cpu(sb_seq_count);
1035
1036 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1037         for (b = 0; b < wc->n_blocks; b++) {
1038                 struct wc_entry *e = &wc->entries[b];
1039                 struct wc_memory_entry wme;
1040                 if (writecache_has_error(wc)) {
1041                         e->original_sector = -1;
1042                         e->seq_count = -1;
1043                         continue;
1044                 }
1045                 r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1046                                       sizeof(struct wc_memory_entry));
1047                 if (r) {
1048                         writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1049                                          (unsigned long)b, r);
1050                         e->original_sector = -1;
1051                         e->seq_count = -1;
1052                 } else {
1053                         e->original_sector = le64_to_cpu(wme.original_sector);
1054                         e->seq_count = le64_to_cpu(wme.seq_count);
1055                 }
1056                 cond_resched();
1057         }
1058 #endif
1059         for (b = 0; b < wc->n_blocks; b++) {
1060                 struct wc_entry *e = &wc->entries[b];
1061                 if (!writecache_entry_is_committed(wc, e)) {
1062                         if (read_seq_count(wc, e) != -1) {
1063 erase_this:
1064                                 clear_seq_count(wc, e);
1065                                 need_flush = true;
1066                         }
1067                         writecache_add_to_freelist(wc, e);
1068                 } else {
1069                         struct wc_entry *old;
1070
1071                         old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1072                         if (!old) {
1073                                 writecache_insert_entry(wc, e);
1074                         } else {
1075                                 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1076                                         writecache_error(wc, -EINVAL,
1077                                                  "two identical entries, position %llu, sector %llu, sequence %llu",
1078                                                  (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1079                                                  (unsigned long long)read_seq_count(wc, e));
1080                                 }
1081                                 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1082                                         goto erase_this;
1083                                 } else {
1084                                         writecache_free_entry(wc, old);
1085                                         writecache_insert_entry(wc, e);
1086                                         need_flush = true;
1087                                 }
1088                         }
1089                 }
1090                 cond_resched();
1091         }
1092
1093         if (need_flush) {
1094                 writecache_flush_all_metadata(wc);
1095                 writecache_commit_flushed(wc, false);
1096         }
1097
1098         writecache_verify_watermark(wc);
1099
1100         if (wc->max_age != MAX_AGE_UNSPECIFIED)
1101                 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1102
1103         wc_unlock(wc);
1104 }
1105
1106 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1107 {
1108         if (argc != 1)
1109                 return -EINVAL;
1110
1111         wc_lock(wc);
1112         if (dm_suspended(wc->ti)) {
1113                 wc_unlock(wc);
1114                 return -EBUSY;
1115         }
1116         if (writecache_has_error(wc)) {
1117                 wc_unlock(wc);
1118                 return -EIO;
1119         }
1120
1121         writecache_flush(wc);
1122         wc->writeback_all++;
1123         queue_work(wc->writeback_wq, &wc->writeback_work);
1124         wc_unlock(wc);
1125
1126         flush_workqueue(wc->writeback_wq);
1127
1128         wc_lock(wc);
1129         wc->writeback_all--;
1130         if (writecache_has_error(wc)) {
1131                 wc_unlock(wc);
1132                 return -EIO;
1133         }
1134         wc_unlock(wc);
1135
1136         return 0;
1137 }
1138
1139 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1140 {
1141         if (argc != 1)
1142                 return -EINVAL;
1143
1144         wc_lock(wc);
1145         wc->flush_on_suspend = true;
1146         wc_unlock(wc);
1147
1148         return 0;
1149 }
1150
1151 static void activate_cleaner(struct dm_writecache *wc)
1152 {
1153         wc->flush_on_suspend = true;
1154         wc->cleaner = true;
1155         wc->freelist_high_watermark = wc->n_blocks;
1156         wc->freelist_low_watermark = wc->n_blocks;
1157 }
1158
1159 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1160 {
1161         if (argc != 1)
1162                 return -EINVAL;
1163
1164         wc_lock(wc);
1165         activate_cleaner(wc);
1166         if (!dm_suspended(wc->ti))
1167                 writecache_verify_watermark(wc);
1168         wc_unlock(wc);
1169
1170         return 0;
1171 }
1172
1173 static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1174 {
1175         if (argc != 1)
1176                 return -EINVAL;
1177
1178         wc_lock(wc);
1179         memset(&wc->stats, 0, sizeof wc->stats);
1180         wc_unlock(wc);
1181
1182         return 0;
1183 }
1184
1185 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1186                               char *result, unsigned maxlen)
1187 {
1188         int r = -EINVAL;
1189         struct dm_writecache *wc = ti->private;
1190
1191         if (!strcasecmp(argv[0], "flush"))
1192                 r = process_flush_mesg(argc, argv, wc);
1193         else if (!strcasecmp(argv[0], "flush_on_suspend"))
1194                 r = process_flush_on_suspend_mesg(argc, argv, wc);
1195         else if (!strcasecmp(argv[0], "cleaner"))
1196                 r = process_cleaner_mesg(argc, argv, wc);
1197         else if (!strcasecmp(argv[0], "clear_stats"))
1198                 r = process_clear_stats_mesg(argc, argv, wc);
1199         else
1200                 DMERR("unrecognised message received: %s", argv[0]);
1201
1202         return r;
1203 }
1204
1205 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1206 {
1207         /*
1208          * clflushopt performs better with block size 1024, 2048, 4096
1209          * non-temporal stores perform better with block size 512
1210          *
1211          * block size   512             1024            2048            4096
1212          * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1213          * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1214          *
1215          * We see that movnti performs better for 512-byte blocks, and
1216          * clflushopt performs better for 1024-byte and larger blocks. So, we
1217          * prefer clflushopt for sizes >= 768.
1218          *
1219          * NOTE: this happens to be the case now (with dm-writecache's single
1220          * threaded model) but re-evaluate this once memcpy_flushcache() is
1221          * enabled to use movdir64b which might invalidate this performance
1222          * advantage seen with cache-allocating-writes plus flushing.
1223          */
1224 #ifdef CONFIG_X86
1225         if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1226             likely(boot_cpu_data.x86_clflush_size == 64) &&
1227             likely(size >= 768)) {
1228                 do {
1229                         memcpy((void *)dest, (void *)source, 64);
1230                         clflushopt((void *)dest);
1231                         dest += 64;
1232                         source += 64;
1233                         size -= 64;
1234                 } while (size >= 64);
1235                 return;
1236         }
1237 #endif
1238         memcpy_flushcache(dest, source, size);
1239 }
1240
1241 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1242 {
1243         void *buf;
1244         unsigned size;
1245         int rw = bio_data_dir(bio);
1246         unsigned remaining_size = wc->block_size;
1247
1248         do {
1249                 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1250                 buf = bvec_kmap_local(&bv);
1251                 size = bv.bv_len;
1252                 if (unlikely(size > remaining_size))
1253                         size = remaining_size;
1254
1255                 if (rw == READ) {
1256                         int r;
1257                         r = copy_mc_to_kernel(buf, data, size);
1258                         flush_dcache_page(bio_page(bio));
1259                         if (unlikely(r)) {
1260                                 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1261                                 bio->bi_status = BLK_STS_IOERR;
1262                         }
1263                 } else {
1264                         flush_dcache_page(bio_page(bio));
1265                         memcpy_flushcache_optimized(data, buf, size);
1266                 }
1267
1268                 kunmap_local(buf);
1269
1270                 data = (char *)data + size;
1271                 remaining_size -= size;
1272                 bio_advance(bio, size);
1273         } while (unlikely(remaining_size));
1274 }
1275
1276 static int writecache_flush_thread(void *data)
1277 {
1278         struct dm_writecache *wc = data;
1279
1280         while (1) {
1281                 struct bio *bio;
1282
1283                 wc_lock(wc);
1284                 bio = bio_list_pop(&wc->flush_list);
1285                 if (!bio) {
1286                         set_current_state(TASK_INTERRUPTIBLE);
1287                         wc_unlock(wc);
1288
1289                         if (unlikely(kthread_should_stop())) {
1290                                 set_current_state(TASK_RUNNING);
1291                                 break;
1292                         }
1293
1294                         schedule();
1295                         continue;
1296                 }
1297
1298                 if (bio_op(bio) == REQ_OP_DISCARD) {
1299                         writecache_discard(wc, bio->bi_iter.bi_sector,
1300                                            bio_end_sector(bio));
1301                         wc_unlock(wc);
1302                         bio_set_dev(bio, wc->dev->bdev);
1303                         submit_bio_noacct(bio);
1304                 } else {
1305                         writecache_flush(wc);
1306                         wc_unlock(wc);
1307                         if (writecache_has_error(wc))
1308                                 bio->bi_status = BLK_STS_IOERR;
1309                         bio_endio(bio);
1310                 }
1311         }
1312
1313         return 0;
1314 }
1315
1316 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1317 {
1318         if (bio_list_empty(&wc->flush_list))
1319                 wake_up_process(wc->flush_thread);
1320         bio_list_add(&wc->flush_list, bio);
1321 }
1322
1323 enum wc_map_op {
1324         WC_MAP_SUBMIT,
1325         WC_MAP_REMAP,
1326         WC_MAP_REMAP_ORIGIN,
1327         WC_MAP_RETURN,
1328         WC_MAP_ERROR,
1329 };
1330
1331 static enum wc_map_op writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1332                                                   struct wc_entry *e)
1333 {
1334         if (e) {
1335                 sector_t next_boundary =
1336                         read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1337                 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1338                         dm_accept_partial_bio(bio, next_boundary);
1339         }
1340
1341         return WC_MAP_REMAP_ORIGIN;
1342 }
1343
1344 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1345 {
1346         enum wc_map_op map_op;
1347         struct wc_entry *e;
1348
1349 read_next_block:
1350         wc->stats.reads++;
1351         e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1352         if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1353                 wc->stats.read_hits++;
1354                 if (WC_MODE_PMEM(wc)) {
1355                         bio_copy_block(wc, bio, memory_data(wc, e));
1356                         if (bio->bi_iter.bi_size)
1357                                 goto read_next_block;
1358                         map_op = WC_MAP_SUBMIT;
1359                 } else {
1360                         dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1361                         bio_set_dev(bio, wc->ssd_dev->bdev);
1362                         bio->bi_iter.bi_sector = cache_sector(wc, e);
1363                         if (!writecache_entry_is_committed(wc, e))
1364                                 writecache_wait_for_ios(wc, WRITE);
1365                         map_op = WC_MAP_REMAP;
1366                 }
1367         } else {
1368                 map_op = writecache_map_remap_origin(wc, bio, e);
1369         }
1370
1371         return map_op;
1372 }
1373
1374 static enum wc_map_op writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1375                                               struct wc_entry *e, bool search_used)
1376 {
1377         unsigned bio_size = wc->block_size;
1378         sector_t start_cache_sec = cache_sector(wc, e);
1379         sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1380
1381         while (bio_size < bio->bi_iter.bi_size) {
1382                 if (!search_used) {
1383                         struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1384                         if (!f)
1385                                 break;
1386                         write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1387                                                         (bio_size >> SECTOR_SHIFT), wc->seq_count);
1388                         writecache_insert_entry(wc, f);
1389                         wc->uncommitted_blocks++;
1390                 } else {
1391                         struct wc_entry *f;
1392                         struct rb_node *next = rb_next(&e->rb_node);
1393                         if (!next)
1394                                 break;
1395                         f = container_of(next, struct wc_entry, rb_node);
1396                         if (f != e + 1)
1397                                 break;
1398                         if (read_original_sector(wc, f) !=
1399                             read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1400                                 break;
1401                         if (unlikely(f->write_in_progress))
1402                                 break;
1403                         if (writecache_entry_is_committed(wc, f))
1404                                 wc->overwrote_committed = true;
1405                         e = f;
1406                 }
1407                 bio_size += wc->block_size;
1408                 current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1409         }
1410
1411         bio_set_dev(bio, wc->ssd_dev->bdev);
1412         bio->bi_iter.bi_sector = start_cache_sec;
1413         dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1414
1415         if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1416                 wc->uncommitted_blocks = 0;
1417                 queue_work(wc->writeback_wq, &wc->flush_work);
1418         } else {
1419                 writecache_schedule_autocommit(wc);
1420         }
1421
1422         return WC_MAP_REMAP;
1423 }
1424
1425 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1426 {
1427         struct wc_entry *e;
1428
1429         do {
1430                 bool found_entry = false;
1431                 bool search_used = false;
1432                 wc->stats.writes++;
1433                 if (writecache_has_error(wc))
1434                         return WC_MAP_ERROR;
1435                 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1436                 if (e) {
1437                         if (!writecache_entry_is_committed(wc, e)) {
1438                                 wc->stats.write_hits_uncommitted++;
1439                                 search_used = true;
1440                                 goto bio_copy;
1441                         }
1442                         wc->stats.write_hits_committed++;
1443                         if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1444                                 wc->overwrote_committed = true;
1445                                 search_used = true;
1446                                 goto bio_copy;
1447                         }
1448                         found_entry = true;
1449                 } else {
1450                         if (unlikely(wc->cleaner) ||
1451                             (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1452                                 goto direct_write;
1453                 }
1454                 e = writecache_pop_from_freelist(wc, (sector_t)-1);
1455                 if (unlikely(!e)) {
1456                         if (!WC_MODE_PMEM(wc) && !found_entry) {
1457 direct_write:
1458                                 wc->stats.writes_around++;
1459                                 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1460                                 return writecache_map_remap_origin(wc, bio, e);
1461                         }
1462                         wc->stats.writes_blocked_on_freelist++;
1463                         writecache_wait_on_freelist(wc);
1464                         continue;
1465                 }
1466                 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1467                 writecache_insert_entry(wc, e);
1468                 wc->uncommitted_blocks++;
1469                 wc->stats.writes_allocate++;
1470 bio_copy:
1471                 if (WC_MODE_PMEM(wc))
1472                         bio_copy_block(wc, bio, memory_data(wc, e));
1473                 else
1474                         return writecache_bio_copy_ssd(wc, bio, e, search_used);
1475         } while (bio->bi_iter.bi_size);
1476
1477         if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1478                 writecache_flush(wc);
1479         else
1480                 writecache_schedule_autocommit(wc);
1481
1482         return WC_MAP_SUBMIT;
1483 }
1484
1485 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1486 {
1487         if (writecache_has_error(wc))
1488                 return WC_MAP_ERROR;
1489
1490         if (WC_MODE_PMEM(wc)) {
1491                 wc->stats.flushes++;
1492                 writecache_flush(wc);
1493                 if (writecache_has_error(wc))
1494                         return WC_MAP_ERROR;
1495                 else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1496                         return WC_MAP_REMAP_ORIGIN;
1497                 return WC_MAP_SUBMIT;
1498         }
1499         /* SSD: */
1500         if (dm_bio_get_target_bio_nr(bio))
1501                 return WC_MAP_REMAP_ORIGIN;
1502         wc->stats.flushes++;
1503         writecache_offload_bio(wc, bio);
1504         return WC_MAP_RETURN;
1505 }
1506
1507 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1508 {
1509         wc->stats.discards++;
1510
1511         if (writecache_has_error(wc))
1512                 return WC_MAP_ERROR;
1513
1514         if (WC_MODE_PMEM(wc)) {
1515                 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1516                 return WC_MAP_REMAP_ORIGIN;
1517         }
1518         /* SSD: */
1519         writecache_offload_bio(wc, bio);
1520         return WC_MAP_RETURN;
1521 }
1522
1523 static int writecache_map(struct dm_target *ti, struct bio *bio)
1524 {
1525         struct dm_writecache *wc = ti->private;
1526         enum wc_map_op map_op;
1527
1528         bio->bi_private = NULL;
1529
1530         wc_lock(wc);
1531
1532         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1533                 map_op = writecache_map_flush(wc, bio);
1534                 goto done;
1535         }
1536
1537         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1538
1539         if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1540                                 (wc->block_size / 512 - 1)) != 0)) {
1541                 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1542                       (unsigned long long)bio->bi_iter.bi_sector,
1543                       bio->bi_iter.bi_size, wc->block_size);
1544                 map_op = WC_MAP_ERROR;
1545                 goto done;
1546         }
1547
1548         if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1549                 map_op = writecache_map_discard(wc, bio);
1550                 goto done;
1551         }
1552
1553         if (bio_data_dir(bio) == READ)
1554                 map_op = writecache_map_read(wc, bio);
1555         else
1556                 map_op = writecache_map_write(wc, bio);
1557 done:
1558         switch (map_op) {
1559         case WC_MAP_REMAP_ORIGIN:
1560                 if (likely(wc->pause != 0)) {
1561                         if (bio_op(bio) == REQ_OP_WRITE) {
1562                                 dm_iot_io_begin(&wc->iot, 1);
1563                                 bio->bi_private = (void *)2;
1564                         }
1565                 }
1566                 bio_set_dev(bio, wc->dev->bdev);
1567                 wc_unlock(wc);
1568                 return DM_MAPIO_REMAPPED;
1569
1570         case WC_MAP_REMAP:
1571                 /* make sure that writecache_end_io decrements bio_in_progress: */
1572                 bio->bi_private = (void *)1;
1573                 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1574                 wc_unlock(wc);
1575                 return DM_MAPIO_REMAPPED;
1576
1577         case WC_MAP_SUBMIT:
1578                 wc_unlock(wc);
1579                 bio_endio(bio);
1580                 return DM_MAPIO_SUBMITTED;
1581
1582         case WC_MAP_RETURN:
1583                 wc_unlock(wc);
1584                 return DM_MAPIO_SUBMITTED;
1585
1586         case WC_MAP_ERROR:
1587                 wc_unlock(wc);
1588                 bio_io_error(bio);
1589                 return DM_MAPIO_SUBMITTED;
1590
1591         default:
1592                 BUG();
1593                 return -1;
1594         }
1595 }
1596
1597 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1598 {
1599         struct dm_writecache *wc = ti->private;
1600
1601         if (bio->bi_private == (void *)1) {
1602                 int dir = bio_data_dir(bio);
1603                 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1604                         if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1605                                 wake_up(&wc->bio_in_progress_wait[dir]);
1606         } else if (bio->bi_private == (void *)2) {
1607                 dm_iot_io_end(&wc->iot, 1);
1608         }
1609         return 0;
1610 }
1611
1612 static int writecache_iterate_devices(struct dm_target *ti,
1613                                       iterate_devices_callout_fn fn, void *data)
1614 {
1615         struct dm_writecache *wc = ti->private;
1616
1617         return fn(ti, wc->dev, 0, ti->len, data);
1618 }
1619
1620 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1621 {
1622         struct dm_writecache *wc = ti->private;
1623
1624         if (limits->logical_block_size < wc->block_size)
1625                 limits->logical_block_size = wc->block_size;
1626
1627         if (limits->physical_block_size < wc->block_size)
1628                 limits->physical_block_size = wc->block_size;
1629
1630         if (limits->io_min < wc->block_size)
1631                 limits->io_min = wc->block_size;
1632 }
1633
1634
1635 static void writecache_writeback_endio(struct bio *bio)
1636 {
1637         struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1638         struct dm_writecache *wc = wb->wc;
1639         unsigned long flags;
1640
1641         raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1642         if (unlikely(list_empty(&wc->endio_list)))
1643                 wake_up_process(wc->endio_thread);
1644         list_add_tail(&wb->endio_entry, &wc->endio_list);
1645         raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1646 }
1647
1648 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1649 {
1650         struct copy_struct *c = ptr;
1651         struct dm_writecache *wc = c->wc;
1652
1653         c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1654
1655         raw_spin_lock_irq(&wc->endio_list_lock);
1656         if (unlikely(list_empty(&wc->endio_list)))
1657                 wake_up_process(wc->endio_thread);
1658         list_add_tail(&c->endio_entry, &wc->endio_list);
1659         raw_spin_unlock_irq(&wc->endio_list_lock);
1660 }
1661
1662 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1663 {
1664         unsigned i;
1665         struct writeback_struct *wb;
1666         struct wc_entry *e;
1667         unsigned long n_walked = 0;
1668
1669         do {
1670                 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1671                 list_del(&wb->endio_entry);
1672
1673                 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1674                         writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1675                                         "write error %d", wb->bio.bi_status);
1676                 i = 0;
1677                 do {
1678                         e = wb->wc_list[i];
1679                         BUG_ON(!e->write_in_progress);
1680                         e->write_in_progress = false;
1681                         INIT_LIST_HEAD(&e->lru);
1682                         if (!writecache_has_error(wc))
1683                                 writecache_free_entry(wc, e);
1684                         BUG_ON(!wc->writeback_size);
1685                         wc->writeback_size--;
1686                         n_walked++;
1687                         if (unlikely(n_walked >= ENDIO_LATENCY)) {
1688                                 writecache_commit_flushed(wc, false);
1689                                 wc_unlock(wc);
1690                                 wc_lock(wc);
1691                                 n_walked = 0;
1692                         }
1693                 } while (++i < wb->wc_list_n);
1694
1695                 if (wb->wc_list != wb->wc_list_inline)
1696                         kfree(wb->wc_list);
1697                 bio_put(&wb->bio);
1698         } while (!list_empty(list));
1699 }
1700
1701 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1702 {
1703         struct copy_struct *c;
1704         struct wc_entry *e;
1705
1706         do {
1707                 c = list_entry(list->next, struct copy_struct, endio_entry);
1708                 list_del(&c->endio_entry);
1709
1710                 if (unlikely(c->error))
1711                         writecache_error(wc, c->error, "copy error");
1712
1713                 e = c->e;
1714                 do {
1715                         BUG_ON(!e->write_in_progress);
1716                         e->write_in_progress = false;
1717                         INIT_LIST_HEAD(&e->lru);
1718                         if (!writecache_has_error(wc))
1719                                 writecache_free_entry(wc, e);
1720
1721                         BUG_ON(!wc->writeback_size);
1722                         wc->writeback_size--;
1723                         e++;
1724                 } while (--c->n_entries);
1725                 mempool_free(c, &wc->copy_pool);
1726         } while (!list_empty(list));
1727 }
1728
1729 static int writecache_endio_thread(void *data)
1730 {
1731         struct dm_writecache *wc = data;
1732
1733         while (1) {
1734                 struct list_head list;
1735
1736                 raw_spin_lock_irq(&wc->endio_list_lock);
1737                 if (!list_empty(&wc->endio_list))
1738                         goto pop_from_list;
1739                 set_current_state(TASK_INTERRUPTIBLE);
1740                 raw_spin_unlock_irq(&wc->endio_list_lock);
1741
1742                 if (unlikely(kthread_should_stop())) {
1743                         set_current_state(TASK_RUNNING);
1744                         break;
1745                 }
1746
1747                 schedule();
1748
1749                 continue;
1750
1751 pop_from_list:
1752                 list = wc->endio_list;
1753                 list.next->prev = list.prev->next = &list;
1754                 INIT_LIST_HEAD(&wc->endio_list);
1755                 raw_spin_unlock_irq(&wc->endio_list_lock);
1756
1757                 if (!WC_MODE_FUA(wc))
1758                         writecache_disk_flush(wc, wc->dev);
1759
1760                 wc_lock(wc);
1761
1762                 if (WC_MODE_PMEM(wc)) {
1763                         __writecache_endio_pmem(wc, &list);
1764                 } else {
1765                         __writecache_endio_ssd(wc, &list);
1766                         writecache_wait_for_ios(wc, READ);
1767                 }
1768
1769                 writecache_commit_flushed(wc, false);
1770
1771                 wc_unlock(wc);
1772         }
1773
1774         return 0;
1775 }
1776
1777 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1778 {
1779         struct dm_writecache *wc = wb->wc;
1780         unsigned block_size = wc->block_size;
1781         void *address = memory_data(wc, e);
1782
1783         persistent_memory_flush_cache(address, block_size);
1784
1785         if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1786                 return true;
1787
1788         return bio_add_page(&wb->bio, persistent_memory_page(address),
1789                             block_size, persistent_memory_page_offset(address)) != 0;
1790 }
1791
1792 struct writeback_list {
1793         struct list_head list;
1794         size_t size;
1795 };
1796
1797 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1798 {
1799         if (unlikely(wc->max_writeback_jobs)) {
1800                 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1801                         wc_lock(wc);
1802                         while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1803                                 writecache_wait_on_freelist(wc);
1804                         wc_unlock(wc);
1805                 }
1806         }
1807         cond_resched();
1808 }
1809
1810 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1811 {
1812         struct wc_entry *e, *f;
1813         struct bio *bio;
1814         struct writeback_struct *wb;
1815         unsigned max_pages;
1816
1817         while (wbl->size) {
1818                 wbl->size--;
1819                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1820                 list_del(&e->lru);
1821
1822                 max_pages = e->wc_list_contiguous;
1823
1824                 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1825                 wb = container_of(bio, struct writeback_struct, bio);
1826                 wb->wc = wc;
1827                 bio->bi_end_io = writecache_writeback_endio;
1828                 bio_set_dev(bio, wc->dev->bdev);
1829                 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1830                 if (max_pages <= WB_LIST_INLINE ||
1831                     unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1832                                                            GFP_NOIO | __GFP_NORETRY |
1833                                                            __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1834                         wb->wc_list = wb->wc_list_inline;
1835                         max_pages = WB_LIST_INLINE;
1836                 }
1837
1838                 BUG_ON(!wc_add_block(wb, e));
1839
1840                 wb->wc_list[0] = e;
1841                 wb->wc_list_n = 1;
1842
1843                 while (wbl->size && wb->wc_list_n < max_pages) {
1844                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1845                         if (read_original_sector(wc, f) !=
1846                             read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1847                                 break;
1848                         if (!wc_add_block(wb, f))
1849                                 break;
1850                         wbl->size--;
1851                         list_del(&f->lru);
1852                         wb->wc_list[wb->wc_list_n++] = f;
1853                         e = f;
1854                 }
1855                 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1856                 if (writecache_has_error(wc)) {
1857                         bio->bi_status = BLK_STS_IOERR;
1858                         bio_endio(bio);
1859                 } else if (unlikely(!bio_sectors(bio))) {
1860                         bio->bi_status = BLK_STS_OK;
1861                         bio_endio(bio);
1862                 } else {
1863                         submit_bio(bio);
1864                 }
1865
1866                 __writeback_throttle(wc, wbl);
1867         }
1868 }
1869
1870 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1871 {
1872         struct wc_entry *e, *f;
1873         struct dm_io_region from, to;
1874         struct copy_struct *c;
1875
1876         while (wbl->size) {
1877                 unsigned n_sectors;
1878
1879                 wbl->size--;
1880                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1881                 list_del(&e->lru);
1882
1883                 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1884
1885                 from.bdev = wc->ssd_dev->bdev;
1886                 from.sector = cache_sector(wc, e);
1887                 from.count = n_sectors;
1888                 to.bdev = wc->dev->bdev;
1889                 to.sector = read_original_sector(wc, e);
1890                 to.count = n_sectors;
1891
1892                 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1893                 c->wc = wc;
1894                 c->e = e;
1895                 c->n_entries = e->wc_list_contiguous;
1896
1897                 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1898                         wbl->size--;
1899                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1900                         BUG_ON(f != e + 1);
1901                         list_del(&f->lru);
1902                         e = f;
1903                 }
1904
1905                 if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1906                         if (to.sector >= wc->data_device_sectors) {
1907                                 writecache_copy_endio(0, 0, c);
1908                                 continue;
1909                         }
1910                         from.count = to.count = wc->data_device_sectors - to.sector;
1911                 }
1912
1913                 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1914
1915                 __writeback_throttle(wc, wbl);
1916         }
1917 }
1918
1919 static void writecache_writeback(struct work_struct *work)
1920 {
1921         struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1922         struct blk_plug plug;
1923         struct wc_entry *f, *g, *e = NULL;
1924         struct rb_node *node, *next_node;
1925         struct list_head skipped;
1926         struct writeback_list wbl;
1927         unsigned long n_walked;
1928
1929         if (!WC_MODE_PMEM(wc)) {
1930                 /* Wait for any active kcopyd work on behalf of ssd writeback */
1931                 dm_kcopyd_client_flush(wc->dm_kcopyd);
1932         }
1933
1934         if (likely(wc->pause != 0)) {
1935                 while (1) {
1936                         unsigned long idle;
1937                         if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1938                             unlikely(dm_suspended(wc->ti)))
1939                                 break;
1940                         idle = dm_iot_idle_time(&wc->iot);
1941                         if (idle >= wc->pause)
1942                                 break;
1943                         idle = wc->pause - idle;
1944                         if (idle > HZ)
1945                                 idle = HZ;
1946                         schedule_timeout_idle(idle);
1947                 }
1948         }
1949
1950         wc_lock(wc);
1951 restart:
1952         if (writecache_has_error(wc)) {
1953                 wc_unlock(wc);
1954                 return;
1955         }
1956
1957         if (unlikely(wc->writeback_all)) {
1958                 if (writecache_wait_for_writeback(wc))
1959                         goto restart;
1960         }
1961
1962         if (wc->overwrote_committed) {
1963                 writecache_wait_for_ios(wc, WRITE);
1964         }
1965
1966         n_walked = 0;
1967         INIT_LIST_HEAD(&skipped);
1968         INIT_LIST_HEAD(&wbl.list);
1969         wbl.size = 0;
1970         while (!list_empty(&wc->lru) &&
1971                (wc->writeback_all ||
1972                 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1973                 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1974                  wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1975
1976                 n_walked++;
1977                 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1978                     likely(!wc->writeback_all)) {
1979                         if (likely(!dm_suspended(wc->ti)))
1980                                 queue_work(wc->writeback_wq, &wc->writeback_work);
1981                         break;
1982                 }
1983
1984                 if (unlikely(wc->writeback_all)) {
1985                         if (unlikely(!e)) {
1986                                 writecache_flush(wc);
1987                                 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1988                         } else
1989                                 e = g;
1990                 } else
1991                         e = container_of(wc->lru.prev, struct wc_entry, lru);
1992                 BUG_ON(e->write_in_progress);
1993                 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1994                         writecache_flush(wc);
1995                 }
1996                 node = rb_prev(&e->rb_node);
1997                 if (node) {
1998                         f = container_of(node, struct wc_entry, rb_node);
1999                         if (unlikely(read_original_sector(wc, f) ==
2000                                      read_original_sector(wc, e))) {
2001                                 BUG_ON(!f->write_in_progress);
2002                                 list_move(&e->lru, &skipped);
2003                                 cond_resched();
2004                                 continue;
2005                         }
2006                 }
2007                 wc->writeback_size++;
2008                 list_move(&e->lru, &wbl.list);
2009                 wbl.size++;
2010                 e->write_in_progress = true;
2011                 e->wc_list_contiguous = 1;
2012
2013                 f = e;
2014
2015                 while (1) {
2016                         next_node = rb_next(&f->rb_node);
2017                         if (unlikely(!next_node))
2018                                 break;
2019                         g = container_of(next_node, struct wc_entry, rb_node);
2020                         if (unlikely(read_original_sector(wc, g) ==
2021                             read_original_sector(wc, f))) {
2022                                 f = g;
2023                                 continue;
2024                         }
2025                         if (read_original_sector(wc, g) !=
2026                             read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2027                                 break;
2028                         if (unlikely(g->write_in_progress))
2029                                 break;
2030                         if (unlikely(!writecache_entry_is_committed(wc, g)))
2031                                 break;
2032
2033                         if (!WC_MODE_PMEM(wc)) {
2034                                 if (g != f + 1)
2035                                         break;
2036                         }
2037
2038                         n_walked++;
2039                         //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2040                         //      break;
2041
2042                         wc->writeback_size++;
2043                         list_move(&g->lru, &wbl.list);
2044                         wbl.size++;
2045                         g->write_in_progress = true;
2046                         g->wc_list_contiguous = BIO_MAX_VECS;
2047                         f = g;
2048                         e->wc_list_contiguous++;
2049                         if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2050                                 if (unlikely(wc->writeback_all)) {
2051                                         next_node = rb_next(&f->rb_node);
2052                                         if (likely(next_node))
2053                                                 g = container_of(next_node, struct wc_entry, rb_node);
2054                                 }
2055                                 break;
2056                         }
2057                 }
2058                 cond_resched();
2059         }
2060
2061         if (!list_empty(&skipped)) {
2062                 list_splice_tail(&skipped, &wc->lru);
2063                 /*
2064                  * If we didn't do any progress, we must wait until some
2065                  * writeback finishes to avoid burning CPU in a loop
2066                  */
2067                 if (unlikely(!wbl.size))
2068                         writecache_wait_for_writeback(wc);
2069         }
2070
2071         wc_unlock(wc);
2072
2073         blk_start_plug(&plug);
2074
2075         if (WC_MODE_PMEM(wc))
2076                 __writecache_writeback_pmem(wc, &wbl);
2077         else
2078                 __writecache_writeback_ssd(wc, &wbl);
2079
2080         blk_finish_plug(&plug);
2081
2082         if (unlikely(wc->writeback_all)) {
2083                 wc_lock(wc);
2084                 while (writecache_wait_for_writeback(wc));
2085                 wc_unlock(wc);
2086         }
2087 }
2088
2089 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2090                                  size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2091 {
2092         uint64_t n_blocks, offset;
2093         struct wc_entry e;
2094
2095         n_blocks = device_size;
2096         do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2097
2098         while (1) {
2099                 if (!n_blocks)
2100                         return -ENOSPC;
2101                 /* Verify the following entries[n_blocks] won't overflow */
2102                 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2103                                  sizeof(struct wc_memory_entry)))
2104                         return -EFBIG;
2105                 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2106                 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2107                 if (offset + n_blocks * block_size <= device_size)
2108                         break;
2109                 n_blocks--;
2110         }
2111
2112         /* check if the bit field overflows */
2113         e.index = n_blocks;
2114         if (e.index != n_blocks)
2115                 return -EFBIG;
2116
2117         if (n_blocks_p)
2118                 *n_blocks_p = n_blocks;
2119         if (n_metadata_blocks_p)
2120                 *n_metadata_blocks_p = offset >> __ffs(block_size);
2121         return 0;
2122 }
2123
2124 static int init_memory(struct dm_writecache *wc)
2125 {
2126         size_t b;
2127         int r;
2128
2129         r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2130         if (r)
2131                 return r;
2132
2133         r = writecache_alloc_entries(wc);
2134         if (r)
2135                 return r;
2136
2137         for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2138                 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2139         pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2140         pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2141         pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2142         pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2143
2144         for (b = 0; b < wc->n_blocks; b++) {
2145                 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2146                 cond_resched();
2147         }
2148
2149         writecache_flush_all_metadata(wc);
2150         writecache_commit_flushed(wc, false);
2151         pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2152         writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2153         writecache_commit_flushed(wc, false);
2154
2155         return 0;
2156 }
2157
2158 static void writecache_dtr(struct dm_target *ti)
2159 {
2160         struct dm_writecache *wc = ti->private;
2161
2162         if (!wc)
2163                 return;
2164
2165         if (wc->endio_thread)
2166                 kthread_stop(wc->endio_thread);
2167
2168         if (wc->flush_thread)
2169                 kthread_stop(wc->flush_thread);
2170
2171         bioset_exit(&wc->bio_set);
2172
2173         mempool_exit(&wc->copy_pool);
2174
2175         if (wc->writeback_wq)
2176                 destroy_workqueue(wc->writeback_wq);
2177
2178         if (wc->dev)
2179                 dm_put_device(ti, wc->dev);
2180
2181         if (wc->ssd_dev)
2182                 dm_put_device(ti, wc->ssd_dev);
2183
2184         vfree(wc->entries);
2185
2186         if (wc->memory_map) {
2187                 if (WC_MODE_PMEM(wc))
2188                         persistent_memory_release(wc);
2189                 else
2190                         vfree(wc->memory_map);
2191         }
2192
2193         if (wc->dm_kcopyd)
2194                 dm_kcopyd_client_destroy(wc->dm_kcopyd);
2195
2196         if (wc->dm_io)
2197                 dm_io_client_destroy(wc->dm_io);
2198
2199         vfree(wc->dirty_bitmap);
2200
2201         kfree(wc);
2202 }
2203
2204 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2205 {
2206         struct dm_writecache *wc;
2207         struct dm_arg_set as;
2208         const char *string;
2209         unsigned opt_params;
2210         size_t offset, data_size;
2211         int i, r;
2212         char dummy;
2213         int high_wm_percent = HIGH_WATERMARK;
2214         int low_wm_percent = LOW_WATERMARK;
2215         uint64_t x;
2216         struct wc_memory_superblock s;
2217
2218         static struct dm_arg _args[] = {
2219                 {0, 18, "Invalid number of feature args"},
2220         };
2221
2222         as.argc = argc;
2223         as.argv = argv;
2224
2225         wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2226         if (!wc) {
2227                 ti->error = "Cannot allocate writecache structure";
2228                 r = -ENOMEM;
2229                 goto bad;
2230         }
2231         ti->private = wc;
2232         wc->ti = ti;
2233
2234         mutex_init(&wc->lock);
2235         wc->max_age = MAX_AGE_UNSPECIFIED;
2236         writecache_poison_lists(wc);
2237         init_waitqueue_head(&wc->freelist_wait);
2238         timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2239         timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2240
2241         for (i = 0; i < 2; i++) {
2242                 atomic_set(&wc->bio_in_progress[i], 0);
2243                 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2244         }
2245
2246         wc->dm_io = dm_io_client_create();
2247         if (IS_ERR(wc->dm_io)) {
2248                 r = PTR_ERR(wc->dm_io);
2249                 ti->error = "Unable to allocate dm-io client";
2250                 wc->dm_io = NULL;
2251                 goto bad;
2252         }
2253
2254         wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2255         if (!wc->writeback_wq) {
2256                 r = -ENOMEM;
2257                 ti->error = "Could not allocate writeback workqueue";
2258                 goto bad;
2259         }
2260         INIT_WORK(&wc->writeback_work, writecache_writeback);
2261         INIT_WORK(&wc->flush_work, writecache_flush_work);
2262
2263         dm_iot_init(&wc->iot);
2264
2265         raw_spin_lock_init(&wc->endio_list_lock);
2266         INIT_LIST_HEAD(&wc->endio_list);
2267         wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2268         if (IS_ERR(wc->endio_thread)) {
2269                 r = PTR_ERR(wc->endio_thread);
2270                 wc->endio_thread = NULL;
2271                 ti->error = "Couldn't spawn endio thread";
2272                 goto bad;
2273         }
2274         wake_up_process(wc->endio_thread);
2275
2276         /*
2277          * Parse the mode (pmem or ssd)
2278          */
2279         string = dm_shift_arg(&as);
2280         if (!string)
2281                 goto bad_arguments;
2282
2283         if (!strcasecmp(string, "s")) {
2284                 wc->pmem_mode = false;
2285         } else if (!strcasecmp(string, "p")) {
2286 #ifdef DM_WRITECACHE_HAS_PMEM
2287                 wc->pmem_mode = true;
2288                 wc->writeback_fua = true;
2289 #else
2290                 /*
2291                  * If the architecture doesn't support persistent memory or
2292                  * the kernel doesn't support any DAX drivers, this driver can
2293                  * only be used in SSD-only mode.
2294                  */
2295                 r = -EOPNOTSUPP;
2296                 ti->error = "Persistent memory or DAX not supported on this system";
2297                 goto bad;
2298 #endif
2299         } else {
2300                 goto bad_arguments;
2301         }
2302
2303         if (WC_MODE_PMEM(wc)) {
2304                 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2305                                 offsetof(struct writeback_struct, bio),
2306                                 BIOSET_NEED_BVECS);
2307                 if (r) {
2308                         ti->error = "Could not allocate bio set";
2309                         goto bad;
2310                 }
2311         } else {
2312                 wc->pause = PAUSE_WRITEBACK;
2313                 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2314                 if (r) {
2315                         ti->error = "Could not allocate mempool";
2316                         goto bad;
2317                 }
2318         }
2319
2320         /*
2321          * Parse the origin data device
2322          */
2323         string = dm_shift_arg(&as);
2324         if (!string)
2325                 goto bad_arguments;
2326         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2327         if (r) {
2328                 ti->error = "Origin data device lookup failed";
2329                 goto bad;
2330         }
2331
2332         /*
2333          * Parse cache data device (be it pmem or ssd)
2334          */
2335         string = dm_shift_arg(&as);
2336         if (!string)
2337                 goto bad_arguments;
2338
2339         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2340         if (r) {
2341                 ti->error = "Cache data device lookup failed";
2342                 goto bad;
2343         }
2344         wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2345
2346         /*
2347          * Parse the cache block size
2348          */
2349         string = dm_shift_arg(&as);
2350         if (!string)
2351                 goto bad_arguments;
2352         if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2353             wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2354             (wc->block_size & (wc->block_size - 1))) {
2355                 r = -EINVAL;
2356                 ti->error = "Invalid block size";
2357                 goto bad;
2358         }
2359         if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2360             wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2361                 r = -EINVAL;
2362                 ti->error = "Block size is smaller than device logical block size";
2363                 goto bad;
2364         }
2365         wc->block_size_bits = __ffs(wc->block_size);
2366
2367         wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2368         wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2369         wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2370
2371         /*
2372          * Parse optional arguments
2373          */
2374         r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2375         if (r)
2376                 goto bad;
2377
2378         while (opt_params) {
2379                 string = dm_shift_arg(&as), opt_params--;
2380                 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2381                         unsigned long long start_sector;
2382                         string = dm_shift_arg(&as), opt_params--;
2383                         if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2384                                 goto invalid_optional;
2385                         wc->start_sector = start_sector;
2386                         wc->start_sector_set = true;
2387                         if (wc->start_sector != start_sector ||
2388                             wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2389                                 goto invalid_optional;
2390                 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2391                         string = dm_shift_arg(&as), opt_params--;
2392                         if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2393                                 goto invalid_optional;
2394                         if (high_wm_percent < 0 || high_wm_percent > 100)
2395                                 goto invalid_optional;
2396                         wc->high_wm_percent_value = high_wm_percent;
2397                         wc->high_wm_percent_set = true;
2398                 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2399                         string = dm_shift_arg(&as), opt_params--;
2400                         if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2401                                 goto invalid_optional;
2402                         if (low_wm_percent < 0 || low_wm_percent > 100)
2403                                 goto invalid_optional;
2404                         wc->low_wm_percent_value = low_wm_percent;
2405                         wc->low_wm_percent_set = true;
2406                 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2407                         string = dm_shift_arg(&as), opt_params--;
2408                         if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2409                                 goto invalid_optional;
2410                         wc->max_writeback_jobs_set = true;
2411                 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2412                         string = dm_shift_arg(&as), opt_params--;
2413                         if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2414                                 goto invalid_optional;
2415                         wc->autocommit_blocks_set = true;
2416                 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2417                         unsigned autocommit_msecs;
2418                         string = dm_shift_arg(&as), opt_params--;
2419                         if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2420                                 goto invalid_optional;
2421                         if (autocommit_msecs > 3600000)
2422                                 goto invalid_optional;
2423                         wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2424                         wc->autocommit_time_value = autocommit_msecs;
2425                         wc->autocommit_time_set = true;
2426                 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2427                         unsigned max_age_msecs;
2428                         string = dm_shift_arg(&as), opt_params--;
2429                         if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2430                                 goto invalid_optional;
2431                         if (max_age_msecs > 86400000)
2432                                 goto invalid_optional;
2433                         wc->max_age = msecs_to_jiffies(max_age_msecs);
2434                         wc->max_age_set = true;
2435                         wc->max_age_value = max_age_msecs;
2436                 } else if (!strcasecmp(string, "cleaner")) {
2437                         wc->cleaner_set = true;
2438                         wc->cleaner = true;
2439                 } else if (!strcasecmp(string, "fua")) {
2440                         if (WC_MODE_PMEM(wc)) {
2441                                 wc->writeback_fua = true;
2442                                 wc->writeback_fua_set = true;
2443                         } else goto invalid_optional;
2444                 } else if (!strcasecmp(string, "nofua")) {
2445                         if (WC_MODE_PMEM(wc)) {
2446                                 wc->writeback_fua = false;
2447                                 wc->writeback_fua_set = true;
2448                         } else goto invalid_optional;
2449                 } else if (!strcasecmp(string, "metadata_only")) {
2450                         wc->metadata_only = true;
2451                 } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2452                         unsigned pause_msecs;
2453                         if (WC_MODE_PMEM(wc))
2454                                 goto invalid_optional;
2455                         string = dm_shift_arg(&as), opt_params--;
2456                         if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2457                                 goto invalid_optional;
2458                         if (pause_msecs > 60000)
2459                                 goto invalid_optional;
2460                         wc->pause = msecs_to_jiffies(pause_msecs);
2461                         wc->pause_set = true;
2462                         wc->pause_value = pause_msecs;
2463                 } else {
2464 invalid_optional:
2465                         r = -EINVAL;
2466                         ti->error = "Invalid optional argument";
2467                         goto bad;
2468                 }
2469         }
2470
2471         if (high_wm_percent < low_wm_percent) {
2472                 r = -EINVAL;
2473                 ti->error = "High watermark must be greater than or equal to low watermark";
2474                 goto bad;
2475         }
2476
2477         if (WC_MODE_PMEM(wc)) {
2478                 if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2479                         r = -EOPNOTSUPP;
2480                         ti->error = "Asynchronous persistent memory not supported as pmem cache";
2481                         goto bad;
2482                 }
2483
2484                 r = persistent_memory_claim(wc);
2485                 if (r) {
2486                         ti->error = "Unable to map persistent memory for cache";
2487                         goto bad;
2488                 }
2489         } else {
2490                 size_t n_blocks, n_metadata_blocks;
2491                 uint64_t n_bitmap_bits;
2492
2493                 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2494
2495                 bio_list_init(&wc->flush_list);
2496                 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2497                 if (IS_ERR(wc->flush_thread)) {
2498                         r = PTR_ERR(wc->flush_thread);
2499                         wc->flush_thread = NULL;
2500                         ti->error = "Couldn't spawn flush thread";
2501                         goto bad;
2502                 }
2503                 wake_up_process(wc->flush_thread);
2504
2505                 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2506                                           &n_blocks, &n_metadata_blocks);
2507                 if (r) {
2508                         ti->error = "Invalid device size";
2509                         goto bad;
2510                 }
2511
2512                 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2513                                  BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2514                 /* this is limitation of test_bit functions */
2515                 if (n_bitmap_bits > 1U << 31) {
2516                         r = -EFBIG;
2517                         ti->error = "Invalid device size";
2518                         goto bad;
2519                 }
2520
2521                 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2522                 if (!wc->memory_map) {
2523                         r = -ENOMEM;
2524                         ti->error = "Unable to allocate memory for metadata";
2525                         goto bad;
2526                 }
2527
2528                 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2529                 if (IS_ERR(wc->dm_kcopyd)) {
2530                         r = PTR_ERR(wc->dm_kcopyd);
2531                         ti->error = "Unable to allocate dm-kcopyd client";
2532                         wc->dm_kcopyd = NULL;
2533                         goto bad;
2534                 }
2535
2536                 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2537                 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2538                         BITS_PER_LONG * sizeof(unsigned long);
2539                 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2540                 if (!wc->dirty_bitmap) {
2541                         r = -ENOMEM;
2542                         ti->error = "Unable to allocate dirty bitmap";
2543                         goto bad;
2544                 }
2545
2546                 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2547                 if (r) {
2548                         ti->error = "Unable to read first block of metadata";
2549                         goto bad;
2550                 }
2551         }
2552
2553         r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2554         if (r) {
2555                 ti->error = "Hardware memory error when reading superblock";
2556                 goto bad;
2557         }
2558         if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2559                 r = init_memory(wc);
2560                 if (r) {
2561                         ti->error = "Unable to initialize device";
2562                         goto bad;
2563                 }
2564                 r = copy_mc_to_kernel(&s, sb(wc),
2565                                       sizeof(struct wc_memory_superblock));
2566                 if (r) {
2567                         ti->error = "Hardware memory error when reading superblock";
2568                         goto bad;
2569                 }
2570         }
2571
2572         if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2573                 ti->error = "Invalid magic in the superblock";
2574                 r = -EINVAL;
2575                 goto bad;
2576         }
2577
2578         if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2579                 ti->error = "Invalid version in the superblock";
2580                 r = -EINVAL;
2581                 goto bad;
2582         }
2583
2584         if (le32_to_cpu(s.block_size) != wc->block_size) {
2585                 ti->error = "Block size does not match superblock";
2586                 r = -EINVAL;
2587                 goto bad;
2588         }
2589
2590         wc->n_blocks = le64_to_cpu(s.n_blocks);
2591
2592         offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2593         if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2594 overflow:
2595                 ti->error = "Overflow in size calculation";
2596                 r = -EINVAL;
2597                 goto bad;
2598         }
2599         offset += sizeof(struct wc_memory_superblock);
2600         if (offset < sizeof(struct wc_memory_superblock))
2601                 goto overflow;
2602         offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2603         data_size = wc->n_blocks * (size_t)wc->block_size;
2604         if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2605             (offset + data_size < offset))
2606                 goto overflow;
2607         if (offset + data_size > wc->memory_map_size) {
2608                 ti->error = "Memory area is too small";
2609                 r = -EINVAL;
2610                 goto bad;
2611         }
2612
2613         wc->metadata_sectors = offset >> SECTOR_SHIFT;
2614         wc->block_start = (char *)sb(wc) + offset;
2615
2616         x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2617         x += 50;
2618         do_div(x, 100);
2619         wc->freelist_high_watermark = x;
2620         x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2621         x += 50;
2622         do_div(x, 100);
2623         wc->freelist_low_watermark = x;
2624
2625         if (wc->cleaner)
2626                 activate_cleaner(wc);
2627
2628         r = writecache_alloc_entries(wc);
2629         if (r) {
2630                 ti->error = "Cannot allocate memory";
2631                 goto bad;
2632         }
2633
2634         ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2635         ti->flush_supported = true;
2636         ti->num_discard_bios = 1;
2637
2638         if (WC_MODE_PMEM(wc))
2639                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2640
2641         return 0;
2642
2643 bad_arguments:
2644         r = -EINVAL;
2645         ti->error = "Bad arguments";
2646 bad:
2647         writecache_dtr(ti);
2648         return r;
2649 }
2650
2651 static void writecache_status(struct dm_target *ti, status_type_t type,
2652                               unsigned status_flags, char *result, unsigned maxlen)
2653 {
2654         struct dm_writecache *wc = ti->private;
2655         unsigned extra_args;
2656         unsigned sz = 0;
2657
2658         switch (type) {
2659         case STATUSTYPE_INFO:
2660                 DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2661                        writecache_has_error(wc),
2662                        (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2663                        (unsigned long long)wc->writeback_size,
2664                        wc->stats.reads,
2665                        wc->stats.read_hits,
2666                        wc->stats.writes,
2667                        wc->stats.write_hits_uncommitted,
2668                        wc->stats.write_hits_committed,
2669                        wc->stats.writes_around,
2670                        wc->stats.writes_allocate,
2671                        wc->stats.writes_blocked_on_freelist,
2672                        wc->stats.flushes,
2673                        wc->stats.discards);
2674                 break;
2675         case STATUSTYPE_TABLE:
2676                 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2677                                 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2678                 extra_args = 0;
2679                 if (wc->start_sector_set)
2680                         extra_args += 2;
2681                 if (wc->high_wm_percent_set)
2682                         extra_args += 2;
2683                 if (wc->low_wm_percent_set)
2684                         extra_args += 2;
2685                 if (wc->max_writeback_jobs_set)
2686                         extra_args += 2;
2687                 if (wc->autocommit_blocks_set)
2688                         extra_args += 2;
2689                 if (wc->autocommit_time_set)
2690                         extra_args += 2;
2691                 if (wc->max_age_set)
2692                         extra_args += 2;
2693                 if (wc->cleaner_set)
2694                         extra_args++;
2695                 if (wc->writeback_fua_set)
2696                         extra_args++;
2697                 if (wc->metadata_only)
2698                         extra_args++;
2699                 if (wc->pause_set)
2700                         extra_args += 2;
2701
2702                 DMEMIT("%u", extra_args);
2703                 if (wc->start_sector_set)
2704                         DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2705                 if (wc->high_wm_percent_set)
2706                         DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2707                 if (wc->low_wm_percent_set)
2708                         DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2709                 if (wc->max_writeback_jobs_set)
2710                         DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2711                 if (wc->autocommit_blocks_set)
2712                         DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2713                 if (wc->autocommit_time_set)
2714                         DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2715                 if (wc->max_age_set)
2716                         DMEMIT(" max_age %u", wc->max_age_value);
2717                 if (wc->cleaner_set)
2718                         DMEMIT(" cleaner");
2719                 if (wc->writeback_fua_set)
2720                         DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2721                 if (wc->metadata_only)
2722                         DMEMIT(" metadata_only");
2723                 if (wc->pause_set)
2724                         DMEMIT(" pause_writeback %u", wc->pause_value);
2725                 break;
2726         case STATUSTYPE_IMA:
2727                 *result = '\0';
2728                 break;
2729         }
2730 }
2731
2732 static struct target_type writecache_target = {
2733         .name                   = "writecache",
2734         .version                = {1, 6, 0},
2735         .module                 = THIS_MODULE,
2736         .ctr                    = writecache_ctr,
2737         .dtr                    = writecache_dtr,
2738         .status                 = writecache_status,
2739         .postsuspend            = writecache_suspend,
2740         .resume                 = writecache_resume,
2741         .message                = writecache_message,
2742         .map                    = writecache_map,
2743         .end_io                 = writecache_end_io,
2744         .iterate_devices        = writecache_iterate_devices,
2745         .io_hints               = writecache_io_hints,
2746 };
2747
2748 static int __init dm_writecache_init(void)
2749 {
2750         int r;
2751
2752         r = dm_register_target(&writecache_target);
2753         if (r < 0) {
2754                 DMERR("register failed %d", r);
2755                 return r;
2756         }
2757
2758         return 0;
2759 }
2760
2761 static void __exit dm_writecache_exit(void)
2762 {
2763         dm_unregister_target(&writecache_target);
2764 }
2765
2766 module_init(dm_writecache_init);
2767 module_exit(dm_writecache_exit);
2768
2769 MODULE_DESCRIPTION(DM_NAME " writecache target");
2770 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2771 MODULE_LICENSE("GPL");